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1 Introduction 

 

Internet of Things and Internet of Everything are two words that commonly refers to the 

new trend to have small, cheap and always-connected devices used to send data to a 

backend cloud based applications. This opens up a new set of possibilities and products 

that companies are developing and selling in both industrial and consumer markets. 

 

In 2018 Metropolia University of Applied Science started a new study course, called In-

ternet of Things. The study course includes first an overall Introduction of IoT, followed 

by a development of an IoT business case and finally over a practical IoT simulation. 

 

This thesis work was aiming to build practical cases where students could experience, 

through an IoT simulator, the various IoT sensor-based components, network land-

scapes where all the devices are connected and backend intelligence where logic and 

analysis of sensor-based data can be gathered and analyzed. 

 

The tool chosen for the simulations is Cisco Packet Tracer, this tool has been used for 

many years to train students on Cisco networking. Main strength of the tool is the offering 

of a variety of network components that simulate a real network, devices would then 

need to be interconnected and configured in order to create a network. In the last version 

of the tool Cisco introduced IoT functionalities, and now it is possible to add to the net-

work smart devices, components, sensors, actuators and also devices that simulate mi-

crocontrollers such as Arudino or Raspberry Pi. All the IoT devices can be run on stand-

ard programs or can be customized by programming them with Java, Phyton or Blockly. 

This makes Cisco Packet Tracer an ideal tool for building IoT practical simulations and 

class exercises. 

 

The scope of this study was to focus on preparing four different pre-defined Cisco Packet 

Tracer scenarios that would help students to quickly understand the IoT functionalities 

of the tool. An introduction of the tool, explanation of the IoT functionalities of it and 

support the students during the group work exercises was also part of the thesis work. 
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The need of the pre-configured exercise comes to the fact that only two classes were 

destined for the IoT practical simulations within the study course. These exercises rep-

resent a solid foundation for the students to expand the simulations closely to the own 

business case developed in the previous part of the course of study.  

 

The four simulations environments provide a fully working network utilizing various Cisco 

components such as: router, wireless router, switch, internet connectivity cloud and 

backend IoT servers. Additionally, in all four simulations, there are examples of IoT smart 

devices already connected to the local network. Also backend logic is provided and pro-

gramming of these sensors have been created in order to give examples to the students 

of how setup further and more complicated cases. 

 

For more advanced users and, in order to build more realistic cases, Cisco Packet Tracer 

offers also the possibility to a more low-lever IoT simulation using microcontroller, sen-

sors and actuators. These scenarios are not utilizing smart devices always connected to 

an IoT network, but they replicate cases where Arduino or Raspberry Pi microcontrollers 

are used, including cabling and creation of custom made programs. 

 

In each of the four simulations there is one example of sensor-to-actuator cases using 

basic Blockly programming of the microcontroller devices. 

 

The methodology used in the thesis has been the similar utilized in a business typical 

project: demand, development, delivery, feedback and closure. 

 

The starting point of the thesis work was to interview and gather requirements from the 

course lecturer on the needs and contents for the IoT course. Even if need to have prac-

tical exercises was clear, the tool, methodology and simulation structure was open at this 

stages, especially as the Internet of Things course was never been part of the degree 

program before. The other limitations that were kept in mind in the planning phase was 

to be able to structure the exercises in order to meet different skillset within the students 

group to balance networking and programming knowledge. The other constraint that 

emerged during the interviews was that practical slots were limited to two session in 

computer class. Needs to have pre-packaged simulations was clear. 

 

Once demand part of the project had been clarified the next part was the development 

of the exercises with the Cisco Packet Tracer tool. 
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The Cisco Packet Tracer learning material was not fully accessible or even available, 

especially for the IoT section. In order to gather initial knowledge of the tool, and develop 

them by building the simulations, part of the thesis was to follow three online Cisco 

NetAcad course: Intro to IoT, Packet Tracer 1o1 (2016) and Packet Tracer 1o1 (2017).  

These three courses helped to get a solid overview of the tool and the IoT capabilities of 

it. 

 

The next core activity of the thesis development was to prepare and document the sim-

ulations, building them started with the creation of specifications and setup of basic net-

works and then adding IoT smart devices, creation of backend intelligence and then the 

addition of a small microcontroller examples.  

 

The four IoT cases are simulating Smart-Homes, in two variants, Smart-Campus and 

Smart-Industrial. Network layers were built using a combination between router, wireless 

router, switches, backbone connection, 3G antennas and internet connection clouds. 

 

Smart-Home cases simulate a domotic experience where IoT smart devices are con-

nected to a local network in order to give automation within the house. Examples of home 

automations include climate control, alarm and security events, electricity storing and 

intelligent lights. 

 

Smart-Campus simulates a university campus with different network zones, where elec-

tricity is produced and utilized by smart devices and, security sensors. Smart building 

access control is also in place. 

 

Smart-Industrial is a simulation of a power plant that produces and stores electricity via 

solar panels and wind turbines. All the electricity is produced by smart devices, then 

stored and utilized to power a production chain filled with smart sensor and actuators. 

IoT security features are also introduced in the simulations. 

 

The other fundamental part of the thesis work was to deliver the exercise and introduce 

the simulations to the students of the Metropolia Internet of Things course. Two session 

were organized in order to first give to the student a brief introduction of the tool and its 

capabilities, in addition to that a small networking exercise was also given to students in 

order to experience the setup of a basic interconnected network using basic components 



 

4 

 

such: router, switch and simulated PC. In the first practical class also an introduction of 

Cisco Packet Tracer IoT components was given. 

 

The second practical session was for the students to purely practice with the IoT com-

ponent offered by the Cisco Packet Tracer. The groups used the four pre-defined exer-

cise as foundation to build a simulation close to the own IoT business case developed in 

the early stages of the IoT study course. During the practical session support, knowledge 

sharing and tips were given to the groups in order to create the own network and IoT 

simulation. For students where the own business case was not practically achievable 

using Cisco Packet Tracer it was asked to modify one of the four pre-build simulations.  

 

Last part of the project was to gather feedback from the students at the end of the two 

practical session. Feedbacks and suggestions were both regarding the four simulation 

cases but also on the eligibility of the Cisco Packet Tracer tool itself. These inputs have 

been used to integrate the conclusion section of the thesis work along with experiences 

gathered while building the examples. 

 

Conclusions are also commenting the possible future study course structure and also 

how the future simulation should be linked deeper to the students business case, possi-

bly including a real practice with microcontrollers. 

 

The thesis report is written in four main sections, chapter two give an introduction of IoT 

and the Cisco Packet Tracer tool, chapter three describes the procedure and steps of 

the project, chapter four give the technical explanation of the four simulation cases and 

chapters five and six gather the student’s feedback and conclusion of the study. 
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2 Internet of Things (IoT) 

 

This chapter briefly introduces the concept of Internet of Things (IoT) illustrating the basic 

concepts of cloud, its definition, the various type of implementations and the network 

aspect of IoT. 

Second part of the chapter also briefly introduces the Cisco Packet Tracer tool. 

 

 

2.1 History and evolution of IoT 

 

According to Gartner studies [1], amount of connected IoT connected devices, excluding 

computers, smartphones and tablets, will reach more than 20 billion, largely overpassing 

the human world population. 

 

The origin of “cloud” term is not clear, the early concept of cloud and shares services  

dates back in the sixties [2]. The first concept was referring to a vague and yet distant 

future in which the computing would occur in few and remote locations without much 

human intervention and where the services would be equally distributed among the pub-

lic users. 

 

One example of early concepts can be traced back on 1961, when computer scientist 

John McCharty proposed the first concept of “computer public utility”: 

 

“If computers of the kind I have advocated become the computer of the futures, then 

computing may someday be organized as a public utility just as the telephone system is 

a public utility. … the computer utility could become the basis of a new and important 

industry” [2]. 

 

Another important statement was published by Leonard Kleinrock in 1969 (Chief scientist 

of the Advanced Research Project Agency Network or ARPANET) strengthening the 

concept of public utility: 

 

“As of now, computer networks are still in the infancy, but as they grew up and they 

become sophisticated, we will probably see the spread of “computer utilities” [3].  
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In the same year J.C.R. Licklider (Responsible for enabling development in ARPANET) 

also introduced the idea of “intergalactic computer network” visioning for everyone in the 

globe to be interconnected and accessing programs and data from anywhere.” [4]  

 

The term “cloud” itself, over the modern years, has been also commonly used to describe 

and refer to different technologies. For example in the early 1990s the term was, and still 

is, used by the network industry to refer to an abstract layer to deliver data in heteroge-

neous public and semi-public networks. 

The term “could” in computing was also used to describe platforms for distributed com-

puting (Wired’s magazine April 1994). [2] 

 

A big milestone in the cloud computing history was reached in the 1999 when Sale-

force.com pioneered the concept of enterprise remote provisioned software via website. 

[2][3] 

 

The next milestone was in 2002 when Amazon.com released the Amazon Web Service 

(AWS), which provided a suite of enterprise-oriented services that included, remote pro-

visioned computing processing power, storage and other business functionalities. [2][3] 

 

In 2006 another big step on the computing cloud history was marked. Amazon released 

its Elastic Compute Cloud (EC2) services, enabling organizations and private to “lease” 

computing power in order to run their own applications. Few years later, in 2009, the 

Google App Engine was also released. [2][3]  

These two services forged the modern cloud computing concept. 

 

Cloud computing success has been also enabled by several key factor such as maturity 

of virtualization technology, wide-spread of low latency high-speed networks, cost reduc-

tion of power processing and storage space. 

Exploring these concepts is out of scope for this thesis work. 
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2.2 Definition of IoT 

 

The cloud computing definition that received the industry-wide approval was published 

by the US National Institute of Standards and Technology (NIST) back in 2009, reviewed 

version was then published in September 2011: 

 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, server, 

storage, application and services) that can be rapidly provisioned and released with min-

imal management effort or service provider interaction. This cloud model is composed of 

five essential characteristics, tree service models ad four deployment models.” [5] 

 

In other words this defines that access and provisioning of computing resources should 

be easy and possible from everywhere. Resources should be scalable, organized in 

pools, and based on requirements, they can be allocated by a minimum management 

efforts.  

 

Essential IoT characteristics, by definitions, are: on-demand self-service, broad network 

access, resource pooling, rapid elasticity and measurable services. 

 

Three service models are: IaaS (Infrastructure as a service), PaaS (Platform as a ser-

vice) and SaaS (Software as a service). 

 

Four deployment models are: public clouds, community clouds, private clouds and hybrid 

clouds. 
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2.2.1 Cloud Essential Characteristics 

 

According to definition [5] on-demand characteristic gives the freedom to the cloud user 

to self-provisioning the IT cloud resources without a human intervention. Provisioning is 

mostly made by self-service portals where the user can chose computing power, storage 

capacity, network connection, eventual software etc. This characteristic enables the 

main concept of “service-based” and “usage-driven content” of a cloud environment. 

 

Broad access defines that cloud services must be largely accessible by the users using 

heterogeneous access devices [6]. Users in fact need to be able to connect to the service 

using different types of terminal (PC, tablet, mobile phones), transport protocols and se-

curity technologies. Due to the broad access, the service might be tailored fit to suit the 

requirements, additional Application Programming Interface (API) will be required. 

 

Resource pooling, and multinenancy, refers to the dynamical allocation of IT resources 

in order to meet the customer demand. The resource allocation should be totally trans-

parent to the end user and not related to the location where the cloud service is hosted. 

Resource pooling mostly uses virtualization technologies and allows the cloud provider 

to serve multiple could customers using the same infrastructure, this is called mul-

titenancy. Different tenants are not aware of each other’s presence, due to resource iso-

lation, and might dynamically reserve and release IT resources. 

 

Rapid elasticity is the ability of the cloud service to automatically, and transparently, al-

locate IT resources in order to satisfy the cloud users need. Users have the illusion of 

infinite resources. Scaling is usually done using probes and scaling agents that can de-

tect the needs and immediately allocate more IT resources such as network, memory, 

storage, processing power, VM. This characteristic is a core reason of the cloud service 

existence itself. 

 

As per the NIST definition measurability is a key cloud element defining the characteris-

tics that all the cloud services need to have measurable features for billing, monitoring 

and reporting purpose. This is a fundamental requirement for both not-charged usage 

and for more common pay-per-use cloud services. 
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Resilience is a characteristic that originally was not included in the NIST cloud definition, 

however over the years this aspect gained a significant importance in the cloud solutions 

justifying the usage of the cloud itself against the on-premises systems. 

 

In cloud computing the resiliency refers to the capability of the cloud service to failover 

and distributes the service over redundant pool of IT resources across physical locations 

or within the same cloud. Usually the failover mechanism is fully automatic and relies on 

probes that detect the failures and react according to a pre-defined set of instructions 

[7]. 

 

 

2.2.2 Cloud Service Models 

 

Cloud service models, also called cloud delivery models, are a set of pre-packaged com-

bination of IT resources offered by the cloud providers. Those models are specialized 

following the needs of the users and grant a certain degrees of configuration freedom. 

Three models included in the NIST cloud definitions are: IaaS, PaaS and SaaS. 

