

Heating Energy Consumption Forecasting

Based on Machine Learning

Bachelor’s thesis

Degree Programme in Electrical and Automation Engineering

Spring 2018

Igor Trotskii

ABSTRACT

Electrical and Automation Engineering
Valkeakoski

Author Igor Trotskii Year 2018

Subject Heating Energy Consumption Forecasting Based on Machine

Learning

Supervisor(s) Jukka Pulkkinen

ABSTRACT

The author’s aim in this thesis project was to develop a machine
learning model, which could create short-term forecasts regarding
heating energy consumption of a building. Even short-term energy
consumption forecasts can have a major impact on building
automation and energy distribution systems. Possible application
spheres include smart grid development and simpler maintenance.

A feed forward artificial neural network was designed as a result of
examination and testing of different models in order to get the most
accurate predictions possible. To create an effective neural network
various loss and activation functions as well as optimizers were
reviewed.

To obtain better results some preprocessing techniques were applied
to filter corrupted and unreliable data. The designed model was
successfully trained to perform forecasting on data from the same
distribution as the training data.

Keywords Time-series, forecasting, energy consumption, feed forward ANN

Pages 31 pages including appendices 40 pages

CONTENTS

1 INTRODUCTION ... 1

2 THEORETICAL FOUNDATIONS .. 2

2.1 Time series .. 2

2.2 Machine learning ... 3

2.2.1 Supervised learning. .. 3

2.2.2 Unsupervised learning ... 4

2.3 Statistical autoregressive models ... 5

2.3.1 AR model ... 5

2.3.2 ARIMA model ... 5

2.3.3 ARIMAX model ... 6

2.4 Deep learning models ... 7

2.4.1 Fully Connected Feed Forward network ... 7

2.4.2 Recurrent Neural Networks ... 8

2.4.3 LSTM networks .. 9

2.5 Optimization .. 10

2.5.1 Loss function .. 10

2.5.2 Activation functions ... 12

2.5.3 Optimizers ... 17

3 MODELLING ... 21

3.1 Data overview ... 21

3.2 Pre-processing ... 21

3.3 Building a model .. 23

3.4 Validation and testing ... 25

3.5 Results ... 27

4 POSSIBLE IMPROVEMENTS .. 31

5 POSSIBLE APPLICATIONS ... 31

6 CONCLUSION ... 31

7 REFERENCES ... 32

Appendix 1 .. 34

Appendix 2 .. 34

Appendix 3 .. 35

Appendix 3 .. 38

LIST OF FIGURES

Figure 1. Decomposition of additive time series (A little book of R for time series,
Time Series Analysis) .. 2

Figure 2. Fully Connected Feed Forward network, graphical representation 7

Figure 3. Unrolled RNN structure .. 8

Figure 4. LSTM unit structure (Olah, 2015) ... 9

Figure 5. Simple feed forward neural network ... 13

Figure 6. Sigmoid function .. 14

Figure 7. Derivative of sigmoid activation function .. 15

Figure 8. Hyperbolic tangent ... 15

Figure 9. Derivative of hyperbolic tangent ... 16

Figure 10. ReLU activation function .. 16

Figure 11. Gradient descent .. 18

Figure 12. SGD (Fregly, 2016) .. 19

Figure 13. Data before pre-processing .. 21

Figure 14. Preprocessed data .. 22

Figure 15. Structure of the model. .. 24

Figure 16. Loss function over epochs of training .. 25

Figure 17. Using sliding windows method ... 26

Figure 18. Predictions on training set 1 ... 27

Figure 19. Predictions on training set 2 ... 27

Figure 20. Predictions on training set 3 ... 28

Figure 21. Predictions on test set 1 ... 28

Figure 22. Predictions on test set 2 ... 29

Figure 23. Predictions on test set 3 ... 29

Figure 24. Forecasts for data, obtained in March ... 30

Figure 25. Forecasts for data, obtained in April .. 30

LIST OF TABLES

Table 1. Example of data in time series form .. 23

Table 2. Time series in the supervised format ... 23

1

1 INTRODUCTION

The IoT sphere is experiencing a period of major development as the
number of IoT devices increases rapidly and has already reached 23
billion. As a result, enormous amounts of data are being generated
every second and classical data analytics tools are not nearly enough
to handle it. To get the most from all collected information, machine
learning techniques are used.

Machine Learning has tremendously evolved with stepping into the
big data era. Such spheres as: Deep Learning, Computer Vision,
Natural Language Processing have already brought a revolution into
the information economy. But in spite of all technological advances in
Machine Learning, it still has a long way to go in building automation
and the aim of this thesis project was to look into the existing
technologies used mainly for financial analysis and find their possible
applications in the building automation domain.

Utilizing machine learning in building automation and in heating
energy consumption forecasts particularly, can lead to many benefits,
e.g. an easier deployment of Smart Grid energy distribution systems
and better maintenance.

2

2 THEORETICAL FOUNDATIONS

2.1 Time series

Time series is a series of observations happening continuously over
equal periods of time: year, week, days or minutes, depending on the
characteristics of observable variable. Usually time series consists of
several components:

− Trend – common long-term tendency of change of time series,
which lies in the basis of its dynamics.

− Seasonal variance – short-term regularly appearing fluctuations of
the observable variable over trend.

− Noise – chaotic fluctuations in a variable, caused by errors in
measurements or by chaotic and unpredictable nature of the
observable variable itself. (Hyndman & Athanasopoulos, 2018)

Figure 1. Decomposition of additive time series (A little book of R for
time series, n.d.)

3

2.2 Machine learning

Machine learning is a field of computer science that uses statistical
techniques to give computer systems the ability to “learn” (i.e.
progressively improve their performance on a specific task) with data,
without being explicitly programmed. (Samuel, 1959)

Machine learning is a class of methods of artificial intelligence,
characteristic trait of which is not a direct solution of the task, but
learning for a concrete task, based on set of similar tasks.

In general, the task for a machine learning system can be formulated
as follows: there is a set of objects (situations) and a set of possible
answers (responses). At the same time, certain dependence exists
between these sets, which is unknown. If some finite ensemble of
precedents (pairs of object – response), which is called a training set
or a sample, obtained then it is possible to recreate this relationship
between input and response to this object. This relationship is not
necessarily expressed in an analytical form, often it is an empirically
formed answer, which basically looks like a “black box” for a human.
An important trait of the trainable system is an ability to generalize
out of given examples, i.e. an ability to generate reasonable response
to new, but related input data.

2.2.1 Supervised learning.

Supervised learning is the machine learning task of learning a function
that maps an input to an output based on example input-outputs
pairs (Russell & Norvig, 2010). In this kind of tasks, certain
relationship between input and output (stimulus and response) exists,
which is unknown. The aim is to learn the relationship by using known
inputs and outputs. Special metrics, specific for each task, are used to
determine the successfulness of the learned solution. From a
cybernetics point of view, it appears to be one of the types of
cybernetic experiment with feedback.

