

Klaus Horn

Code Signing Android and iOS Applications

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information and Communication Technology

Thesis

9 November 2018

 Abstract

Author
Title

Number of Pages
Date

Klaus Horn
Code Signing Android and iOS applications

37 pages + 5 appendices
9 November 2018

Degree Bachelor of Engineering

Degree Programme Information and Communication Technology

Professional Major Software Engineering

Instructors

Lauri Alakuijala, Technical Manager, Rovio Entertainment Corp.
Erja Nikunen, Principal Lecturer, Metropolia UAS

Code signing Android and iOS mobile applications is an integral part of the mobile applica-
tion development process. It is needed for verifying the developer of an application and is
also tightly linked to the installation of a mobile application on a device.

This bachelor’s thesis aims to primarily provide a general handbook for introducing the
process of code signing Android and iOS mobile applications. The information gathered in
this thesis should be enough to develop a command line application that uses tools pro-
vided by both Apple and Google, as well as some open source ones.

Secondarily, this thesis outlines the development process of a proprietary Python library,
which provides a unified interface for code signing both Android and iOS applications. The
Python library was developed to replace an existing code signing service used by Rovio
Entertainment Corporation.

Keywords android, apk, code signing, entitlements, ios, ipa, keystore,
zipalign, provisioning profile

Tiivistelmä

Tekijä
Otsikko

Sivumäärä
Aika

Klaus Horn
Android and iOS sovellusten digitaalinen allekirjoitus

37 sivua + 5 liitettä
9.11.2018

Tutkinto Insinööri (AMK)

Koulutusohjelma Tieto- ja viestintätekniikka

Suuntautumisvaihtoehto Ohjelmistotekniikka

Ohjaajat

Lauri Alakuijala, Technical Manager, Rovio Entertainment Corp.
Erja Nikunen, Yliopettaja, Metropolia Ammattikorkeakoulu

Android ja iOS mobiilisovellusten digitaalinen allekirjoitus on keskeinen osa mobiilisovel-
lusten kehitysprosessia. Digitaalista allekirjoitusta tarvitaan sovelluksen kehittäjän toden-
tamiseen ja on myös oleellinen osa mobiilisovellusta asennettaessa laitteelle.

Tämän työn päätavoite on tarjota yleinen käyttöohje Android ja iOS sovellusten digitaalisen
allekirjoitusprosessin perusteisiin. Työssä kerätyn tiedon pitäisi olla riittävä komentori-
visovelluksen kehittämiseen käytettäessä Applen, Googlen ja avoimen lähdekoodin tarjo-
amia työkaluja.

Työn toissijainen tavoite on kuvailla Python kirjaston kehitysprosessia, jossa kirjasto tarjo-
aa yhtenäisen rajapinnan Android ja iOS sovellusten digitaaliseen allekirjoitukseen. Python
kirjasto kehitettiin korvaamaan Rovio Entertainment Corporationin olemassa oleva allekir-
joituspalvelu.

Työssä havainnollistetaan Applen ja Googlen ohjeissa ja työkaluissa olevia puutteita ja
täydennetään puutteellisia tietoja tutkimuksen ja kokeilun kautta kerätyillä kuvauksilla ja
selostuksilla. Python kirjaston kehitysprosessin kuvaus toimii oivallisena esimerkkinä,
kuinka Android ja iOS mobiilisovellukset digitaalisesti allekirjoitetaan, ja kuinka muun mu-
assa erinäisten prosessiosien todentaminen tehdään.

Python kirjasto kehitettiin ATDD menetelmää sivuten ja riippuvuusinjektiomallia hyväksi-
käyttäen. ATDD menetelmästä hyödynnettiin pääasiassa käyttötapauskuvauksia ja niiden
vaatimuksia, joiden kautta pysyttiin ja jakamaan työtehtävät järkeviin kokonaisuuksiin.
Riippuvuusinjektiomalli mahdollisti kirjaston, joka toimi pelkästään funktioiden kautta. Tu-
lokseksi saatiin toimiva, selkä ja ylläpidettävä kirjasto, jota pystyy muokkaamaan ja täyden-
tämään käyttötarpeiden mukaan.

Keywords android, apk, code signing, entitlements, ios, ipa, keystore,
zipalign, provisioning profile

Contents

List of Abbreviations

1 Introduction 1

2 Code signing 2

2.1 Certification Authorities 3
2.2 Issues with mobile application code signing. 4
2.3 Available third-party tools and their limitations 5

3 Android code signing 6

3.1 The Android application package 6
3.2 The keystore 8

3.2.1 Creating keystores 8
3.3 Key hashes and SHA1 signatures 11
3.4 Code signing an APK 13

3.4.1 Zipaligning 13
3.4.2 Code signing using jarsigner 14
3.4.3 Code signing using apksigner 15

3.5 Routine flow 15

4 iOS code signing 16

4.1 The iPhone application package 17
4.2 The certificate 18
4.3 Entitlements 19
4.4 Provisioning profiles 21
4.5 Code signing an iPhone Archive 27

4.5.1 Validation 27
4.5.2 Setup 28
4.5.3 Code signing 29
4.5.4 Packaging 30

4.6 Routine flow 30

5 The solution 31

5.1 Issues with the current tools 32
5.2 Use cases 32

5.3 Requirements 33
5.3.1 Environment requirements 33
5.3.2 Implementation requirements 33
5.3.3 Testing requirements 34
5.3.4 Documentation requirements 34

6 Results 35

7 Summary 36

References 38

Appendices

Appendix 1. Certificate parsing using Python

Appendix 2. Generic use cases

Appendix 3. Android use cases

Appendix 4. iOS use cases

Appendix 5. Parsing provisioning profile with a Python regular expression

List of Abbreviations

API Application programming interface. A set of subroutine definitions, proto-

cols, and tools for building application software.

APK Android Package Kit. The package file format used by the Android operat-

ing system for distribution and installation of mobile apps and middleware.

CA Certificate authority. An entity that issues digital certificates.

CLI Command-line interface. A means of interacting with a computer program

where the user issues commands to the program in the form of succes-

sive lines of text.

DER Distinguished Encoding Rules. A widely used digital certificate format.

DRM Digital rights management. A set of access control technologies for re-

stricting the use of proprietary hardware and copyrighted works.

GPGS Google Play Games Services. A proprietary service and API package for

Android devices.

HTTPS Hypertext Transfer Protocol Secure. An adaptation of the Hypertext

Transfer Protocol for secure communication over a computer network.

IDAT Image Data. A part of the Portable Network Graphics format.

iOS iPhone OS. A mobile operating system created and developed by Apple

Inc. exclusively for Apple’s hardware.

IPA iPhone Archive. The package file format used by the iOS operating sys-

tem for distribution and installation of mobile apps.

JAR Java Archive. A package file format typically used to aggregate many

Java class files and associated metadata and resources into one file for

distribution.

JDK Java Development Kit. A development kit for the Java Platform.

OSX Mac OS X. A series of graphical operating systems developed and mar-

keted by Apple Inc. since 2001.

PC Personal Computer. Computer running either Windows or Linux operating

system.

PEM Privacy-Enhanced Electronic Mail. A de facto file format for storing and

sending cryptographic keys, certificates, and other data, based on a set of

1993 IETF standards defining “privacy-enhanced mail”.

PGP Pretty Good Privacy. An encryption program that provides cryptographic

privacy and authentication for data communication.

PKI Public key infrastructure. A set of roles, policies, procedures needed to

create, manage, distribute, use, store, and revoke digital certificates and

manage public-key encryption.

PNG Portable Network Graphics. A raster graphics file format that supports

lossless data compression.

RSA Rivest-Shamir-Adleman. A public-key cryptosystem widely used for se-

cure data transmission.

SDK Software development kit. A set of development tools that allows the cre-

ation of applications for a certain software package, software package,

software framework, hardware platform, computer system, operating sys-

tem, or similar development platform.

SHA1 Secure Hash Algorithm 1. A cryptographic hash function which takes an

input and produces a 160-bit (20-byte) hash value known as a message

digest, typically rendered as a 40 digits long hexadecimal number.

SHA256 Secure Hash Algorithm 256. A cryptographic hash function computed with

32-bit words.

UUID Universally Unique Identifier. A 128-bit alphanumeric string.

1

1 Introduction

Rovio Entertainment Corporation is a Finnish games-first entertainment company that

creates, develops and publishes mobile games and acts as a brand licensor in various

entertainment and consumer product categories. Rovio Entertainment Corporation is

best known for the global Angry Birds brand, which started from a popular mobile game

in the year 2009. Nine years later the Company offers multiple mobile games for

Google’s Android and Apple’s iOS devices.

Code signing is a small but critical part of Android and iOS application development.

Both Apple and Google offer tools for performing code signing, but naturally, each of

them has a very different approach to the procedure. Code signing does not require

any source code to be compiled and can thus be performed as part or outside a build

process. However, building a mobile application can be very time consuming and can

therefore create bottlenecks in the mobile application development process. Code sign-

ing is a complex but relatively fast procedure, compared to a full build of an application.

Thus, performing code signing independently prevents or alleviates bottlenecks by re-

ducing the amount of builds created, errors and time used.

For a company such as Rovio Entertainment Corporation, which develops multiple ap-

plications simultaneously, it is of vital importance that parts of the development pro-

cess, which can be either generalized or standardized, are offered as reliable services

that can be used by all development teams. Code signing is one such service. The

used code signing service was found lacking especially in scalability, maintainability

and reliability.

The primary purpose of this thesis was to provide a general handbook for code signing

Android and iOS mobile applications. The secondary purpose of this thesis was to de-

velop a proprietary Python library for code signing mobile applications by using ac-

ceptance test driven development principles. This proprietary Python library was to

replace the existing code signing service used by Rovio Entertainment Corporation.

2

2 Code signing

Code signing is the process of digitally signing applications and scripts, in order to con-

firm the software author, as well as to guarantee that the code has not been altered or

corrupted since it was signed [Microsoft 2017]. Code signing is effectively a public key

encryption, where all files of an application package are hashed one by one using a

hash function (SHA1, SHA256). The resulting hashes are then encrypted individually

using the private key of the private/public key-pair, also known as the digital signature.

A code signed application package consists of a manifest file of digital signatures

mapped to each file, the original unmodified files as well as the public key, for verifying

the package contents. Anyone in possession of the public key of a code signed pack-

age can verify the package’s origin. (Apple 2016a.)

Sealing an envelope with a personal wax seal can be seen as an analogy to code sign-

ing. The message or envelope can be opened by anyone, while the unique seal au-

thenticates the sender.