 

Infrastructure as a Service or IaaS is a cloud model where the provider offers to the users 

a self-contained IT environment that user can maintain and administer via administration 

tools accessed by a cloud service portal. This IT environment usually refers to hardware, 

processing capacity, storage, networks, virtualized servers, Operating systems etc. In 

contrast to other service models, the responsibility to administer the cloud service is on 

the cloud consumers. Provider might offer bundle of pre-set virtual server in order to 

ease the cloud consumer administration activities. Cloud providers could also offer IaaS 

to other cloud providers that will then create own services on this cloud infrastructure. 

The benefits of this delivery model is that a customer has full control of the infrastructure 

itself; drawback is that customer would need to have internal IT resources to administer 

the cloud infrastructure. 

Examples of IaaS are: Amazon EC2, Windows Azure, Rackspace and Google Compute 

Engine. 

 

Platform as a service, or PaaS, usually refers to a “ready to use” platform where cloud 

customers can start developing their own applications. In this delivery model all the IT 

resources must be fully deployed, configured and “ready to be use”. Platform comes also 

with a comprehensive suite of application development toolkit (i.e. Google App Engine 
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offers some Java and Phyton based environments) to follow the entire life-cycle of appli-

cation development. 

 

This model usually ease the cloud customer from IT administration tasks as the under-

lying infrastructure is not manageable, however cloud consumer has the control over the 

application deployment and the configuration settings of the IT resources for the appli-

cation hosting. 

 

Examples of PaaS are: AWS Elastic Beanstalk, IBM Watson IoT,  Windows Azure, Her-

oku, Force.com, Google App Engine and Apache Stratos. 

 

SaaS, or Software as a Service model, usually refers to a fully-available and pre-pack-

aged environment that cloud customers can use over cloud services. This solution allows 

the customers to access to a service that is really easy and quick to setup, allowing also 

the cloud provider to re-use the same cloud product for several customers. Cloud users, 

in this model, do not have any administrative access and control over the IT resources, 

only minimal settings changes on the software itself can be done. 

 

Multitenancy technologies are used to distribute load on several resources, making the 

SaaS a reliable and distributed service. SaaS can be both a “pay-per-use” or a “free-of-

charge” service for the users. In the second models the provider would get revenues 

from commercial advertisements or re-selling statistical information of the service users. 

 

Examples of PaaS are Google Apps, Microsoft Office 365 and many other commercial 

webmail platform. 

 

Over the recent year a multitude of more specialized service models was released mostly 

focusing on a specific services. Examples are: Storage as a Service, Database as a 

Service, Security as a Service, Process as a Service, Testing as a Service, Integration 

as a Service etc. Additionally also combination of cloud delivery models can be offered 

to customers, for example IaaS plus PaaS can give the cloud user a software develop-

ment kit also granting a major degree of administering resources compared to only a 

PaaS scenario. 
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2.2.3 Cloud Deployment Models 

 

Deployment models are foundation of the NIST definition and describes ownership, size 

and who can access the cloud infrastructure. Four models are included in the definition: 

private cloud, public cloud, community cloud and hybrid cloud. 

 

Private cloud is an infrastructure owned and at disposal of one single organization. Cloud 

itself can be hosted either on-premises or hosted on third party facility. Private compa-

nies might use private clouds to centralize IT environments or to extend the on-premises 

service to cloud solutions running on third party companies. In this scenario the cloud 

consumer is also cloud provider, in-house IT department can assume a specific role of 

providers. Additionally, as long as IT resources are remotely accessible, they can be 

consider as cloud resources. Private clouds have a significant physical footprint and usu-

ally require capital investments. 

 

Public cloud is a widely accessible cloud environment owned and hosted by a third party 

company, that assumes the role of cloud provider. This is usually at disposal of general 

public and is most likely free of charge. 

Security concerns are raised when utilizing public clouds as data are hosted “outside the 

premises” and, as service is provided for a broad audience, is most like accessed over 

non-trusted networks. 

 

Community cloud deployment model is similar to the public cloud concept, however ac-

cess is limited to a specific set of organization that have common needs. Underneath 

infrastructure can be either owner by a third party company or co-owned by the member 

of the community. Usually access for parties outside the community is denied. 

 

Hybrid cloud is the last deployment model on the NIST definition and usually refers to a 

combination of other deployment models. Due to criticality of the data some organization, 

for example, could outsource some services over public cloud and maintain others within 

the own private cloud. Hybrid clouds present the unique challenge to avoid disparity in 

the cloud environments if managed by different providers. 
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2.3 IoT Networking Overview 

 

As discussed in the previous chapters the NIST definition of cloud is quite accurately 

listing characteristics, service models and deployment models, however it does not refer 

to networks. Networks in IoT are not in fact a characteristic but they are enablers. 

 

One key-contributor factor for the success widespread of IoT technology is in fact due to 

the raise of modern, fast, reliable, low-latency and low-cost networks. 

 

Specifically for IoT the most common network types range between Bluetooth, traditional 

Wireless Local Area Network (WAN), cellular and a new generation of Lower-Power 

Wide Area Network (LPWAN).  

At the moment in the IoT industry there a no standards for networking [8], however few 

technologies have a clear advantage compared to other.  

 

WLAN and Bluetooth technology are without any doubt the most common type of con-

sumer network in the market at the moment. They both work in a license-free radio fre-

quency band, they both ensure a good bandwidth transfer rate and they both requires 

fairly inexpensive receivers. Limitation comes however from the fact that they have evi-

dent range limitation that precludes them to be the main choice for being used in exten-

sive IoT applications. Range in fact is limited to few tens of meters in WLAN and few 

meters for Bluetooth connection. 

 

As IoT industrial applications are intended to work mostly with devices distributed in a 

wide area, often with bad cellular coverage, and that would require a strict power man-

agement to extend the battery lifetime, a new technology of Lower-Power Wide Area 

Networking (LPWAN) is raising in IoT. [9] 

 

LPWAN are networks that combine technologies in order to achieve long-distance, ro-

bust and low-bitrate communications with battery operated sensors geographically lo-

cated in a wide area. 

 

The three most important LPWAN technologies are LoRaWAN, SigFox, and Narrowband 

IoT. These three technology are briefly covered in the next chapters. 
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2.3.1 LoRaWAN Overview 

 

LoRaWAN is a technology created by the non-profit, multi-vendor LoRa AllianceTM [10], 

and relies in a star-of-star infrastructure where many devices are connected with a single 

hop to a receiver gateway, that then relays the messages via traditional IP networks to 

the central backend servers. 

 

 

Figure 1 - LoRaWAN Infrastructure 

 

LoRaWAN offers bi-directional connectivity over multi-kilometres range and with bitrate 

between 0.3 kbps to 50 kbps. Even if communication is bi-directional the uplink traffic, 

from device to network, is preferred. [11] 

 

LoRaWAN allows three classes (A, B and C) of transmitting devices based on throughput 

and power needs of the IoT devices [12] [13] [14].  

 

A class devices are low-power devices that require bi-directional communication and rely 

on an ALOHA (Additive Links On-line Hawaii Area) type of protocol. Uplink and downlink 

communications are in fact asynchronous and communication is triggered by the IoT 

device sending a frame to the uplink channel and then listening for an answer, for few 

seconds, in the next two downlink windows. Once uplink communication is acknowl-

edged by the gateway the downlink traffic can start. As the communication is triggered 



 

14 

 

by the device and does not require any other periodical transmission, this allows the 

device to be in a constant sleep mode, saving batteries, and communicating only when 

necessary. 

 

B class devices are designed for applications where additional downlink is required. A 

periodical beacon message is in fact sent by the gateway to the IoT device to schedule 

additional downlink windows without the need to previous successful uplink communica-

tions. Device battery lifetime is impacted due to the receiving of the additional synchro-

nization messages. 

 

Class C communications ensure a low-latency communication as, as opposite of class 

A devices, class C devices are always listening for downlink traffic. Gateway is able to 

know the status of the device and start the sending data to the device at any time. 

Battery optimization in such cases is achieved by switching the device from class A to 

class C when necessary. 

 

Apart from the downlink limitation for the lower class devices the LoRaWAN biggest per-

formance issue is due to the duty-cycle limitation imposed in the ISM bands regulation. 

[15] Typically the regulations, for instance in Europe [16], dictates that only 1% of the 

time the device is allowed to transmit in each sub-band. This limits the traffic for each 

device but also add extra complexity to the network when big amount of device are con-

nected to the same network. 
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2.3.2 SigFox Overview 

 

SigFox in a French company, founded in Toulouse in 2009, that created their own IoT 

LPWAN proprietary solution on cellular-style networks. 

 

SigFox architecture is based on single-hop connection between device and gateway 

where network coverage is achieved by utilizing SigFox Network Operator (SNO) tele-

communication infrastructure. Receiving gateways are often hosted in the SNO cellular 

towers. [14] [17] 

 

 

Figure 2 - SigFox infrastructure [18] 

 

SigFox operates at 869 MHz (Europe) and 915 MHz (North America) Industrial, Scientific 

and Medical (ISM) radio bands and it utilizes Ultra Narrow Band (UNB) 100 Hz bandwidth 

[19] in order to pass the signal through solid object. This allows the signal to be propa-

gated for many kilometres, also underground, allowing  also power saving to the trans-

mitting devices. 

There are no standard for LPWAN device power consumption however, 10 years while 

utilizing two AA batteries, is the referred battery lifetime that IoT LPWAN devices should 

achieve. [20] 

 

Devices connected to SigFox are able to achieve maximum sending of 140 packets per 

day with a payload of 12 Bytes per package with a maximum wireless throughput of 100 

bps in the uplink channel [14]. Coverage of the network is directly based on the environ-

ment and can go from 1km to several tens of km in rural or open space areas. 

The limitation of SigFox are coming from the throughput data restriction and the fact that 

solution is a SigFox proprietary product, and not an open product like LoRaWAN. 
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2.3.3. Narrowband-IoT Overview 

 

Narrowband IoT (NB-IoT) it is a LPWAN solution developed by the 3rd Generation Part-

nership Project (3GPP) that is aiming to provide a bi-directional, cost-effective, simple to 

use IoT network for connecting large amount of device while optimizing their power con-

sumption. 

 

NB-IoT utilizes cellular networks frequencies and also aims to reutilize the building blocks 

of the LTE connectivity layer while simplify the requirements for device hardware com-

plexity [21]. 

 

The NB-IoT specifications are currently frozen to release 13 [22]. 

The release 13 specifications have been agreed to provide an uplink and downlink band-

width of 250 kbps while utilizing a 180 KHz ultra narrowband signal. With an acceptable 

latency between 1.6 and 10 seconds [23]. 

Advantages of Release 13 is to lower down the device transmission power to 20 dBm, 

allowing a battery lifetime of more than 10 years with two standard AA batteries. 

 

As the solution is coming from an extensive partnership of major telecom providers, one 

advantage of this technology is built by making sure that NB-IoT can co-exist with exist-

ing GSM, UMTS and LTE networks. 
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2.4 Cisco Packet Tracer Overview 

 

Cisco Packet Tracer is a Cisco proprietary multi-platform tool that enables possibility for 

students to create networking and IoT simulations without need of a hardware or pre-

existing network. 

The tool is free of charge, runs on the major operating systems and it is downloadable 

from Cisco NetAcad page for all students and teachers having a valid NetAcad account. 

 

The tool has been available through the years for all the students participating in Cisco 

courses and, originally, was designed to support practical exercises for students attend-

ing the Certified Cisco Network Associated (CCNA) Academy courses. 

At the time when this thesis work was written the latest release available was the 7.1.1. 

 

According to 2017 Corporate Social Responsibility report [24] Cisco Networking Acad-

emy, also referred as NetAcad, has educated so far over the years more than 7.8 million 

people in more than 170 countries. It forms more than twenty two thousand educators 

worldwide and can count on more than ten thousand partner institutions. Many of these 

students have used Cisco Packet Tracer in their Cisco education. 

 

 

Figure 3 - Cisco Packet Trace user interface 
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The tool was built in order to allow students to experiments networking without having a 

need of costly network infrastructure and lengthily hardware setup procedures. The tool 

in fact offers an extensive set of hardware and cabling that allows students to setup from 

a basic to very a complex network, enabling them to learn how to program Cisco appli-

ances via Command Line (CLI) interface. It also educates how to troubleshoot network 

related problems, as the tool also includes realistic features for debugging. 

 

From version 7.0 Cisco also introduced IoT functionalities in the tool, allowing students 

to practice by setting up IoT devices and IoT automations. Also a possibility for a lower 

level IoT simulation using single board computer (SBC) and sensor was offered in the 

same release. 

 

More complete explanation of the Cisco Packet Tracer feature can be found in the Chap-

ter 4.2. 

 

This thesis work was only focusing on delivering IoT simulations utilizing Cisco Packet 

Tracer. It was not in the scope of this thesis to evaluate or compare other IoT simulator 

available. 

 

It is also expected that Cisco will release more IoT functionalities in the future due to the 

growing amount of IoT courses offered in NetAcad. Functionalities, devices and tools 

might differ from what is explained in the chapter 4.2. 
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3 Methods and Materials 

 

The purpose of this chapter is to describe the method on how this thesis work was con-

ducted, explaining the process, the methodologies and the practical steps achieved. 

