
 
 
 
 
 
 
 
 
 

 

 

 

Heating Energy Consumption Forecasting  

Based on Machine Learning 

 

 

 

 

 

 
 
 
 
 

Bachelor’s thesis 
 

Degree Programme in Electrical and Automation Engineering 
 

Spring 2018 
 

Igor Trotskii 
 
 



ABSTRACT 
 
 
 
Electrical and Automation Engineering 
Valkeakoski 
 
Author  Igor Trotskii  Year 2018 
 
Subject   Heating Energy Consumption Forecasting Based on Machine 

Learning 
 
Supervisor(s) Jukka Pulkkinen  
 
 
ABSTRACT 
 

The author’s aim in this thesis project was to develop a machine 
learning model, which could create short-term forecasts regarding 
heating energy consumption of a building. Even short-term energy 
consumption forecasts can have a major impact on building 
automation and energy distribution systems. Possible application 
spheres include smart grid development and simpler maintenance. 
 
A feed forward artificial neural network was designed as a result of 
examination and testing of different models in order to get the most 
accurate predictions possible. To create an effective neural network 
various loss and activation functions as well as optimizers were 
reviewed.   
 
To obtain better results some preprocessing techniques were applied 
to filter corrupted and unreliable data. The designed model was 
successfully trained to perform forecasting on data from the same 
distribution as the training data. 
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1 INTRODUCTION 

The IoT sphere is experiencing a period of major development as the 
number of IoT devices increases rapidly and has already reached 23 
billion. As a result, enormous amounts of data are being generated 
every second and classical data analytics tools are not nearly enough 
to handle it. To get the most from all collected information, machine 
learning techniques are used.  
 
Machine Learning has tremendously evolved with stepping into the 
big data era. Such spheres as: Deep Learning, Computer Vision, 
Natural Language Processing have already brought a revolution into 
the information economy. But in spite of all technological advances in 
Machine Learning, it still has a long way to go in building automation 
and the aim of this thesis project was to look into the existing 
technologies used mainly for financial analysis and find their possible 
applications in the building automation domain. 
 
Utilizing machine learning in building automation and in heating 
energy consumption forecasts particularly, can lead to many benefits, 
e.g. an easier deployment of Smart Grid energy distribution systems 
and better maintenance.   
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2 THEORETICAL FOUNDATIONS 

2.1 Time series 

Time series is a series of observations happening continuously over 
equal periods of time: year, week, days or minutes, depending on the 
characteristics of observable variable. Usually time series consists of 
several components:  

− Trend – common long-term tendency of change of time series, 
which lies in the basis of its dynamics.  

− Seasonal variance – short-term regularly appearing fluctuations of 
the observable variable over trend. 

− Noise – chaotic fluctuations in a variable, caused by errors in 
measurements or by chaotic and unpredictable nature of the 
observable variable itself. (Hyndman & Athanasopoulos, 2018) 
 

 
 

 

Figure 1. Decomposition of additive time series (A little book of R for 
time series, n.d.) 
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2.2 Machine learning 

Machine learning is a field of computer science that uses statistical 
techniques to give computer systems the ability to “learn” (i.e. 
progressively improve their performance on a specific task) with data, 
without being explicitly programmed. (Samuel, 1959) 
 
Machine learning is a class of methods of artificial intelligence, 
characteristic trait of which is not a direct solution of the task, but 
learning for a concrete task, based on set of similar tasks.  
 
In general, the task for a machine learning system can be formulated 
as follows: there is a set of objects (situations) and a set of possible 
answers (responses). At the same time, certain dependence exists 
between these sets, which is unknown. If some finite ensemble of 
precedents (pairs of object – response), which is called a training set 
or a sample, obtained then it is possible to recreate this relationship 
between input and response to this object. This relationship is not 
necessarily expressed in an analytical form, often it is an empirically 
formed answer, which basically looks like a “black box” for a human. 
An important trait of the trainable system is an ability to generalize 
out of given examples, i.e. an ability to generate reasonable response 
to new, but related input data. 
 

2.2.1 Supervised learning. 

 
Supervised learning is the machine learning task of learning a function 
that maps an input to an output based on example input-outputs 
pairs (Russell & Norvig, 2010). In this kind of tasks, certain 
relationship between input and output (stimulus and response) exists, 
which is unknown. The aim is to learn the relationship by using known 
inputs and outputs. Special metrics, specific for each task, are used to 
determine the successfulness of the learned solution. From a 
cybernetics point of view, it appears to be one of the types of 
cybernetic experiment with feedback.  
 
Input data can be represented by several types of data: 

− Features – most common scenario. Every object is described with 
its set of characteristics. Characteristics can be numerical or 
categorical.  

− Distance matrix – every object is described with distances to other 
objects of a training set. Most commonly used for classification 
problems. 

− Time series – sequence of values. Each dimension can be a 
number, vector or feature in general.  
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− Image or video – an image can be represented as a set of features 
and a video as a time series.  

− Some more complex data types like graphs, texts, results of 
database queries. Usually they are converted to simpler data 
types like features or distance matrices by pre-processing.   

 
 
The output of a system can be characterized in the following way: 

− If a set of possible answers is infinite, then it is a regression or 
approximation problem. 

− If the set of possible answers is finite, then it is a classification 
problem or object recognition task. 

− If the set of possible answers represents the future state of an 
observable system, then it is a forecasting problem. 

 
To solve a given task of supervised learning the following steps should 
be carried out: 
1. Training data should be determined. The data must be 

representative of the real-world of the function, which is going to 
be learned. 

2. Collect the training set, which consists of input objects and 
corresponding output responses. 

3. Determine the input feature representation of trainable model. 
Depending on a task, its complexity and amount of data to train 
on, different features have various effect on learning, e.g. if only 
small amount of training data is available, big number of features 
can lead to overfitting of the model. 

4. Select the structure of the learned function and corresponding 
learning algorithm.  

5. Training and fine-tuning of the model. Most of the models have 
hyper-parameters, which should be tuned for each task. Usually 
models are tuned by using special subset of training data, called 
validation set. 

6. Evaluation of the model. Depending on the task, different metrics 
are used to evaluate the model, e.g. accuracy, error, recall, 
precision. 

2.2.2 Unsupervised learning 

Unsupervised learning is one of the methods of machine learning, in 
which a trainable system randomly learns to perform a given task 
without any intervention from the experimenter. (Duda, Hart, & 
Stork, 2000) Like supervised learning it can be classified as a type of 
cybernetic experiments, but without feedback.  
 
Usually unsupervised learning can only be applied to tasks, which 
have feature-rich data, and which require determining some internal 
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relationships. Common tasks include clustering and anomaly 
detection. Unsupervised models do not have any evaluation metric, 
because there is no “ground-truth” labels for the input data. 
 