Input data can be represented by several types of data:

− Features – most common scenario. Every object is described with
its set of characteristics. Characteristics can be numerical or
categorical.

− Distance matrix – every object is described with distances to other
objects of a training set. Most commonly used for classification
problems.

− Time series – sequence of values. Each dimension can be a
number, vector or feature in general.

4

− Image or video – an image can be represented as a set of features
and a video as a time series.

− Some more complex data types like graphs, texts, results of
database queries. Usually they are converted to simpler data
types like features or distance matrices by pre-processing.

The output of a system can be characterized in the following way:

− If a set of possible answers is infinite, then it is a regression or
approximation problem.

− If the set of possible answers is finite, then it is a classification
problem or object recognition task.

− If the set of possible answers represents the future state of an
observable system, then it is a forecasting problem.

To solve a given task of supervised learning the following steps should
be carried out:
1. Training data should be determined. The data must be

representative of the real-world of the function, which is going to
be learned.

2. Collect the training set, which consists of input objects and
corresponding output responses.

3. Determine the input feature representation of trainable model.
Depending on a task, its complexity and amount of data to train
on, different features have various effect on learning, e.g. if only
small amount of training data is available, big number of features
can lead to overfitting of the model.

4. Select the structure of the learned function and corresponding
learning algorithm.

5. Training and fine-tuning of the model. Most of the models have
hyper-parameters, which should be tuned for each task. Usually
models are tuned by using special subset of training data, called
validation set.

6. Evaluation of the model. Depending on the task, different metrics
are used to evaluate the model, e.g. accuracy, error, recall,
precision.

2.2.2 Unsupervised learning

Unsupervised learning is one of the methods of machine learning, in
which a trainable system randomly learns to perform a given task
without any intervention from the experimenter. (Duda, Hart, &
Stork, 2000) Like supervised learning it can be classified as a type of
cybernetic experiments, but without feedback.

Usually unsupervised learning can only be applied to tasks, which
have feature-rich data, and which require determining some internal

5

relationships. Common tasks include clustering and anomaly
detection. Unsupervised models do not have any evaluation metric,
because there is no “ground-truth” labels for the input data.

2.3 Statistical autoregressive models

2.3.1 AR model

An autoregressive model is a model used for the time series analysis,
in which the current value of a sequence linearly depends on previous
values of the same sequence. An autoregressive process of the order
p is defined as:

𝑋𝑡 = 𝑐 + ∑ 𝑎𝑖𝑋𝑡−1 + ℇ𝑡

𝑝

𝑖=1

(1)

Where 𝑎1, … , 𝑎𝑝 are parameters of the model (coefficients of

autoregression), c is constant and ℇ𝑡 is white noise. (Mills, 1991)

The autoregressive model has a range of limitations:

− It allows to analyze only one time series, which means that in
order to get meaningful results with AR model, the studied system
must be a closed system with no outside influence.

− It is linear in nature, so it can only approximate non-linear
dependencies.

− Can only be applied to stationary data.

− It is unable to analyze errors or seasonal oscillation of data.

2.3.2 ARIMA model

ARIMA - Autoregressive integrated moving average model is a model
obtained from combination of AR with Moving Average (MA) models.

Autoregressive integrated moving average models are usually applied
when data shows evidence of non-stationarity, where an initial
differencing step (corresponding to the “integrated” part of the
model) can be applied one or more times. (Hyndman & Athanasopou-
los, 2018)

ARIMA model with parameters (p, d, q), where p is the order (number
of lags) of autoregression part, d – is a number of differencing steps,
and q is the order of the moving-average model, can be defined as:

6

(1 − ∑ 𝜑𝑖𝐿𝑖

𝑝

𝑖=1

) (1 − 𝐿)𝑑𝑋𝑡 = (1 + ∑ 𝛳𝑖

𝑞

𝑖=1

𝐿𝑖) ℇ𝑡 (2)

Where 𝜑𝑖 – coefficients of autoregression, 𝛳𝑖 – coefficients of moving
averages and L is a Lag operator.

ARIMA model is more powerful than pure AR model:

− It enables analysis of non-stationary data.

− It considers not only previous values of the timeseries, but also its
small fluctuations, errors.

− It is still linear in nature, but because of combination of AR and
MA models can provide non-linear output.

Nonetheless, certain limitations still exist:

− Only one time series is considered, so it is still a single input
model.

− It is unusual for an ARIMA model to represent any very
complicated relationships in data.

2.3.3 ARIMAX model

ARIMAX extends the ARIMA model trough an inclusion of exogenous
variables.

An exogenous variable is a variable that is not affected by any other
variables in the system, e.g. energy consumption of the building is
endogenous variable and outdoor temperature is exogenous variable.
(Kongcharoen & Kruangpradit, 2013)

In comparison to ARIMA model, ARIMAX has several advantages:

− ARIMAX can take as an input multiple different time series and
detect relationships between endogenous and exogenous data.

− Because models based on ARIMAX consider more data, they are
more accurate.

However, certain major limitations still exist:

− An endogenous variable cannot have any effect on an exogenous
variable.

− Several models should be used to get a single multi-output model.

These limitations can be avoided if neural network-based models are
used.

7

2.4 Deep learning models

2.4.1 Fully Connected Feed Forward network

An artificial neural network (ANN) is a mathematical model built on
principles of organization and functioning of biological neural
network. The first try of creating ANN belongs to McCulloch and
Walter (S. McCulloch & Pitts, 1943). After the development of
learning algorithms ANN started to be used in practice for forecasting,
object recognition and detection et al.

An artificial neural network represents a system of connected and
interacting simple units, called neurons. These units are usually very
simple, they only work with received signals performing simple
mathematical operations, nevertheless, being connected into big
network, neurons can represent very complicated functions and
relationships. Example of a simple neural network is illustrated in
Figure 2.

Figure 2. Fully Connected Feed Forward network, graphical
representation

Neural networks are not programmed but trained. The possibility of
training is one of the major advantages over traditional algorithms.
Technically learning is finding coefficients of bonds between neurons,

8

which is multiparametric task of non-linear optimization. In the
process of training network is able to detect complex relationships
between input and output data and generalize it for a new data.

Typical behavior of a feed forward neural network can be described
as follows:

1. Forward pass – calculation of the network’s output by traversing

through all neurons from input layer to output layer.
2. Backpropagation pass – calculation of the gradients, which are

used to update weights (parameters) of the network (de facto
learning). It is done by traversing through all neurons from output
layer to input layer.

2.4.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of neural networks where
connections between the units form a directed sequence. This allows
to process time series data and unlike usual feed forward neural
networks, RNN-s can use their built-in memory to analyze sequences
with different lengths. (Li & Wu, 2014)

Figure 3. Unrolled RNN structure

The structure of a simple RNN is shown in Figure 3:

− 𝑋𝑡 is the input to the network at time step t.