The second part of the chapter is focusing on how the IoT simulations were built and 

how they were explained to the students. Technical explanations of the exercises are 

included in the chapter 4. 

 

As earlier mentioned the original necessity for this thesis works came from the need to 

build a practical section for the Internet of Things course taught in Helsinki Metropolia 

University of Applied Science starting from January 2018. 

The course lecturer had in fact already the structure for the theoretical classes, however 

practical sessions were also required in order to give the students a possibility to famil-

iarize with the IoT components. 

 

Due to the extra complexity in having real hardware such as microcontrollers, sensors 

and actuators, it was decided to utilize an IoT simulator. A choice was made to use Cisco 

Packet Tracer simulation tool. 

 

Once the needs and the tool were clarified and agreed, the next step was to decide how 

to structure the practical classes that, due to time limitation in the study course, were 

agreed to be diluted in two sessions. 

 

From this step onwards the thesis work was conducted following typical IT project meth-

odologies. 

 

The work was in fact divided in five main sub categories and periodical check-up ses-

sions were organized in order to steer the contents of the deliverables. 

As one can see in the below Figure 4 below the four main categories were: requirement 

gathering, analysis of the tool, development of the simulation environment, roll-out of the 

simulation during the classes and last the feedback collection. 
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Figure 4 - Thesis work process 

 

 

Gathering of the requirements was done by having few meetings with the IoT course 

lecturer and details shared were quite simple. The need was to build pre-defined simu-

lations to be used in the practical class sessions. Exercises needed to be simple enough 

for students to understand the basic concepts of the simulations, yet challenging them 

for future developments. 

 

The cases also required to have most of the basic configurations done, so students could 

effectively concentrate on the IoT aspect and not spend too much time on the networking 

side. Simulations also needed to be flexible enough in order to be expanded by students 

in the future implementations of the course. 

 

Contents and themes of the simulations were left open, however ideas were suggested 

to represent both home and industrial IoT applications. 

Due to the number of the student it was decided to build a maximum of four exercises. 

A deadline for the readiness of the practical cases was also clear as classes needed to 

fit in a particular timeline within the study course. 

 

At this stage of the project, even though the outcomes and needs were clear, quite many 

other issues were left open regarding the technical aspects of the simulations. The big-

gest concern was in fact if Cisco Packet Tracer was the correct IoT simulator to use, but 

also what could be achieved with it. Historically the tool had been in fact utilized only for 

networking exercises purpose, but never for IoT cases. 

Reasons however why Cisco Packet Tracer was believed to be the correct choice were 

mostly because tool was also used in few Cisco NetAcad IoT courses but also because 
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it had the big advantage to have already proven networking features utilized by many 

students worldwide. 

 

Once the requirements were fixed the real development of the exercise started. This 

work was mostly divided in two phases: first to familiarize with the tool and understand 

what were its IoT capabilities and second to prepare the IoT automations. 

 

As briefly introduced in the chapter 2, Cisco Packet Tracer is a Cisco proprietary tool 

utilized in many Cisco NetAcad courses. Even though the tool is quite popular there were 

not extensive guides or instructions publicly shared in the internet. There were however 

few blogs and Youtube videos that helped for some specific aspects. 

 

When accessing to the Cisco NetAcad portal, however, there were many excellent online 

courses that explained the functioning of the tool. Along with specific Cisco Packet Trace 

classes, the tool was also utilized in many other networking courses, helping students to 

gain knowledge in steps. 

 

Specifically for this thesis work, the knowledge of the simulator was built by following: 

Introduction of Cisco Packet Tracer (0118), Introduction of Cisco Packet Tracer (1217), 

Packet Tracer 1o1 (2016-11) and Intro to IoT – English – 2016.  

 

Online classes were usually structured by both viewing some theoretical material and 

also via more step-by-step videos on how to use the tool. The biggest sections of the 

classes were however the practical exercises. For each session in fact detailed exercises 

were required and only when the setup was correct the exercise was passed. 

The last part of the courses was usually regarding a quiz exam both including theoretical 

and practical questions on the exercises. 

 

While attending the online studies one could observe, however, that most of contents 

were related to the basic function of the tool and on the networking part. Only basic IoT 

components were introduced by building simple IoT automations. 

When the four IoT simulations for the students were build a lot of time was spent in order 

to understand the logic on how the more complex devices functioned. 

Also microcontroller programming part was not included in the Cisco classes when the 

above courses were attended in early 2018. 
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By spending time working with the tool it came clear the fact that most of the require-

ments for the Internet of Thing course could be met by creating simulations with Cisco 

Packet Tracer. 

 

The second sub-part of this project phase continued by creating the four simulations. 

For all the cases the methodology was similar: firstly a basic connectivity layer was build, 

making sure that connectivity between all the networking components were established, 

then IoT devices were added and last the simulations were created. 

Originally the microcontroller examples were not part of the requirements, however, one 

example of interaction between an SBC and a sensors was added to each IoT simulation 

in order to give a more comprehensive IoT experience to the students. 

 

Before completing to the final version of the IoT automations few basic simulation were 

shared with the IoT course lecturer in order to make sure that they were following the 

requirements. The only open point at this stage was how complex and complete these 

simulations needed to be. 

 

Temporary versions were more simple compared the finished product however they al-

ready included most of the network parts and some of the IoT simulations. The major 

difference was regarding the Smart-Industrial case. This was not in fact a part of the 

original example bundle but it had been added in later phases in order to deliver an extra, 

more complex, simulation. 

 

After few iterations and adjustments the IoT exercises were ready and approved by the 

course lecturer. A small guide was also built for each case to be used as a reference 

document for the students. The guide included a generic overview of the network and 

the IoT layout, information about used IP addresses and IoT credentials and also few 

suggestions how to expand the simulation further. The main content of this document is 

described in  the chapter 4 in this thesis work. 

 

Once the development of the exercises was completed the next step of the project was 

to introduce them to the students. Arrangements done by the IoT course lecturer con-

sisted two practical classes planned a week apart in the Helsinki Metropolia premises. 

 

The first class was split into three sections: a brief overview of Cisco Packet Tracer, a 

small practical networking exercise for the students to familiarize with the tool and for 
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last the introduction of the IoT components within the tool. Apart from the first section, 

the rest of the classes were held in the PC laboratory of Metropolia. 

 

As discussed further in the chapter 5  few delays happened before starting with the net-

working exercise, mostly due to the fact that not all the students had a valid NetAcad 

account open, necessary when logging into Cisco Packet Tracer. 

Also some comments on the tight schedule are shared in the chapter 5. 

 

The second class, organized a week apart, started by introducing the four IoT simulations 

to the students. While giving an overview of the exercise, mostly explaining the IoT sce-

narios and not focusing on the networking part, also tips and deeper aspects of the tool 

were shared with the students. 

 

Once introductions were completed the students gathered in the original groups, defined 

at the beginning of the IoT course, in order to adapt the own IoT business case to the 

IoT simulations. 

Idea was that they could utilize the pre-configured four IoT simulations to adapt them to 

follow their own cases. Unfortunately few groups could not achieve that as Cisco Packet 

Tracer did not have the IoT sensors required by the business cases, mostly medical, 

automotive and wearable sensors. 

These groups were asked to expand one of the four simulations and practice by adding 

more IoT components and the backend simulation intelligence. 

 

During the class constant support to the students was provided by sharing tips on how 

to configure the devices, helping them in setting up network connections and also build-

ing microcontrollers programming logic. 

 

Classes were very effective and at the end of the second session most of the groups 

achieved a very good level of IoT simulations utilizing basic networking components. 

More advance groups also experimented with basic microcontroller programming. 

 

As discussed deeper in the chapter 5 the time spent for students practicing on the sim-

ulations was unfortunately not enough in order to gain a full understanding of complex 

IoT simulations using automations, sensor variables or microcontroller programming. 
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Last part of the project was to gather feedback from students on the two classes and on 

the four IoT simulations. A feedback from was distributed in paper form and by mail to 

the students, unfortunately only seven forms were returned. 

Feedback document can be found in the Appendix 3 and conclusions are formulated in 

the chapter 5. 
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4 IoT environment Simulations 

Below chapters are focusing on the core exercise shared with the students, giving first a 

general introduction of the simulations and an overview of Cisco Packet Tracer tool. 

In the second part of the chapter the four IoT automations are analyzed in more details 

giving more technical explanation on the network and IoT aspect of the exercise, also 

giving few suggestion for future expansion. 

 

Purpose of the explanations are to guide the reader to fully understand the background 

of the IoT simulations and also use this document as quick reference guide when prac-

tically working on the Cisco Packet Tracer exercises. 

 

 

4.1 Exercises Introduction 

 

This chapter includes and analysis of the four IoT simulations discussed with the stu-

dents  in the practical classes. These were used as a starting point to learn how to utilize 

IoT functionalities in Cisco Packet Tracer. For the groups where their own business case 

was not directly achievable with the tool it was requested to modify one of the four sim-

ulations in order to practice with IoT components. 

 

Every exercise consisted of a pre-defined physical layer separation, a fully connected 

and configured network where IoT components can be connected, few examples of IoT 

Smart devices and a backend logic to show how these devices could interact automati-

cally. For each case there was also one example of sensor-to-actuator logic using a 

microcontroller board and custom Blockly program. 

 

All the examples came with a dedicated documentation showing the network layout, net-

work details (Appendix 2), overview of the infrastructure, Blockly program logic (Appen-

dix 1) and some future ideas how to expand the simulations. Documentation was distrib-

uted to the students along with the Cisco Packet Tracer exercises. 

 

The four examples were called: Smart-Home 1, Smart-Home 2 (SaaS), Smart-Campus 

and Smart-Industrial. The first two simulated an IoT automated house where the IoT 

components were connected to a local WLAN network and where smart devices were 

interacting with each other. The difference between the two home examples was that in 

the first case the IoT backend functionalities were hosted within the home LAN. In the 
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second case the devices were only having a connectivity layer inside the house LAN, 

but the IoT server components were hosted in a third-party network, simulating a  pro-

vider cloud Software-as-a-Service scenario. 

 

Both of the cases included a remote network, in the form of a corporate office network 

or a mobile 4G network, where home owner could connect to in order to monitor the IoT 

activities in the house. 

 

The third simulation was about an interconnected university campus network where IoT 

smart devices were connected. Along with the two basic networks, classrooms and 

apartments, a third network was connecting all the IoT devices and the backend IoT 

servers. Through a user authorization mechanism from any point of the network it was 

possible to access the IoT devices and monitor their status. 

 

The last case represented a more complex industrial environment where five networks 

were connected. Two of networks were connecting the IoT devices, via a switch or a 

dedicated 3G network, for an electricity production. The electricity was then consumed 

by a third network of IoT devices used in a production line. The remaining two networks 

were utilized to simulate a corporate office remote area and a more important control 

room, where backend IoT server was located and where users could connect to control 

the IoT devices. 

 

In order to be able to interact with the four simulations some basic knowledge of Cisco 

Packet Tracer were required, due to the fact that IoT simulations were not only exploring 

the basic network components the students needed to be familiar with concepts such as 

physical containers, environmental variables, IoT backend servers and IoT component 

programming. The following chapter covers the basic non-networking components con-

cepts, a deeper practical explanation was given to the students during the two practical 

classes. 
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4.2 Cisco Packet Tracer IoT Technology Introduction 

 

Along with the standard networking functionalities, in the version 7.0.0, Cisco Packet 

Tracer received an important upgrade with IoT components [25]. 

 

This chapter is mainly focusing on the IoT functionalities of the tool, only giving a brief 

overview of the network components. Purpose of the study course was on Internet of 

Things and not networking, hence all the four IoT simulations had a pre-configured net-

work to allowing IoT students to concentrate more on the IoT aspects. 

 

In the four IoT simulation the network devices were the backbone elements for connect-

ing the IoT devices allowing them to interact between each other. 

 

Every simulation had a dedicated network layout, however basic components were sim-

ilar among the examples. Routers, switches and wireless router were in fact commonly 

used to create the network foundation.  

 

In the figure below it is possible to see, as an example, the different routers offered by 

Cisco Packet Tracer, main difference to consider when placing the device in the simula-

tions are the possibly hardware limitations that are coming with the devices, in terms of 

number of ports available, options to change the network interfaces, number of expan-

sion slot etc. An extensive list of switch, server, PC and laptop is also available in the 

tool. 

 

 

Figure 5 - List of routers in Cisco Packet Tracer 

 

In special cases, such as the two Smart-Home examples, also a simulation of an internet 

connection was used. This connection was aiming to simulate a normal Internet Service 

Provider (ISP) connectivity, giving  the possibility to the home owner to remotely connect 

to the own home network from an external network, such a corporate office  or a cellular 

network. In the second Smart-Home simulation the ISP was also used to link the home 

devices to the backend IoT intelligence as IoT functionalities were provided as-a-service. 
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Additionally, in the Smart-industrial and one of the Smart-home cases, a 3G networks 

were also implemented. Additional component such cell-tower and backend servers 

were necessary to ensure the functioning of the network. Utilizing cellular network gave 

more flexibility while connecting IoT devices to the network. As setup was very easy and 

no limitation, such range and number of connected devices, are present as it would be 

in real WLANs.  