2.3 Statistical autoregressive models 

2.3.1 AR model 

An autoregressive model is a model used for the time series analysis, 
in which the current value of a sequence linearly depends on previous 
values of the same sequence. An autoregressive process of the order 
p is defined as: 
 

𝑋𝑡 = 𝑐 + ∑ 𝑎𝑖𝑋𝑡−1 +  ℇ𝑡

𝑝

𝑖=1

(1) 

 
Where 𝑎1, … , 𝑎𝑝 are parameters of the model (coefficients of 

autoregression), c is constant and ℇ𝑡 is white noise. (Mills, 1991) 
 
 
The autoregressive model has a range of limitations: 
 

− It allows to analyze only one time series, which means that in 
order to get meaningful results with AR model, the studied system 
must be a closed system with no outside influence.  

− It is linear in nature, so it can only approximate non-linear 
dependencies.  

− Can only be applied to stationary data.  

− It is unable to analyze errors or seasonal oscillation of data.  

2.3.2 ARIMA model 

ARIMA -  Autoregressive integrated moving average model is a model 
obtained from combination of AR with Moving Average (MA) models.  
 
Autoregressive integrated moving average models are usually applied 
when data shows evidence of non-stationarity, where an initial 
differencing step (corresponding to the “integrated” part of the 
model) can be applied one or more times. (Hyndman & Athanasopou-
los, 2018) 
 
ARIMA model with parameters (p, d, q), where p is the order (number 
of lags) of autoregression part, d – is a number of differencing steps, 
and q is the order of the moving-average model, can be defined as: 
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(1 −  ∑ 𝜑𝑖𝐿𝑖

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝑋𝑡 =  (1 +  ∑ 𝛳𝑖

𝑞

𝑖=1

𝐿𝑖) ℇ𝑡 (2) 

 
 
Where 𝜑𝑖 – coefficients of autoregression, 𝛳𝑖 – coefficients of moving 
averages and L is a Lag operator.  
 
ARIMA model is more powerful than pure AR model:  
 

− It enables analysis of non-stationary data. 

− It considers not only previous values of the timeseries, but also its 
small fluctuations, errors.  

− It is still linear in nature, but because of combination of AR and 
MA models can provide non-linear output.  

 
Nonetheless, certain limitations still exist: 
 

− Only one time series is considered, so it is still a single input 
model. 

− It is unusual for an ARIMA model to represent any very 
complicated relationships in data.  

2.3.3 ARIMAX model 

ARIMAX extends the ARIMA model trough an inclusion of exogenous 
variables.  
 
An exogenous variable is a variable that is not affected by any other 
variables in the system, e.g. energy consumption of the building is 
endogenous variable and outdoor temperature is exogenous variable. 
(Kongcharoen & Kruangpradit, 2013) 
 
In comparison to ARIMA model, ARIMAX has several advantages: 
 

− ARIMAX can take as an input multiple different time series and 
detect relationships between endogenous and exogenous data. 

− Because models based on ARIMAX consider more data, they are 
more accurate. 

 
However, certain major limitations still exist:  
 

− An endogenous variable cannot have any effect on an exogenous 
variable.  

− Several models should be used to get a single multi-output model. 
 
These limitations can be avoided if neural network-based models are 
used. 
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2.4 Deep learning models 

2.4.1 Fully Connected Feed Forward network 

An artificial neural network (ANN) is a mathematical model built on 
principles of organization and functioning of biological neural 
network. The first try of creating ANN belongs to McCulloch and 
Walter (S. McCulloch & Pitts, 1943). After the development of 
learning algorithms ANN started to be used in practice for forecasting, 
object recognition and detection et al.  

 
An artificial neural network represents a system of connected and 
interacting simple units, called neurons. These units are usually very 
simple, they only work with received signals performing simple 
mathematical operations, nevertheless, being connected into big 
network, neurons can represent very complicated functions and 
relationships. Example of a simple neural network is illustrated in 
Figure 2.  

 

Figure 2. Fully Connected Feed Forward network, graphical 
representation 

 
Neural networks are not programmed but trained. The possibility of 
training is one of the major advantages over traditional algorithms. 
Technically learning is finding coefficients of bonds between neurons, 
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which is multiparametric task of non-linear optimization. In the 
process of training network is able to detect complex relationships 
between input and output data and generalize it for a new data.  

 
Typical behavior of a feed forward neural network can be described 
as follows: 

 
1. Forward pass – calculation of the network’s output by traversing 

through all neurons from input layer to output layer.  
2. Backpropagation pass – calculation of the gradients, which are 

used to update weights (parameters) of the network (de facto 
learning). It is done by traversing through all neurons from output 
layer to input layer.  

2.4.2 Recurrent Neural Networks 

A recurrent neural network (RNN) is a class of neural networks where 
connections between the units form a directed sequence. This allows 
to process time series data and unlike usual feed forward neural 
networks, RNN-s can use their built-in memory to analyze sequences 
with different lengths. (Li & Wu, 2014) 
 

 

Figure 3. Unrolled RNN structure 

The structure of a simple RNN is shown in Figure 3: 
 

− 𝑋𝑡 is the input to the network at time step t. 

− 𝑆𝑡, is the hidden state at time step t, calculated as follows: 𝑆𝑡 =
𝑔(𝑈𝑋𝑡 + 𝑊𝑆𝑡−1), g(x) is an activation function. 

− 𝑌𝑡 is the output of the network at time step t equals to  𝑌𝑡 =
𝑓(𝑉𝑆𝑡),  f(x) is an activation function. 

− W, V, U, are parameters of the network. 
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RNN are widely used in Natural Language Processing in speech 
recognition, machine translation, handwriting recognition. 
 
In comparison with feed forward ANN, RNN have several major 
advantages: 
 

− RNN usually has a lot less parameters to train, because most of 
them are shared among all units. 

− RNN can handle time series of variable lengths. 
 
To be efficient RNN requires to have a lot of separate units to be 
stacked in a sequence, what brings one major flaw – vanishing 
gradients. Simple RNN are unable to capture long-term dependencies 
between data points. One of the possible solutions is using LSTM 
units.  
 
 

2.4.3 LSTM networks 

A Long-Short Term Memory (LSTM) block is a building unit for layers 
of a recurrent neural network.  A LSTM unit contains a cell, an input 
gate, an output gate and a forget gate.  Unlike a traditional RNN, 
LSTM networks are well suited for processing and analysing time 
series even when sequences contain long-term dependencies.  
 