A fundamental problem with public key cryptography is verifying the authenticity of a

public key [Xu & Miller-Osborn 2014]. Does the public key belong to the claimed person

or entity? Or has a malicious third party perhaps tampered or replaced the public key?

While no fully satisfactory solution exists, the usual approach to this problem is to use a

public key infrastructure (PKI). The PKI consists of one or more third parties, known as

certificate authorities (CA) that certify the ownership of key pairs.

The use of CAs is very common among web applications due to the requirements set

by the HTTPS protocol. CAs make it easy to look up the information about a certificate

holder as well as revoking outdated or compromised certificates. When it comes to

native applications no such system or entity exists that would force registration and

management of certificates.

In the world of mobile applications this has been solved using different distribution plat-

forms or stores for applications. Apple’s AppStore and Google’s Google Play, are both

application distribution platforms that offer very similar capabilities, while still placing

very different demands on a distributed application and its code signing.

3

Code signing is limited to only verifying the author of the application or scripts. It does

not offer any guarantee whatsoever that the software is free of security vulnerabilities.

Nor does code signing guarantee that the software will not load unsafe or altered code

from third parties during execution, such as untrusted plug-ins. Code signing does not

provide digital rights management (DRM) or copy protection technologies, and, as

such, code signing does not in any way hide or obscure the content of the signed soft-

ware.

2.1 Certification Authorities

Mobile application developers have a few options to consider when code signing appli-

cations for distribution. One of these options is the certification authority. The CA keeps

track and verifies keys created and registered by the developer. A problem, however,

arises when the developer and publisher are not the same. Should the developer be

the one registering the key pairs under the CA or should the publisher be doing this? In

most cases the legal owner of the software should be the registering party.

Out of the two major mobile platforms, iOS and Android, iOS can be argued to be the

“safer” one in terms of code signing. This is mainly due to Apple forcing a centralized

PKI strategy where Apple itself is the only valid CA and all developer information needs

to be registered with Apple. While developers do not need to generate the keys manu-

ally themselves, they still need to issue a certificate signing request to Apple and store

the key safely in the build pipeline, in order to sign their application bundles or packag-

es for distribution. Once a package has passed Apple’s AppStore submission process,

Apple modifies and re-signs the package using a separate key.

The same is true for Android. Google, however, provides two different strategies. The

first one, shown in Figure 2, is a decentralized PKI strategy somewhat similar to Pretty

Good Privacy (PGP), where the developer generates the key pair themselves and

takes the sole responsibility for the validity of the keys. The second approach is similar

to Apple’s, shown in Figure 1, where Google maintains two sets of keys for the devel-

oper, a distribution key and an upload key, on a per project basis. The upload key is

used to verify the identity of the uploading party, after which Google uses the distribu-

tion key to re-sign the Android package.

4

While Google’s second approach and Apple’s approach potentially offer better security

for distribution keys, it raises suspicion over a package’s integrity, as nothing hinders

Apple or Google from injecting code into a package before re-signing it.

Figure 1. Two step code signing process, where developer first signs a package using an up-
load key after which the distribution platform re-signs the package using a distribu-
tion key.

Figure 2. Single step code signing process, where the developer takes the sole responsibility
of code signing the package intended for distribution.

2.2 Issues with mobile application code signing.

The most apparent problem with code signing, when it comes to mobile applications, is

the process itself. Neither Apple nor Google have particularly clear documentation re-

garding the technicalities of the code signing procedure.

Apple relies heavily on developers to carry out their code signing of iOS packages

through their development framework Xcode [Apple 2016b]. While it is possible to carry

out the code signing using tools that come bundled together with Xcode, becoming

familiar with these tools takes an excessive amount of time, due to the confusing doc-

umentation. Furthermore, the code signing process is complicated because the pro-

cess requires certificates to be stored in OSX’s keychain, which in itself becomes prob-

lematic when maintaining several different projects and their certificates. iOS code

signing is explained in greater detail in chapter 4.

Developer

• Upload key

App signed with
upload key

• APK
• Upload key

Distribution
Platform

• Distribution
key

App signed with
app signing key

• APK
• Distribution

key

User

Developer

• Distribution key

App signed with
distribution key

• APK
• Distribution key

Distribution Platform

• App signed with
distribution key

User

5

On Android the process is quite a lot easier to understand, and the command line inter-

faces (CLI) for tools provided by the Android SDK are quite straightforward to use. The

Android SDK’s tools work on all platforms (Linux, OSX, Windows), but suffer to some

extent from the same issue as OSX when it comes to maintaining several projects and

their certificates/keys. Android code signing is explained in greater detail in chapter 3.

A secure approach to code signing is to have a single machine dedicated for distribu-

tion code signing, while so called build machines are installed with only development

certificates. This limits the risk of exposing the code signing private key, as stricter ac-

cess control can be enforced on the distribution code signing machine.

2.3 Available third-party tools and their limitations

There are very few third-party tools that offer code signing and re-signing capabilities

for mobile applications, and understandably so. Is it really safe to rely on a third party

tool for such a sensitive task?

The only noteworthy tool is Fastlane. Fastlane is an open source platform aimed at

simplifying Android and iOS deployment, originally developed by Felix Krause

[Fastlane 2018a]. The Fastlane platform, can among other things, generate localised

screenshots of an application for each language and device, distribute beta builds, pub-

lish applications on Apple’s AppStore or Google’s Google Play, and code sign iOS ap-

plications.

Fastlane, however, requires the developer to provide quite a lot of sensitive information

for it to work, and thus might repel developers that are more security aware [Fastlane

2018b]. Fastlane does, offer code signing strategies that are less security intrusive,

essentially doing the same as Xcode or the Android SDK, which begs the question: is

the integration investment worth it or would it be better to rely on the tools provided by

Apple and Google? It should be noted that Fastlane does not currently contain any

functionality for Android code re-signing and heavily relies on Gradle to carry out the

code signing during the building of an application package.

6

3 Android code signing

3.1 The Android application package

The Android application package called Android Package Kit (APK) is the package file

format used by the Android operating system. An APK file contains the compiled exe-

cutable for the application, resources, assets, certificates, and a manifest file. APK file

format is an extension of the Java Archive (JAR) file format, and as such is built on the

ZIP format [Oracle 2017]. There is no naming convention in place for APK files, provid-

ed that the file always ends with the extension “.apk”.

APK files can be installed on Android operating systems, similar to installing software

on Windows or OSX, by downloading and installing it from official and unofficial

sources. Installing APKs from unofficial sources is by default disabled for security rea-

sons on most Android devices. Users can enable installation of unofficial APKs by set-

ting the option “Unknown Sources” in the devices application manager. APK files that

have not been code signed cannot be installed.

APK files, similar to JAR files; contain a META-INF directory. The META-INF directory

in turn contains the MANIFEST.MF, CERT.SF, and CERT.RSA. MANIFEST.MF holds

the file paths relative to the root of the APK for each file in the APK package as well as

Base64 encoded hash digest of its contents. The MANIFEST.MF should not be con-

fused with the AndroidManifest.xml, which can be found at the root of an APK. The

AndroidManifest.xml describes essential information about an app to the Android build

tools, the Android operating system, and Google Play [Google 2018c]. A sample MAN-

IFEST.MF file is shown in Listing 1.

Manifest-Version: 1.0
Created-By: 1.8.0_144 (Oracle Corporation)
Name: res/drawable-mdpi-v4/abc_textfield_search_default_mtrl_alpha.9.png
SHA1-Digest: D6dilO+UMcglambujyMOhNbLZuY=
Name: res/drawable-hdpi-v4/abc_list_longpressed_holo.9.png
SHA1-Digest: KQunCQh0E4bP0utgN0cHdQr9OwA=
Name: res/drawable-ldrtl-xxhdpi-v17/abc_spinner_mtrl_am_alpha.9.png
SHA1-Digest: LRWlMCeV4/Lq+wNklDndVFmtRHU=
Name: res/drawable-xxxhdpi-v4/abc_btn_switch_to_on_mtrl_00012.9.png
SHA1-Digest: AppXOewxC/QI7e8k90KnlawH5MA=

Listing 1. Partial contents of a MANIFEST:MF file.

7

CERT.SF is a ‘signature file’, but does not technically contain any signatures in the

cryptographical sense. A sample of a partial CERT.SF file is shown in Listing 2.

Signature-Version: 1.0
SHA1-Digest-Manifest-Main-Attributes: /6NgQZa0nSl/UOmCh2TNsE48qxY=
SHA1-Digest-Manifest: z6A4gMlyKV8wYXIT+jcvqNNT2zY=
Created-By: 1.8.0_144 (Oracle Corporation)
Name: res/drawable-mdpi-v4/abc_textfield_search_default_mtrl_alpha.9.p
 ng
SHA1-Digest: IKTGIARYbmam8Kefq6089z/0k98=
Name: res/drawable-hdpi-v4/abc_list_longpressed_holo.9.png
SHA1-Digest: xcQ0bHWRc+R9tuxQ3wgY1a2eY0k=
Name: res/drawable-ldrtl-xxhdpi-v17/abc_spinner_mtrl_am_alpha.9.png
SHA1-Digest: IsziyF2OBzAviNmnk3+DRoNCmAA=

Listing 2. Partial contents of a CERT.SF file.

The SHA1-Digest-Manifest in the first section specifies the SHA-1 digest of the mani-

fest file. In the following sections the SHA1-Digest attribute specifies the SHA-1 digest

of the corresponding section in the manifest file.

The CERT.RSA file is the “signed signature file”. The CERT.RSA file is a binary file,

containing the certificate, the public-key of the code signing key pair, as well as a sec-

tion containing the hash digest of the CERT.SF file encrypted with the private key of

the code signing key-pair.

Note that due to the unique nature of the above files, each of them should be removed

prior to re-signing an APK file. This ensures that only the new signature applies. Re-

moval of the files can be achieved in a multitude of ways; the example in Listing 3 uti-

lizes the zip program found on most Unix systems.

zip -d infile.apk META-INF/*.SF META-INF/*.RSA META-INF/*.MF

Listing 3. Removing the all .SF, .RSA and .MF files from an APK’s META-INF directory.

Because there is a possibility the META-INF directory contains other files than the

above it is imperative that only files with the extensions .SF, .RSA, and .MF are delet-

ed. Removing the whole META-INF directory may have undesirable application specific

side-effects.

8

3.2 The keystore

Android code signing relies on a generated certificate and digital “key” which provides a

unique, encrypted, and reasonably “unhackable” signature [Miracle 2014]. On Android,

this is achieved by using a keystore.

