

Kim Schmiedehausen

SINGLE PAGE APPLICATION

ARCHITECHTURE WITH ANGULAR

Technology and Communication

2018

ACKNOWLEDGEMENTS

I would like to thank Mr Ville Salomäki and Wapice Ltd. for giving me the oppor-

tunity to pick the thesis subject based on my interests and in turn guiding me

through the process. I would also like to express my gratitude to Dr. Ghodrat

Moghadampour for supervising this thesis.

Special thanks to all the friends, family and colleagues who participated in the

work.

VAASAN AMMATTIKORKEAKOULU

Ohjelmistotekniikka

TIIVISTELMÄ

Tekijä Kim Schmiedehausen

Opinnäytetyön nimi Single Page Application Architecture with Angular

Vuosi 2018

Kieli englanti

Sivumäärä 48

Ohjaaja Ghodrat Moghadampour

Opinnäytetyö toteutettiin tutkimuksena Wapicelle. Työn tarkoituksena oli tutkia

keinoja, joilla Angular-ohjelmistokehyksellä toteutettujen ohjelmien rakennetta

voidaan parantaa tukemaan projektien muuttuvia vaatimuksia.

Työssä tutkittiin SOLID-periaatteita, joita soveltamalla ohjelmistoista saadaan

joustavampia ja ylläpidettävämpiä. SOLID-lyhenne on muistisääntö viidelle suun-

nitteluperiaatteelle: yhden vastuualueen periaate, avoin/suljettu periaate, Liskovin

korvattavuusperiaate, rajapintojen erotteluperiaate ja riippuvuuden kääntöperiaate.

SOLID-periaatteita sovellettiin Angular-ohjelmistokehykselle ja TypeScript-ohjel-

mointikielelle sopivaksi. Angular-sovelluksien rakenteelle etsittiin ratkaisua hyö-

dyntämällä Angular-moduuleita ja komponenttien vastuiden jakamiseen sovellet-

tiin ”fiksuja” ja ”tyhmiä” komponentteja.

Opinnäytetyön tuloksena syntyi yleispätevä tutkimus Angular-ohjelmistokehyksen

arkkitehtuurista ja jaottelusta. Tutkimuksen avulla voidaan kehittää Single Page-

sovelluksia uusiokäyttämällä vanhoja komponentteja ja parantaa sovelluksen ra-

kennetta ja suorituskykyä jakamalla toiminnallisuutta moduuleihin. Työssä esitelty

projekti tarjoaa hyvän esimerkkirakenteen Angular-sovelluksille.

SOLID-periaatteita on mahdollista hyödyntää myös muissa olio-ohjelmointikie-

lissä ja ”fiksu/tyhmä”-komponenttimallia voidaan soveltaa myös muissa kompo-

nenttipohjaista arkkitehtuuria tukevissa ohjelmistokehyksissä tai kirjastoissa.

Avainsanat Angular, Single Page-sovellus, SOLID-periaatteet

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Ohjelmistotekniikka

ABSTRACT

Author Kim Schmiedehausen

Title Single Page Application Architecture with Angular

Year 2018

Language English

Pages 48

Name of Supervisor Ghodrat Moghadampour

This thesis was carried out as a research project for Wapice. The objective of this

thesis was to find ways to improve the structure in Angular-applications to become

more adaptive to changing requirements.

The thesis examined SOLID-principles, which can be applied to make software

more maintainable and adaptive to change. SOLID is a mnemonic acronym for five

design principles: Single responsibility principle, Open/closed principle, Liskov

substitution principle, Interface segregation principle and Dependency inversion

principle. The work applied SOLID-principles in the Angular-framework with the

TypeScript-programming language. The structure for Angular-applications was re-

searched by utilizing Angular-modules and the “smart/dumb”-model was explained

to make components reusable inside the application.

As a result, a general research on the architecture and structure of Angular-applica-

tions was created. The work can be used as a base for developing Single Page Ap-

plications with Angular by reusing components and to improve the structure and

performance of the application by dividing functionality into modules. The project

included in the thesis provides a good example structure for Angular-projects.

SOLID-principles can also be applied in other object-oriented languages and

“smart/dumb”-model can be used in other frameworks or libraries that support com-

ponent-based architecture.