 

Figure 4. LSTM unit structure (Olah, 2015) 

 
In Figure 4, the basic working principle of LSTM unit can be seen. 
Instead of only passing hidden state (activation) to the next unit as 
usual RNN block, LSTM handles two lines of data: cell state, which is 
responsible for long-term dependencies, and hidden state. And unlike 
basic RNN, LSTM unit basically is built out of 4 different layers, each 
of which controls corresponding gate.  
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− Forget gate. This gate is used to remove information from cell 
state. It is usually controlled with hard-sigmoid activation 
function, which has an output range of 0-1, so if some piece of 
data should be forgotten, it is multiplied by 0, if it should be kept - 
then by 1. 

− Input gate controlled by two layers. One of them controls which 
cell states should be updated and has hard-sigmoid as an 
activation function. Another uses hyperbolic tangent.  

− Output gate is used to pass information from cell state to hidden 
state. 

  
It should be noted, that the cell state line is continuous, so it is very 
easy for information and gradients to flow without any changes, 
which gives LSTM the amazing ability to determine long-term 
relationships and helps to eliminate vanishing gradients problem.  
 
LSTM nets are a much more powerful tool than a simple RNN and it is 
no surprise that LSTM-s are very popular in machine learning tasks 
related to sequence processing, such as time series prediction, speech 
recognition, music composition, sign language translation, time series 
anomaly detection and many others. (Li & Wu, 2014) 

2.5 Optimization 

2.5.1 Loss function 

In the theory of point estimation, a loss function (objective function in 
general) quantifies the losses associated to the errors committed 
while estimating a parameter. (Loss Function, n.d.)  
 
Depending on the task, different loss functions are preferred, e.g. 
regression or classification require completely different objective 
function. It is vital to select correct function for each task because it 
basically represents the objective of the model to learn.  
 
Most of the common loss function can be divided into two groups 
depending on the type of task they are solving: regression or 
classification.  
 
Loss functions used for classification: 
 
1. Cross-entropy loss is the most common loss function for 

classification tasks. It is defined as 
 

𝐿(𝑎, 𝑦) =
1

𝑛
∑(𝑦𝑖 ln(𝑎𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑎𝑖))

𝑛

𝑖=1

(3) 
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where a is an output of the model in the range of 0 to 1, and y is 
ground-truth label for this particular data point, which is either 0 or 1.   
 
2. Hinge loss. It is used for “maximum-margin” classification. For a 

labelled output t = ± 1 and a classifier output score y, the hinge 
loss is defined as 

 

𝐿(𝑡, 𝑦) =
1

𝑛
∑ max(0, 1 − 𝑡𝑖𝑦𝑖)

𝑛

𝑖=1

(4) 

 
It can be seen, that when t and y have the same sign (classification is 
correct), the loss is 0, and if classification is incorrect, then the loss 
increases linearly with y. 
 
Loss functions for regression are more diverse: 
 
1. Mean Absolute Error (MAE) is a measure of difference between 

two continuous variables. It is defined as 

𝑀𝐴𝐸 = 𝐿(𝑎, 𝑦) =  
1

𝑛
 ∑|𝑦𝑖 −  𝑎𝑖|

𝑛

𝑖=1

(4) 

 
Where 𝑦𝑖 is a desirable output and 𝑎𝑖 is an actual output of a model, i 
is the number of a data point from training set.  
 
MAE uses the same scale as the data being analysed, which is known 
as scale-dependent accuracy, so it is impossible to compare results 
between data with different scales. MAE is used, then it is not 
necessary to additionally penalize big error in estimations.  
 
2. Root Mean Squared Error (RMSE) measures the average of the 

errors or the difference between desirable and actual output of 
the model. Like Mean Absolute Error has the same units of 
measurement as quantity being estimated. It can be defined as 
follows 

𝑅𝑀𝑆𝐸 = 𝐿(𝑎, 𝑦) =  √
1

𝑛
 ∑(𝑦𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

(5) 

 
RMSE is preferable, when higher error means much bigger harm as 
this loss function additionally penalizes large error values. 
 
3. Root Mean Squared Logarithmic Error (RMSLE) is defined as 
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𝑅𝑀𝑆𝐿𝐸 = 𝐿(𝑎, 𝑦) =  √
1

𝑛
∑ (𝑙𝑛 (

𝑎𝑖 + 1

𝑦𝑖 + 1
))

2𝑛

𝑖=1

(6) 

 
RMSLE is used when underprediction is more undesirable than 
overpredicting, that means if model’s output is smaller than actual 
value, the loss is going to be larger, than if the output was instead 
bigger by the same margin. It can also be used then both true and 
predicted values expected to big, because for RMSLE only percental 
difference matters.  

2.5.2 Activation functions 

An activation function is a function, which defines the output of a 
node given a set of inputs. It is a vital part of any neural network. It is 
activation function’s responsibility to bring non-linearity to neural 
networks. (Haykin, 1999) 
 
As it was mentioned earlier, any network has two steps to perform 
during one iteration: forward propagation and back propagation. 
During forward propagation each layer (it is “layer” here and not 
“neuron” because of vector notation) calculates a weighted sum of all 
received inputs: 
 

𝑍𝑖 =  𝑊𝑖𝑎𝑖−1 + 𝑏𝑖 (7) 
 
Where 𝑍𝑖  is a matrix of weighted sums for each neuron of layer i,  𝑊𝑖 
is a weight matrix, 𝑎𝑖−1 is an activation vector from previous layer and 
𝑏𝑖 is a bias vector.  
 
The next step is to find the activation of this weighted sum: 
 

𝑎𝑖 = 𝑔(𝑍𝑖) (8) 
 
Where 𝑎𝑖 is an activation of layer i and g is an activation function.  
 
If there is no activation function or it is just linear then the layer 
doesn’t contribute any computational power to the network. It can 
be demonstrated with using a simple ANN as an example: 
 



13 
 

 
 

 

Figure 5. Simple feed forward neural network 

 
The network in Figure 5 is a small feed forward ANN with two layers: 
one hidden layer and one output layer. Its whole computation for 
forward propagation can be described with the following equations: 
 
1. Computing weighted sum for hidden layer. 
 

𝑍1 = 𝑊1𝑥 + 𝑏1 (9) 
 
Where Z is weighted sum, W is a weights matrix or parameters of the 
layer, b is a bias vector and x is an input to the network. 
 