A keystore is a simple file with a large block of encrypted data. The file can be stored

anywhere on a machine’s file system, which requires developers to develop conven-

tions storing the file. Because there is no standard location in which to store keystore

files, it is easy to misplace them.

There are two types of keystores that need to be considered: debug and release. Func-

tionally and technically these two types do not differ from one another. The debug key-

store should be used while developing an Android application, as it allows manual in-

stallation of applications on local Android devices. The debug keystore should not,

however, be used for an application destined for Google Play, as this requires the re-

lease keystore.

A keystore is identified by two aspects: the filename and an alias. A keystore file can

potentially store multiple keystores, thus each keystore is identified by an alias. In most

cases a keystore only contains one certificate/key pair but will still require an alias.

Keystore files are protected by a pair of passwords: one for the keystore file itself and

another for each keystore/alias pair within the file. While the passwords should ideally

be unique, it is common to use the same password for both.

3.2.1 Creating keystores

Because an APK has to be signed in order for it to be installable on a device, a key-

store is always required when developing an Android application. The Android SDK will

automatically create a debug keystore, or use a previously created debug keystore, if a

keystore is not explicitly defined. If a developer opts to handle the code signing without

using Google Plays code signing service, he or she will have to generate a release

keystore him- or herself.

9

While it would seem logical to create a unique keystore for each application, Google

actually recommends using the same keystore for all applications published by the

same entity. Google lists three main reasons to do so [Google 2018f]:

“App upgrade: When the system is installing an update to an app, it compares
the certificate(s) in the new version with those in the existing version. The system
allows the update if the certificates match. If you sign the new version with a dif-
ferent certificate, you must assign a different package name to the app—in this
case, the user installs the new version as a completely new app.

App modularity: Android allows APKs signed by the same certificate to run in the
same process, if the apps so request, so that the system treats them as a single
app. In this way you can deploy your app in modules, and users can update each
of the modules independently.

Code/data sharing through permissions: Android provides signature-based per-
missions enforcement, so that an app can expose functionality to another app
that is signed with a specified certificate. By signing multiple APKs with the same
certificate and using signature-based permissions checks, your apps can share
code and data in a secure manner.”

If an application is to receive future upgrades, the developer needs to ensure that the

signing key has a validity period that exceeds the expected lifespan of the application.

Google recommends a validity period of 25 years or more. When the validity period of a

key expires, users will no longer be able to seamlessly upgrade to new versions of an

application signed with the key.

An application published on Google Play, requires that the key’s validity period ends

after the 22nd of October 2033. This is enforced by Google Play and an application

submitted to Google Play, code signed with a validity period ending before the afore-

mentioned date, will be rejected.

Creation of a keystore is achieved through a Java Development Kit (JDK) utility pro-

gram called keytool. An example for generating a keystore is shown in Listing 4.

keytool -genkey -v -keystore yourkeystore.keystore -alias yourkeyalias \
 -keyalg RSA -validity 999999

Listing 4. Generating a keystore using the JDK utility program keytool.

10

The options in Listing 4 being:

• -genkey, generate a key

• -v, verbose output

• -keystore, filename to store the keystore under

• -alias, the alias for the keystore

• -keyalg RSA, use the RSA method for keystore generation

• -validity 999999, set keystore validity period to 999999 days

After executing the command, the user is prompted for more information in a routine

appearing as shown in Listing 5 in the command window.

Enter keystore password:
Re-enter new password:
What is your first and last name?
 [Unknown]: YourFirstName YourLastName
What is the name of your organizational unit?
 [Unknown]: Indie
What is the name of your organization?
 [Unknown]: Your Company Name
What is the name of your City or Locality?
 [Unknown]: YourCity
What is the name of your State or Province?
 [Unknown]: ST
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=YourFirstName YourLastName, OU=Indie, O=Your Company Name, L=YourCity,
ST=ST, C=US correct?
 [no]: yes
Generating 1,024 bit RSA key pair and self-signed certificate (SHA1withRSA)
with a validity of 999,999 days
 for: CN=YourFirstName YourLastName, OU=Indie, O=Your Company Name,
L=YourCity, ST=ST, C=US
Enter key password for
 (RETURN if same as keystore password):
Re-enter new password:
[Storing yourkeystore.keystore]

Listing 5. Prompt sequence initiated by keytool.

The first password is the password for the keystore file itself. Next, the user is asked for

his/her first and last name. The prompt for “organizational unit” is for companies with

multiple departments like “Engineering” or “Development”. In addition, the user is

prompted for his/her city, state/province, and country code, after which the user is

prompted to type “yes” or “no” confirming the provided information is correct. Finally, if

desired, the user can supply a different password to the individual alias entry, or simply

press return or enter to use the same password associated with the keystore file, after

which the keystore can be found in the current working directory.

11

Great care should be exercised when managing keystores. A misplaced or compro-

mised keystore, will prohibit a developer for releasing new versions of an application as

updates, and forces the developer to distribute a “new” application on Google Play.

Google Play App Signing tries to solve this problem by providing a service that manag-

es the app signing key for the developer [Google 2018e].

3.3 Key hashes and SHA1 signatures

When working with third parties like Facebook or Google Play Games Services

(GPGS), the developer is sometimes asked to provide a hash from a keystore. For

GPGS, the release keystore must be used for this task. For Facebook, the developer

can develop or test with the debug keystore but will eventually have to provide Face-

book with information related to the release keystore. (Miracle 2014.)

Both a keyhash (used by Facebook) and a SHA1 signature (used by GPGS) are hash

digests calculated from the much larger keystore file [Miracle 2014]. Even though these

two are different values, the concept is the same: some standard math is performed on

the values in the keystore generating a unique value that cannot be easily reversed,

thus ensuring integrity.

Generating a keyhash requires two tools, keytool and openssl, as showcased in Listing

6.

keytool -exportcert -alias yourkeyalias -keystore yourkeystore.keystore | \
 openssl sha1 -binary | openssl base64

Listing 6. Generating a keyhash using the JDK utility program keytool and openssl.

The three piped commands in Listing 6 have been separated from one another in List-

ing 7, Listing 8 and Listing 9.

keytool -exportcert -alias yourkeyalias -keystore yourkeystore.keystore

Listing 7. JDK utility program keytool command exporting a certificate called “yourkeyalias”
from a keystore file “yourkeystore.keystore” while prompting the user for the keystore
password.

openssl sha1 -binary

12

Listing 8. Openssl command that calculates a signature using the SHA1 digest function and
outputting in binary format from standard input.

openssl base64

Listing 9. Openssl command converting the standard input into Base64 encoded format.

If an incorrect password is issued when issuing the piped command in Listing 6, it will

lead to the second commands input being “Invalid Password”. This results in the final

SHA1 digest being not of the keystore, but the string “Invalid Password”. The com-

mands can naturally be issued one at a time by providing the output of the first and

second command as the input of the second and third command respectively. The

commands will finally output something similar to string shown in Listing 10.

tZRNBKXmYKOa22HvFl57za4gvU0=

Listing 10. An example keyhash.

One or more ‘=’ characters at the end of a keyhash are important, as it signifies the end

of a Base64 encoded string. The length of a Base64 encoded string should always be

divisible by four, and as such multiple ‘=’ characters serve as padding to the string in

order to fulfil the length requirement.

GPGS, in contrast to Facebook, requires the text representation of the SHA1 output.

Fortunately, the keytool program can output this without relying on additional tools, as

shown in Listing 11.

keytool -exportcert -alias yourkeyalias -keystore yourkeystore.keystore -list
-v

Listing 11. JDK utility program keytool command for listing certificate information.

After providing the password(s), output similar that shown in Listing 12 is displayed in

the command window.

Alias name: youralias
Creation date: Aug 24, 2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=YourFirstName YourLastName, OU=Indie, O=Your Company Name,
L=YourCity, ST=ST, C=US
Issuer: CN=YourFirstName YourLastName, OU=Indie, O=Your Company Name,
L=YourCity, ST=ST, C=US
Serial number: 53fa57f7

13

Valid from: Sun Aug 24 17:24:07 EDT 2014 until: Sun Jul 20 17:24:07 EDT 4752
Certificate fingerprints:
 MD5: 66:22:E9:94:EA:14:EA:4A:06:EB:98:8B:DA:2B:25:D2
 SHA1: B5:94:4D:04:A5:E6:60:A3:9A:DB:61:EF:16:5E:7B:CD:AE:20:BD:4D
 Signature algorithm name: SHA1withRSA
 Version: 3

Listing 12. Certificate information generate by the JDK utility tool keytool.

The string of hex digits after SHA1, in Listing 12, is what a developer needs to provide

GPGS and Google when setting up their application.

3.4 Code signing an APK

The documentation for Android Studio by Google, provides basic examples for code

signing an APK manually [Google 2018d]. The process is carried out in two main steps:

zipaligning the APK and code signing the APK.

The second step, code signing, can be done using two different tools: the JDK utility

tool jarsigner and the Android SDK utility tool apksigner. While both tools are capable

of performing the code signing task, it should be noted that Google introduced the APK

Signature Scheme v2 with Android 7.0 [Google 2018a], which makes apksigner the

recommended option considering the future of Android.

3.4.1 Zipaligning

The first step inherits its name from the Android SDK tool zipalign [Google 2018g]. Zi-

palign is an archive management tool for optimizing APKs, by ensuring uncompressed

data within the APK, such as images and raw files, start with a particular alignment

relative to the start of the APK file with 4-byte boundaries. This allows all portions to be

accessed directly with mmap() even if they contain binary data with alignment re-

strictions, which results in a reduction in the amount of RAM consumed when running

an application. Zipalign has to be used each time a package is to be distributed, be it

for development purposes or releasing it to end-users.

Listing 13 depicts example usage, where an infile.apk is aligned and saved as out-

file.apk

14

zipalign -p 4 infile.apk outfile.apk

Listing 13. Zipalign command for zipaligning a APK package.

The “-p” option stands for memory page alignment for stored shared object files. The

“4” is the alignment in bytes. Listing 14 shows the command for checking whether an

APK is zipaligned or not.

zipalign -c outfile.apk

Listing 14. Zipalign command for checking the zipalignment of APK.

3.4.2 Code signing using jarsigner

Code signing of the infile.apk using jarsigner can be done by issuing the command

shown in Listing 15 [Oracle 2018].

jarsigner -keystore yourkeystore.keystore -storepass:env YOUR_KEYSTORE_PW_ENV
-keypass:env YOUR_ALIAS_PW_ENV infile.apk yourkeystorealias

Listing 15. JDK utility program jarsigner command for signing an APK package.