 

Once a network devices was placed into the simulation, the next step was to configure 

it. Cisco Packet Tracer offered two options: configuration of the device via a user inter-

face or via a Command Line Interface (CLI). While using CLI method specific Cisco com-

mands need to be used and real device logic applies. Configuring via user interface was 

more intuitive, did not require knowledge of Cisco commands but limited the amount of 

parameters that could be set. 

 

Depending on different setups different type of cabling were used to interconnect the 

network devices such as copper straight cables, copper crossover cables and optic fast-

Ethernet cables. Also IoT custom cables were utilized in the microcontroller example.  

 

As one can see in the below figure, Cisco Packet Tracer, offered several cabling options, 

however an important feature was the auto-cabling option (lightning icon in the Figure 

6). When selecting it, the tool would automatically chose the correct cable to connect two 

network interface. For learning reason this option can also be disabled. 

 

 

Figure 6 - List of available cables in Cisco Packet Tracer 

 

Another important feature in the Cisco Packet Tracer tool is the possibility to separate 

the network at physical level using sub-environments such as city, building, containers 

and wiring cabinets. From the main view of the tool it is possible to switch very quickly 

between logical and physical layer as illustrated in the Figures 7 and 8. 
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When creating network simulations, in the logical view, by default all the components are 

placed in the same physical space. For basic simulation this is not probably a detail that 

should be taken care, however for IoT simulations it was advisable to utilize different 

physical layers in order to be able to adjust the environment variable to influence the IoT 

devices behavior. Below figure shows the physical separation of the Smart-industrial ex-

ercise, where five different containers were utilized to physically split the various net-

works. 

 

 

Figure 9 - Example of physical view from Smart-Industrial simulation 

 

 

Figure 8 - Logical view Figure 7 - Physical view 
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Physical separation helps to divide physically the network in several sub-areas introduc-

ing a more realistic aspect of it such as a need of backbone connections, a physical 

wiring length limitation and WLAN coverage limitations and a need of custom environ-

mental variables. 

 

Every physical sub-layer, except for the wiring cabinets, are coming with a large set of 

fully customizable environmental variables,. 

Variables are tunable parameters for representing real life environments such as: 

amount of sunlight, air carbon dioxide concentration, gravity, winds speed and many 

more. In Cisco Packet Tracer there are more than fifty different variables that students 

can adjust accordingly based on a 24 hours time range. 

In the Figure 10 below one can see the amount of sunlight and rain setup in the Smart-

campus exercise. 

 

Variables are necessary in order to influence the sensor behavior in the IoT simulations. 

Variables are in fact detected by the sensor and, as a consequence, actions are then 

triggered. Adjusting variables was also helping students in order to validate immediately 

if the IoT logic setup was done correctly. 
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Figure 10 - Example of environmental variable setup 

 

In the provided four simulations the variables utilized were: sunlight and wind speed 

level, in order to boost electricity production done by solar panel and wind turbine. Also 

amount of raining manipulations were used during a random time of the day in order to 

activate the water sensors, sensors were then placed in the school sport field, to detect 

extra water level and stop the water irrigation sprinklers. In the Smart-Home cases also 

humidity and temperature levels variable were changed in order to fire up the home AC 

unit.  

 

Creation of a smaller sub-container helped also to boost the environmental changes in 

the variable parameter. As an example, if an old car was placed in the city level and it 

was turned on, the level of carbon dioxide build up in the city level would have raised at 

a slower pace compared if the car was turned on in a sub-container. In the second case, 

being in a smaller space, like a car garage, the carbon dioxide sensor picked up carbon 

dioxide variation faster than in the city level. 
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Physical layers and network components are present in the Cisco Packet Tracer since 

many year, the real addition that make the tool capable to simulate IoT environments 

was the introduction of IoT devices. 

 

The main categories are: smart-devices, sensors, actuators and microcontrollers. 

In the below figure there is an example of a list of home smart devices that can be added 

in the IoT simulations. 

 

 

Figure 11 - List of smart device 

 

Smart-devices are devices that are fully capable to be connected to a wired or wireless 

network and where the behavior and interaction logic can be quickly set up by utilizing 

pre-loaded Phyton programs. These sensors include smart lights, AC units, coffee 

maker, alarm sirens, RFID readers and a long list of other sensors, such as carbon di-

oxide, humidity, temperature, water level etc. 

 

These devices usually are plug-and-play type of elements and they just need to be con-

nected to a local LAN. In some cases, if a wireless LAN was needed, a physical network 

configuration required to be done mostly by swapping the LAN network interface for a 

WLAN card.  

 

Once connected to a network the devices needed to be remotely connected to the IoT 

backend server. Creating the IoT connection enabled the possibility for the users to 

check the status of the IoT devices from an IoT browser homepage. As illustrated in the 

Figure 12 below from a home tablet, also connected to the local WLAN, it was possible 

via browser to connect to a dedicated IoT homepage to monitor the list of all connected 

IoT devices.  
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Figure 12 - Example of IoT homepage from Smart-Home 2 exercise 

 

When accessing the list of the devices it was also possible to visualize their status but 

also interact with the device remotely. As an example one can turn on the garden light 

or check the remaining power of the IoT battery. 

 

Furthermore, while connected to the IoT main home page, it was also possible to setup 

a basic IoT logic for creating an interaction between the devices. As demonstrated in the 

below Figure 13, the humidity sensor was connected to the home AC unit, starting AC in 

case humidity would pass the fifty percent threshold. More detailed explanation of the 

pre-set IoT logic in the four IoT simulations will be covered in the chapter 4.3. 

 

 

Figure 13 - Example of pre-set conditions from Smart-Home 2 exercise 
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Cisco Packet Tracer also offered the possibility to use other non-smart devices such  as 

actuators. These type of components required additional actions in order to be connected 

and operated but, despite the extra complexity, offered a more realistic degree of simu-

lation and flexibility when setting up the exercises. 

 

Non-smart components were usually not network-capable, unless configured otherwise, 

and needed to be connected to a microcontroller board via some special IoT cabling. 

In Cisco Packet Tracer the microcontroller simulated an Arduino or Raspberry Pi devices 

that, based on a custom software, took the input from some device, mostly input sensors,  

and produced output, mostly operating actuators. 

 

In order to create these simulations basic programming skills were required in Java, Phy-

ton or Blocky. Creating Java or Phyton scripts enabled the possibility to fully command 

and control all the sensor and actuators. The use of Blockly language helps less skilled 

programmers to visually create the programming logic. All programming done for the four 

IoT exercises was done with Blockly, enabling all students to understand the logic be-

hind. 

 

Before programming a sensor or an actuator, students must understand the device spec-

ifications. A brief explanation of how the device behaves can be found in the specification 

tab when placing a sensor in a logical window of the tool. Specification included all the 

necessary information on how the device operates, what are the different states, what 

type of input the device would expect or output that the component would generate. For 

more complex devices also an example of API command was suggested. 
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Figure 14 - Example of a smart-lamp specifications 

 

Figure 14 above illustrates, as an example, the behavior of a simple smart-lamp. The 

lamp can be directly controller by pressing ALT on the keyboard and clicking on it. Lamp 

could also be connected to a microcontroller and a customWrite command would need 

to be used in the output pin to operate it. Lamp is also having three states: off, dim and 

on. So the previous customWrite command should also carry a variable to specify the 

state. 

 

Cisco Packet Tracer offered for each device a very helpful and complete specification 

tab. 

 

Another very important Cisco Packet Tracer feature worth to mention was the possibility 

to switch from a real time to a simulation mode. The first mode enabled the possibility to 
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create the underneath network, connect IoT devices and define IoT backend logic. How-

ever, only in the simulation mode, it was really possible to validate that the network com-

munication layer really happened between the devices.  

In the simulation mode it was in fact possible to simulate a packet traffic between nodes 

and devices in order to check the connectivity, routing protocols and other network logic. 

This mode helped to physically visualize and troubleshoot any kind of network, for ex-

ample setting up pings, or more complex packages, between nodes. The simulation 

mode also listed in real time the various packages broadcasted in the network, allowing 

to deep dive in the payload of the network package. 

 

 

Figure 15 - Example of packages captured in the simulation mode 
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4.3 IoT Simulations 

 

This chapter is a guide for the four IoT simulations presented to the student during the 

practical classes. 

Purpose is to analyze deeper the cases separating the network and IoT layout, giving a 

deeper explanation of the purpose of the simulations, presenting all the information 

needed to utilize the exercises but also giving suggestion how to expand the exercises 

further. 

 

 

4.3.1 Smart-Home 1 

 

Smart-home 1 was the first of two simulations that covered the domotic area of IoT. 

Smart devices were in fact connected to IoT in order to simulate full components inter-

action and capability to remote control the devices. Home owner in fact, after connecting 

via browser and pass the authentication, was able to command garage door or the house 

ventilation but also check the current status of the alarm system or the level of carbon 

dioxide in the garage. 

 

This case also offered the possibility to the students to expand the simulation utilizing 

the remote corporate office network in order to build a remote access to the home LAN. 

 

 

Figure 16 - Cisco Packet Tracer layout of Smart-Home 1 simulation 
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Network Layout 

 

This exercise had the simplest setup compared to the other simulations. 

Network was logically separated in three areas: home network, ISP Cloud and corporate 

office network. 

 

 

Figure 17 – Smart-Home 1 network topology 

 

As one can see in the Figure 17 above the heart of this simulations was the home net-

work, all IoT devices, home tablet and IoT backend servers were connected to the home 

WLAN. Network was simulating a normal home wireless network where every appliance 

was connected to a wireless router, router was then connected to a dedicated cable 

modem. In the exercise the modem was required as wireless routed was only equipped 

with Ethernet ports and ISP connectivity was provided via coaxial cable. 

 

Internet settings of the router were set on default DHCP ISP values, internal WLAN 

DHCP was however disabled via the Graphical User Interface (GUI), as local server 

connected in the WLAN was functioning as DHCP. Only other settings in the WLAN 

router were the home wireless SSID and password. 

 

All wireless devices needed to use same SSID, password and DHCP default settings, 

except the local server that used 10-class static IP. 
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Static IPs ensured that, even if WLAN router was rebooted, the server IP remained the 

same, without having the need to re-configure the devices with a new IoT server IP. 

The server, in addition to DHCP services as early mentioned, also provided IoT and DNS 

functionalities. IoT features were needed in order to offer backend intelligence to the IoT 

simulation and for being able to host the IoT homepage where home user could connect. 

DNS service was also required in order to translate the IoT homepage URL into the own 

IoT server IP. 

 

The second network provided in the exercise was the ISP cloud. This was an artificial 

simulation of relay server that created the communication between two separate inter-

faces, server was setup to connect the coaxial cable from the home modem network to 

the Ethernet cable coming from the office router. No further configuration parameters 

were allowed in this device. 

 

The corporate office network was a basic setup with a router connected both to the in-

ternet provider and also to a local switch where also two PCs and one server were con-

nected. Router NICs were set with ISP IP in one interface and the LAN IP in the other, 

basic RIP protocol was also utilized in the setup to enable connectivity between the two 

networks. 

The office switch and the office PCs utilized the standard default configuration. Local 

server was configured to utilize static IPs and to provide DHCP functionalities within the 

office LAN. 
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IoT Layout 

 

For this simulation, as mentioned earlier, all IoT devices and IoT server were connected 

to the same WLAN network. 

 

IoT logic connectivity was established on the top of the network connectivity.  

As shown in the Figure 18 all IoT devices must be set to be connected remotely to the 

IoT server using previously created username, password and the server IP. 

Successful connectivity was established when “Connect” button changed into “Refresh”. 

 

Figure 18 - Example of IoT setup of motion detector 

 

All device must use the same IoT credentials, same credentials were also used by the  

home owner for passing the authentication when connecting via browser to the main IoT 

monitoring homepage as shown in the Figure 19. 

 

 

Figure 19 - Login to the IoT homepage 
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As the IoT server was setup also for DNS services, the iothomepage.com was translated 

with the IoT server static IP. 

Once user was connected to IoThomepage.com it was possible to visualize the status of 

the IoT devices but it is also possible to review the interaction logic between them.  

 

As visible in the Figure 20, in this exercise five IoT smart-devices were used: motion 

detector, siren, garage door, fan and smoke detector. Also cars were utilized, but these 

were only for influence the environmental variable of the simulation. 

 

 

 

Figure 20 - Status of the IoT devices connected 
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Figure 21 - Pre-set conditions 

 

 

As one can see in the Figure 21 while being connected to the IoT homepage it was also 

possible to browse to the conditions page and visualize the two main IoT simulation ex-

amples. 

 

The first case utilized a motion sensor to temporary activate the alarm siren as sort of 

basic home alarm system. Logic is visible in the previous Figure 21, simply, when sensor 

was triggered, the siren was set on. When sensor was not detecting any movement, and 

after a pre-set timeout, the siren was set to be off. This logic was easily validated by 

pressing ALT on the keyboard and hoovering the mouse cursor on the motion detector, 

siren was then activated immediately as shown in the Figure 22 below. 