− 𝑆𝑡, is the hidden state at time step t, calculated as follows: 𝑆𝑡 =
𝑔(𝑈𝑋𝑡 + 𝑊𝑆𝑡−1), g(x) is an activation function.

− 𝑌𝑡 is the output of the network at time step t equals to 𝑌𝑡 =
𝑓(𝑉𝑆𝑡), f(x) is an activation function.

− W, V, U, are parameters of the network.

9

RNN are widely used in Natural Language Processing in speech
recognition, machine translation, handwriting recognition.

In comparison with feed forward ANN, RNN have several major
advantages:

− RNN usually has a lot less parameters to train, because most of
them are shared among all units.

− RNN can handle time series of variable lengths.

To be efficient RNN requires to have a lot of separate units to be
stacked in a sequence, what brings one major flaw – vanishing
gradients. Simple RNN are unable to capture long-term dependencies
between data points. One of the possible solutions is using LSTM
units.

2.4.3 LSTM networks

A Long-Short Term Memory (LSTM) block is a building unit for layers
of a recurrent neural network. A LSTM unit contains a cell, an input
gate, an output gate and a forget gate. Unlike a traditional RNN,
LSTM networks are well suited for processing and analysing time
series even when sequences contain long-term dependencies.

Figure 4. LSTM unit structure (Olah, 2015)

In Figure 4, the basic working principle of LSTM unit can be seen.
Instead of only passing hidden state (activation) to the next unit as
usual RNN block, LSTM handles two lines of data: cell state, which is
responsible for long-term dependencies, and hidden state. And unlike
basic RNN, LSTM unit basically is built out of 4 different layers, each
of which controls corresponding gate.

10

− Forget gate. This gate is used to remove information from cell
state. It is usually controlled with hard-sigmoid activation
function, which has an output range of 0-1, so if some piece of
data should be forgotten, it is multiplied by 0, if it should be kept -
then by 1.

− Input gate controlled by two layers. One of them controls which
cell states should be updated and has hard-sigmoid as an
activation function. Another uses hyperbolic tangent.

− Output gate is used to pass information from cell state to hidden
state.

It should be noted, that the cell state line is continuous, so it is very
easy for information and gradients to flow without any changes,
which gives LSTM the amazing ability to determine long-term
relationships and helps to eliminate vanishing gradients problem.

LSTM nets are a much more powerful tool than a simple RNN and it is
no surprise that LSTM-s are very popular in machine learning tasks
related to sequence processing, such as time series prediction, speech
recognition, music composition, sign language translation, time series
anomaly detection and many others. (Li & Wu, 2014)

2.5 Optimization

2.5.1 Loss function

In the theory of point estimation, a loss function (objective function in
general) quantifies the losses associated to the errors committed
while estimating a parameter. (Loss Function, n.d.)

Depending on the task, different loss functions are preferred, e.g.
regression or classification require completely different objective
function. It is vital to select correct function for each task because it
basically represents the objective of the model to learn.

Most of the common loss function can be divided into two groups
depending on the type of task they are solving: regression or
classification.

Loss functions used for classification:

1. Cross-entropy loss is the most common loss function for

classification tasks. It is defined as

𝐿(𝑎, 𝑦) =
1

𝑛
∑(𝑦𝑖 ln(𝑎𝑖) + (1 − 𝑦𝑖) ln(1 − 𝑎𝑖))

𝑛

𝑖=1

(3)

11

where a is an output of the model in the range of 0 to 1, and y is
ground-truth label for this particular data point, which is either 0 or 1.

2. Hinge loss. It is used for “maximum-margin” classification. For a

labelled output t = ± 1 and a classifier output score y, the hinge
loss is defined as

𝐿(𝑡, 𝑦) =
1

𝑛
∑ max(0, 1 − 𝑡𝑖𝑦𝑖)

𝑛

𝑖=1

(4)

It can be seen, that when t and y have the same sign (classification is
correct), the loss is 0, and if classification is incorrect, then the loss
increases linearly with y.

Loss functions for regression are more diverse:

1. Mean Absolute Error (MAE) is a measure of difference between

two continuous variables. It is defined as

𝑀𝐴𝐸 = 𝐿(𝑎, 𝑦) =
1

𝑛
 ∑|𝑦𝑖 − 𝑎𝑖|

𝑛

𝑖=1

(4)

Where 𝑦𝑖 is a desirable output and 𝑎𝑖 is an actual output of a model, i
is the number of a data point from training set.

MAE uses the same scale as the data being analysed, which is known
as scale-dependent accuracy, so it is impossible to compare results
between data with different scales. MAE is used, then it is not
necessary to additionally penalize big error in estimations.

2. Root Mean Squared Error (RMSE) measures the average of the

errors or the difference between desirable and actual output of
the model. Like Mean Absolute Error has the same units of
measurement as quantity being estimated. It can be defined as
follows

𝑅𝑀𝑆𝐸 = 𝐿(𝑎, 𝑦) = √
1

𝑛
 ∑(𝑦𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

(5)

RMSE is preferable, when higher error means much bigger harm as
this loss function additionally penalizes large error values.

3. Root Mean Squared Logarithmic Error (RMSLE) is defined as

12

𝑅𝑀𝑆𝐿𝐸 = 𝐿(𝑎, 𝑦) = √
1

𝑛
∑ (𝑙𝑛 (

𝑎𝑖 + 1

𝑦𝑖 + 1
))

2𝑛

𝑖=1

(6)

RMSLE is used when underprediction is more undesirable than
overpredicting, that means if model’s output is smaller than actual
value, the loss is going to be larger, than if the output was instead
bigger by the same margin. It can also be used then both true and
predicted values expected to big, because for RMSLE only percental
difference matters.

2.5.2 Activation functions

An activation function is a function, which defines the output of a
node given a set of inputs. It is a vital part of any neural network. It is
activation function’s responsibility to bring non-linearity to neural
networks. (Haykin, 1999)

As it was mentioned earlier, any network has two steps to perform
during one iteration: forward propagation and back propagation.
During forward propagation each layer (it is “layer” here and not
“neuron” because of vector notation) calculates a weighted sum of all
received inputs:

𝑍𝑖 = 𝑊𝑖𝑎𝑖−1 + 𝑏𝑖 (7)

Where 𝑍𝑖 is a matrix of weighted sums for each neuron of layer i, 𝑊𝑖
is a weight matrix, 𝑎𝑖−1 is an activation vector from previous layer and
𝑏𝑖 is a bias vector.

The next step is to find the activation of this weighted sum:

𝑎𝑖 = 𝑔(𝑍𝑖) (8)

Where 𝑎𝑖 is an activation of layer i and g is an activation function.