The options used in the command shown in Listing 15 are as follows:

• -keystore. location of the keystore to be used

• -storepass:env, use the keystore password from an environment variable

• -keypass:env, use the alias password from an environment variable, re-
quired when the alias password differs from the keystore password

Verification of an APK’s digital signature can be done using jarsigner as shown in List-

ing 16.

jarsigner -verify outfile.apk

Listing 16. JDK utility program jarsigner command for verifying an APK digital signature.

Zipaligning of an APK code signed using jarsigner should be performed after code

signing the APK [Google 2018g].

15

3.4.3 Code signing using apksigner

In contrast to performing the zipaligning after the code signing, when using jarsigner,

the zipaligning should be performed before code signed an APK using apksigner

[Google 2018g]. Code signing and verifying an APK using apksigner is shown in Listing

17 and Listing 18 respectively [Google 2018b].

apksigner sign --ks yourkeystore.keytore --ks-pass env:YOUR_KEYSTORE_PW_ENV --
ks-key-alias yourkeystorealias --key-pass env:YOUR_ALIAS_PW_ENV outfile.apk

Listing 17. Android SDK utility program apksigner command for code signing an APK.

apksigner verify outfile.apk

Listing 18. Android SDK utility program apksigner command for verifying an APK is signed.

3.5 Routine flow

A simplified flow diagram of code signing an Android APK package can be derived from

the explanations in chapter 3, as shown below in Figure 3. The input of every routine is

always checked for failure, where a failure causes the routine to clean up the working

directory and exit.

16

Figure 3. Routine flow of code signing an Android APK package.

4 iOS code signing

While iOS codes signing is essentially similar to Android code signing, the practical

side of iOS code signing is vastly different from Android code signing. The tools used in

iOS code signing are different and the code signing has to be executed on a machine

running OSX, because no official tools exist for other platforms. There are also more

distribution types than the two used in Android code signing (development, production),

17

which each require their own project specific provisioning profiles, resulting in a poten-

tially unmaintainable amount of provisioning profiles. Apple has improved the function-

ality for maintaining provisioning profiles in Xcode, but it is still quite unclear how to

automate the process.

4.1 The iPhone application package

The application package file format for iOS has no official definition but is referred to as

iPhone Application or iPhone Archive (IPA) by developers. Similarly, to the Android

APK the IPA is also an extension of the ZIP archive. The IPA can be extracted the

same way as any other ZIP archive, however, portable network graphics (PNG) images

found in the archive, e.g. application icons, are sometimes in a proprietary variant of

the PNG format (pngcrush). A so called pngcrushed PNG is usually of reduced size

compared to the standard version of the PNG, thanks to various combinations of com-

pression methods and delta filters applied to the image data (IDAT) stream. The addi-

tional compression of the IDAT stream makes the pngcrushed PNG files unreadable by

most image viewers found on PCs. Additionally, the application binary found in an IPA

is encrypted to enforce DRM, when the IPA is downloaded from Apple’s AppStore, ef-

fectively making examination of the binary impossible. IPAs distributed Ad Hoc outside

of Apple’s AppStore do not have the binary encrypted.

While some command line tools exist for installing IPAs on an iPhone or iPad on Linux

and OSX, the only viable way to install IPAs on Windows is through iTunes. Invalid

provisioning of an IPA can still fail an installation regardless of method of installation.

This cannot be disabled, contrary to the similar functionality available on Android.

The IPA usually only contains one directory called Payload on the root level of the ar-

chive. However, possible application extensions can be found on the root level as well.

The Payload directory contains the actual application package file with the extension

.app. The application package contains among other files the Info.plist property-list file,

a _CodeSignature directory, the embedded.mobileprovision file and the actual applica-

tion binary file.

The Info.plist is similar to the AndroidManifest.xml as it contains both metadata about

the application as well as preferences and information about resources used by the

18

application [Apple 2016d]. The _CodeSignature directory also bares resemblance to

the APK equivalent META-INF directory. The _CodeSignature directory contains the

CodeResources file, which is a property-list file containing a mapping of all the packag-

es files as well as Base64 encoded hash digests of their contents, similar to an APK’s

MANIFEST.MF and CERT.SF.

The embedded.mobileprovision file is commonly referred to as the provisioning profile.

The provisioning profile contains among other things, the public key of the certificates

signing key pair, team-identifier, a list of universally unique identifiers (UUID) of devices

that can install the application and the expiration time of the provisioning profile itself.

(Apple 2018b; Abhimuralidharan 2018.)

4.2 The certificate

The digital certificate that is used for code signing an IPA is an X.509 certificate. The

certificate is a collection of data used to distribute the public half of a private/public key

pair. Along with structural information, the certificate contains name and contact infor-

mation for its issuer and its owner, or subject, as well as the owner’s public key. The

certificate also contains a date range that indicates when the certificate is valid. A cer-

tificate may also contain extensions, which provide additional information and condi-

tions, e.g. acceptable uses for the public key. (Apple 2018c.)

When the certificate is assembled, the issuer of the certificate signs the certificate us-

ing the issuer’s own identity, private key and certificate, to vouch for the certificates

integrity. iPhone developer certificates are issued only by Apple, and as such are al-

ways signed by Apple using Apple’s own identity.

Certificates used for code signing IPA packages are usually stored in an OSX keychain

together with the private key, forming a code signing identity, and given a name. The

name of this code signing identity is used during the actual code signing process, ra-

ther than the individual file names of the private key and certificate. This adds an extra

layer of security, as not all users of a machine have access to all OSX keychains.

Due to the nature of the code signing identities found in an OSX keychain, the keychain

should be backed up remotely in a secure place, in case of hardware or software fail-

19

ure. Apple does not keep a copy of the private key, as that would compromise the sign-

ing identity of an iPhone developer’s own certificate. If a code signing identity, which

has been used for signing an IPA package intended for distribution, is lost or compro-

mised, the developer certificate needs to be revoked. In order to re-enable an applica-

tion’s services after a certificate revocation, a new certificate needs to be obtained from

Apple and a new version of the application, signed with the new certificate, submitted

to Apple’s AppStore. Certificates may be obtained from Apple’s developer portal. (Ap-

ple 2018a)

4.3 Entitlements

The Entitlements of an IPA package can be thought of as application permissions, simi-

lar to permissions set in an APK’s AndroidManifest.xml file. However, an IPA’s Entitle-

ments are strings written into the code signature of an application. An Entitlement

grants the application a specific capability or access to a specific service. The operat-

ing system (OS) inspects an application’s Entitlements before allowing an application

access to certain features. For instance, an application must have the iCloud entitle-

ment before it is allowed to access iCloud APIs at runtime. The OS enforces this by

checking the application for an iCloud entitlement such as the one shown in Listing 19.

<key>com.apple.developer.ubiquity-kvstore-identifier</key>
<string>123ABC.com.example.app</string>

Listing 19. An example iCloud entitlement.

There are two possible locations where entitlements are defined: entitlements embed-

ded in a provisioning profile and entitlements defined in a code signing entitlements file.

According to Apple’s documentation [Apple 2015], the values of the code signing enti-

tlement file are used to fill in any wildcard, asterisk portions of the entitlements that

might exist in the code signing provisioning profile. However, if entitlements embedded

in a provisioning profile and entitlements file have the same key, that key’s value has to

be equal to the one defined in the provisioning profile. The codesign utility tool, which

comes bundled with Xcode, performs some validation of the entitlements before per-

forming the code signing.

Listing 20, Listing 21, Listing 22 and Listing 23 depict typical entitlement related errors.

20

The executable was signed with invalid entitlements. The entitlements speci-
fied in your application's Code Signing Entitlements file do not match those
specified in your provisioning profile.

Listing 20. Entitlement mismatch error

Could not install the application. Your code signing/provisioning profiles are
not correctly configured ... you have an entitlement not supported by your
current provisioning profile ... (error: 0xe8008016).

Listing 21. Installation error

Invalid Code Signing Entitlements. The entitlements in your app bundle
signature do not match the ones that are contained in the provisioning
profile. According to the provisioning profile, the bundle contains a key val-
ue
that is not allowed: '[A1B2C3D4E5.com.example.MyGreatApp]' for the key
"keychain-access-groups" in "Payload/MyGreatApp.app/MyGreatApp

Listing 22. Submission error

entitlement 'keychain-access-groups' has value not permitted by a provisioning
profile

Listing 23. Invalid values error

Inspections of an iOS application’s entitlements can be done by running the command

shown in Listing 24.

codesign -d --ent :- /path/to/the.app

Listing 24. Xcode utility tool codesign command for inspecting the entitlements of iOS or OSX
application.

Where the parameters are as follows:

• -d - Display information about the code at the path

• --ent - Extract any entitlement data from the signature and write it to the
path given. “-” writes to standard output. By default, the binary “blob”
header is returned intact, prefixing the path with a colon “:” will automati-
cally strip it off. If the signature has no entitlement data, nothing is written.

A code signing entitlements file is a simple property-list file containing a single diction-

ary similar to the one found embedded in the provisioning profile. The contents of an

example code signing entitlements file is show in Listing 25.

21

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>application-identifier</key>
 <string>ABCD1234EF.com.example.app</string>
 <key>com.apple.developer.team-identifier</key>
 <string>ABCD1234EF</string>
 <key>get-task-allow</key>
 <false/>
 <key>keychain-access-groups</key>
 <array>
 <string>ABCD1234EF.*</string>
 </array>
</dict>
</plist>

Listing 25. Example contents of a code signing entitlements file.

4.4 Provisioning profiles

A provisioning profile is a collection of digital entities that uniquely ties developers and

devices to an authorized iPhone development team and enables a device to be used

for testing of the application under development. A development provisioning profile

must be installed on each device on which application code is to be run. Each devel-

opment provisioning profile will contain a set of iPhone development certificates,

unique device identifiers and an app ID. Devices specified within the provisioning pro-

file can be used for testing application under development locally only by those individ-

uals whose iPhone development certificates are included in the profile. A single device

can contain multiple provisioning profiles. Provisioning profiles can be obtained from

Apple via the iOS provisioning portal.

There are five distinct variants of provisioning profiles [Umbaugh & Dunn 2018]:

• Development: Typically used when running locally on a phone plugged in
to a computer. Allows debugger access and uses development Game
Center and development push notifications.

• Team: A kind of development profile that is managed by Xcode. Xcode
automatically adds everyone’s certificate to it and all UDIDs from devices
as well.

• Ad-Hoc: Often used when sending application to third party testers. It
does not allow debugger access and uses development Game Center,
but production push notifications.