2. Computing weighted sum for output layer. Because there is no 

activation function for the hidden layer, following equation is 
obtained: 

 
 

𝑍2 =  𝑊2𝑍1 +  𝑏2 =  𝑊2(𝑊1𝑥 +  𝑏1) +  𝑏1 = 
 𝑊2𝑊1𝑥 + 𝑊2𝑏1 +  𝑏1 (10) 

 
In that equation 𝑊2𝑊1 term can be replaced with equivalent matrix 
W, which is equal to matrix product 𝑊2𝑊1. 𝑊2𝑏1 can be replaced as 
well in the similar way. These transformations result in a new 
structure with only one layer – output and it can no longer be 
considered neural network as it behaves as usual linear regression. 
This shows that proper activation function is vital for a neural 
network to operate and learn properly.  
 
Non-linearity is not the only requirement for an activation function, it 
must also be differentiable overwise finding gradients for weights of 
the network is not possible.  
 
Considering these requirements the following activation functions are 
widely used:  
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1. Sigmoid function 
A sigmoid function is mathematical function having a 
characteristic “S”-shaped curve as illustrated in Figure 6. It is 
defined by equation: 
 

𝑆(𝑥) =  
1

1 + 𝑒−𝑥
(11) 

 

 

Figure 6. Sigmoid function 

A sigmoid is historically one of the first activation functions used in 
building neural networks.  
It is widely used in binary classification problems as it always 
produces output in the range of 0 to 1.  Another reason of sigmoid’s 
popularity is its simple derivative: 

𝑑𝑆(𝑥)

𝑑(𝑥)
=  𝑆(𝑥)(1 − 𝑆(𝑥)) (12) 
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Figure 7. Derivative of sigmoid activation function 

2. Hyperbolic tangent is a mathematical function defined as  
 

tanh(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(13) 

 
 

 

Figure 8. Hyperbolic tangent 

Hyperbolic tangent is widely used activation function and it is often 
preferred  to sigmoid in hidden layers as it is centered around zero, so 
it allows to save zero-mean an unit-variance. The second reason is 
hyperbolic tangent has “stronger” gradients, what can speed up 
training and slow down vanishing gradients. (LeCun, Bottou, B. Orr, & 
Müller, 2002) 
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Figure 9. Derivative of hyperbolic tangent 

 
3. Rectified Linear Unit – is an activation function defined as the 

positive part of its argument: 
 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (14) 
 
 

 

Figure 10. ReLU activation function 

 
ReLU is the most popular activation function for very deep neural 
networks as it has fewer problems with vanishing gradients, which is 
the main limit for neural network depth, in comparison with 
sigmoidal activation functions. 
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Rectified Linear Unit is the most widely used activation function in 
computer vision domain as its tasks require very deep neural 
networks and involve large data sets (LeCun, Bengio, & Hinton, 2015). 
ReLU sometimes is used instead of linear activation function for 
output layer when negative output is undesirable. 

2.5.3 Optimizers 

Optimization is the selection of a best element with regards to some 
criterion from some set of available alternatives (B. Dantzig, et al., 
2007). In a simple case optimization involves maximizing or 
minimizing some target function, in machine learning the role of a 
target function belongs to loss function. 
 
There are many optimizing algorithms for neural networks, but most 
of them are based on simple gradient descent:  
 
1. Gradient descent.  
Gradient descent or batch gradient descent is a method of 
determination a local minima of a loss function by moving alongside 
the gradient as illustrated in Figure 11.  
 
It can be defined with the following equation, which represents the 
update rule for weights of a network: 
 

𝑊𝑖+1 = 𝑊𝑖 −  𝛾𝛻𝐿(𝑊𝑖) (15) 
 
Where 𝑊𝑖 is weights of a network on iteration i, 𝛾 is a learning rate – 
hyperparameter, which determines the speed of learning, 𝛾𝛻𝐿(𝑊𝑖) is 
a gradient of a loss function with respect to current weights of a 
network. Gradient descent updates parameters once for all input 
data, meaning that all training data must be processed for one step of 
gradient descent. 
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Figure 11. Gradient descent 

 
Gradient descent is the simplest method of local optimization, it is 
not guaranteed, that it will find global minima and the speed of 
convergence is low. These factors limit the use of pure Gradient 
descent, but it still plays an enormous role in machine learning as it is 
used as a base for most of other optimization algorithms.  
 
2. Stochastic gradient descent. 
Stochastic gradient descent (SGD) – is an improvement over gradient 
descent. Another name for stochastic gradient descent is minibatch 
gradient descent as it updates the weights not for whole data set, but 
for small minibatch. This approach considerably increases speed of 
convergence of the algorithm if proper learning rate is used. 
 
Because only a small fraction of data is taken into account for each 
update, SGD is very noisy. The noise leads to both favorable and 
disadvantageous consequences: this algorithm is more likely to find 
global minima than usual batch gradient descent, but it is not 
guaranteed to converge with big learning rate, so it should be 
reduced as training continues. As long as learning rate is controlled 
properly minibatch gradient descent can converge much faster than 
basic gradient descent and often ends up in a better local minima.  
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Figure 12. SGD (Fregly, 2016) 

SGD has similar mathematical definition to Batch Gradient Descent: 
 

𝑊𝑖+1 = 𝑊𝑖 −  𝛾𝛻𝐿(𝑊𝑖, 𝑥𝑛, 𝑦𝑛) (16) 
 
 
Where  𝑥𝑛, 𝑦𝑛 are corresponding training data pairs inside one mini-
batch. 
 
As mentioned earlier high learning rates and noise negatively affect 
on convergence rate. Some other algorithms handle this problem by 
adding momentum to new weights calculations, e.g. Adam algorithm. 
 
 
3. Adaptive Moment Estimation (Adam) – is an optimization 

algorithm, which uses running averages of both gradients and the 
second moments of the gradients. Given parameters 𝑤𝑡 and a 

Loss function 𝐿(𝑡), where t indexes the current training iteration, 
Adam’s parameter update is given by: 

 
𝑚𝑡+1 =  𝛽1𝑚𝑤

𝑡 + (1 −  𝛽1)𝛻𝐿(𝑤)𝑡 (17) 
 
 

𝑣𝑡+1 =  𝛽2𝑣𝑤
𝑡 + (1 − 𝛽2)(𝛻𝐿(𝑤)𝑡)2 (18) 

 
 

𝑚�̂� =  
𝑚𝑡+1

1 −  𝛽1

(19) 
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𝑣�̂� =  
𝑣𝑡+1

1 −  𝛽2

(20) 

 
 

𝑤𝑡+1 =  𝑤𝑡 −  𝛾
𝑚�̂�

√𝑣�̂� +  ℇ
(21) 

 
Where ℇ is a small number used to prevent division by zero, and 
𝛽1 and 𝛽2 are forgetting factors for gradients and second moments of 
gradients, respectively.  
 