 

 

               Figure 22 - Active IoT siren 
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The second simulation logic was regarding the home garage, in this case an additional 

separate physical container was utilized in order to influence the environmental varia-

bles. 

As visible in the Figure 21, the sensor was set to turn on the fan, to open the garage door 

and to sound the alarm siren in case the carbon dioxide level within the container reached 

a pre-set threshold. No action were triggered if level of carbon dioxide was under the 

threshold. 

In order to raise the carbon dioxide level few cars were utilized. By pressing ALT on the 

keyboard and clicking on the car with the mouse, the car turned on. Once all cars were 

on the level of carbon dioxide was rapidly raising, till the moment that alarm rang, garage 

door opened and ceiling fan started venting out the carbon dioxide. Simulations statuses 

are visible in the below Figure 23. 

 

 

Figure 23 - Simulation of carbon dioxide building up in the garage 
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IoT Microcontroller Example 

 

One example utilizing an SBC was also included in the Cisco Packet Tracer simulation. 

In this scenario none of the sensor or devices were connected to the home WLAN or any 

other sort of network. All components were connected via custom IOT cables to the SBC 

board. 

 

                    Figure 24 - Smart-Home 1 microcontroller example 

 

The example simulated the garage door opening, along with light turning on, when the 

motion sensor detected some movement. In this case the intelligence of the simulation 

was not provided by the backend IoT server but by a custom software running on the 

SBC board. 

 

The logic of the software was very simple, sensor was directly connected in an SBC input 

pin. When objects were detected, the sensor fed a value to the SBC input pin, the micro-

controller was then comparing it to a pre-set threshold value and if the logic clause was 

met, a command to the output pins was sent. Command was a custom API command 

that opened the garage door and turned the lights on. 

As previously discussed in the chapter 4.2 the sensor, light and door specifications were 

visible in the device specification tab. 

 

The logic of the Blockly program running on the SBC is visible in the Appendix 1. 
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Future Expansion of the Simulation 

 

Being the exercise very simple students could expand the simulation very quickly. 

On the network prospective all the logic was located in the home network, students could 

use the corporate office network to build the possibility, via VPN, to the home owner to 

remotely connect to the iothomepage.com. 

 

On IoT level more complex simulation scenario could also be added to build a more 

resilient alarm system, using cameras, RFID readers, tripping sensors but also to include 

room climate control or electricity production, via solar panels, on the roof. 

 

The microcontroller example could be expanded by connecting the device to the network 

or to add more sensors, actuators and more complex programming.  
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4.3.2 Smart-home 2 (SaaS) 

 

Smart-home 2 was a variation from the previous example of smart house, the main dif-

ference was on the backend IoT intelligence, now provided by a remote provider as-a-

service.  

 

In this case the home owner needed to only setup the home WLAN and then backend 

logic was provided by remotely connecting to a cloud server hosted by a third party pro-

vider. In this scenario the home owner had also the possibility to remotely connect to the 

main IoT control page using own mobile phone via a 3G network.  

 

 

Figure 25 - Cisco Packet Tracer layout of Smart-Home 2 (SaaS) simulation 
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Network Layout 

 

Smart-Home 2 had a more complex network setup compared to the other domotic ex-

ample. In this case the network layout was divided in four areas: home network, ISP 

provider, 3G mobile network and the backend IoT. 

 

 

Figure 26 - Smart-Home 2 (SaaS) network topology 

 

Despite the need of four network, the setup was simpler compared to previous scenario 

as the IoT, DNS and DHCP server was not connected to the WLAN. Wireless network 

was provided by a wireless router that, in this case, also provided DHCP functionalities. 

 

Being a simple home network the device setup was done only by using specific SSID 

and password. Home cable modem was also utilized only to connect the router to inter-

net, no configuration could be done on this component. 

 

The ISP network, similarly as in the other smart home example, was artificially connect-

ing different interfaces to each other in order to simulate internet connectivity. Coaxial 

cables coming from home modem and 3G network provider were linked to the Ethernet 

cable where the cloud IoT server was connected. 

 

In order to simulate a remote network, a mobile 3G provider infrastructure was utilized in 

this example. This allowed the home owner to connect to the IoT monitoring page using 

its own mobile outside the home WLAN. Cellular network setup was very straight-forward 
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and only required a cell tower and a central office center server. Server consolidated all 

the signals coming for the tower coaxial cables into a Ethernet backbone connection that, 

via cable modem, was then connected to the ISP network. 

 

Both cell tower and central office server had only a limited amount of parameters that 

could be configured. A maximum of six cell tower can be connected to the central office 

server. 

The handheld devices were then connected to the 3G cell tower network by setting up 

the correct APN name.  

 

In order to simplify the cloud provider network, the remote IoT server was directly con-

nected to the ISP without the usage of any router. Server utilized static IP in order to 

make sure that IoT device could always connect to it. DNS services were also running 

on this server resolving the IOTSmarthome.com URL address into its own IP. 

 

The setup of the SaaS cloud services utilized in the exercise was artificial and would not 

be realistic in a real SaaS scenario. 
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IoT Layout 

 

As in the other smart home example, all IoT devices were connected in the same net-

work, the only difference was in the IoT server being not connected to the home LAN. 

This required that local WLAN router acted as DHCP server but, for IoT functions, device 

were connected to the remote IoT server. 

 

As previously all the devices were also sharing the same IoT username and password, 

same credentials needed also to be used by the home owner in order to remotely con-

nect, via browser, to the IoT homepage. 

 

As one can see in the below Figure 27, this simulation had already eight pre-configured 

IoT Smart-devices: solar panel, battery, two AC units, humidity sensor, motion sensor, 

webcam and a garden light. 

 

 

Figure 27 - List of IoT device connected 

 

Also two IoT simulations were pre-configured and visible from the main IoT homepage, 

as shown in the Figure 28. 
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Figure 28 - Pre-set IoT simulations 

 

First automation replicated a scenario where an IoT humidity sensor was installed in the 

house in order to monitor the ambient humidity. In case the detected humidity exceed 

the pre-set threshold value the AC unit was automatically power on, dropping the level 

of humidity. Ambient level of humidity could be monitored from both the sensor or by 

selecting if from the main IOT homepage. 

 

To increase the complexity of the simulation, a solar panned and a smart battery were 

also added and connected to the AC unit. 

The concept was that, during the daytime when sun shone, the solar panel produced 

electricity, charging the battery. At the same time however the sun increased the humidity 

in the house causing the AC unit to start. Being the AC unit connected to the IoT battery 

it was possible to observe that battery stored the electricity when AC unit was off, but 

drained fast when AC was on. 

It is worth to mentioned however that, due to Cisco Packet Tracer logic, the AC did not 

stop in case battery stored power reached zero and also that battery did naturally loose 

the charge even if AC was not on. 

 

Both amount of electricity produced by the solar panel and remaining power in the battery 

could be seen in real time from the main IoT homepage as illustrated in the Figure 29. 
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Figure 29 - Monitoring of power produced and stored by IoT devices 

 

The second IoT simulation included in the exercise was similar to the previous Smart-

home alarm system. Main difference in this case was regarding the motion detector trig-

gering not a siren but, for a few second, a webcam broadcast if something was detected. 

 

Simulation could be validated by pressing ALT on the keyboard and hoovering on the 

motion detector sensor with the mouse, from the IoT home page the webcam then broad-

casted some images. 

 

Figure 30 shows the case when no objects were detected and webcam was off, in Figure 

31 is possible to see that sensor was triggered and webcam was showing images. 

 

 

Figure 30 - Webcam off as no movements are detected by the motion sensor 

 



 

52 

 

 

Figure 31 - Webcam on as movements are detected by the motion sensor (ALT + mouse) 

 

As mentioned earlier in the chapter, the smart garden light was also included in the con-

nected devices. The IoT light was an example of a smart device that incorporates own 

sensors, and due to the complexity of its software, could function even without backend 

pre-set conditions. The street  lamp unit had in fact embedded a motion sensor and a 

light sensor; these allowed the lamp turn itself on automatically if nearby object or a low 

level of visible light were detected. 

 

Along with the “SaaS” concept the second big difference, compared to the previous 

smart-home simulation, was the use of specific environmental variable. 

As briefly explained in the chapter 4.2, Cisco Packet Tracer offers variables in order to 

create more realistic simulations, these in fact can help to influence the behavior of the 

sensor but also validates the accuracy of the IoT device simulation logic. 

 

In this exercise variables were used in order to influence the production of electricity, the 

home humidity build up and the sunlight level for triggering the garden lamp. 
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Figure 32 - Environmental variable graph 

 

As illustrated in the above Figure 32  the amount of sunlight, humidity and temperature 

were tuned for representing a realistic hot sunny day. Behavior of the IoT rules could be 

influence by adding or modifying these variables. 

In Cisco Packet Tracer all the variables were set to follow a 24 hours pattern. 

 

When following the simulation time, reported in the right corner of the main simulator 

page, it was possible to monitor the different level of produced electricity between night 

and day, or the level of the humidity, or even the automatic triggering of the garden lamp. 

 

The below Figure 33 represents a day time scenario. It is clearly shown that solar panels 

produced electricity and charged the battery, the AC unit was on, because of the high 

humidity, and garden light was off. Figure 34 then represents the night scenario, with AC 

unit off, no electricity produced and garden light turned on. 
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    Figure 33 - Example of equipment behavior during daytime 

 

 

   Figure 34 - Example of equipment behavior during night time 
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IoT Microcontroller Example 

 

One example of IoT sensor-to-actuator was also included in this Cisco Packet Tracer 

simulation. As in the previous case, an SBC board was used in order to connect a sensor 

to an actuator without the need of having a network connectivity.  

 

As the Figure 35 illustrates, in this scenario the sensor checked the temperature in the 

physical container, turning on the ventilation fan if heat exceed a pre-defined value. 

For this example a non-smart IoT sensor was used, the sensor was then connected to 

the input pins of the SBC board.  An absolute value was send by the sensor from in a 

scale from 0 to 1023, SBC custom program then detected and mapped the value to a 

standard Celsius reading comparing it at the same time to the pre-set condition. In case 

conditions were met the SBC signaled, via output pins, the fan to turn on. An LCD screen 

was also connected to the SBC output pins to display the temperature level.  

 

Blockly program can be found in the Appendix 1. 

 

 

     Figure 35 - Setup of the microcontroller example 

 

As explained in the previous chapter 4.2, sensor behavior is directly linked to environ-

ment variables, for proving the logic of this simulation heating and cooling elements were 

added to quickly influence the container ambient temperature. 

These elements could be quickly turned on by pressing ALT on the keyboard and clicking 

on the connected rocker switch. 
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As demonstrated in the Figure 26 when the heating element was turned on, the temper-

ature raised fast, turning on the ventilation fan. 

 

 Figure 36 - Example with heating element switched on 

 

Future Expansion of the Simulation 

Compared to the previous Smart-home simulation, the network layout in this case was 

more complex, however it offered many possibility to the students to work on. 

 

On the network prospective the remote cloud IoT network should be strengthen by add-

ing proper connectivity layers such as a router, a set of cluster IOT servers and a security 

layer etc. This would reflect a more realistic SaaS provider network, redundant and 

shared between several customers. 

 

On the IOT side the expansion could be done by enhancing the security surveilling sys-

tem, upgrading it with more complex detectors or more intricate triggering actions. 

Home could also be equipped with a network of safety detectors such: smoke detector, 

carbon monoxide detector, fire detector etc. Actuating extra ventilation, fire sprinklers, or 

door and windows opening in case hazards would be detected. 

 

For microcontroller simulations, as in the Smart-home 1, there are no boundaries of what 

can be achieve when programming SBCs. 
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4.3.3 Smart-Campus 

 

Smart campus was a more comprehensive IoT simulation compared to the previous two 

smart home exercises, both network and IoT layout, were in fact more complex in order 

to show a deeper interaction between the IoT devices but also to give more options to 

the students for future exercise expansion. Smart-Campus simulated an university cam-

pus where, along with traditional school and apartment networks, an IoT network allowed 

to connect different IoT devices spread across the campus premises. Examples of RFID 

access control management and intelligent sport field watering solution were included in 

the simulation. 

 

 

Figure 37 - Cisco Packet Tracer layout of Smart-Campus simulation 

  



 

58 

 

Network Layout 

 

As briefly mentioned, the network layout in this exercise was more complex compared 

to previous simulations and includine: a backbone router network, a traditional switch-

based classroom wired network, a wireless LAN for the apartment buildings and a dedi-

cated IoT network based also on switch. 

 

The backbone network was created utilizing three interconnected routers. Every router 

had a connection to the other two in order to build a redundant infrastructure that could 

withstand failures of trunks between the routers. 

In order to represent a realistic network where routers were physically located in different 

campus building, optical Fast-Ethernet cabling was used instead of traditional straight 

copper cables. 

 

 

Figure 38 – Smart-Campus network topology 

 

For keeping the routing between the backbone devices simple yet, to allow full connec-

tivity between the three networks, a basic Routing Information Protocol (RIP) was used 

in the router configuration. RIP is a very simple, and old, routing protocol that periodically 

shares routing table between devices. In real life complex scenarios the protocol is usu-

ally not utilized due to its scalability limitation, as protocol in fact allows only a maximum 

of fifteen network hops . 
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However, due to its setup simplicity, RIP was a perfect candidate for routing protocol in 

Cisco Packet Tracer exercise.  