• Enterprise: A provisioning profile that runs on any device. It uses produc-
tion Game Center and production push notifications.

22

• Distribution: A provisioning profile that is intended for packages intended
for distribution via Apple’s AppStore. The provisioning profile has no Pro-
visionedDevices or ProvisionsAllDevices key value pair. As such, a pack-
age containing a distribution provisioning profile cannot be installed on a
device.

A provisioning profile file usually has the extension .mobileprovision or .provisionprofile

and is a Cryptographic Message Syntax (CMS) encrypted property-list file. The encryp-

tion ensures that the provisioning profile was created by Apple and not some malicious

third party. Due to the encryption, the provisioning profile needs to be decoded before

inspection. The command for decoding a provisioning profile is shown in Listing 26

[Solodovnichenko 2017]:

/usr/bin/security cms -D -i embedded.mobileprovision

Listing 26. An OSX program security command that decodes a provisioning profile.

The above command is, however, time consuming when decoding multiple files in se-

quence. A faster approach is to simply read the file and capture all the characters in

between and including the strings <plist and </plist>, as the property-list part of the file

is not always encrypted. A python regular expression of the form

(?=\<plist)\<plist(?:.*\s)*\<\/plist\> can be used to achieve this. Ap-

pendix 5 showcases the parsing of a provisioning profile using a Python regular ex-

pression. The sample contents of the property-list segment of a provisioning profile is

shown in Listing 27.

23

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AppIDName</key>
 <string>App ID Name</string>
 <key>ApplicationIdentifierPrefix</key>
 <array>
 <string>ABC123DEF4</string>
 </array>
 <key>CreationDate</key>
 <date>2042-10-15T15:20:42Z</date>
 <key>Platform</key>
 <array>
 <string>iOS</string>
 </array>
 <key>DeveloperCertificates</key>
 <array>
 <data>Long human-unreadable Base64 encoded certificate=</data>
 </array>
 <key>Entitlements</key>
 <dict>
 <key>keychain-access-groups</key>
 <array>
 <string>ABC123DEF4.*</string>
 </array>
 <key>get-task-allow</key>
 <false/>
 <key>application-identifier</key>
 <string>ABC123DEF4.com.your.bundle.id</string>
 <key>com.apple.developer.team-identifier</key>
 <string>U1R23TEAMID</string>
 <key>aps-environment</key>
 <string>production</string>
 <key>beta-reports-active</key>
 <true/>
 </dict>
 <key>ExpirationDate</key>
 <date>2044-10-15T15:20:42Z</date>
 <key>Name</key>
 <string>Profile Name</string>
 <key>TeamIdentifier</key>
 <array>
 <string>U1R23TEAMID</string>
 </array>
 <key>TeamName</key>
 <string>Your team name</string>
 <key>TimeToLive</key>
 <integer>364</integer>
 <key>UUID</key>
 <string>thats-your-profile-uuid-string</string>
 <key>Version</key>
 <integer>1</integer>
</dict>
</plist>

Listing 27. An example provisioning profiles intended for distribution via Apple’s AppStore.

The decoded property-list contains its own Entitlements dictionary, which contains

among other things values that have to be reflected in the Entitlements.plist file. The

entitlements of the provisioning profile always take precedence over other entitlements

24

provided during the code signing process. Thus, any entitlement keys that are present

in an Entitlements.plist file that are also present in the provisioning profile have to be

equal, as explain in section 4.3. The following list of key value pairs were found to

commonly appear in both the provisioning profile and Entitlements.plist file:

• com.apple.developer.team-identifier

• keychain-access-groups

• get-task-allow

• aps-environment

• beta-reports-active

• com.apple.developer.ubiquity-kvstore-identifier

Additionally, the certificate for signing the package needs to exist in the DeveloperCer-

tificates array as Base64 encoded data. The developer certificates are X.509 distin-

guished encoding rules (DER) certificates and can be decoded by using the openssl

command line tool. Decoding of a Base64 encoded X.509 DER certificate is shown in

Listing 28 [Solodovnichenko 2017].

cat your_cert.base64 | \
 base64 -D | \
 openssl x509 -noout -inform DER -issuer -subject -dates -fingerprint -pubkey

Listing 28. Cat, base64 and openssl commands piped together to produce human readable
output of a Base64 encoded certificate string.

The cat tool simply reads the your_cert.base64 file and pipes the output to the Base64

tool which decodes the Base64 encoded string through the -D parameter. The decoded

output is then piped further to the openssl tool which produces human readable infor-

mation depending on the issued command line arguments. The command line argu-

ments used for openssl in Listing 28 are as follows [Openssl 2017]:

• x509 - specifies X.509 standard

• -noout - disable certificate output, enabled by default

• -inform DER - specifies X.509 DER format

• -issuer - output issuer information

• -subject - output subject information

• -dates - output certificate notBefore and notAfter dates

• -fingerprint - output SHA1 fingerprint of the certificate

25

• -pubkey - output the public key of the certificate

The information produced by the command in Listing 28, should be enough to deter-

mine the state of a developer certificate, specifically, whether it has expired or has

changed in any way. A provisioning profile may contain invalid or expired developer

certificates.

All provisioning profiles have a set time to live defined by the TimeToLive key in the

property-list, as well as a CreationDate and ExpirationDate keys. Apple usually sets the

TimeToLive value to 365, i.e. one year, which means provisioning profiles need to be

renewed on an annual basis. The CreationDate and ExpirationDate should not be con-

fused with the developer certificate notBefore and notAfter values, as they are unrelat-

ed and are to be validated separately.

Table 1. A typical code signing identity and provisioning profile distribution on a per project
basis.

Code signing identity /
Project (pi)

Distribution
(x1)

Development
(x2)

Enterprise
(x3)

Extra
Certificate (c1)

Project 1 Distribution Ad-hoc
Development
Team

Enterprise Ad-hoc

Project 2 Distribution Ad-hoc
Development
Team

Enterprise Ad-hoc

Project (N) 1 3 1 mk, 0 < mk < 4

Assuming an entity is developing two (2) iOS projects, said entity would need at least

three code signing identities (certificates); development, distribution and enterprise, as

well as a unique provisioning profile for each needed distribution type (development,

ad-hoc, team, enterprise, distribution) for each certificate on a per active project basis.

A typical scenario would thus lead to a situation where two active projects would use all

of the three (3) certificates and have at least five (5) unique provisioning profiles each.

If said entity would add an additional certificate the amount of provisioning profiles

would increase by at least two (2) as depicted in Table 1. Thus, we have the following

function for the total minimum amount of provisioning profiles f

𝑓(𝑐,𝑚, 𝑝, 𝑥) =454𝑚6

78

69:

+4𝑥<
=

<9>

?
@

A9>

,

26

B𝑝 ∈ ℤE, 𝑥< ∈ [0: 3],𝑚A ∈ [1: 3] ∧ 𝑚: = 0, 𝑐 ∈ [0:+∞[L

where p is the number of projects, mk is the number of additional provisioning profiles

for an additional certificate k and cj is the number of extra certificates for project j. xi are

the counts of provisioning profiles for the baseline code signing identities (distribution,

development, enterprise). Assuming a baseline of 5 provisioning profiles per active

project, the above equation can be further simplified as

𝑓(𝑝) = 𝑝(5 +𝑚),

{𝑝 ∈ ℤE,𝑚 ∈ [0:+∞[}

where p is the number of projects and m is the average count of extra provisioning pro-

files per active project.

Applying the above equations to the values given in Table 1, we receive the following:

𝑓 = Q(0 + 1) + (1 + 3 + 1)R + Q(0 + 1) + (1 + 3 + 1)R = 12

or

𝑓(2) = 2 × (5 + 1) = 12

The above function is a reasonably good approximation of the minimum amount of pro-

visioning profiles needed for a set of active projects. The above function for a set of 20

active projects and 5 baseline provisioning profiles gives us a total of 100 unique provi-

sioning profiles. Each of these files has to be maintained separately. The above equa-

tions do not serve any practical purpose beyond approximating the amount of provi-

sioning profiles needed for a set of active projects but gives a clear view of how many

files need to be annually updated.

It is possible, to develop iOS applications with fewer provisioning profiles using wild-

card entitlements, resulting in a set of generic provisioning profiles that are valid for all

active projects. This can, however, lead to false positive issues due to improper code

signing, because some entitlements might not be set correctly, because a wildcard-

provisioning profile’s entitlements being too generic. iOS Code signing issues are noto-

27

riously subtle and are an unnecessary waste of development time and should therefore

only be handled by entities that are autonomous or highly specialised in the process of

code signing.

4.5 Code signing an iPhone Archive

Code signing an iPhone Archive (IPA) package consists of four main stages: validation,

setup, code signing and packaging. The process requires an IPA package, a provision-

ing profile as well as an available code signing identity in an OSX keychain. The follow-

ing sections will cover each stage in more detail, by explaining their function and how

to carry out each of them in practice.

4.5.1 Validation

While the codesign utility tool does some validation, it allows you to codesign IPA

packages with expired certificates and provisioning profiles. An IPA package submitted

to Apple’s AppStore code signed with expired certificates or provisioning profiles will be

rejected by Apple, but it can also have other side effects. Push notifications or in app

purchases (IAP) might not work while testing the application or the application fails to

install on a device. Thus, some additional validation of the certificate and provisioning

profile is warranted. When validating the certificate and provisioning profile at least the

following should be considered:

• Ensure that the code sign identity can be accessed from in the OSX key-
chain

• Ensure that the provisioning profile exists and is readable

• Ensure that the certificate is available among the developer certificates
defined in the provisioning profile

• Ensure that neither the certificate or provisioning profile have expired

A code signing identity stored in an OSX keychain can be inspected using the security

utility tool. The command in Listing 29 will output an X.509 certificate in Privacy-

enhanced Electronic Mail (PEM) format, where the parameters are as follows [Apple

2012]:

• find-certificate - Find a certificate item

28

• -c - Match on name when searching

• -p - Output certificate in PEM format. Default is to dump the attributes and
keychain the certificate is in.

/usr/bin/security find-certificate -c “name of the code signing identity” -p

Listing 29. An OSX program security command for finding code signing identities and outputting
them in PEM format.

The obtained certificate can then be inspected using the openssl tool, by piping the

command as shown Listing 30, and producing output similar to the example output

shown in Listing 31.