Adam combines the best from both worlds: it is able to converge a lot 
faster than SGD or Batch Gradient Descent. Thanks to momentum 
and mini-batch nature turns it is unlikely for this algorithm to stuck in 
non-optimal local minima. Currently it is one of the most popular and 
widely used optimization algorithms for training neural networks.   
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3 MODELLING 

3.1 Data overview 

In order to forecast the next 24 hours of heating energy consumption 
the following features were selected: 

− Indoor temperature 

− Outdoor temperature 

− Energy consumed for air conditioning 

− Energy consumed for ceiling radiant 

− Energy consumed for floor heating 
 
It should be noted that the database included a lot more parameters 
about the building used for the analysis. But considering the total 
duration of a recording – 4 months and very limited computational 
power, only the most influential features got selected for training.  
 
 

 

Figure 13. Data before pre-processing 

3.2 Pre-processing 

As can be seen in Figure 13, not all the data can be used for 
modelling. The first thing that catches the eye is the presence of 
several outliers for ceiling radiant and air conditioning energy 
consumptions and missing measurements for indoor and outdoor 
temperatures. The most probable reason for this is a lost connection 
to the server or a malfunction in the measurement devices 
themselves.  
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It was impossible to use the data in that state to train a model, that is 
why some pre-processing was required. To “clean” the data the 
following actions were undertaken: 
1. All the “null” values were removed. If some of the parameters 

missed measurements, then all other parameter’s values 
corresponding to the same timestamp must be discarded.  

2. All the outliers were removed. The data point was considered to 
be outlier or invalid point, if it had negative or higher than 100 
kWh energy consumption.  

3. Consistency check. As some data points were removed, the time 
series sequence was broken, meaning that the series was no 
longer continuous. If the data was to be used in that state, a 
model would try to learn on measurements from different days or 
even weeks, what does not represent the assigned task.  

 
To address the aforementioned problem, the longest uninterrupted 
sequence was chosen. If from the very beginning more data had been 
available for training, then the neural network would be able to train 
on data with broken sequences, as these interruptions would have 
been almost unnoticeable for a model.  
 
As a result of pre-processing out of 2800 points (4 months of reading 
with 1 hours sampling time) only 1464 remained, which was around 
half of the initially available data.    

 

Figure 14. Preprocessed data 

The next step was to transform the data from the time series format 
to a supervised one. Initially the data is a time series, which cannot be 
used with most of machine learning models.  
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Table 1. Example of data in time series form 

 

Time Ceiling 
Radiant 

2017-12-
13T20:00:00+02:00 

9.86 

2017-12-
13T21:00:00+02:00 

10.75 

2017-12-
13T22:00:00+02:00 

2.125 

2017-12-
13T23:00:00+02:00 

13.6 

2017-12-
14T00:00:00+02:00 

8.6131 

 
In a Table 1 a sample of data in time series format is shown. For 
simplicity only one parameter is taken into account.  
 
A supervised learning problem is comprised of input values and 
output values, so the model can learn the function, which can map 
input data to output. In order to get these “labeled” output data for 
each point of time series, shift function is used: all observation are 
shifted by one time step, so next time step is a label for previous 
point.  
In a table below the same time series is shown in the supervised 
form. In this example, three last measurements are used to predict 
next value.  

Table 2. Time series in the supervised format 

Ceiling Radiant 
(t-2) 

Ceiling Radiant 
(t-1) 

Ceiling Radiant 
(t) 

Ceiling Radiant 
(t+1) 

9.86 10.75 2.125 13.6 

10.75 2.125 13.6 8.6131 

2.125 13.6 8.6131 20.89 

13.6 8.6131 20.89 13.83 

8.6131 20.89 13.83 16.02 

 

3.3 Building a model 

To simulate heating energy consumption the next day the following 
feed forward network was designed.  
 



24 
 

 
 

 

Figure 15. Structure of the model. 

The motivation behind this exact structure is hard to explain as the 
model was mostly designed by trial and error. But some intuition in 
general can still be given: 

− Usual feed forward ANN is used instead of sequential 
models like RNN or LSTM, because dimensionality of input 
sequences is always known. It is five vectors, containing 24 
values each, which represent the data from the previous 
day for each feature.  

− LSTM networks are harder to train: an LSTM unit has a lot 
of parameters to learn, meaning that more data is 
required to get the model working. If more data were 
available, it would be reasonable to use LSTM. 

− Feed forward ANN is relatively inexpensive in terms of 
computational power, so no expensive hardware is 
required to train a model in reasonable amount of time.  

 
This structure was inspired by NARX (Nonlinear Autoregressive 
exogenous model). The first unconnected layers have a role of 
autoregression, they transform the corresponding feature vector, 
containing measurements of 24 hours of some parameter, to some 
other vector with 200 values, which can be thought of as encoded 
time series. As it was assumed that these five parameters were 
related to each other, two merged layers were used. If some 
dependency existed, then it would be discovered in the merged 
layers. The last two layers were used to transform the found 
relationships into final predictions.  
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Adam optimizer was used for the training. The results are shown in 
Figure 16.   

 

Figure 16. Loss function over epochs of training  

Other optimizers were also tested, but they either performed worse 
or gave the same results, but took a lot more time to train. It should 
also be noted that the network is fully fitted for available data as the 
Loss function does not change for hundreds of epochs.  

3.4 Validation and testing 

The model was fully trained and could be tested. During the training 
the network predicted only values for the next hour, but 24 were 
required. To solve this problem a method called sliding windows was 
used as illustrated in Figure 17. 
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Figure 17. Using sliding windows method 

In the Figure 17 the sliding windows method is shown in action. The 
model predicts values for the next hour and then appends them to 
the input data, removing the first value in the input sequences. This 
cycle is repeated several more times to get predictions for a full day.  
 
The usage of sliding windows is also the reason why the prediction of 
the indoor temperature is important. The outdoor temperature can 
be obtained from weather forecasts, but it is not the same with the 
indoor temperature. In order to use it in predictions, the temperature 
should itself be predicted.   
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3.5 Results 

The following results were achieved on a training set: 
 

 

Figure 18. Predictions on training set 1 

 

Figure 19. Predictions on training set 2 
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Figure 20. Predictions on training set 3 

These results manifest that the model is able to fit all the required 
relationships and dependencies from the training set, so the selected 
features fully represent the modelled building in terms of heating 
energy consumption. 
 