If there is no activation function or it is just linear then the layer
doesn’t contribute any computational power to the network. It can
be demonstrated with using a simple ANN as an example:

13

Figure 5. Simple feed forward neural network

The network in Figure 5 is a small feed forward ANN with two layers:
one hidden layer and one output layer. Its whole computation for
forward propagation can be described with the following equations:

1. Computing weighted sum for hidden layer.

𝑍1 = 𝑊1𝑥 + 𝑏1 (9)

Where Z is weighted sum, W is a weights matrix or parameters of the
layer, b is a bias vector and x is an input to the network.

2. Computing weighted sum for output layer. Because there is no

activation function for the hidden layer, following equation is
obtained:

𝑍2 = 𝑊2𝑍1 + 𝑏2 = 𝑊2(𝑊1𝑥 + 𝑏1) + 𝑏1 =
 𝑊2𝑊1𝑥 + 𝑊2𝑏1 + 𝑏1 (10)

In that equation 𝑊2𝑊1 term can be replaced with equivalent matrix
W, which is equal to matrix product 𝑊2𝑊1. 𝑊2𝑏1 can be replaced as
well in the similar way. These transformations result in a new
structure with only one layer – output and it can no longer be
considered neural network as it behaves as usual linear regression.
This shows that proper activation function is vital for a neural
network to operate and learn properly.

Non-linearity is not the only requirement for an activation function, it
must also be differentiable overwise finding gradients for weights of
the network is not possible.

Considering these requirements the following activation functions are
widely used:

14

1. Sigmoid function
A sigmoid function is mathematical function having a
characteristic “S”-shaped curve as illustrated in Figure 6. It is
defined by equation:

𝑆(𝑥) =
1

1 + 𝑒−𝑥
(11)

Figure 6. Sigmoid function

A sigmoid is historically one of the first activation functions used in
building neural networks.
It is widely used in binary classification problems as it always
produces output in the range of 0 to 1. Another reason of sigmoid’s
popularity is its simple derivative:

𝑑𝑆(𝑥)

𝑑(𝑥)
= 𝑆(𝑥)(1 − 𝑆(𝑥)) (12)

15

Figure 7. Derivative of sigmoid activation function

2. Hyperbolic tangent is a mathematical function defined as

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(13)

Figure 8. Hyperbolic tangent

Hyperbolic tangent is widely used activation function and it is often
preferred to sigmoid in hidden layers as it is centered around zero, so
it allows to save zero-mean an unit-variance. The second reason is
hyperbolic tangent has “stronger” gradients, what can speed up
training and slow down vanishing gradients. (LeCun, Bottou, B. Orr, &
Müller, 2002)

16

Figure 9. Derivative of hyperbolic tangent

3. Rectified Linear Unit – is an activation function defined as the

positive part of its argument:

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) (14)

Figure 10. ReLU activation function

ReLU is the most popular activation function for very deep neural
networks as it has fewer problems with vanishing gradients, which is
the main limit for neural network depth, in comparison with
sigmoidal activation functions.

17

Rectified Linear Unit is the most widely used activation function in
computer vision domain as its tasks require very deep neural
networks and involve large data sets (LeCun, Bengio, & Hinton, 2015).
ReLU sometimes is used instead of linear activation function for
output layer when negative output is undesirable.

2.5.3 Optimizers

Optimization is the selection of a best element with regards to some
criterion from some set of available alternatives (B. Dantzig, et al.,
2007). In a simple case optimization involves maximizing or
minimizing some target function, in machine learning the role of a
target function belongs to loss function.

There are many optimizing algorithms for neural networks, but most
of them are based on simple gradient descent:

1. Gradient descent.
Gradient descent or batch gradient descent is a method of
determination a local minima of a loss function by moving alongside
the gradient as illustrated in Figure 11.

It can be defined with the following equation, which represents the
update rule for weights of a network:

𝑊𝑖+1 = 𝑊𝑖 − 𝛾𝛻𝐿(𝑊𝑖) (15)

Where 𝑊𝑖 is weights of a network on iteration i, 𝛾 is a learning rate –
hyperparameter, which determines the speed of learning, 𝛾𝛻𝐿(𝑊𝑖) is
a gradient of a loss function with respect to current weights of a
network. Gradient descent updates parameters once for all input
data, meaning that all training data must be processed for one step of
gradient descent.

18

Figure 11. Gradient descent

Gradient descent is the simplest method of local optimization, it is
not guaranteed, that it will find global minima and the speed of
convergence is low. These factors limit the use of pure Gradient
descent, but it still plays an enormous role in machine learning as it is
used as a base for most of other optimization algorithms.

2. Stochastic gradient descent.
Stochastic gradient descent (SGD) – is an improvement over gradient
descent. Another name for stochastic gradient descent is minibatch
gradient descent as it updates the weights not for whole data set, but
for small minibatch. This approach considerably increases speed of
convergence of the algorithm if proper learning rate is used.

Because only a small fraction of data is taken into account for each
update, SGD is very noisy. The noise leads to both favorable and
disadvantageous consequences: this algorithm is more likely to find
global minima than usual batch gradient descent, but it is not
guaranteed to converge with big learning rate, so it should be
reduced as training continues. As long as learning rate is controlled
properly minibatch gradient descent can converge much faster than
basic gradient descent and often ends up in a better local minima.

19

Figure 12. SGD (Fregly, 2016)

SGD has similar mathematical definition to Batch Gradient Descent:

𝑊𝑖+1 = 𝑊𝑖 − 𝛾𝛻𝐿(𝑊𝑖, 𝑥𝑛, 𝑦𝑛) (16)

Where 𝑥𝑛, 𝑦𝑛 are corresponding training data pairs inside one mini-
batch.

As mentioned earlier high learning rates and noise negatively affect
on convergence rate. Some other algorithms handle this problem by
adding momentum to new weights calculations, e.g. Adam algorithm.

3. Adaptive Moment Estimation (Adam) – is an optimization

algorithm, which uses running averages of both gradients and the
second moments of the gradients. Given parameters 𝑤𝑡 and a

Loss function 𝐿(𝑡), where t indexes the current training iteration,
Adam’s parameter update is given by:

𝑚𝑡+1 = 𝛽1𝑚𝑤

𝑡 + (1 − 𝛽1)𝛻𝐿(𝑤)𝑡 (17)

𝑣𝑡+1 = 𝛽2𝑣𝑤
𝑡 + (1 − 𝛽2)(𝛻𝐿(𝑤)𝑡)2 (18)

𝑚�̂� =
𝑚𝑡+1

1 − 𝛽1

(19)

20

𝑣�̂� =
𝑣𝑡+1

1 − 𝛽2

(20)

𝑤𝑡+1 = 𝑤𝑡 − 𝛾
𝑚�̂�

√𝑣�̂� + ℇ
(21)

Where ℇ is a small number used to prevent division by zero, and
𝛽1 and 𝛽2 are forgetting factors for gradients and second moments of
gradients, respectively.