 

In each router the setup was done adding the directly connected networks IPs in the RIP 

configuration as shown in the Figure 39, routing table exchange will then take care of 

spread the routing logic between the device, as illustrated in the Figures 40 and 41. 

 

 

               Figure 39 - Example of simple RIP setup of the Classroom router 

 

 

           Figure 40 - Example of RIP messages broadcasting by the Classroom router 
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Figure 41 - Packet captured during RIP routing message broadcasting 

 

Along with the backbone connection each router was also connected to one of the three 

sub-networks: class building network, apartment building network and IoT network.  

All the three networks were physically separated by placing them in an own dedicated 

physical container. 

 

The first network was a simple network for emulate a PC classroom where,  two PCs, 

one network printer and a server were connected by Ethernet cables to the classroom 

switch. Switch was then connected to one of the Ethernet port of the router. DHCP func-

tions were carried on by the local servers. 

 

The apartment building network was also a simple WLAN network that simulated a wire-

less connectivity in the students apartment buildings. In this case a WLAN router was 

utilized in order to create the local wireless network, router was then connected with one 

of the backbone routers. DHCP functions in this network were also carried on by the 

WLAN router. One laptop and a smartphone were connected to the wireless network. 

 

Last, but most important network, was the IoT network. This was a switch-based network 

connected to the third backbone router. IoT devices and IoT server were all connected 

to the same switch. In the original specification of the IoT simulation a WLAN router was 

supposed to be utilized to connect all the IoT device, making the simulation closer to the 

reality. However, due to the coverage range of WLAN signal, and the absence of wireless 

repeaters in Cisco Packet Tracer, the furthest IoT devices had very bad coverage and 

sometimes connection to the IoT server would timeout and fail. Usage of switch and 
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copper cables  was perhaps not fully realistic and not applicable in real life applications, 

but suited better for this Cisco Packet Tracer exercise. 

The IoT server, in addition to IoT backend intelligence, was also utilized as DNS server 

and DHCP server allocating IP address to the connected IoT devices. 

 
 
IoT Layout 

 

As in the previous IoT automations all the smart devices were remotely connected to the 

IoT server sharing the same username and password credentials. Connection also was 

established by using the static IP of the IoT server hosted in the same IoT network. 

 

As per design and, due to network layout  and utilization of RIP protocol, every PC, laptop 

and smartphone connected in any of the campus network could remotely access to the 

IoT homepage URL. The IoT server, being also DNS server, translated the homepage 

URL into its own static IP. 

 

When connected to the IoT homepage via browser, and after successfully passing the 

authentication, IoT users were able to see the list of connected devices and the interac-

tion logic between them. 

 

Figure 42 - IoT connected devices in Smart-Campus simulation 
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As displayed in the above Figure 42, in this Cisco Packet Tracer exercise four IoT de-

vices were connected: RFID reader, apartments door,  water monitoring sensor and sport 

field sprinkler. 

 

 

Also visible in the Figure 43 is the logic assigned to these four devices 

 

 

Figure 43 - Pre-set IoT conditions 

 

The first automation was aiming to create an IoT RFID access control solution for man-

aging the access in the students apartments using a RFID reader, couple of RFID cards 

and a smart door. 

 

The concept behind was very simple, when an authorized RFID card was swiped onto 

the RFID reader the door opened, but if an unauthorized RFID card was utilized the door 

remained locked. In order to achieve such scenario the RFID card parameters were 

modified by editing the card attribute tab as shown in the Figure 44 below. 
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Figure 44 - RFID card attribute modification 

 

In this cases two cards were utilized, one with value 3535 and the other one with 1212. 

As illustrated in the Figure 43 the authorization logic was done in the IoT backend server, 

as the condition was set to unlock the door when the 3535 was swapped. 

Swapping the card was done simply by dragging the card on the RFID reader using the 

mouse. Green icon appearing in the reader meant that card was authorized, at the same 

time also door icon turned from red to green. If wrong card, with value 1212 in the exam-

ple, was utilized, the reader icon stayed red along with the locked door icon as visible in 

the Figure 46. 

                

Figure 45 - Valid card swapped on the reader         Figure 46 - Invalid card swapped on the reader 
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For this specific case, and only because of the logic how the reader worked, a third 

waiting condition was set. Reader in fact stayed in a waiting loop, ready to accept new 

card, till any card was placed on it. While reader was in this loop the smart-door remained 

locked.  

The specifications of how the reader worked and all the expected status were clearly 

explained in the device specification tab. 

 

In this scenario the smart-door was utilized as device that reacted to conditions however, 

due to its versatility, the device could be used in more complex simulations. Direct inter-

action of the door was also possible by pressing ALT in the keyboard and clicking the 

door icon. 

 

The RFID simulation was only created with the main purpose to show different IoT sce-

narios to the students. It was however clear that, in more complex applications, utilizing 

the IoT backend logic was not the best option, as far different combinations of cards and 

access level were impossible to achieve with simple conditions. 

Another consideration to mention is that, in Cisco Packet Tracer, the RFID reader did 

not always perform properly. When launching the simulation for the first time, the reader 

did not accept any card. Students were adviced to always stop and restart the reader 

internal program when launching the exercise for the first time. This was done by clicking 

on the device, then on the advance button and last on the Programming tab, once there 

it was possible to stop and start again the program as shown in the Figure 47 below. 

 

Figure 47 - Stopping a device program 

 

The second IoT case in this exercise simulated a smart sport field irrigation system, 

where a sensor detected the level of water and, in case lever was low, started the water 

sprinklers. Logic can be seen in Figure 43. 
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In order to make the automation more realistic the environmental variable of the sport 

field containers were changed to simulate raining through some hours during the day. 

 

 

Figure 48 – Environmental variables for Smart-Campus simulation 

 

As visible in the above Figure 48 rainfall were set to be happening between 03.00 and 

06.00 and between 20.00 and 23.00 every day. Rainfalls increased the water level in the 

sport field container, causing the water sensor to detect a higher amount of water and 

not starting the sprinklers.  

The below Figure 49 illustrates the sprinkler action when level of water was below or 

above  three centimeters. 

 

 

 

 

 

 

 

 

               

            Figure 49 - Smart-sprinkler running and not running 

  

The field water absorption speed could also be boosted by adjusting sunlight and tem-

perature in the environmental variables. 
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IoT Microcontroller Example 

 

As in the previous two smart-home simulations also a microcontroller example was 

added in the smart-campus Cisco Packet Tracer exercise. The simulation replicated the 

same IoT sprinkler case while using non smart devices. 

SBC module input pins were connected, via dedicated IoT cable, to a non-smart water 

sensor. SBC output was then connected to a lawn sprinkler as illustrated in the Figure 

50 below. 

 

 

Figure 50 - Setup of the microcontroller example 

 

As in the IoT version of the simulation, the water sensor detected the water level and fire 

up the sprinkler if a value below the threshold was detected. 

Difference compared to the IoT case was that logic was defined not in the IoT backend 

server but in a custom Blockly program stored in the SBC itself. 

 

The other small difference was that the water sensor utilized returned a number from 0 

to 255, this value was then mapped in the SBC program to a range between zero and 

twenty centimeters. 

Also in this case the rain environmental variables have been manipulated in order to 

rainfall through the day. 

 

Logic of the Blockly program running on the SBC is visible in the Appendix 1. 
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Future Expansion of the Simulation 

 

Due to the possibilities opened by exercise complexity, students were encouraged to 

widely modify the simulation adding new network and IoT features. 

 

On network level, by design, all the device were able to  access to the remote IoT server. 

Access restrictions could be apply to make sure that only authorized IPs could connect 

to it.  

 

Due to wireless range limitations all IoT device were connected via switch, as this would 

be probably not realistically in real applications, students could re-engineer the IoT net-

work setup in order to create a wider WLAN network or a cluster of wired IoT subnetwork. 

 

On IoT prospective, many more simulations could be added in the campus scenario: 

electricity generated to power street lights, network of security sensors, evacuation plans 

to open all doors and windows etc. 

 

Also microcontroller examples could be integrated in the simulation in order to cover 

cases where the WLAN coverage of the IoT network was not sufficient. 
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4.3.4 Smart-Industrial 

 

Smart-industrial was the most complex IoT simulation created for the IoT course. Com-

plexity of the case was mostly because the network layout and also due to logical con-

nections between the IoT devices. 

 

The exercise simulated an industrial application where electricity was generated via solar 

panel and wind turbines, temporary stored in batteries, and then spent by an industrial 

production line made by actuators and component. Same electricity was also utilized for 

power accessory items like cooling units and lights. 

 

 

Figure 51 - Cisco Packet Tracer layout of Smart-Industrial simulation 
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Network Layout 

 

Network layout was more complex compared to the previously analyzed examples, phys-

ical separation of the networks, achieved by creating separate physical containers, was 

required due to the logic of the exercise. 

 

Network topology was divided in five main sub-networks: two where IoT devices produc-

ing and storing electricity were connected, one for the corporate office building, one 

where IoT device that utilized electricity were located and last one for overall IoT control.  

All these networks were interconnected to each other by a central core router located in 

the IoT control network. This non-redundant layout might not be suitable for real life in-

dustrial applications, however it helped to simplify the Cisco Packet Tracer exercise. 

 

 

Figure 52 – Smart-Industrial network topology 

 

The simplest network was the corporate office building LAN. Network consisted in a main 

router connected to the central router and a local office switch. PCs and office DHCP 

server were also connected to the local switch.  
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By network design, none of the office PCs were able to reach the IoT homepage or any 

of the IoT devices. Intention in fact was to isolate and restrict the access to control IoT 

device for only authorized user physically connected to the IoT control network. 

Sea and Land were the two networks where IoT device producing electricity were con-

nected, both of these LANs were connected to the central core router. 

 

Land was a switch-based network utilized to simulate the functioning of a solar panel 

farm, where electricity was produced and stored in smart IoT batteries. 

In order to simplify the design only straight copper cables have been used to connect the 

IoT devices to the switch. In a real life case optic or wireless technology might be pre-

ferred to overcome the communication distance limit dictated by the copper cabling. 

Within the same network a DHCP server was installed in order to distribute local IPs to 

device connected to the land network.  

 

The Sea network was conceptually similar to the land network, in fact, also in this case, 

IoT wind turbines were producing electricity then stored in batteries. As in the previous 

network also a traditional switch, connected to the main core router, was utilized, how-

ever main connectivity to IoT wind turbines was provided by 3G. 

The 3G cellular network was used to differentiate the setup, giving the possibility to stu-

dents to familiarize with different types of network, but also to give a more realistic  aspect 

of a network over a sea. 

 

As explained in the previous Smart-Home 2 SaaS example, due to the 3G network, ad-

ditional equipment must be installed. An antenna was  required in order to provide, via a 

predefined APN, connectivity to the turbines. A central-office server component was also 

necessary in order to consolidate the signal from the cell towers, coming via coaxial 

cable, to Ethernet. Central-office server was then connected to the land network switch. 

As in the previous setup also in the sea network a DHCP server was installed in order to 

propagate IPs to the IoT devices. 

 

The fourth, and less complex, network was the IoT industrial WLAN. This simple network 

was providing wireless connectivity to the IoT devices that were draining power from the 

IoT batteries located in the sea and land network. Wireless signal was created by a local 

WLAN router connected to the central core router.  

 

The last, but most important network, was the IoT control LAN.  
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Purpose of the networks was to be the main connection point between other WLANs and 

LAN, but also to conceptually work as main control room for the IoT devices. 

All IoT devices were in fact remotely connected to the IoT server  hosted in the IoT control 

LAN. Heart of this grid was the core routers. As device was the central connection point 

additional NIC cards were needed in order to be able to connect all the other sub-net-

works. 

 

RIP routing protocol also played a key role in the simulation, enabling the possibility for 

the IoT remote devices to connect to the IoT Server. As previously explained RIP is a 

very old but simple routing protocol that, because of its setup simplicity, was chosen to 

be used in the IoT automations. 

 

Other than the IoT server also a WLAN router was connected to the core router, providing 

WLAN connection to the control room PCs and to two smart-devices that simulated an 

intrusion detection system.  

 

 

IoT Layout 

 

IoT setup was similar to all other three cases, even if devices were in fact connected to 

different LANs, all of them were logically connected to the IoT server hosted in the control 

room LAN. 

As before, all IoT devices shared the same username and password credentials. Due to 

network design in this Cisco Packet Tracer exercise, only the PCs connected to the con-

trol room LAN could access to the IoT homepage. 
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        Figure 53 - IoT connected device homepage 

 

As illustrated in the Figure 53, Smart-industrial exercise had several IoT devices already 

configured such as: solar panel, wind turbines, batteries, motion detector, webcam, AC 

unit, temperature sensor and an IoT smart-light. 

For the solar panels, wind turbines and batteries, located in the land and sea network, 

no backend intelligence was required as only an IoT cable was needed in order to con-

nect the power generators to the batteries. 