The following results were achieved on the test set: 
 

 

Figure 21. Predictions on test set 1 
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Figure 22. Predictions on test set 2 

 

Figure 23. Predictions on test set 3 

The model not only fitted the training data, but also learned to 
generalize to forecast accurately enough based on new data from the 
same distribution. However, the quality of the forecasts dropped 
dramatically if the training and the test data were from different 
distributions. The training data belonged to December and January, 
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and the results given in Figures 21, 22 and 23 were obtained for the 
beginning of February. The following results were received for March 
and April respectively: 

 

Figure 24. Forecasts for data, obtained in March 

 
 
 

 

Figure 25. Forecasts for data, obtained in April 
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4 POSSIBLE IMPROVEMENTS 

All the current limitations of the model are directly connected to the 
quality and amount of data available for analysis, that is why the most 
important improvements are only available for data collection stage: 

− Initially the data obtained from building automation has very 
limited variance, which is a major obstacle in training machine 
learning models. A possible solution is changing the control 
system settings periodically, e.g. changing the set point for 
indoor temperature by a fraction of a degree.  

− Having more data in general. For this thesis project only two 
months of data was used, so forecast accuracy is limited, what 
restricts possible applications. If several years of data were 
available, it would be possible to build a forecast for any 
month or season in general.  

5 POSSIBLE APPLICATIONS 

The model, obtained as a result of this thesis project, can have 
different applications: 

− Smart greed applications. The simulation can be used to 
specify a required amount of energy ahead of time, making it 
possible to plan the total energy consumption ahead of time. 

− Maintenance. The model considers normal functions of a 
building, so if a malfunction appears, it will be represented as 
an extreme difference between forecasted and actual data. 

6 CONCLUSION 

In this thesis project, a machine learning based model was built to 
simulate the heating energy consumption of a building for the 
following day based on the previous 24 hours. In order to achieve this 
a feed forward NARX-like neural network was designed and trained 
on pre-processed data obtained in advance. The obtained model was 
able to predict relatively accurately (average error less than 10%) the 
next 24 hours of heating energy consumption, considering that data 
used for forecasting came from similar distribution as the training 
data.  
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Appendix 1 
Contents of the file ‘filter-data.py’ 
 
from pandas import read_csv 

import numpy 

 

""" 

This function loads data exported from database and removes all "null" 

values and outliers. Then result is saved in a separate file 

""" 

dataset = read_csv('grafana_data_export.1.csv', index_col=0, sep=';') 

dataset.replace(to_replace='null', value=numpy.nan, inplace=True) 

dataset.dropna(axis=0, how='any', inplace=True) 

 

df = dataset[['Ceiling radiant', 'Air conditioning', 'Floor heating']] 

dataset['Energy consumption'] = df.sum(axis=1) 

 

dataset = dataset[dataset['Energy consumption'] > 0] 

dataset = dataset[dataset['Energy consumption'] < 100] 

dataset = dataset.drop('Temperature set point in room 101', axis=1) 

 

dataset.to_csv('clean_data.csv') 

 
Appendix 2 

Contents of the file ‘to_supervised.py’ 
 
from pandas import read_csv, DataFrame 

from timeseries_to_supervised import series_to_supervised 

 

""" 

This file transforms data from time series to supervised form by calling 

series_to_supervised function 

""" 

dataset = read_csv('clean_data.csv', header=0, index_col=0, sep=',') 

 

temp_out = series_to_supervised(dataset['Outside temp'].values.tolist(), 

24, 1) 

temp_in = series_to_supervised(dataset['Temperature in room 

101'].values.tolist(), 24, 1) 

ceiling_radiant = series_to_supervised(dataset['Ceiling 

radiant'].values.tolist(), 24, 1) 

air_conditioning = series_to_supervised(dataset['Air 

conditioning'].values.tolist(), 24, 1) 

floor_heating = series_to_supervised(dataset['Floor 

heating'].values.tolist(), 24, 1) 

 

temp_out.to_csv('temp_out.csv') 
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temp_in.to_csv('temp_in.csv') 

ceiling_radiant.to_csv('ceiling_radiant.csv') 

air_conditioning.to_csv('air_conditioning.csv') 

floor_heating.to_csv('floor_heating.csv') 
 

Appendix 3 
Contents of the file ‘train_model.py’ 
 

from math import sqrt 

import numpy as np 

from matplotlib import pyplot 

from pandas import read_csv 

from pandas import DataFrame 

from pandas import concat 

from sklearn.metrics import mean_squared_error 

from keras.models import Model 

from keras.layers import Input, Dense, BatchNormalization 

from keras.layers import Dropout, concatenate 

from keras.optimizers import Adam 

 

#load preprocessed data 

temp_in_df = read_csv('temp_in.csv', index_col=0) 

temp_out_df = read_csv('temp_out.csv', index_col=0) 

air_cond_df = read_csv('air_conditioning.csv', index_col=0) 

ceiling_radiant_df = read_csv('ceiling_radiant.csv', index_col=0) 

floor_heating_df = read_csv('floor_heating.csv', index_col=0) 

 

#transform pandas dataframe to numpy array and set precision to float 32 

temp_in = temp_in_df.astype('float32').values 

temp_out = temp_out_df.astype('float32').values 

air_cond = air_cond_df.astype('float32').values 

ceiling_radiant = ceiling_radiant_df.astype('float32').values 

floor_heating = floor_heating_df.astype('float32').values 

 

#divide all the data into test and train sets 

train_size = int(temp_in.shape[0] * 0.85) 

train_X_temp_in, train_Y_temp_in = temp_in[:train_size, 0:24], 

temp_in[:train_size, -1] 

train_X_temp_out, train_Y_temp_out = temp_out[:train_size, 0:24], 

temp_out[:train_size, -1] 

train_X_air_cond, train_Y_air_cond = air_cond[:train_size, 0:24], 

air_cond[:train_size, -1] 

train_X_ceiling_radiant, train_Y_ceiling_radiant = 

ceiling_radiant[:train_size, 0:24], ceiling_radiant[:train_size, -1] 

train_X_floor_heating, train_Y_floor_heating = floor_heating[:train_size, 

0:24], floor_heating[:train_size, -1] 

 



36 
 

 
 

test_X_temp_in, test_Y_temp_in = temp_in[train_size:, 0:24], 

temp_in[train_size:, -1] 

test_X_temp_out, test_Y_temp_out  = temp_out[train_size:, 0:24], 

temp_out[train_size:, -1] 

test_X_air_cond, test_Y_air_cond = air_cond[train_size:, 0:24], 

air_cond[train_size:, -1] 

test_X_ceiling_radiant, test_Y_ceiling_radiant  = 

ceiling_radiant[train_size:, 0:24], ceiling_radiant[train_size:, -1] 

test_X_floor_heating, test_Y_floor_heating = floor_heating[train_size:, 

0:24], floor_heating[train_size:, -1] 

 