Adam combines the best from both worlds: it is able to converge a lot
faster than SGD or Batch Gradient Descent. Thanks to momentum
and mini-batch nature turns it is unlikely for this algorithm to stuck in
non-optimal local minima. Currently it is one of the most popular and
widely used optimization algorithms for training neural networks.

21

3 MODELLING

3.1 Data overview

In order to forecast the next 24 hours of heating energy consumption
the following features were selected:

− Indoor temperature

− Outdoor temperature

− Energy consumed for air conditioning

− Energy consumed for ceiling radiant

− Energy consumed for floor heating

It should be noted that the database included a lot more parameters
about the building used for the analysis. But considering the total
duration of a recording – 4 months and very limited computational
power, only the most influential features got selected for training.

Figure 13. Data before pre-processing

3.2 Pre-processing

As can be seen in Figure 13, not all the data can be used for
modelling. The first thing that catches the eye is the presence of
several outliers for ceiling radiant and air conditioning energy
consumptions and missing measurements for indoor and outdoor
temperatures. The most probable reason for this is a lost connection
to the server or a malfunction in the measurement devices
themselves.

22

It was impossible to use the data in that state to train a model, that is
why some pre-processing was required. To “clean” the data the
following actions were undertaken:
1. All the “null” values were removed. If some of the parameters

missed measurements, then all other parameter’s values
corresponding to the same timestamp must be discarded.

2. All the outliers were removed. The data point was considered to
be outlier or invalid point, if it had negative or higher than 100
kWh energy consumption.

3. Consistency check. As some data points were removed, the time
series sequence was broken, meaning that the series was no
longer continuous. If the data was to be used in that state, a
model would try to learn on measurements from different days or
even weeks, what does not represent the assigned task.

To address the aforementioned problem, the longest uninterrupted
sequence was chosen. If from the very beginning more data had been
available for training, then the neural network would be able to train
on data with broken sequences, as these interruptions would have
been almost unnoticeable for a model.

As a result of pre-processing out of 2800 points (4 months of reading
with 1 hours sampling time) only 1464 remained, which was around
half of the initially available data.

Figure 14. Preprocessed data

The next step was to transform the data from the time series format
to a supervised one. Initially the data is a time series, which cannot be
used with most of machine learning models.

23

Table 1. Example of data in time series form

Time Ceiling
Radiant

2017-12-
13T20:00:00+02:00

9.86

2017-12-
13T21:00:00+02:00

10.75

2017-12-
13T22:00:00+02:00

2.125

2017-12-
13T23:00:00+02:00

13.6

2017-12-
14T00:00:00+02:00

8.6131

In a Table 1 a sample of data in time series format is shown. For
simplicity only one parameter is taken into account.

A supervised learning problem is comprised of input values and
output values, so the model can learn the function, which can map
input data to output. In order to get these “labeled” output data for
each point of time series, shift function is used: all observation are
shifted by one time step, so next time step is a label for previous
point.
In a table below the same time series is shown in the supervised
form. In this example, three last measurements are used to predict
next value.

Table 2. Time series in the supervised format

Ceiling Radiant
(t-2)

Ceiling Radiant
(t-1)

Ceiling Radiant
(t)

Ceiling Radiant
(t+1)

9.86 10.75 2.125 13.6

10.75 2.125 13.6 8.6131

2.125 13.6 8.6131 20.89

13.6 8.6131 20.89 13.83

8.6131 20.89 13.83 16.02

3.3 Building a model

To simulate heating energy consumption the next day the following
feed forward network was designed.

24

Figure 15. Structure of the model.

The motivation behind this exact structure is hard to explain as the
model was mostly designed by trial and error. But some intuition in
general can still be given:

− Usual feed forward ANN is used instead of sequential
models like RNN or LSTM, because dimensionality of input
sequences is always known. It is five vectors, containing 24
values each, which represent the data from the previous
day for each feature.

− LSTM networks are harder to train: an LSTM unit has a lot
of parameters to learn, meaning that more data is
required to get the model working. If more data were
available, it would be reasonable to use LSTM.

− Feed forward ANN is relatively inexpensive in terms of
computational power, so no expensive hardware is
required to train a model in reasonable amount of time.

This structure was inspired by NARX (Nonlinear Autoregressive
exogenous model). The first unconnected layers have a role of
autoregression, they transform the corresponding feature vector,
containing measurements of 24 hours of some parameter, to some
other vector with 200 values, which can be thought of as encoded
time series. As it was assumed that these five parameters were
related to each other, two merged layers were used. If some
dependency existed, then it would be discovered in the merged
layers. The last two layers were used to transform the found
relationships into final predictions.

25

Adam optimizer was used for the training. The results are shown in
Figure 16.

Figure 16. Loss function over epochs of training

Other optimizers were also tested, but they either performed worse
or gave the same results, but took a lot more time to train. It should
also be noted that the network is fully fitted for available data as the
Loss function does not change for hundreds of epochs.

3.4 Validation and testing

The model was fully trained and could be tested. During the training
the network predicted only values for the next hour, but 24 were
required. To solve this problem a method called sliding windows was
used as illustrated in Figure 17.

26

Figure 17. Using sliding windows method

In the Figure 17 the sliding windows method is shown in action. The
model predicts values for the next hour and then appends them to
the input data, removing the first value in the input sequences. This
cycle is repeated several more times to get predictions for a full day.

The usage of sliding windows is also the reason why the prediction of
the indoor temperature is important. The outdoor temperature can
be obtained from weather forecasts, but it is not the same with the
indoor temperature. In order to use it in predictions, the temperature
should itself be predicted.

27

3.5 Results

The following results were achieved on a training set:

Figure 18. Predictions on training set 1

Figure 19. Predictions on training set 2

28

Figure 20. Predictions on training set 3

These results manifest that the model is able to fit all the required
relationships and dependencies from the training set, so the selected
features fully represent the modelled building in terms of heating
energy consumption.

The following results were achieved on the test set:

Figure 21. Predictions on test set 1

29

Figure 22. Predictions on test set 2

Figure 23. Predictions on test set 3

The model not only fitted the training data, but also learned to
generalize to forecast accurately enough based on new data from the
same distribution. However, the quality of the forecasts dropped
dramatically if the training and the test data were from different
distributions. The training data belonged to December and January,

30

and the results given in Figures 21, 22 and 23 were obtained for the
beginning of February. The following results were received for March
and April respectively:

Figure 24. Forecasts for data, obtained in March

Figure 25. Forecasts for data, obtained in April

31

4 POSSIBLE IMPROVEMENTS

All the current limitations of the model are directly connected to the
quality and amount of data available for analysis, that is why the most
important improvements are only available for data collection stage:

− Initially the data obtained from building automation has very
limited variance, which is a major obstacle in training machine
learning models. A possible solution is changing the control
system settings periodically, e.g. changing the set point for
indoor temperature by a fraction of a degree.