 

Clear instructions how to connect IoT device input and output slots were listed in the 

device specification tab. As visible in the Figure 54 the output port of the solar panel is 

D0 and the input of the battery is D0, cable was then connected accordingly. 

 

 

Figure 54 - Example of battery specifications 
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As quickly mentioned, for this scenario, no backend logic is implemented, however from 

the main IoT page was still possible to monitor in real time the amount of power gener-

ated by the units and the amount of electricity stored by the batteries.  

 

For future expansion additional logic conditions can be added in order to raise alarms if 

the battery stored power would drop below a certain threshold. Also a power meter could 

be installed between the turbine and the batteries in order to visually show the amount 

of electricity produced. 

 

As solar and wind electricity generation was directly proportioned to the solar rays and 

wind gusts, the relative environmental variables were modified. 

As visible in the Figure 55  below, two separate containers have been created and vari-

ables have been manipulated in order to generate wind and sun during the day. Sunlight 

variable does not necessary need to be changed as by default over the daytime hours 

the simulator will produce sunlight. 

 

 

                  Figure 55 - Environmental variables 

 

As demonstrated in the Figure 56 below, while observing the environment clock, it was 

very evident to see the peak time of solar electricity production. 

 



 

74 

 

 

                Figure 56 - Electricity production peaking during the daytime 

 

It was also observed that, even without any device connected to the battery draining its 

power, there was a constant battery discharge happening by default. 

 

As previously mentioned the IoT server was hosted in the IoT control network. 

Server, as in the other IoT simulations, used static IPs also acted as DNS server trans-

lating the iotcontrolpage.com address in its own IP address. 

 

Along with the server also an IoT surveillance solution example was connected to the 

IoT control network. This case simulated a security system, running in the power plant 

control room that, when motion was detected, automatically started a webcam broadcast 

for few second.  

This IoT automation could be triggered via pressing ALT on the keyboard and hoovering 

the mouse on the motion detector. While connected to iotcontrolpage.com via browser it 

was also possible to see the changing of the webcam icon showing some images frame. 

Once no movements were detected the webcam automatically stopped. 
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Figure 57 - Example of webcam broadcasting when motion detector is triggered 

 

The other IoT simulation samples were for devices connected to the IoT industrial net-

work such as: an intelligent lamp, and automatic AC unit with a thermometer, a motor 

and potentiometer. 

 

As explained earlier the intelligent lamp did not required any backend intelligent being a 

very smart device on its own, unit had in fact embedded a motion and a light sensor, 

making the lamp itself able to decide to lid in case of object are detected or if it is late in 

the day and no sunlight is visible. The lamp was included in the Cisco Packet Tracer 

example in order to show also the possibility to connect devices to an IoT battery in order 

to drain its power. As illustrate in the Figure 58 below a special IoT cable was used to 

connect the two units, port specifications were available in the device specification tab. 
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Figure 58 - Example of complex specifications for the smart-lamp 

 

The other standard IoT simulation in this example, that required backend logic, auto-

mated a machine room temperature monitoring system. For this purpose a smart tem-

perature meter and an AC unit were connected to the IoT industrial WLAN. Additional 

backend logic was set to automatically start the AC unit when a temperature below 35 

degrees was detected. By design, and in order to make students practice with them, no 

environmental variables of the engine room physical container were modified, this re-

sulted in the temperature being constantly under the 35 degrees threshold, hence the 

AC did not start. It is advisable that students will manipulate the variables in order to 

validate the logic of the rule. 

 

Temperature and AC status could be monitored by connecting to the IoT homepage. 
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Figure 59 - AC and temperature monitoring from IoT homepage 

 

The last IoT simulation in the exercise was the only non-smart device example, without 

using microcontrollers, provided in any of the four exercise. 

This case was utilized to show to the students that even without microcontrollers, or IoT 

backend connection, it is possible to utilize IoT actuators and sensors, however with very 

limited capabilities. 

In this case a knob potentiometer was connected to an industrial motor, motor was then 

draining power of one IoT battery from the land network. As in previous applications a 

special IoT cable was required between the units. 

 

Interaction with the motor was also possible by pressing ALT on the keyboard and mov-

ing the knob clockwise with the mouse. Motor rotations increased by rotating the knob. 

However, as far as the knob and the motor were not connected to the backend IoT 

server, it was not possible to observe or control them from the iotcontrolpage.com page. 

 

 

Figure 60 - Knob rotation impact the motor speed 

 

Cisco Packet Tracer offered also the possibility to transform sensors and actuators in 

smart devices by double-clicking on the device, selecting the advance button, adding 

then a wireless card in the I/O config tab and then setting up  SSID and password in the 

config tab. 
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Once done the devices were visible in the main IoT page, however, as the control APIs 

were missing there was no possibility to check the status or setup further functioning 

conditions. 

 

 

IoT Microcontroller Example 

 

As in all other three Cisco Packet Tracer exercises, also in Smart-industrial case an 

example of non-IoT connected devices using a microcontroller was provided. 

 

As illustrated in the Figure 61 the case reproduced the similar IoT scenario, hosted in 

the land network, where a solar panel produced electricity and a battery stored the 

power. Difference was that devices were directly connected to a SBC unit feeding data 

to the board. 

 

 

         Figure 61 - Setup of the microcontroller example 

 

Via a Blockly custom program the SBC constantly read the input coming from the panel 

and the battery prompting, in a two separate LCD screens, a small text about the status 

of the energy produced and stored. In case both values were low an alarm led was lid, 
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along with prompting to the LCDs the message battery low and panel low, as shown in 

the above Figure 61. 

 

Complete logic of the Blockly program can be found in the Appending 1. 

 

 

Future Expansion of the Simulation 

 

Smart-industrial was the most complete IoT simulation of the four, yet the exercise that 

offered more possibilities to for students to expand it, both on network and IoT level. 

 

On the network side different levels of access control could be setup, allowing also some 

of the PC in the office network to access the IoT webpage, but also creating cellular 

networks for IoT devices in the sea and land networks. 

 

More scenarios could be also added to the IoT simulations, for instance a more complex 

alarm system might be needed in such industrial cases. This could be achieved using 

sirens, tripping wires, motion detector and other IoT components. 

 

On the industrial network also a more complex iteration between smart and non-smart 

devices could be engineered to simulate a proper production line chain. Also a more 

complex monitoring solution for the electricity production could be a good example for 

future student’s exercises. 
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4.4 Limitations and Expansions of the IoT Simulations 

 

The four IoT simulations offered a solid foundation for the students to experience the 

Internet of Things without having the access to physical IoT devices or IoT network. Ex-

ercises also offered the possibility to expand the simulation even further. However, due 

to limitation of the tool and due to time-constraint, some aspect of the exercise were 

simplified or artificially created. 

 

In all the Packet Tracer examples where an ISP was required, there was no real ISP 

component in the tool, hence the network was made up using routers and static IPs. In 

the second smart home exercise, where backend capabilities were provided “as-a-ser-

vice”, the home router was also artificially setup to use default gateway IP of the IoT 

cloud server. This would not have been possible in a real case.  

 

The other examples of artificial setups were in the Smart-Campus and Smart-Industrial, 

where some IoT device were in fact connected via a switch using normal straight copper 

cables. This setup would not be practical in real scenarios due to the distance limitation 

of the LAN connectivity over copper. 

 

The other limitations, or one could call them as bugs, are due to general behavior of 

Cisco Packet Tracer tool itself. Even though the tool seemed to be more stable compared 

to the earlier version, it tended to crash or not functioning properly every now and then. 

When making the simulations, but also during the class, the network components were 

not always correctly communicating between each other even if the setup was correctly 

made.  

 

Other problematic cases happened when the IoT Smart-device configuration was 

changed few times, in some of these cases the IoT device did not connect to the backend 

IoT server anymore. 

In all of these examples the suggestion given to the students was to erase the compo-

nents and restart the configuration by adding new device. This in most of the cases 

solved the issues. 

 

Other known issues were related to the malfunctioning of the custom program running 

on the IoT smart devices. The program seems to run, but logic did not work, as happened 

with the RFID reader program. 
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The students were advised to stop and restart manually the application in the device 

programming tab, as shown in the below figure, every time the Cisco Packet Tracer was 

launched the first time. 

 

 

Figure 62 - Example of custom Phyton program running on RFID reader device 

 

Another limitation observed during the course, not related to Cisco Packet Tracer but 

more on the structure of the classes, was related the limited amount time reserved for 

the IoT practical part in the study course.  

 

Being the first time this course had been taught, and the fact that the structure of the 

classes had been decided before a deeper analysis of Cisco Packet Tracer complexity 

was completed, it resulted in underestimating the time necessary to be reserved for the 

practical classes. 
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Other smaller limitations came from the fact that all students should have created their 

own Cisco NetAcad account beforehand and also have the Cisco Packet Tracer installed 

in their own laptop. 

 

As mentioned earlier, despite the limitations caused by the tool or the time, the simula-

tions had been built beforehand allowing students, with different skillset, to adapt their 

own IoT business case or even further expand them, both on network and IoT level. 

 

As previously listed in the chapter 4.3 future expansion of the simulations are possible. 

 

Regarding the network area students could, in the two Smart-home cases, upgrade the 

VPN connectivity in order to be able to remotely access the home LAN when connecting 

from an external network. Another example is to add a firewall in order to limit the access 

to the IoT network from the remote office LAN in the Smart-industrial case. In Smart-

Campus the IoT network could be re-organized by using a cellular infrastructure. 

 

IoT smart-devices expansion should be also very simple for the student, purpose would 

be to add more devices within the IoT network and create more intelligent rules via the 

IoT backend server. In some of the case this would require also that IoT network would 

be expanded in order to be capable in running more devices. 

 

Last and more technical expansion could be the usage of microcontroller. Multi-Chip 

Units (MCU) or Single-Board Computer (SBC) can be widely used in the simulations in 

order to fully control the IoT device functions. IoT server backend intelligence, program-

able via browser, it is only possible for smart-devices and only allows simple IF-THEN-

ELSE rules. Programming of microcontroller instead offers full visibility on sensor param-

eters, actuator functions, data logging and also allows to use a wider range of IoT de-

vices. 

Microcontrollers should also be connected to the local IoT network. 

 

Students with stronger programming skills, were encouraged not only to program 

MCU/SBC board but also modify or create the pre-set program of the sensor and actua-

tors, giving full freedom and control of the IoT device. 
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5 Feedback and Recommendations 

 

After the completion of the two IoT practical classes a feedback form was distributed to 

the students in order to gather comments, advices and suggestion for improvements 

regarding the practical Cisco Packet Tracer exercises. 

 

The feedback form included a small section regarding overall IoT topics, a dedicated part 

on the Cisco Packet Tracer tool and one chapter regarding the exercise structures and 

suggestion on how to utilize them in the next IoT courses. 

 

A complete template of the feedback from is available in the Appendix 3. 

 

A complete feedback on the IoT course, classes and exam was not part of this study as 

it was shared, as a standard methodology, by the IoT course lecturer. 

 

The overall response by the students was limited as only seven forms were returned. 

However, all of them, were quite aligned showing a great interest in the IoT topics, giving 

a good feedback on the exercises methodology and to the Cisco Packet Tracer tool. 

 

The below sections describes the students feedback, followed by comments from the 

IoT course lecturer the thesis writer. 
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5.1. Students Feedbacks 

 

On the generic questions regarding overall IoT capabilities, maturity levels and area of 

interests, all the students were quite aligned by feeling that IoT is definitely a technology 

that will revolutionize the IT industry, both for commercial and private market.  

 

The students commented that migration of IoT is also inevitable as most of the current 

networks will be eventually connected to some sort of IoT network, opening up multiple 

possibilities for industries. Another good point raised was that the overall IoT technology 

requires a different skillset in the development and support workforce, challenging the 

more rigid traditional IT structures. 

 

Connecting many IoT devices will also increase the amount of data, as commented by 

one student, this will introduce new possibilities and needs for industries to be able to 

manipulate and create monetary values from it. 

 

On the technology maturity question, few comments were related to the general feeling 

that the security in IoT is a big gap not yet standardized or even clarified, opening up 

also a new set of threats for the IT industry. 

One student also manifested concerns on the IoT wireless technology, not yet fully avail-

able, but also the fact that IoT devices still haven’t reach an optimal maturity in power 

consumption management. 

 

While answering the question on IoT area of interest, students manifested a very diverse 

list of topics that they would like to focus on: the security of the devices, home monitoring 

systems, medical applications and automotive automations. These areas could also be 

taken into considerations for the next course implementations. 

 

Second part of the feedback form was focusing on the Cisco Packet Tracer tool and on 

the IoT exercises. Students were quite satisfied with the tool as five over seven graded 

the tool from good to excellent, two students graded it ok.  

 

Advantages identified by students, while utilizing the tool, were the ease of how simula-

tion can be setup, the fact that the tool is free and easy to download, and the fact that 

Cisco Packet Tracer offers a big range of IoT devices and functionalities to work with. 
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Students also seemed to like the fact that the tool provides the possibility to configure 

the network devices via command line as it would be in real life applications, but also 

that it offered functions to ease the network setup, such as the automatic selection of 

best suitable cable or a simpler user interface for the device configuration. 