/usr/bin/security find-certificate -c “name of the code signing identity” -p |
/usr/bin/openssl x509 -noout -inform PEM -issuer -subject -dates -fingerprint
-pubkey

Listing 30. Decoding a PEM formatted certificate produced by the OSX program security using
the openssl program.

issuer= /C=US/O=Apple Inc./OU=Apple Worldwide Developer Relations/CN=Apple
Worldwide Developer Relations Certification Authority
subject= /UID=12345ABCDEF/CN=iPhone Developer: MyUserName (XYZ-
AB12345)/OU=X1Z2Y3ABCD/O=My Organization Ltd/C=US
notBefore=Jan 1 00:00:00 2018 GMT
notAfter=Jan 1 00:00:00 2019 GMT
SHA1 Fingerprint=A1:B2:C3:D4:E5:F6:A1:B2:C3:D4:E5:F6:A1:B2:C3:D4:E0:F0:A0:00
-----BEGIN PUBLIC KEY-----
APublicKeyHash==
-----END PUBLIC KEY-----

Listing 31. Example output produced by the commands shown in Listing 30.

This output can easily be parsed further using any programming or scripting language.

An example using Python can be viewed in Appendix 1.

4.5.2 Setup

Code signing with the codesign utility tool requires an unarchived IPA package. Addi-

tionally, in order for entitlements to be set correctly, the previous entitlements of a

signed package should be read, in order to ensure that the entitlements are set correct-

ly, as per section 4.4, when re-signing the package with a new certificate and/or provi-

sioning profile. It is also useful to parse the Info.plist file in case any form of modifica-

tion of the property-list needs to be done, for instance changing the CFBundleIdentifier

key value pair.

29

If required, the Info.plist and the embedded.mobileprovision of the processed should be

replaced with updated versions respectively. Updated entitlements should be stored in

a file, e.g. Entitlements.plist.

4.5.3 Code signing

Once the Info.plist and embedded.mobileprovision files have been updated and the

Entitlements.plist file has been created, code signing the package is as simple as issu-

ing the command shown in Listing 32, where the parameters are as follows [Apple

2011]:

• -f - Replace any existing signature on the path(s) given. Without this op-
tion, existing signatures will not be replaced, and the signing operation
fails.

• -s - Sign the code at the path(s) given using this identity.

• --entitlements - Take the file at the given path and embed its contents in
the signature as entitlement data. If the data at path does not already
begin with a suitable binary (“blob”) header, one is attached automatically.

• --keychain - During signing, only search for the signing identity in the key-
chain file specified. This can be used to break any matching ties if you
have multiple similarly-named identities in several keychains on the user’s
search list. Note that the filename will not be searched to resolve the sign-
ing identity’s certificate chain unless it is also on the user’s keychain
search list.

/usr/bin/codesign -f -s “My code signing identity” --entitlements \
 /path/to/Entitlements.plist --keychain “MyKeyChain” \
 /path/to/myapp/Payload/my.app

Listing 32. Xcode utility program codesign command for code signing an iOS or OSX applica-
tion.

It should also be noted that packages containing nested code content such as helpers,

frameworks, and plugins, should each be signed in turn. The deepest nested code con-

tent should always be signed first, due to the files created or modified during code sign-

ing. Additionally, the same code signing rules i.e. entitlements, provisioning profile,

bundle identifier, will most likely not apply among the nested code content packages

and main package, and as such need to be defined and set separately [Apple 2016c].

30

4.5.4 Packaging

After executing the code signing successfully the code signed files need to be repack-

aged. Assuming a code signed package has the path ./MyApp/Payload/my.app/*, eve-

rything under the MyApp directory should be packaged, using the zip tool, resulting in

an IPA package, e.g. MyApp.ipa.

4.6 Routine flow

A simplified flow diagram of code signing an IPA package can be derived from the ex-

planations in chapter 4, as shown below in Figure 4. The input of every routine is al-

ways check for failure, where a failure causes the routine to clean up the working direc-

tory and exit. The iOS routine flow is significantly more complex compare to the An-

droid counterpart.

31

Figure 4. Routine flow of code signing an iOS IPA package.

5 The solution

Development of a new solution was agreed to be done in stages, where the first stage

would consist of a library implementation of the actual code signing logic. The library

should have unit and functional test coverage of at least 80% and provide a simple CLI

32

for basic manual testing. The following stages would consist of the actual service im-

plementation development and further enhancement of the first stage’s core library by

adding new functionality. The following sections cover the design of first stage’s core

library. The new solution was to be identified as BuildResigner.

5.1 Issues with the current tools

The previous code signing solution was created as a proof of concept in 2014. It, how-

ever, gradually ended up in production, due to other services depending on its func-

tionality, first through basic build jobs and later through complicated automated file up-

loads through file servers. Because of the very fragile implementation of and lack of

proper documentation of the previous code signing solution, it soon became close to

impossible to maintain and develop.

The previous solution was a single python file consisting of around 1200 lines of code

with functions as long as 250 lines, handling both iOS and Android code signing, while

also sending email notification and distributing signed packages to file servers. The

solutions had integration tests that turned out to be more of a hindrance than help

when maintaining the previous code signing solution. The previous code signing solu-

tion also heavily relied on another project, making the checkout from version control

problematic.

While the implementation of the previous solution had its flaws, the main issues with

the solution were its outbound interfaces, scalability, file verification and logging. This

led to failures under heavy load and made debugging a nightmare.

5.2 Use cases

The use cases defined for the solution were to follow an acceptance test driven devel-

opment (ATDD) style, where each use case was to be accompanied by a set of re-

quirements. All requirements were to be fulfilled in order for a use case to be seen as

implemented. The use cases were divided into three categories: Generic, Android and

iOS. The generic use cases mainly consisted of the development and testing related

33

use cases, whereas, the Android and iOS use cases contained implementation re-

quirements for each platform.

Users were seen as individuals that use the CLI and developers as individuals that

would take care of development and maintenance of the solution. The solution was to

be referred to as the application or BuildResigner.

The use cases are listed in Appendices 2-4.

5.3 Requirements

The generic requirements were defined by four (4) separate sub-requirements: envi-

ronment, implementation, testing and documentation.

5.3.1 Environment requirements

Due to the nature of the code signing of iOS applications the tool would only have to

work on the OSX operating system. The new solution was to be implemented using the

third major version of the Python programming language (python3), thus python3 would

have to be installed on a system before developing or running the new solution. No

support for the second major version of Python was considered.

5.3.2 Implementation requirements

The new solution should aim to be as modular as possible, allowing easy testing and

extension. Log messages of the info, warning, error and exception levels were to al-

ways be logged, and the exception level messages were to also contain the stack trace

for easier debugging. An optional CLI flag for logging debug messages was also to be

provided.

34

5.3.3 Testing requirements

Unit and functional testing were to be executed using the py-test testing library [Krekel

2018a]. Data and assets required by the tests were to be available alongside the

source code.

The source code was to include a tox.ini configuration file, enabling running of py-test

tests through the tox virtual environment management tool [Krekel 2018b]. As tox can

be run both locally or through a CI system, all environment related setup was to be

done by tox. This in turn would allow testing of the testing environment setup locally,

without having a CI system installed, against different python versions in the same test

run.

The source code was also to include a Jenkinsfile allowing CI through a Jenkins CI

server. The Jenkinsfile’s instructions were to simply set up the workspace and run tox

within it. This would result in minimal changes to the Jenkinsfile throughout the devel-

opment of the tool.

A developer was to be able to execute testing using any of the following commands

from the solution’s source root directory:

• pytest .

• python3 setup.py test

• tox

5.3.4 Documentation requirements

The documentation was to consist of three major areas: technical information, usage

and source code comments. The technical information was to be covered by this the-

sis, while the usage was to be written as Markdown in a text file called README.md for

better visualisation while viewing the file in version control. All source code functions

were to have descriptive names as well as contain a comment explaining the function-

ality.

35

6 Results

Based on the requirements set during the initiation of the project in June 2017, the re-

search and prototyping phase for the library was started in July 2017. The focus was

on finding an implementation that would both work on its own as well as provide a clear

interface for implementing the library into existing technology stacks. Ultimately a clear

vision for the library implementation was found, as well as strategy for how the library

could be incorporated into existing technology stacks.

The flow diagrams in section 3.5 and section 4.6 were derived from work done during

the prototyping phase. Understanding the routine flow of the previous code signing

solutions was the most time-consuming part of the prototyping phase. It was not always

clear when reading the source code, how branches were chosen or what the parame-

ters should be, as there were no examples or unit tests in place. The review also identi-

fied some dead code as well as some oversights in exception handling. It also became

abundantly clear that the lack of validation in the previous code signing implementation

had to be rectified in the new implementation. Thus, leading to a revision of the use

cases and the addition of validation and verification of all input given.

The implementation phase was started in September 2017, starting with the general

use cases. A simple CLI was set up to accommodate the need for manual testing, as

well as functionality for validating all user input, including schemas for each type of

configuration file. Logging functionality was copied from another proprietary Python

project to speed up development. During the implementation phase it was also realized

that the library would not necessarily need to follow a typical object-oriented program-

ming approach, thanks to the flexibility of the Python programming language, but could

use a dynamic call stack using higher order functions. Implementing all of the general

use cases, tests included, took approximately a week for a single developer.

Implementation of the Android use cases was started in late September 2017 after the

general use cases had been implemented. It was decided that Android would be im-

plemented before iOS, as the Android routine flow was clearer. Implementing the func-

tionality for codesigning Android APK packages took three weeks, as extra effort was

put in to ensure that test coverage was sufficient.

36

The functionality for iOS IPA package codesigning was started in October 2017 but had

to be revised a couple of times due to misunderstandings regarding the IPA entitle-

ments. The work also took twice as long compared to the Android implementation (4

weeks), due to the complexity of the test cases.

The technical part of the documentation, i.e. the technical part of this thesis, was start-

ed in February 2018 and worked on throughout the spring of said year. During this time

the stable library was also used in a proof of concept, for an upcoming feature in a

technology stack utilizing the Django web framework. The proof of concept not only

helped further enhance the library itself, but also proved a hypothesis regarding the

utilization of Apple Mac Minis for OSX specific functionality using asynchronous worker

processes communicating over web sockets. It proved beneficial to write the technical

documentation after the implementation was already in a stable state, as it forced a re-

revision of the implementation, which identified some minor flaws.

One identified flaw was the reading of iOS certificates. Initially the reading was done

through an unnecessarily complex binary conversion of the PEM formatted certificate in

order for it to be readable in DER format. The re-revision led to a realization that the

same could be achieved by simply reading the certificate in the PEM format, removing

the unnecessarily complex binary conversion altogether. Additionally, the usage of

higher order functions proved in some cases somewhat clumsy. However, changes to

this functionality were deferred until something more versatile and flexible would be

needed.