− Having more data in general. For this thesis project only two
months of data was used, so forecast accuracy is limited, what
restricts possible applications. If several years of data were
available, it would be possible to build a forecast for any
month or season in general.

5 POSSIBLE APPLICATIONS

The model, obtained as a result of this thesis project, can have
different applications:

− Smart greed applications. The simulation can be used to
specify a required amount of energy ahead of time, making it
possible to plan the total energy consumption ahead of time.

− Maintenance. The model considers normal functions of a
building, so if a malfunction appears, it will be represented as
an extreme difference between forecasted and actual data.

6 CONCLUSION

In this thesis project, a machine learning based model was built to
simulate the heating energy consumption of a building for the
following day based on the previous 24 hours. In order to achieve this
a feed forward NARX-like neural network was designed and trained
on pre-processed data obtained in advance. The obtained model was
able to predict relatively accurately (average error less than 10%) the
next 24 hours of heating energy consumption, considering that data
used for forecasting came from similar distribution as the training
data.

32

7 REFERENCES

A little book of R for time series (n. d.) Time series analysis. Retrieved 25 April 2018 from
https://a-little-book-of-r-for-time-
series.readthedocs.io/en/latest/src/timeseries.html#time-series-analysis

B. Dantzig, G., E. Gill, P., Murray, W., A. Saunders, M., A. Tomlin, J., & H. Wright, M.

(2007). Systems Optimization (pp. 152-153).

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Unsupervised Learning and Clustering. In

Pattern Classification (pp. 517-528). Wiley.

Fregly, C. (2016). Gradient descent, back propagation and auto differentiation advanced

spark and tensorflow meetup. Retrieved 28 April 2018 from
https://www.slideshare.net/cfregly/gradient-descent-back-propagation-and-
auto-differentiation-advanced-spark-and-tensorflow-meetup-08042016

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation (pp. 10-11). Prentice

Hall.

Hyndman, R. J., & Athanasopoulos, G. (n. d.). Stationarity and differencing. Retrieved 4

May 2018 from https://www.otexts.org/fpp/8/1

Hyndman, R. J., & Athanasopoulos, G. (n. d.). Time series components. Retrieved 4 May

2018 from https://www.otexts.org/fpp/6/1

Kongcharoen, C., & Kruangpradit, T. (2013). Autoregressive Integrated Moving Average

with Explanatory Variable (ARIMAX) Model for Thailand Export (p. 3). Bangkok:
Thammasat University.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep Learning (pp. 436-444). Nature

LeCun, Y., Bottou, L., B. Orr, G., & Müller, K.-R. (2002). Efficient BackProp (pp. 10-12).

Li, X., & Wu, X. (2014). Constructing Long Short-Term Memory based Deep Recurrent

Neural Networks for Large Vocabulary Speech Recognition (p. 1).

Loss Function. (n.d.). Retrieved 2 May 2018 from:

https://www.statlect.com/glossary/loss-function

Mills, T. C. (1991). Time Series Techniques for Economists (pp. 61-63).

Olah, C. (n.d.). Understanding LSTM Networks. Retrieved from Colah’s blog:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

33

Russell, S. J., & Norvig, P. (2010). Artificial Intelligence: A Modern Approach, Third Edition
(pp. 695 - 696).

S. McCulloch, W., & Pitts, W. (1943). A Logical Calculus of Ideas Immanent in Nervous

Activity (pp. 115-133).

Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM

Journal of Research and Development (pp. 210-229).

34

Appendix 1
Contents of the file ‘filter-data.py’

from pandas import read_csv

import numpy

"""

This function loads data exported from database and removes all "null"

values and outliers. Then result is saved in a separate file

"""

dataset = read_csv('grafana_data_export.1.csv', index_col=0, sep=';')

dataset.replace(to_replace='null', value=numpy.nan, inplace=True)

dataset.dropna(axis=0, how='any', inplace=True)

df = dataset[['Ceiling radiant', 'Air conditioning', 'Floor heating']]

dataset['Energy consumption'] = df.sum(axis=1)

dataset = dataset[dataset['Energy consumption'] > 0]

dataset = dataset[dataset['Energy consumption'] < 100]

dataset = dataset.drop('Temperature set point in room 101', axis=1)

dataset.to_csv('clean_data.csv')

Appendix 2

Contents of the file ‘to_supervised.py’

from pandas import read_csv, DataFrame

from timeseries_to_supervised import series_to_supervised

"""

This file transforms data from time series to supervised form by calling

series_to_supervised function

"""

dataset = read_csv('clean_data.csv', header=0, index_col=0, sep=',')

temp_out = series_to_supervised(dataset['Outside temp'].values.tolist(),

24, 1)

temp_in = series_to_supervised(dataset['Temperature in room

101'].values.tolist(), 24, 1)

ceiling_radiant = series_to_supervised(dataset['Ceiling

radiant'].values.tolist(), 24, 1)

air_conditioning = series_to_supervised(dataset['Air

conditioning'].values.tolist(), 24, 1)

floor_heating = series_to_supervised(dataset['Floor

heating'].values.tolist(), 24, 1)

temp_out.to_csv('temp_out.csv')

35

temp_in.to_csv('temp_in.csv')

ceiling_radiant.to_csv('ceiling_radiant.csv')

air_conditioning.to_csv('air_conditioning.csv')

floor_heating.to_csv('floor_heating.csv')

Appendix 3
Contents of the file ‘train_model.py’

from math import sqrt

import numpy as np

from matplotlib import pyplot

from pandas import read_csv

from pandas import DataFrame

from pandas import concat

from sklearn.metrics import mean_squared_error

from keras.models import Model

from keras.layers import Input, Dense, BatchNormalization

from keras.layers import Dropout, concatenate

from keras.optimizers import Adam

#load preprocessed data

temp_in_df = read_csv('temp_in.csv', index_col=0)

temp_out_df = read_csv('temp_out.csv', index_col=0)

air_cond_df = read_csv('air_conditioning.csv', index_col=0)

ceiling_radiant_df = read_csv('ceiling_radiant.csv', index_col=0)

floor_heating_df = read_csv('floor_heating.csv', index_col=0)

#transform pandas dataframe to numpy array and set precision to float 32

temp_in = temp_in_df.astype('float32').values

temp_out = temp_out_df.astype('float32').values

air_cond = air_cond_df.astype('float32').values

ceiling_radiant = ceiling_radiant_df.astype('float32').values

floor_heating = floor_heating_df.astype('float32').values

#divide all the data into test and train sets

train_size = int(temp_in.shape[0] * 0.85)

train_X_temp_in, train_Y_temp_in = temp_in[:train_size, 0:24],

temp_in[:train_size, -1]

train_X_temp_out, train_Y_temp_out = temp_out[:train_size, 0:24],

temp_out[:train_size, -1]

train_X_air_cond, train_Y_air_cond = air_cond[:train_size, 0:24],

air_cond[:train_size, -1]

train_X_ceiling_radiant, train_Y_ceiling_radiant =

ceiling_radiant[:train_size, 0:24], ceiling_radiant[:train_size, -1]

train_X_floor_heating, train_Y_floor_heating = floor_heating[:train_size,

0:24], floor_heating[:train_size, -1]