#model definition 

input_out_temp = Input(shape=(24,)) 

input_in_temp = Input(shape=(24,)) 

input_air_cond = Input(shape=(24,)) 

input_ceiling_radiant = Input(shape=(24,)) 

input_floor_heating = Input(shape=(24,)) 

 

dense_out_temp_1 = Dense(200, activation='tanh')(input_out_temp) 

dense_in_temp_1 = Dense(200, activation='tanh')(input_in_temp) 

dense_air_cond_1 = Dense(400, activation='relu')(input_air_cond) 

dense_air_cond_2 = Dense(200, activation='tanh')(dense_air_cond_1) 

dense_ceiling_radiant_1 = Dense(400, 

activation='relu')(input_ceiling_radiant) 

dense_ceiling_radiant_2 = Dense(200, 

activation='tanh')(dense_ceiling_radiant_1) 

dense_floor_heating_1 = Dense(400, 

activation='relu')(input_floor_heating) 

dense_floor_heating_2 = Dense(200, 

activation='tanh')(dense_floor_heating_1) 

 

merge_layer = concatenate([dense_out_temp_1, dense_in_temp_1, 

dense_air_cond_2, dense_ceiling_radiant_2, dense_floor_heating_2 ], 

axis=-1) 

dense_merged_1 = Dense(1500, activation = 'tanh')(merge_layer) 

norm1 = BatchNormalization()(dense_merged_1) 

drop1 = Dropout(0.2)(norm1) 

dense_merged_2 = Dense(2000, activation='tanh')(drop1) 

 

dense_in_temp_3 = Dense(200, activation='tanh')(dense_merged_2) 

dense_air_cond_3 = Dense(200, activation='tanh')(dense_merged_2) 

dense_ceiling_radiant_3 = Dense(200, activation='tanh')(dense_merged_2) 

dense_floor_heating_3 = Dense(200, activation='tanh')(dense_merged_2) 

drop_in_temp = Dropout(0.2)(dense_in_temp_3) 

drop_air_cond = Dropout(0.2)(dense_air_cond_3) 

drop_ceiling_radiant = Dropout(0.2)(dense_ceiling_radiant_3) 

drop_floor_heating = Dropout(0.2)(dense_floor_heating_3) 

 

dense_in_temp_4 = Dense(150, activation='tanh')(drop_in_temp) 
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dense_air_cond_4 = Dense(150, activation='tanh')(drop_air_cond) 

dense_ceiling_radiant_4 = Dense(150, 

activation='tanh')(drop_ceiling_radiant) 

dense_floor_heating_4 = Dense(150, activation='tanh')(drop_floor_heating) 

 

out_in_temp = Dense(1, activation='linear')(dense_in_temp_4) 

out_air_cond = Dense(1, activation='relu')(dense_air_cond_4) 

out_ceiling_radiant = Dense(1, 

activation='relu')(dense_ceiling_radiant_4) 

out_floor_heating = Dense(1, activation='relu')(dense_floor_heating_4) 

 

model = Model(inputs=[input_out_temp, input_in_temp, input_air_cond, 

input_ceiling_radiant, input_floor_heating], outputs=[out_in_temp, 

out_air_cond, out_ceiling_radiant, out_floor_heating]) 

#configuration of Optimizer 

opt = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1.e-9, decay=0.0, 

amsgrad=False) 

model.compile(loss='mean_squared_error', optimizer=opt) 

 

#actual training 

history = model.fit([train_X_temp_out, train_X_temp_in, train_X_air_cond, 

train_X_ceiling_radiant, train_X_floor_heating], [train_Y_temp_in, 

train_Y_air_cond, train_Y_ceiling_radiant, train_Y_floor_heating], 

epochs=500, batch_size=24, validation_data= 

([test_X_temp_out, test_X_temp_in, test_X_air_cond, 

test_X_ceiling_radiant, test_X_floor_heating], 

 [test_Y_temp_in, test_Y_air_cond, test_Y_ceiling_radiant, 

test_Y_floor_heating]),  

 verbose=2, shuffle=True) 

 

pyplot.plot(history.history['loss'], label='train') 

pyplot.plot(history.history['val_loss'], label='test') 

 

pyplot.legend() 

pyplot.show() 

 

#saving model for later use 

model_json = model.to_json() 

with open("model2.json", 'w') as json_file: 

    json_file.write(model_json) 

 

model.save_weights('model2.h5') 

print("Model saved") 
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Appendix 3 
Contents of the file ‘test_model.py’ 
 
from keras.models import model_from_json 

from pandas import read_csv 

import numpy as np 

import os 

from matplotlib import pyplot as plt 

from sklearn.preprocessing import MinMaxScaler 

 

#loads pretrained in run.py file model 

def load_model(): 

    json_file = open('model2.json', 'r')  

    loaded_model_json = json_file.read() 

    json_file.close() 

    loaded_model = model_from_json(loaded_model_json) 

    loaded_model.load_weights('model2.h5') 

    return loaded_model 

 

#loads preprocessed data 

def load_data(): 

    temp_in_df = read_csv('temp_in.csv', index_col=0) 

    temp_out_df = read_csv('temp_out.csv', index_col=0) 

    air_cond_df = read_csv('air_conditioning.csv', index_col=0) 

    ceiling_radiant_df = read_csv('ceiling_radiant.csv', index_col=0) 

    floor_heating_df = read_csv('floor_heating.csv', index_col=0) 

 

    temp_in = temp_in_df.astype('float32').values 

    temp_out = temp_out_df.astype('float32').values 

    air_cond = air_cond_df.astype('float32').values 

    ceiling_radiant = ceiling_radiant_df.astype('float32').values 

    floor_heating = floor_heating_df.astype('float32').values 

 

    train_size = int(temp_in.shape[0] * 0.85) 

    #separated data into training and learning sets as well as into X and 

Y labels 

    train_X_temp_in, train_Y_temp_in = temp_in[:train_size, 0:24], 

temp_in[:train_size, -1] 

    train_X_temp_out, train_Y_temp_out  = temp_out[:train_size, 0:24], 

temp_out[:train_size, -1] 

    train_X_air_cond, train_Y_air_cond = air_cond[:train_size, 0:24], 

air_cond[:train_size, -1] 

    train_X_ceiling_radiant, train_Y_ceiling_radiant = 

ceiling_radiant[:train_size, 0:24], ceiling_radiant[:train_size, -1] 

    train_X_floor_heating, train_Y_floor_heating = 

floor_heating[:train_size, 0:24], floor_heating[:train_size, -1] 