One student openly commented that Cisco Packet Tracer is a very good tool for learning 

IoT. 

 

On the tool limitations students highlighted the fact that the tool was often unstable, re-

quiring the need to frequently save the project in order to recover from application 

crashes. One student, working closely to the networking industry, also commented that 

Cisco network appliances provided in the tool are also old and not updated. 

 

Last limitation, mentioned by two students, was the fact that some scenarios were im-

possible to do while using Cisco Packet Tracer. 

 

Last part of the form was related to the IoT simulations and the practical classes. 

All students expressed very good feedbacks on the exercises, mentioning that it was a 

very “compact” way to explain practically how IoT works and giving good comments on 

the methodology of introducing pre-configured IoT simulation. 

Positive comments were also received for the support given to them during the practical 

classes. 

 

Highlights mentioned were the clarity of the examples on how devices worked, the visu-

alization process of the exercises and the fact that simulations were easy yet challenging 

to use. 

 

Only one negative feedback was raised by one student regarding the limited time and 

the deliverables that were achieved within the two classes. 

Same feeling was also shared in couple open comments regarding possible future en-

hancement for the IoT course. It seemed clear that more time is required and a more 

step by step guide on how to setup the exercises is needed. 
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5.2. Feedbacks and Suggestions for Future IoT Courses 

 

This section collects a series of thesis writer’s feedbacks and observations, integrated 

with comments from the IoT course lectured, on the Cisco Packet Tracer exercises. Also 

recommendations for future study course implementation are shared. 

More generic conclusion on the IoT thesis work are reported in the conclusion chapter 

6. 

 

Adding practical classes in the Internet of Things study course was undeniably necessary 

and a great opportunity for students to familiarize with the topic. After acquainting  with 

the tool, creating the exercises and seeing the students utilizing it, one can conclude that 

Cisco Packet Tracer is a good simulator tool for such practical cases. 

 

One strength of the tool is the fact that the network aspect is very well designed, proved 

to be reliable and easy to use. All students worldwide attending Cisco courses are utiliz-

ing Cisco Packet Tracer for practical network exercises, hence amount of users and var-

ious release of the tool has made Cisco Packet Tracer a perfect networking simulator for 

learners. 

IoT functionalities, as explained in chapter 2, have been only recently introduced and 

future development are needed, also considering that Cisco will offer more and more IoT 

courses over the years. 

 

Even if Cisco Packet Tracer offers a good overview of IoT devices, enables a quick con-

nection and setup of them and also allows to intuitively troubleshoot it evident that tool 

still have issues. 

 

The tool itself seems to be quite unstable, often crashing and without any possibility of 

autosaving or recovery of the exercises. A tip shared since the beginning with the stu-

dents was to save often the projects. 

 

Some bug are also visible in the tool regarding IoT devices. More complex devices that 

are utilizing pre-defined applications seems not to work well when the Cisco Packet 

Tracer simulation is launched first. One example is the RFID reader in the Smart-Cam-

pus exercise. It happened in fact that, when the simulation was first open, the reader was 

not accepting properly any correct or incorrect card. Stopping and restarting the custom 

program fixed the issue. 
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Another bug, happening both with IoT and normal devices, was clearly visible when a 

configuration was changed multiple time within a short time. This causes the device to 

not respond properly, not to get connected to the network or not to act as it was pro-

grammed. 

 

Two examples emerged during the practical classes when an IoT server did not connect 

logically to the router even if configuration was correct, or when some students struggled 

for long time to connect some IoT devices to the WLAN even if the setup was correct. 

 

The tip shared to the students was that, if troubleshooting of the issue would take more 

than few minutes, it would have been better to erase the device and re-add it to the 

simulation from scratch, this solved almost every time the issue. Other option was also 

to close and restart the entire Cisco Packet Tracer. 

 

Another limitation identified when creating the exercise was the obvious fact that not all 

that is possible in real life is possible in Cisco Packet Tracer. There were in fact multiple 

limitation for example when setting up ISPs, or when expanding network device ports 

but also more in general on what the IoT smart-device could do. 

Limitations were usually overcome by creating workaround or clearly explain them to the 

students during the classes. 

 

Regarding the methodology of the exercise the main problem was related to the time 

spent for the practical classes. As explained in the chapter 3, during the initial conversa-

tion with the IoT course lecturer, as this was the first time that course was taught, the 

time to be allocated for the practical classes was not clear. 

It was then decided to allocate two classes, first one for a generic introduction of the tool 

and the second one for a group practical exercise. 

 

Feedback shared with the course lecturer afterward was that more time was required for 

the practical classes. Idea for future classes could be to allocate three slots for the topic, 

dedicating the first class for the introduction of the tool and diluting the group work in two 

sessions, allowing the students to spend more time building the own business case. 

 

Even if three classes would be required, it was observed that some other small aspects 

needs to be taken care before the next course. 
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Most of the students, even if asked, did not create beforehand the Cisco NetAcad ac-

count. This caused a bit of delays in start the class. For future course the account should 

be created  by default during the starting of the course or perhaps be requested by other 

non IoT courses, so students will have it already when IoT practical classes will start. 

 

Another problem, emerged during the lab sessions, was that some of the IoT business 

cases, developed by the students in previous classes of the course, were not achievable 

in Cisco Packet Tracer. This was mostly due to fact that Cisco simulator did not have 

sensors required in the student’s cases. For future iteration it would be better to introduce 

Cisco Packet Tracer to the students earlier so they could familiarize with the options 

offered by the tool and create their own IoT business cases on the top of it. 

 

In order to enhance the IoT practical experience of the students another possibility for 

the future could be to limit the time spend in simulating the IoT cases with Cisco Packet 

Tracer and have one class where students could practice with real microcontroller sce-

narios. 

This would however require a more complex setup as hardware and sensors would be 

necessary, a dedicate IoT network would be needed and also students groups should 

be built in such a way that programming skills are available in the group. 

 

To conclude, despite the limitations and bugs in Cisco Packet Tracer, the simulation tool 

was a very good choice for the Internet of Thing study course. Regarding the contents 

and the methodology a positive feedback was shared by students and the course lec-

turer. Everyone also seemed to agree that additional time is required in future courses 

in order to have a more complete IoT experience for the students. 
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6 Conclusions 

 

As discussed in the previous chapter 5 the overall conclusion on the thesis work was 

positive, as the IoT simulations were delivered and students of the Internet of Thing 

course were able to work on them familiarizing with the IoT simulations. 

Conclusions below cover both the deliverables and the methodology of the thesis work. 

 

Regarding purely the IoT exercises, the research question of the thesis was answered 

by analyzing the Cisco Packet Tracer, finding if suitable for the simulations, and by build-

ing the IoT automations with it. 

As also requested by the IoT course lecturer, the IoT cases were built to offer the stu-

dents both a pre-configured environment and also a showcase of IoT simulations for 

them to immediately understand how Cisco Packet Tracer works, avoiding them to spend 

time on setting up a network and basic simulations. 

 

As mentioned multiple time in the thesis document, the IoT simulations were the first step 

for practical classes in the Internet of Things course. The Cisco Packet Tracer exercises 

should be treated as a starting point for future and more complex IoT simulations in 

Metropolia University of Applied Science IoT courses.  

 

Future studies could in fact cover the possibility to integrate Cisco Packet Tracer cases 

with more complex IoT automations by utilizing real microcontroller and sensors hard-

ware but also to expand the four delivered exercises with more complex automations. 

One could assume that, as Cisco will release more and more IoT courses over the com-

ing years and, Cisco Packet Tracer tool will be updated in the future with more IoT func-

tionalities. 

 

Future suitability of the tool and also a comparison with other available IoT simulators 

could be also ground for future studies, as in fact, in this thesis work no comparison 

research was made with other available IoT simulators such: IBM, NetSim or NodeRed. 

 

Conclusions on the methodology should be separated between the process to conduct 

the thesis works and the actual implementation of it. 
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As explained in the chapter 3 this thesis work was conducted as a project, first gathering 

the requirements, then developing the automations and last introducing them to the stu-

dents and gathering the feedback. 

 

The entire process was successful as it was proven to be reliable, it had a strict timeline 

to follow and in multiple instances the feedback from the IoT course lecturer helped to 

steer it. Dividing the thesis work into phases also helped to track down properly the pro-

gress while making sure to respect the needed deadline. 

It is advisable, for future studies with a similar research questions, to utilize the same 

methodology. 

 

Regarding the implementation phase, when exercises were introduced to the students, 

a more careful planning should be done in future implementations of the IoT courses. As 

largely explained in the previous chapter 5 the conclusion was that not enough time in 

the course was reserved for the practical section, making it hard for the students to really 

spent time on familiarizing with the IoT components.  

 

To be mentioned also is that a direct contact with the students was beneficial for them in 

order to have a person to help them during the exercises. It was also beneficial for the 

thesis prospective as a direct work in the class and the feedback gathering was very 

helpful for drawing the conclusion of the thesis work. 

 

Future studies could also help to re-structure the IoT course, synchronizing exercise per-

haps in different phases of the course and having them going hand-to-hand with the 

theoretical part and not only in a concentrated manner. 

 

Concluding, as also reflected in the students feedback, the thesis work was successful 

by supporting the practical classes of the Internet of Thing course. For future implemen-

tations of the course changes in the agenda are advised, along with studies to explore 

different IoT simulator technologies and feasibility to utilize real IoT hardware. 
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Blockly custom software for IoT Simulations 

 

 

Smart-Home 1 

 

 

 

Smart-Home 2 (SaaS) 
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Smart-Campus 

 

 

 

Smart-Industrial 

 

 

. 
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Network details utilized in the IoT simulations 

 

Smart-Home 1 

 

Home network: 

SSID: HomeWIFI 

Pwd: HomeWIFI 

IP: 10.0.0.0 

Subnet: 255.0.0.0 

 

IOT server:  

IP:10.0.0.10 

DNS: iothomepage.com 

User: Admin 

Passwordd: Admin 

Corporate office network: 

IP: 40.15.25.0 

Subnet: 255.0.0.0 

DHCP server: 40.15.25.10 

 

 

Smart-Home 2 (SaaS) 

 

Home network 

SSID: HomeWIFI 

Password: HomeWIFI 

IP: 192.168.0.0 

Subnet: 255.255.255.0 

 

IOT Server (remote) 

IP: 210.190.15.20 

DNS: IOTSmarthome.com 

User: HomeIOT 

Password: HomeIOT 

 

3G network: 

Provider: PabloNET
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Smart-Campus 

 

Class building network 

IP: 150.150.0.0 

Subnet: 255.255.0.0 

DHCP server: 150.150.0.1 

 

Apartments building network 

SSID: AppartmentWIFI 

Password: HomeWIFI 

IP: 210.140.0.0 

Subnet: 255.255.0.0 

 

IOT network 

IP: 10.0.0.0 

Subnet: 255.0.0.0 

DHCP server: 10.0.0.10 

 

IOT Server (remote) 

IP: 10.0.0.10 

DNS: IOThomepage.com 

User: Device 

Password: Device 
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Smart-Industrial 

 

Office network 

IP: 190.148.0.0 

Subnet: 255.255.0.0 

DHCP server: 190.148.0.2 

 

Solar panel network 

IP: 130.160.15.0 

Subnet: 255.255.0.0 

DHCP server: 130.160.15.0 

 

Wind farm network (4G) 

IP: 140.185.13.0 

Subnet: 255.255.0.0 

DHCP server: 140.185.13.10 

 

IOT industrial network 

SSID: IOTNetwork 

Password: IOTNetwork 

IP: 192.168.0.0 

Subnet: 255.255.255.0 

 

IOT control network 

SSID: ControlWIFI 

Password: IOTSecure 

IP: 168.140.10.0 

Subnet: 255.255.255.0 

 

IOT Server (remote) 

IP: 120.100.44.10 

DNS: iotcontrolpage.com  

User: IOTindustrial 

Password: IOTindustrial 
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Students feedback form 

 

Internet of things (IOT) 

 

1 – In your opinion, how much IOT is going to revolutionize the IT industry and what are 

the key elements?  

 

2 – What is in your opinion the maturity of IOT technologies in the today private and 

industrial market? 

 

 

 

3 – What are the IOT areas that most interest you and why? 
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Tool (Cisco packet tracer) 

 

1 – What is your opinion on Cisco packet tracer to be used as IOT simulator tool?   

Please drag in the smiley face on the correct grade below 

 

1 – Excellent tool 2 – Good tool 3 – Ok, but… 4 – Not the tool for the job 

 

 

2 – Please list advantages and limitations of the tool (based on your user experience) 

Good (max 3 points)                   Bad (max 3 points) 

 

 

 

 

 

 

IOT simulation exercises 

1 – Please share some open feedback on the class exercises 

 

 

2 – Please list some highlights and lowlights on the simulations exercise 

 

Highlights (max 3 points)                   Lowlights (max 3 points) 

 

 

 

  

 

 

 

1) 

2) 

3) 

1) 

2) 

3) 

 

1) 

2) 

3) 

1) 

2) 

3) 
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3 – Please share some feedback (if any) of how the exercise cloud be improved (e.g. 

contents, tool, method) 

 

 

Extra feedback 

 

 

 