36

test_X_temp_in, test_Y_temp_in = temp_in[train_size:, 0:24],

temp_in[train_size:, -1]

test_X_temp_out, test_Y_temp_out = temp_out[train_size:, 0:24],

temp_out[train_size:, -1]

test_X_air_cond, test_Y_air_cond = air_cond[train_size:, 0:24],

air_cond[train_size:, -1]

test_X_ceiling_radiant, test_Y_ceiling_radiant =

ceiling_radiant[train_size:, 0:24], ceiling_radiant[train_size:, -1]

test_X_floor_heating, test_Y_floor_heating = floor_heating[train_size:,

0:24], floor_heating[train_size:, -1]

#model definition

input_out_temp = Input(shape=(24,))

input_in_temp = Input(shape=(24,))

input_air_cond = Input(shape=(24,))

input_ceiling_radiant = Input(shape=(24,))

input_floor_heating = Input(shape=(24,))

dense_out_temp_1 = Dense(200, activation='tanh')(input_out_temp)

dense_in_temp_1 = Dense(200, activation='tanh')(input_in_temp)

dense_air_cond_1 = Dense(400, activation='relu')(input_air_cond)

dense_air_cond_2 = Dense(200, activation='tanh')(dense_air_cond_1)

dense_ceiling_radiant_1 = Dense(400,

activation='relu')(input_ceiling_radiant)

dense_ceiling_radiant_2 = Dense(200,

activation='tanh')(dense_ceiling_radiant_1)

dense_floor_heating_1 = Dense(400,

activation='relu')(input_floor_heating)

dense_floor_heating_2 = Dense(200,

activation='tanh')(dense_floor_heating_1)

merge_layer = concatenate([dense_out_temp_1, dense_in_temp_1,

dense_air_cond_2, dense_ceiling_radiant_2, dense_floor_heating_2],

axis=-1)

dense_merged_1 = Dense(1500, activation = 'tanh')(merge_layer)

norm1 = BatchNormalization()(dense_merged_1)

drop1 = Dropout(0.2)(norm1)

dense_merged_2 = Dense(2000, activation='tanh')(drop1)

dense_in_temp_3 = Dense(200, activation='tanh')(dense_merged_2)

dense_air_cond_3 = Dense(200, activation='tanh')(dense_merged_2)

dense_ceiling_radiant_3 = Dense(200, activation='tanh')(dense_merged_2)

dense_floor_heating_3 = Dense(200, activation='tanh')(dense_merged_2)

drop_in_temp = Dropout(0.2)(dense_in_temp_3)

drop_air_cond = Dropout(0.2)(dense_air_cond_3)

drop_ceiling_radiant = Dropout(0.2)(dense_ceiling_radiant_3)

drop_floor_heating = Dropout(0.2)(dense_floor_heating_3)

dense_in_temp_4 = Dense(150, activation='tanh')(drop_in_temp)

37

dense_air_cond_4 = Dense(150, activation='tanh')(drop_air_cond)

dense_ceiling_radiant_4 = Dense(150,

activation='tanh')(drop_ceiling_radiant)

dense_floor_heating_4 = Dense(150, activation='tanh')(drop_floor_heating)

out_in_temp = Dense(1, activation='linear')(dense_in_temp_4)

out_air_cond = Dense(1, activation='relu')(dense_air_cond_4)

out_ceiling_radiant = Dense(1,

activation='relu')(dense_ceiling_radiant_4)

out_floor_heating = Dense(1, activation='relu')(dense_floor_heating_4)

model = Model(inputs=[input_out_temp, input_in_temp, input_air_cond,

input_ceiling_radiant, input_floor_heating], outputs=[out_in_temp,

out_air_cond, out_ceiling_radiant, out_floor_heating])

#configuration of Optimizer

opt = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1.e-9, decay=0.0,

amsgrad=False)

model.compile(loss='mean_squared_error', optimizer=opt)

#actual training

history = model.fit([train_X_temp_out, train_X_temp_in, train_X_air_cond,

train_X_ceiling_radiant, train_X_floor_heating], [train_Y_temp_in,

train_Y_air_cond, train_Y_ceiling_radiant, train_Y_floor_heating],

epochs=500, batch_size=24, validation_data=

([test_X_temp_out, test_X_temp_in, test_X_air_cond,

test_X_ceiling_radiant, test_X_floor_heating],

 [test_Y_temp_in, test_Y_air_cond, test_Y_ceiling_radiant,

test_Y_floor_heating]),

 verbose=2, shuffle=True)

pyplot.plot(history.history['loss'], label='train')

pyplot.plot(history.history['val_loss'], label='test')

pyplot.legend()

pyplot.show()

#saving model for later use

model_json = model.to_json()

with open("model2.json", 'w') as json_file:

 json_file.write(model_json)

model.save_weights('model2.h5')

print("Model saved")

38

Appendix 3
Contents of the file ‘test_model.py’

from keras.models import model_from_json

from pandas import read_csv

import numpy as np

import os

from matplotlib import pyplot as plt

from sklearn.preprocessing import MinMaxScaler

#loads pretrained in run.py file model

def load_model():

 json_file = open('model2.json', 'r')

 loaded_model_json = json_file.read()

 json_file.close()

 loaded_model = model_from_json(loaded_model_json)

 loaded_model.load_weights('model2.h5')

 return loaded_model

#loads preprocessed data

def load_data():

 temp_in_df = read_csv('temp_in.csv', index_col=0)

 temp_out_df = read_csv('temp_out.csv', index_col=0)

 air_cond_df = read_csv('air_conditioning.csv', index_col=0)

 ceiling_radiant_df = read_csv('ceiling_radiant.csv', index_col=0)

 floor_heating_df = read_csv('floor_heating.csv', index_col=0)

 temp_in = temp_in_df.astype('float32').values

 temp_out = temp_out_df.astype('float32').values

 air_cond = air_cond_df.astype('float32').values

 ceiling_radiant = ceiling_radiant_df.astype('float32').values

 floor_heating = floor_heating_df.astype('float32').values

 train_size = int(temp_in.shape[0] * 0.85)