7 Summary

The project to improve and simplify the code signing of Android and iOS applications

was a success on many fronts.

Firstly, the project highlighted the importance of identifying and planning the needed

functionality and scope of a project, before any implementation was to be done. This

was something that had not been done by the development team to the same extent

before. The project scope could have included a production ready service, but the

scope was deemed too broad, and would have required a system upgrade of existing

services.

37

Secondly, the adoption of acceptance test-driven development, while not fully utilized,

helped sprint planning and improved task completion time of coding tasks significantly.

It also made the requirements for each use case clear, which also sped up the code

review process, as the requirements could be used as a reference there as well.

Thirdly, the technological documentation of this thesis will serve as a good entry point

for anyone who needs a hands-on guide to codesigning of Android and iOS applica-

tions.

Fourthly, the new library not only works, but also serves as an example for future Py-

thon projects, as the Python package configurations can be mimicked easily, speeding

up development and reducing configuration mistakes.

38

References

Abhimuralidharan. 2018. What is a provisioning profile & code signing in iOS?. Online
source. Medium.com. <https://medium.com/@abhimuralidharan/what-is-a-provisioning-
profile-in-ios-77987a7c54c2>. Retrieved 26.7.2018.

Apple. 2011. codesign -- Create and manipulate code signatures. BSD General Com-
mands Manual. Apple.

Apple. 2012. security -- Command line interface to keychains and Security framework.
BSD General Commands Manual. Apple.

Apple. 2015. Entitlements Troubleshooting. Online source. Apple.
<https://developer.apple.com/library/content/technotes/tn2415/_index.html>. Retrieved
26.7.2018.

Apple. 2016a. About Code Signing. Online source. Apple.
<https://developer.apple.com/library/content/documentation/Security/Conceptual/Code
SigningGuide/Introduction/Introduction.html>. Retrieved 11.1.2018.

Apple. 2016b. Code Signing Tasks. Online source. Apple.
<https://developer.apple.com/library/content/documentation/Security/Conceptual/Code
SigningGuide/Procedures/Procedures.html>. Retrieved 31.7.2018.

Apple. 2016c. Ensuring Proper Code Signatures for Nested Code. Online source. Ap-
ple.
<https://developer.apple.com/library/archive/documentation/Security/Conceptual/Code
SigningGuide/Procedures/Procedures.html#//apple_ref/doc/uid/TP40005929-CH4-
TNTAG201>. Retrieved 27.7.2018.

Apple. 2016d. Understanding the code signature. Online source. Apple.
<https://developer.apple.com/library/archive/documentation/Security/Conceptual/Code
SigningGuide/AboutCS/AboutCS.html>. Retrieved 26.7.2018.

Apple. 2018a. Certificates. Online source. Apple.
<https://developer.apple.com/support/certificates/>. Retrieved 26.7.2018.

Apple. 2018b. Download manual provisioning profiles. Online source. Apple.
<https://help.apple.com/xcode/mac/current/#/deva899b4fe5>. Retrieved 26.7.2018.

Apple. 2018c. Manage Digital Certificates. Online source. Apple.
<https://developer.apple.com/documentation/security/certificate_key_and_trust_service
s/certificates>. Retrieved 26.7.2018.

39

Fastlane. 2018a. Fastlane. Online source. Google. <https://fastlane.tools/>. Retrieved
12.1.2018.

Fastlane. 2018b. Is this secure?. Online source. Google.
<https://docs.fastlane.tools/actions/match/#is-this-secure>. Retrieved 12.1.2018.

Google. 2018a. APK Signature Scheme v2. Online source. Google.
<https://developer.android.com/about/versions/nougat/android-7.0#apk_signature_v2>.
Retrieved 18.7.2018.

Google. 2018b. apksigner. Online source. Google.
<https://developer.android.com/studio/command-line/apksigner>. Retrieved 18.7.2018.

Google. 2018c. App Manifest Overview. Online source. Google.
<https://developer.android.com/guide/topics/manifest/manifest-intro>. Retrieved
24.7.2018.

Google. 2018d. Build an unsigned APK and sign it manually. Online source. Google.
<https://developer.android.com/studio/publish/app-signing#sign-manually>. Retrieved
18.7.2018.

Google. 2018e. Manage your key. Online source. Google.
<https://developer.android.com/studio/publish/app-signing#manage-key>. Retrieved
21.7.2018.

Google. 2018f. Signing considerations. Online source. Google.
<https://developer.android.com/studio/publish/app-signing#considerations>. Retrieved
18.7.2018.

Google. 2018g. zipalign. Online source. Google.
<https://developer.android.com/studio/command-line/zipalign.html>. Retrieved
18.7.2018.

Krekel, Holger. 2018a. pytest: helps you write better programs. Online source. Holger
Krekel and pytest-dev team. <https://docs.pytest.org/en/latest/>. Retrieved 27.7.2018.

Krekel, Holger. 2018b. tox: standardize testing in Python. Online source. Holger Krekel
and others. <http://tox.readthedocs.io/en/latest/index.html>. Retrieved 27.7.2018.

Microsoft. 2017. Introduction to Code Signing. Online source. Microsoft.
<https://msdn.microsoft.com/en-us/library/ms537361(v=vs.85).aspx>. Retrieved
10.1.2018.

Openssl. 2017. Openssl v.0.9.8 2017-01-18. System documentation. Openssl.

40

Oracle. 2017. Using JAR Files: The Basics. Online source. Oracle.
<https://docs.oracle.com/javase/tutorial/deployment/jar/basicsindex.html>. Retrieved
18.7.2018.

Oracle. 2018. jarsigner. Online source. Oracle.
<https://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html>. Re-
trieved 18.7.2018

Miracle, Rob. 2014. Tutorial: Understanding Android App Signing. Online source. Co-
rona Labs. <https://coronalabs.com/blog/2014/08/26/tutorial-understanding-android-
app-signing/>. Retrieved 26.7.2018

Solodovnichenko, Mikhail. 2017. Extracting stuff from provisioning profiles. Blog post.
Mikhail Solodovnichenko. <http://maniak-dobrii.com/extracting-stuff-from-provisioning-
profile/>. Retrieved 27.7.2018.

Umbaugh, Brad & Dunn, Craig. 2018. Xamarin.iOS App Distribution Overview. Online
source. Microsoft. <https://docs.microsoft.com/en-us/xamarin/ios/deploy-test/app-
distribution/>. Retrieved 26.7.2018.

Xu, Zhi & Miller-Osborn, Jen. 2014. Bad Certificate Management in Google Play Store.
Online source. Palo Alto Networks.
<https://researchcenter.paloaltonetworks.com/2014/08/bad-certificate-management-
google-play-store/>. Retrieved 11.1.2018.

Appendix 1

 1 (2)

Certificate parsing using Python

#!/usr/bin/env python3
-*- coding: UTF-8 -*-
Filename: ios_cert_parser_example.py
Usage: python3 ios_cert_parser_example.py

from datetime import datetime
from datetime import timezone
from collections import namedtuple

from dateutil.parser import parse as dateutil_parse # Third party package

output = ("issuer= /C=US/O=Apple Inc./OU=Apple Worldwide Developer "
 "Relations/CN=Apple Worldwide Developer Relations Certification "
 "Authority\n"
 "subject= /UID=12345ABCDEF/CN=iPhone Developer: MyUserName"
 "(XYZAB12345)/OU=X1Z2Y3ABCD/O=My Organization Ltd/C=US\n"
 "notBefore=Jan 1 00:00:00 2018 GMT\n"
 "notAfter=Jan 1 00:00:00 2019 GMT\n"
 "SHA1 Fingerprint="
 "A1:B2:C3:D4:E5:F6:A1:B2:C3:D4:E5:F6:A1:B2:C3:D4:E0:F0:A0:00\n")

Certificate = namedtuple('Certificate', [
 'issuer',
 'subject',
 'notBefore',
 'notAfter',
 'fingerprint',])

Name = namedtuple('Name', [
 'countryName',
 'organization',
 'organizationalUnit',
 'commonName',
 'UID',])

class InvalidCertificateError(Exception):
 pass

def parse_name(name):
 # Using the dict method let's us default to None if the key
 # does not exist.
 return Name(countryName=name.get('C'),
 organization=name.get('O'),
 organizationalUnit=name.get('OU'),
 commonName=name.get('CN'),
 UID=name.get('UID'))

def parse_pkix(data):
 result = {}
 pkix = data.strip().split('/')
 for field in pkix:
 # Parse each PKIX key-value pair
 pair = field.split('=')
 key, value = pair[0], pair[1:]
 if key and value:
 result[key] = ''.join(value).strip()
 return result

Appendix 1

 2 (2)

def parse_certificate(output):
 # The output from OpenSSL is in the format of
 #
 # issuer= CN=Acme Corp Certificate/OU=Acme Corp/...
 # subject= ...
 #
 # The last data is in PKIX form. Parse this output into a dictionary.
 certificate_dict = {}
 for line in output.strip().splitlines():
 # Separate the entity and PKIX data. Note that
 # partition is used instead of split, since it
 # does not remove '=' characters from the rest
 # of the string.
 what, _, data = line.partition('=')

 if '/' in data:
 # data is for all intents and purposes a PKIX value
 certificate_dict[what] = parse_pkix(data)
 else:
 certificate_dict[what] = data

 if not all(key in certificate_dict for key in (
 'issuer', 'subject', 'notAfter', 'notBefore', 'SHA1 Fingerprint')):
 raise InvalidCertificateError("{}".format(certificate_dict))
 # dateutil_parse will make sure the parsed timestamp is not naive
 return Certificate(issuer=parse_name(certificate_dict['issuer']),
 subject=parse_name(certificate_dict['subject']),
 notAfter=dateutil_parse(certificate_dict['notAfter']),
 notBefore=dateutil_parse(
 certificate_dict['notBefore']),
 fingerprint=certificate_dict.get('SHA1 Fingerprint'))

def certificate_expired(cert):
 t_delta = cert.notAfter - datetime.now(timezone.utc)
 if t_delta.days < 0:
 raise InvalidCertificateError("Certificate '{}' has expired.".format(
 cert.subject.commonName
))

if __name__ == '__main__':
 cert = parse_certificate(output)
 certificate_expired(cert)
 print(cert)

Outputs
> Certificate(issuer=Name(countryName='US', organization='Apple Inc.',
> organizationalUnit='Apple Worldwide Developer Relations', common-
Name='Apple
> Worldwide Developer Relations Certification Authority', UID=None),
> subject=Name(countryName='US', organization='My Organization Ltd',
> organizationalUnit='X1Z2Y3ABCD', commonName='iPhone Developer: MyUserName
> (XYZAB12345)', UID='12345ABCDEF'), notBefore=datetime.datetime(2018, 1, 1,
0, 0,
> tzinfo=tzutc()), notAfter=datetime.datetime(2019, 1, 1, 0, 0, tzin-
fo=tzutc()),
> fingerprint='A1:B2:C3:D4:E5:F6:A1:B2:C3:D4:E5:F6:A1:B2:C3:D4:E0:F0:A0:00')

Appendix 2

 1 (2)

Generic use cases

Case 1 As a developer, I want to develop the application using python 3, so I can
use the latest libraries.