Keywords Angular, Single Page Application, SOLID-Principles

LIST OF ABBREVIATIONS

SPA Single Page Application

JS JavaScript

TS TypeScript

ES6 ECMAScript 6

HTML Hypertext Markup Language

DOM Document Object Model

API Application Programming Interface

CSS Cascading Style Sheets

SRP Single Responsibility Principle

OCP Open/Closed Principle

LSP Liskov Substitution Principle

ISP Interface Segregation Principle

DIP Dependency Inversion Principle

DI Dependency Injection

CONTENTS

ACKNOWLEDGEMENTS

TIIVISTELMÄ

ABSTRACT

1 INTRODUCTION .. 9

2 COMPANY INTRODUCTION, WAPICE LTD. .. 10

3 SINGLE PAGE WEB APPLICATIONS ... 11

4 OVERVIEW OF THE TECHNOLOGIES .. 13

4.1 TypeScript ... 14

4.2 Angular ... 14

4.3 Angular CLI .. 15

5 SOFTWARE ARCHITECTURE IN GENERAL .. 16

6 ANGULAR APPLICATION ARCHITECTURE OVERVIEW 17

6.1 Modules... 17

6.2 Components and Templates .. 18

6.3 Metadata .. 18

6.4 Directives .. 19

6.5 Services ... 19

7 SOLID-PRINCIPLES ... 20

7.1 Single Responsibility Principle ... 20

7.2 Open/Closed Principle .. 23

7.3 Liskov Substitution Principle .. 25

7.4 Interface Segregation Principle ... 26

7.5 Dependency Inversion Principle ... 28

7.6 Dependency Injection ... 30

8 STRUCTURING ANGULAR APPLICATIONS .. 32

8.1 Dumb Component ... 32

8.2 Smart Component ... 33

8.3 Feature Modules.. 34

9 EXAMPLE PROJECT: SIMPLE USER MANAGEMENT 36

9.1 High-level Design of the Example Application 36

9.2 Component- and Service-level Design ... 37

9.3 Implementing the Application .. 38

9.4 Finished Application ... 39

10 CONCLUSIONS .. 44

REFERENCES .. 45

 8

LIST OF FIGURES AND CODE SNIPPETS

Figure 1. Angular architecture overview 17

Figure 2. OcpComponent with direct dependency to ConsoleLogger 29

Figure 3. OcpComponent and Logger classes depend on the same interface 30

Figure 4. User interface for filtering registered users table 33

Figure 5. Folder structure of modules for the example application 37

Figure 6. Folder structure for the finished application 39

Figure 7. Comparison of the admin- and user-view 40

Code Snippet 1. Subtraction in a strongly typed language 13

Code Snippet 2. JavaScript example of string and integer subtraction 13

Code Snippet 3. A class that violates the single responsibility principle 21

Code Snippet 4. Example of a class that follows the SRP 22

Code Snippet 5. Example of the open/closed principle using class-interface 24

Code Snippet 6. Example of a class that violates the LSP 26

Code Snippet 7. Example of a class that violates the ISP 27

Code Snippet 8. IDuck interface split into smaller interfaces 28

Code Snippet 9. Direct dependency to ConsoleLogger 29

Code Snippet 10. The “dumb” search-component that emits values 41

Code Snippet 11. "Smart" details-component that processes values from dumb

components. 42

 9

1 INTRODUCTION

Project requirements change constantly, especially when more and more software

is being developed with Agile-methodologies. Even when using a framework, care-

ful design choices need to be made to adapt to the changing requirements. The goal

of this thesis is to find ways to improve the architecture and design in Angular-

projects in general and to avoid common pitfalls when developing applications with

it.

Angular is a frontend web application platform designed to build single page appli-

cations. It is a complete rewrite from its predecessor AngularJS and it is being de-

veloped by Google /1/. Single page applications or SPAs have been gaining popu-

larity due to better user experience and less server load compared to regular multi

page applications /2/. SPAs in general are not a new concept but Angular as a frame-

work for building SPAs is relatively new, having its first release in 2016 /1/.

Robert Martin collected a set of design principles to improve object-oriented soft-

ware called the SOLID-principles /3/. These principles were first mentioned over

20 years ago in 1995 and they have been proven as a good guideline for software

design. This thesis aims to find a way to utilize the SOLID-patterns in Angular to

make code adaptive to change. All the SOLID-principles apply to almost any ob-

ject-oriented language, so this thesis is somewhat relevant even when Angular is

not used.