 #separated data into training and learning sets as well as into X and

Y labels

 train_X_temp_in, train_Y_temp_in = temp_in[:train_size, 0:24],

temp_in[:train_size, -1]

 train_X_temp_out, train_Y_temp_out = temp_out[:train_size, 0:24],

temp_out[:train_size, -1]

 train_X_air_cond, train_Y_air_cond = air_cond[:train_size, 0:24],

air_cond[:train_size, -1]

 train_X_ceiling_radiant, train_Y_ceiling_radiant =

ceiling_radiant[:train_size, 0:24], ceiling_radiant[:train_size, -1]

 train_X_floor_heating, train_Y_floor_heating =

floor_heating[:train_size, 0:24], floor_heating[:train_size, -1]

 test_X_temp_in, test_Y_temp_in = temp_in[train_size:, 0:24],

temp_in[train_size:, -1]

39

 test_X_temp_out, test_Y_temp_out = temp_out[train_size:, 0:24],

temp_out[train_size:, -1]

 test_X_air_cond, test_Y_air_cond = air_cond[train_size:, 0:24],

air_cond[train_size:, -1]

 test_X_ceiling_radiant, test_Y_ceiling_radiant =

ceiling_radiant[train_size:, 0:24], ceiling_radiant[train_size:, -1]

 test_X_floor_heating, test_Y_floor_heating =

floor_heating[train_size:, 0:24], floor_heating[train_size:, -1]

 return test_X_temp_out ,test_X_temp_in, test_X_air_cond,

test_X_ceiling_radiant, test_X_floor_heating, test_Y_temp_out,

test_Y_temp_in, test_Y_air_cond, test_Y_ceiling_radiant,

test_Y_floor_heating

#this function is a wrapper to predict whole next day instead of only 1

hour (as it would happen if the usual function provided by keras was

called)

def predict_data(model, test_X_temp_out, test_X_temp_in, test_X_air_cond,

test_X_ceiling_radiant, test_X_floor_heating, test_Y_temp_out):

 result_temp_in = []

 result_air_cond = []

 result_ceiling_radiant = []

 result_floor_heating = []

 temp, air_cond, ceiling_radiant, floor_heating =

model.predict([test_X_temp_out, test_X_temp_in, test_X_air_cond,

test_X_ceiling_radiant, test_X_floor_heating])

 result_temp_in.append(np.squeeze(temp).tolist())

 result_air_cond.append(np.squeeze(air_cond).tolist())

 result_ceiling_radiant.append(np.squeeze(ceiling_radiant).tolist())

 result_floor_heating.append(np.squeeze(floor_heating).tolist())

 test_X_temp_in = np.append(test_X_temp_in, temp)

 test_X_temp_in = np.delete(test_X_temp_in, 0, axis=0)

 test_X_temp_in = test_X_temp_in.reshape(1, 24)

 test_X_air_cond = np.append(test_X_air_cond, air_cond)

 test_X_air_cond = np.delete(test_X_air_cond, 0, axis=0)

 test_X_air_cond = test_X_air_cond.reshape(1, 24)

 test_X_ceiling_radiant = np.append(test_X_ceiling_radiant,

ceiling_radiant)

 test_X_ceiling_radiant = np.delete(test_X_ceiling_radiant, 0, axis=0)

 test_X_ceiling_radiant = test_X_ceiling_radiant.reshape(1, 24)

 test_X_floor_heating = np.append(test_X_floor_heating, floor_heating)

 test_X_floor_heating = np.delete(test_X_floor_heating, 0, axis=0)

 test_X_floor_heating = test_X_floor_heating.reshape(1, 24)

 test_X_temp_out = np.append(test_X_temp_out, test_Y_temp_out[0])

 test_X_temp_out = np.delete(test_X_temp_out, 0, axis=0)

 test_X_temp_out = test_X_temp_out.reshape(1, 24)

40

 for i in range(23):

 temp, air_cond, ceiling_radiant, floor_heating =

model.predict([test_X_temp_out, test_X_temp_in, test_X_air_cond,

test_X_ceiling_radiant, test_X_floor_heating])

 result_temp_in.append(np.squeeze(temp).tolist())

 result_air_cond.append(np.squeeze(air_cond).tolist())

result_ceiling_radiant.append(np.squeeze(ceiling_radiant).tolist())

 result_floor_heating.append(np.squeeze(floor_heating).tolist())

 test_X_temp_in = np.append(test_X_temp_in, temp)

 test_X_temp_in = np.delete(test_X_temp_in, 0, axis=0)

 test_X_temp_in = test_X_temp_in.reshape(1, 24)

 test_X_air_cond = np.append(test_X_air_cond, air_cond)

 test_X_air_cond = np.delete(test_X_air_cond, 0, axis=0)

 test_X_air_cond = test_X_air_cond.reshape(1, 24)

 test_X_ceiling_radiant = np.append(test_X_ceiling_radiant,

ceiling_radiant)

 test_X_ceiling_radiant = np.delete(test_X_ceiling_radiant, 0,

axis=0)

 test_X_ceiling_radiant = test_X_ceiling_radiant.reshape(1, 24)

 test_X_floor_heating = np.append(test_X_floor_heating,

floor_heating)

 test_X_floor_heating = np.delete(test_X_floor_heating, 0, axis=0)

 test_X_floor_heating = test_X_floor_heating.reshape(1, 24)

 test_X_temp_out = np.append(test_X_temp_out, test_Y_temp_out[0])

 test_X_temp_out = np.delete(test_X_temp_out, 0, axis=0)

 test_X_temp_out = test_X_temp_out.reshape(1, 24)

 return result_temp_in, result_air_cond, result_ceiling_radiant,

result_floor_heating

test_X_temp_out, test_X_temp_in, test_X_air_cond, test_X_ceiling_radiant,

test_X_floor_heating, test_Y_temp_out, test_Y_temp_in, test_Y_air_cond,

test_Y_ceiling_radiant, test_Y_floor_heating = load_data()

model = load_model()

temp_in, air_cond, ceiling_radiant, floor_heating = predict_data(model,

test_X_temp_out[2:3],test_X_temp_in[2:3], test_X_air_cond[2:3],

test_X_ceiling_radiant[2:3], test_X_floor_heating[2:3],

test_Y_temp_out[2:])

plt.subplot(4, 1, 1)

plt.plot(temp_in, label="predictions")

plt.plot(test_Y_temp_in[2:26], label="Labels")

41

plt.gca().set_title('Inside temperature')

plt.legend()

plt.subplot(4, 1, 2)

plt.plot(air_cond, label="predictions")

plt.plot(test_Y_air_cond[2:26], label="Labels")

plt.gca().set_title('Air conditioning')

plt.legend()

plt.subplot(4, 1, 3)

plt.plot(ceiling_radiant, label="predictions")

plt.plot(test_Y_ceiling_radiant[2:26], label="Labels")

plt.gca().set_title('Ceiling radiant')

plt.legend()

plt.subplot(4, 1, 4)

plt.plot(floor_heating, label="predictions")

plt.plot(test_Y_floor_heating[2:26], label="Labels")

plt.gca().set_title('Floor heating')

plt.legend()

plt.savefig('test5.png')

plt.show()