Requirements The application should be developed using python 3
The application should not support python 2

Case 2 As a developer I want to be able to run the BuildResigner's unit tests from
the CLI

Requirements The application should use the `py-test` testing library.
The application should use `py-test` for running the unit tests.
The application should use `py-test` for running functional tests.
The application should have a mechanism for extending/suppressing pre-defined
`py-test` commands.
The test coverage should not be reported by default.
Test data and assets required by the tests should be available in the source
code.
The tests should be runnable using the `python setup.py test` command.
The tests should be runnable using the `pytest .` command.

Case 3 As a developer, I want to have the option to run tests in a virtual environ-
ment, so I can test against different python versions.

Requirements The application should use `tox` for setting up virtual python testing environ-
ments
Tox should by default use the installed python 3 version for setting up the testing
environment
Tox should run the tests using the `pytest` command
The testing environment should be setup and run using the `tox` command.

Case 4 As a developer, I want the source code to be tested through CI, so I can be
sure the application does not only work on my development system.

Requirements Continuous integration should be setup for the source code using Jenkins
The source code should include a Jenkinsfile which specifies the tasks to be
performed by Jenkins

Case 5 As a user I want to install the tool using python’s package manager pip, so
I can access the individual modules as I see fit.

Requirements The application should be installable using the python package manager pip
The installation process should handle installation of all required dependencies
The version of the application should be retrievable through the CLI

Case 6 As a user, I want to configure the application, so I can store signing keys
and files where ever I want.

Requirements The application should be configurable through JSON-file.
The application should offer a CLI parameter that allows definition of the JSON-
file location.
The application should validate the JSON-file on start up using a predefined
schema.
The application should validate the JSON-file on a platform basis.
The application should stop execution in case of an invalid configuration.
The application should provide a user-friendly error message in case of a mis-
configuration.
Configuration should be allowed, but not limited to the following:
- Working directory

Appendix 2

 2 (2)

- Output directory
- Log file location
- (Android) Keystore location
- (Android) Android SDK build-tools location
- (iOS) provisioning files directory
- (iOS) keychain name
- (iOS) location of JSON-file containing certificate-provisioning file mapping

Case 7 As a user, I want to configure the signing, so that I get a signed package
matching the given configuration.

Requirements The application should be able to read configuration files in JSON-format.
The application should be able to validate configuration files using a predefined
schema.
The application should stop execution if the configuration is invalid
The application should validate that the configured package file is a valid ZIP-file
The application should stop execution if package is not a valid ZIP-file
The package is resigned according to the given configuration.
The user is informed with a user-friendly error message, if the configuration is
invalid.

Case 8 As a user, I want the application to validate the certificate-provisioning
JSON-file configuration, so I can rectify possible misconfigurations.

Requirements The application should validate the certificate-provisioning JSON-file using a
predefined schema.
The application should stop execution if the configuration is invalid.
The application should provide a user-friendly error message in case of a mis-
configuration.
The schema should include the following:
- profile - name of the provisioning profile to use (not filename) - string
- certificate - name of the certificate as defined in the keychain - string
- provision_in_filename - suffix to be added to the resigned file's filename - string
- regex validation

Case 9 As a user, I want the application to unarchive the package being code
signed, so that it can be modified.

Requirements The application should unarchive the package to the working directory.
The application should retain the basename of the original package while pro-
cessing the unarchived package.

Case 10 As a user, I want the application to log what it is doing, so I can see if there
are any manual actions I need to take.

Requirements The application should log info, warning, error and exception level log messages
by default.

Appendix 3

 1 (1)

Android use cases

Case 1 As a user, I want an Android .apk file code signed as defined in the config-

uration, so I can distribute it to Google Play.
Requirements The application should have support for using a signing keystore

The application should ensure the code signed package is zipaligned
The application should produce an .apk file
The produced .apk file should be found in the output directory

Case 2 As a user, I want to process an Android .apk file without code signing it.

Requirements Code signing of Android packages should be disableable in the configuration
The application should not change the signature of the package
The application should not modify the contents of the package
The application should produce an .apk file
The produced .apk file should be found in the output directory

Appendix 4

 1 (2)

iOS use cases

Case 1 As a user, I want an iOS .ipa file to be code signed as defined in the con-
figuration, so I can test I on a provisioned device.

Requirements The iOS subschema should contain at least the following optional attributes:
- bundle_id - string
- version_number - string - regular expression validation
- short_version_string - string - regular expression validation
- associated_domains - array of strings
- provisioning_id - string (a key to look for in the provisioning/certificate mapping)

Case 2 As a user, I want the application to update an iOS .ipa file's Entitle-
ments.plist based on the existing Entitlements.plist and the one defined in
the provisioning profile, so that the build functions as expected.

Requirements The application should be able to read the Entitlements.plist in the unarchived
package.
The application should be able to read provisioning profiles.
The application should create a new Entitlements.plist based on the old imple-
mentation.
The application should be able to write .plist files

Case 3 As a user, I want the application to add the provisioning profile defined in
the configuration to the .ipa package, so that it can be installed on provi-
sioned devices.

Requirements The application should be able to validate provisioning profiles
The application should stop execution if the configured provisioning profile is
found invalid.
The application should produce a user-friendly error message if the provisioning
profile is invalid.
The application should forcefully copy the provisioning profile to unarchived .ipa
package

Case 4 As a user, I want an iOS .ipa file's bundle identifier to be updated as de-
fined in the configuration, so that the bundle identifier can be changed as
needed.

Requirements The application should be able to read the Info.plist file in the unarchived pack-
age.
The application should be able to edit the CFBundleIdentifier property of the
Info.plist file.
The application should be able to write the Info.plist file in binary format.

Case 5 As a user, I want iCloud entitlements in iOS .ipa files to be updated by
combining entitlements from the original .ipa file and the new provisioning
profile, so the application has access to the required iCloud services.

Requirements If and only if the key “com.apple.developer.icloud-services” exists in both the
original entitlements and the provisioning profile entitlements set the iCloud enti-
tlements:

- Set “com.apple.developer.icloud-services” as the value in original enti-
tlments.

- Set “com.apple.developer.ubiquity-container-identifiers” as the value in

Appendix 4

 2 (2)

the provisioning profile entitlements if the key exists.
- Set “com.apple.developer.icloud-container-environment” as the value in

the original entitlements if the key exists.
Case 6

As a user, I want the associated domains related entitlement property to be
a combination of the original .ipa file and the provisioning profile, so that ...

Requirements If and only if the key “com.apple.developer.associated-domains” is defined in the
provisioning profile and the optional attribute “associated_domains” is defined
and truthy in the configuration, set the ”com.apple.developer.associated-
domains” entitlment as the value defined in configuration.

Case 7 As a user, I want to update an iOS .ipa's build number when code signing,
so that the package does not have to be remade.

Requirements The iOS subschema should contain the optional attributes “version_number” and
“bundle_version_string”.
The “version_number” and “bundle_version_string” attributes should be strings of
the form “x.x.x” where x is an integer.
If the “bundle_version_string” or “version_number” are defined in the configura-
tion they should be updated in the Info.plist file accordingly.

Case 8 As a user, I want the application to archive the code signed package, so
that it can be installed on iOS devices.

Requirements The application should archive the code signed package without adding the
working directory as the root directory of the archive.
The application should name the archived package based on the postfix defined
in the provisioning/certificate mapping.

Appendix 5

 1 (2)

Parsing provisioning profile with a Python regular expression

#!/usr/bin/env python3
-*- coding: UTF-8 -*-

import plistlib
import re

EXAMPLE_PROFILE = """<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AppIDName</key>
 <string>App ID Name</string>
 <key>ApplicationIdentifierPrefix</key>
 <array>
 <string>ABC123DEF4</string>
 </array>
 <key>CreationDate</key>
 <date>2042-10-15T15:20:42Z</date>
 <key>Platform</key>
 <array>
 <string>iOS</string>
 </array>
 <key>DeveloperCertificates</key>
 <array>
 <data>Long human-unreadable Base64 encoded certificate=</data>
 </array>
 <key>Entitlements</key>
 <dict>
 <key>keychain-access-groups</key>
 <array>
 <string>ABC123DEF4.*</string>
 </array>
 <key>get-task-allow</key>
 <false/>
 <key>application-identifier</key>
 <string>ABC123DEF4.com.your.bundle.id</string>
 <key>com.apple.developer.team-identifier</key>
 <string>U1R23TEAMID</string>
 <key>aps-environment</key>
 <string>production</string>
 <key>beta-reports-active</key>
 <true/>
 </dict>
 <key>ExpirationDate</key>
 <date>2044-10-15T15:20:42Z</date>
 <key>Name</key>
 <string>Profile Name</string>
 <key>TeamIdentifier</key>
 <array>
 <string>U1R23TEAMID</string>
 </array>
 <key>TeamName</key>
 <string>Your team name</string>
 <key>TimeToLive</key>
 <integer>364</integer>
 <key>UUID</key>
 <string>thats-your-profile-uuid-string</string>
 <key>Version</key>
 <integer>1</integer>
</dict>

Appendix 5

 2 (2)

</plist>
Some garbled signatures...
Some garbled signatures...
Some garbled signatures...
"""

Compiling a regular expression consumes a lot of resources so let's use it
globally in the module’s namespace
PROFILE_MATCHER = re.compile(r"(?=\<plist)\<plist(?:.*\s)*\<\/plist\>")

def from_string(content):
 """Parse the <plist></plist> content of a CMS-formatted string."""
 match = PROFILE_MATCHER.search(content)
 if match:
 try:
 return plistlib.loads(match.group(0).encode(),
use_builtin_types=False)
 except plistlib.InvalidFileException:
 raise ValueError("Invalid provisioning profile content")

def from_file(path):
 """Parse a provisioning profile from a file."""
 with open(path, 'r', encoding='unicode_escape') as f:
 return from_string(f.read())

if __name__ == '__main__':
 print(from_string(EXAMPLE_PROFILE))