In short, this thesis aims to improve structure in Angular-projects. The goal is to

find optimal design choices for projects to utilize. The ideal case would be that any

requirement change or new feature would only affect the part of software where

change is required. SOLID-principles have been a good guideline so far for object-

oriented software in producing agile code. This thesis aims to apply them with An-

gular-framework and find best practices to structure Angular-applications.

 10

2 COMPANY INTRODUCTION, WAPICE LTD.

Wapice is a leading technology partner, which offers high quality software exper-

tise for its customers. The company was established in 1999 and during that time,

its primary goal was to develop products for customer needs with the WAP-proto-

col. The company’s head office is based in Vaasa, Finland and they currently em-

ploy over 340 people with ten offices also located in Finland /4/. Wapice has been

growing steadily and the company’s revenue was 21.6 million Euros in 2016 /5/.

Wapice is an IT-company with primary focus in software and hardware develop-

ment. It has developed its own products for industrial needs such as IoT-TICKET,

an IoT-platform, Summium sales configurator and EcoReaction, consumption in-

formation management solution for energy companies /6/. Along with their own

products, company offers innovative solutions and consulting for customer needs.

 11

3 SINGLE PAGE WEB APPLICATIONS

Single Page Application (SPA) is an application in the web browser which does not

reload the page during use. SPA is almost like a native client loaded from the server

into the users browser /10/.

Single Page Application is not a new concept, and developers have created SPA’s

with different techniques such as Java applets or Flash. Both techniques require a

third-party plugin or software to function. JavaScript is supported by all the major

browsers and most of the time it is the best way to develop SPAs today. Benefits to

JavaScript over others include cross-platform compatibility, less bloat (no external

plugins) and one client language. Since devices are getting more powerful, more

computing tasks can be transferred from the server to the client without sacrificing

user experience /10/.

Single Page Applications work by rendering pieces of the user interface based on

user action. Instead of loading an entirely new page, only the required section is

updated. In contrast, a regular web application redraws the entire application on

user action, which causes a “flash” on the page. This loading period might take

several seconds if the server is under heavy load. Instead of showing a blank white

page for the user, SPA can display a loading animation and keep the other content

available for browsing /10/.

Developers can also move business logic from the server towards the client side for

faster decision making. For example, forms can be validated before sending them

to the server, which allows users to change invalid inputs before sending content to

the server. However, all user inputs still need to be validated on the server side and

client-side validation can never be trusted to be sufficient for security reasons. From

a developer’s perspective SPAs are much easier to update compared to regular desk-

top applications. Developers can just upload new code to the server and all their

users will get the newest version of the software. The application does not need any

separate installer, navigating and perhaps bookmarking the correct URL is enough

/10/.

 12

JavaScript community is making a great effort to make JavaScript available also

outside of the web browser. The best-known project is probably Node.js, which

allows backend development with JS. Native-like applications are also endorsed

with projects like Electron, PhoneGap and other alternatives.

 13

4 OVERVIEW OF THE TECHNOLOGIES

Before looking at TypeScript and what it offers, one should have a general idea of

typing in programming languages. In strongly typed languages each type of data is

predefined as part of the language and the variables must be declared with one of

the data types /8/. Consider the following pseudocode example using a strongly and

statically typed language:

string a = "1";

int b = 1;

int result = a – b;

Code Snippet 1. Subtraction in a strongly typed language

This would result in an error, since the integer type cannot be subtracted from a

string type. Since the language in question is statically typed, the error would arise

at compile time /9/.

Weakly typed programming languages allow implicit conversion of types. By writ-

ing the previous example in JavaScript, which is a weakly and dynamically typed

language, it would look like this:

var a = "1";

var b = 1;

var result = a – b;

Code Snippet 2. JavaScript example of string and integer subtraction

Value for result variable would be 0. However, if the arithmetic operator is changed

from subtract to sum, the result will be “11”. The language will treat the variables

as strings and concatenate them together. This kind of uncertain behavior will most

likely increase the number of bugs in the software. Since JavaScript is also a dy-

namically typed language, possible problems will only emerge during runtime /9/.

 14

4.1 TypeScript

TypeScript is a programming language designed and developed by Microsoft pri-

marily intended for building large applications with JavaScript. It allows developers

to use static typing and common object-oriented programming techniques such as

modularity, classes and interfaces. Static type checking allows better support for

tooling and Microsoft has already provided great tools for TypeScript development.