 

    test_X_temp_in, test_Y_temp_in = temp_in[train_size:, 0:24], 

temp_in[train_size:, -1] 
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    test_X_temp_out, test_Y_temp_out  = temp_out[train_size:, 0:24], 

temp_out[train_size:, -1] 

    test_X_air_cond, test_Y_air_cond = air_cond[train_size:, 0:24], 

air_cond[train_size:, -1] 

    test_X_ceiling_radiant, test_Y_ceiling_radiant  = 

ceiling_radiant[train_size:, 0:24], ceiling_radiant[train_size:, -1] 

    test_X_floor_heating, test_Y_floor_heating = 

floor_heating[train_size:, 0:24], floor_heating[train_size:, -1] 

    return test_X_temp_out ,test_X_temp_in, test_X_air_cond, 

test_X_ceiling_radiant, test_X_floor_heating, test_Y_temp_out, 

test_Y_temp_in, test_Y_air_cond, test_Y_ceiling_radiant, 

test_Y_floor_heating 

     

#this function is a wrapper to predict whole next day instead of only 1 

hour (as it would happen if the usual function provided by keras was 

called) 

def predict_data(model, test_X_temp_out, test_X_temp_in, test_X_air_cond, 

test_X_ceiling_radiant, test_X_floor_heating, test_Y_temp_out): 

    result_temp_in = [] 

    result_air_cond = [] 

    result_ceiling_radiant = [] 

    result_floor_heating = [] 

 

    temp, air_cond, ceiling_radiant, floor_heating = 

model.predict([test_X_temp_out, test_X_temp_in, test_X_air_cond, 

test_X_ceiling_radiant, test_X_floor_heating]) 

    result_temp_in.append(np.squeeze(temp).tolist()) 

    result_air_cond.append(np.squeeze(air_cond).tolist()) 

    result_ceiling_radiant.append(np.squeeze(ceiling_radiant).tolist()) 

    result_floor_heating.append(np.squeeze(floor_heating).tolist()) 

    test_X_temp_in = np.append(test_X_temp_in, temp) 

    test_X_temp_in = np.delete(test_X_temp_in, 0, axis=0) 

    test_X_temp_in = test_X_temp_in.reshape(1, 24) 

 

    test_X_air_cond = np.append(test_X_air_cond, air_cond) 

    test_X_air_cond = np.delete(test_X_air_cond, 0, axis=0) 

    test_X_air_cond = test_X_air_cond.reshape(1, 24) 

 

    test_X_ceiling_radiant = np.append(test_X_ceiling_radiant, 

ceiling_radiant) 

    test_X_ceiling_radiant = np.delete(test_X_ceiling_radiant, 0, axis=0) 

    test_X_ceiling_radiant = test_X_ceiling_radiant.reshape(1, 24) 

 

    test_X_floor_heating = np.append(test_X_floor_heating, floor_heating) 

    test_X_floor_heating = np.delete(test_X_floor_heating, 0, axis=0) 

    test_X_floor_heating = test_X_floor_heating.reshape(1, 24) 

 

    test_X_temp_out = np.append(test_X_temp_out, test_Y_temp_out[0]) 

    test_X_temp_out = np.delete(test_X_temp_out, 0, axis=0) 

    test_X_temp_out = test_X_temp_out.reshape(1, 24) 
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    for i in range(23): 

        temp, air_cond, ceiling_radiant, floor_heating = 

model.predict([test_X_temp_out, test_X_temp_in, test_X_air_cond, 

test_X_ceiling_radiant, test_X_floor_heating]) 

        result_temp_in.append(np.squeeze(temp).tolist()) 

        result_air_cond.append(np.squeeze(air_cond).tolist()) 

        

result_ceiling_radiant.append(np.squeeze(ceiling_radiant).tolist()) 

        result_floor_heating.append(np.squeeze(floor_heating).tolist()) 

        test_X_temp_in = np.append(test_X_temp_in, temp) 

        test_X_temp_in = np.delete(test_X_temp_in, 0, axis=0) 

        test_X_temp_in = test_X_temp_in.reshape(1, 24) 

 

        test_X_air_cond = np.append(test_X_air_cond, air_cond) 

        test_X_air_cond = np.delete(test_X_air_cond, 0, axis=0) 

        test_X_air_cond = test_X_air_cond.reshape(1, 24) 

 

        test_X_ceiling_radiant = np.append(test_X_ceiling_radiant, 

ceiling_radiant) 

        test_X_ceiling_radiant = np.delete(test_X_ceiling_radiant, 0, 

axis=0) 

        test_X_ceiling_radiant = test_X_ceiling_radiant.reshape(1, 24) 

 

        test_X_floor_heating = np.append(test_X_floor_heating, 

floor_heating) 

        test_X_floor_heating = np.delete(test_X_floor_heating, 0, axis=0) 

        test_X_floor_heating = test_X_floor_heating.reshape(1, 24) 

 

        test_X_temp_out = np.append(test_X_temp_out, test_Y_temp_out[0]) 

        test_X_temp_out = np.delete(test_X_temp_out, 0, axis=0) 

        test_X_temp_out = test_X_temp_out.reshape(1, 24) 

         

    return result_temp_in, result_air_cond, result_ceiling_radiant, 

result_floor_heating 

 

test_X_temp_out, test_X_temp_in, test_X_air_cond, test_X_ceiling_radiant, 

test_X_floor_heating, test_Y_temp_out, test_Y_temp_in, test_Y_air_cond, 

test_Y_ceiling_radiant, test_Y_floor_heating = load_data() 

model = load_model() 

temp_in, air_cond, ceiling_radiant, floor_heating = predict_data(model, 

test_X_temp_out[2:3],test_X_temp_in[2:3], test_X_air_cond[2:3], 

test_X_ceiling_radiant[2:3], test_X_floor_heating[2:3], 

test_Y_temp_out[2:]) 

 

plt.subplot(4, 1, 1) 

plt.plot(temp_in, label="predictions") 

plt.plot(test_Y_temp_in[2:26], label="Labels")  
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plt.gca().set_title('Inside temperature') 

plt.legend() 

plt.subplot(4, 1, 2) 

plt.plot(air_cond, label="predictions") 

plt.plot(test_Y_air_cond[2:26], label="Labels")  

plt.gca().set_title('Air conditioning') 

plt.legend() 

plt.subplot(4, 1, 3) 

plt.plot(ceiling_radiant, label="predictions") 

plt.plot(test_Y_ceiling_radiant[2:26], label="Labels")  

plt.gca().set_title('Ceiling radiant') 

plt.legend() 

plt.subplot(4, 1, 4) 

plt.plot(floor_heating, label="predictions") 

plt.plot(test_Y_floor_heating[2:26], label="Labels")  

plt.gca().set_title('Floor heating') 

plt.legend() 

plt.savefig('test5.png') 

plt.show() 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 