TypeScript is a superset of JavaScript, which means that all JS code is also valid

TS code. This eases the migration from native JS codebase to TypeScript. Devel-

opers can gradually migrate towards TS without a complete rewrite of the software.

And since TypeScript compiles to JavaScript the code will run on any browser in

any host /10/. Angular is written in TypeScript and Angular team suggests devel-

opers to use TypeScript when developing Angular applications. Examples in An-

gular documentation are also written using TypeScript.

4.2 Angular

Angular is a web application framework mainly developed by Google along with

multiple other open source contributors. It can be used to build mobile, desktop and

web applications for modern browsers using TypeScript or JavaScript. Angular is

a complete rewrite from its predecessor AngularJS that has been a relatively popular

SPA framework since its release in 2010. AngularJS was pioneering solutions for

the web during that time. Today the challenges in web development have changed

immensely /1/. Mobile devices are becoming the main platform for web applica-

tions and they surpassed desktop devices in internet usage in 2016 when in 2010

the figure was around 5% according to StatCounter /11/.

The main differences between Angular and its predecessor AngularJS is the adop-

tion of TypeScript, component based architecture and differences in template en-

gine in the newest version. It also includes improvements from ECMAScript 6 such

as lambda operators and iterators /12/. ECMAScript 6 or ES6 is the 7th edition of

ECMAScript standard created by Ecma International /13/. The Angular team is also

making constant efforts to provide new versions of the framework to be backwards

compatible with the previous version. These versions should officially be referred

 15

as “Angular” without its version number instead of e.g. “Angular 4” /14/. At the

time of writing, current major version for Angular is 5.

4.3 Angular CLI

Angular CLI (Command Line Interface) is a tool for initializing, developing and

maintaining Angular projects. It is development by the Angular team and multiple

other contributors. Angular CLI automates the development workflow by generat-

ing necessary boilerplate code for different pieces of Angular application. Boiler-

plate code refers to pieces of code that need to be included in multiple places with

little to no alteration /15/. Angular CLI can also be used to run local development

server, unit tests and end-to-end (E2E) tests and automating the build process /16/.

Features generated with the CLI tool follow the best practices from Angular style

guide /16/. Angular CLI offers a very powerful local development server, which

supports LiveReload. It monitors the changes in the project and modified files are

automatically re-compiled and the browser gets refreshed, which eases and speeds

up the development process /18/. Angular CLI generated projects include multiple

things to be preconfigured: Karma unit test runner and Protractor end-to-end test

framework, all required dependencies from the Node Package Manager (npm) are

installed such as TypeScript. Karma is a unit test runner for JavaScript that executes

given test code in multiple browsers and is mainly used for unit testing Angular

applications /19/. Protractor is an end-to-end testing framework for Angular appli-

cations that runs tests in a real browser, interacting with the application as a normal

user would /20/.

 16

5 SOFTWARE ARCHITECTURE IN GENERAL

Software architecture is a vague term and it has multiple definitions. One definition

for it is as follows: “Software application architecture is the process of defining a

structured solution that meets all of the technical and operational requirements,

while optimizing common quality attributes such as performance, security, and

manageability.” /21/. Software architecture involves multiple decisions based on a

wide range of factors and each of these decisions can have a big impact on the

maintainability, quality, performance and overall success of the system. Big and

complex software must be built on a strong foundation. Architecture focuses on

how the major elements and components within the software are used or interact

with each other. The implementation details such as data structures or algorithms

are design concerns, but very often architecture and design overlap /21/.

A software architect tries to combine business and technical requirements by un-

derstanding use cases, and then finding ways to implement them in the software.

The goal is to recognize the requirements that affect the structure of the software.

A good architecture would be flexible enough to handle the natural drift that occurs

over time with technologies and user requirements. Along with usability and func-

tionality, there are often other things to take into consideration, such as security and

performance /21/.

The current thinking on architecture assumes that the software will evolve over time

and not everything can be known up front to fully design the system. The design

will need to evolve during the implementation stages of the application. To get

started with the architectural design with limited knowledge, one should identify

the foundational parts of the architecture that represent the greatest risk if done

wrong, find the parts that are most likely to change, identify key assumptions made

in the design and how to test them, and under what conditions refactoring is required

/21/.

 17

6 ANGULAR APPLICATION ARCHITECTURE OVERVIEW

Angular framework consists of multiple libraries some of them are considered core

functionality, thus required, and some are optional. Applications can be written us-

ing HTML templates with Angular-specific markup, writing component classes to

manage the templates, include logic in services and wrap these parts to modules.

These are the major building blocks for Angular applications. The app is launched

by bootstrapping the root module, and Angular will display the application in a

browser. Figure 1. Angular architecture overview below visualizes the simplified

and abstract description what happens inside Angular application /22/.

Figure 1. Angular architecture overview

The bootstrapping process creates the components defined in the bootstrap array.

Since each bootstrapped component is usually the base of its own tree of compo-

nents, bootstrapping triggers a cascade of component creations and includes them

in the browser Document Object Model (DOM) /23/.

6.1 Modules

Angular modules (NgModules) are used to organize code similarly to JS modules

although they differ in some ways. JavaScript modules are mainly used to

namespace different scripts to avoid global variable collusions and other unwanted

effects and they are exported in a single file. Angular modules can be configured

 18

with metadata to include multiple files, and modules can only export the classes it

owns or imports from other modules /24/.

NgModules configure the dependency injector and the compiler inside Angular.

NgModules should be used to wrap cohesive blocks of functionality to its own mod-

ule such as utilities or feature areas. Examples of NgModules are the libraries in-

cluded in Angular such as the FormsModule, which includes functionality to form

handling in Angular applications. These libraries are available for any Angular pro-

ject to use to ease the development /25/.

6.2 Components and Templates

Components are the main building blocks of Angular applications identified with

the @Component decorator. The component is a controller for the template. It in-

cludes the application logic to support the template view. The template is just a

HTML document with some Angular specific syntax that provides Angular the in-

structions on how to render the component. The component class then interacts with

the template through an application programming interface (API) /26/. The tem-

plates can include other components, which means that larger components can be

built of smaller components.

Components take care of the data binding visualized in yllä Angular handles the

data flow between template and component so that the developer does not have to

manually push values into HTML and turn user responses into actions and value

updates. Angular supports two-way data binding, which is a mechanism for coor-

dinating parts of a template with parts of a component /26/. This allows seamless

data flow from the controller to the DOM and vice versa.

6.3 Metadata

Metadata is used to provide instructions for Angular about a class. Metadata for a

component tells Angular where to get the resources needed to present the compo-

nent and its template. As an example, in the @Component decorator usually is con-

figured the selector used for the component (how it can be referenced in a template

 19

file), location of the template file, location of CSS styles for the template and what

services it requires /26/.

6.4 Directives

When Angular renders a template, it transforms the DOM according to the instruc-

tions given by directives. Components are technically directives with a template.

Directives usually appear in a template within an element, and are divided into com-

ponents, structural and attribute directives. Structural directives alter the template

layout by manipulating the DOM with given instructions. For example, the *ngIf -

directive hides or displays elements with given conditions. Attribute directives alter

the appearance or behavior of an element /26/. One example of this is the *ngClass-

directive which dynamically adds and removes CSS classes to stylize elements.

6.5 Services

Service is an injectable class, which can encompass any value, function or feature

that the application needs. Usually services are split into narrow, well-defined clas-

ses that do something specific well. In general, view-related functionality should be

inside a component, and all other logic should be injected via services. However,

Angular does not enforce these principles. User input validation and communi-

cating with the server are examples of responsibilities that should be in a service.

One key benefit of this is to provide required services to components through de-

pendency injection (DI) to improve code reusability /27/.

 20

7 SOLID-PRINCIPLES

SOLID is an acronym for a set of practices that, when implemented together, make

code adaptive to change. SOLID-principles were introduced by Bob Martin over 15

years ago. SOLID acronym is made from following words:

“S” the single responsibility principle

“O” the open/closed principle

“L” the Liskov substitution principle

“I” the interface segregation principle

“D” the dependency inversion principle

These principles are valid even if used in isolation. When used in combination,

these patterns give the project completely different structure, which is adaptive to

change. However, one should not blindly follow these principles. Deciding where

and when to use SOLID-principles is part of software development. Excessive use

will make the code harder to read and might do more harm than good /28/. All the

following code samples in this chapter are written in TypeScript for Angular frame-

work.

7.1 Single Responsibility Principle

Single responsibility principle (SRP) guides developers to write code that has only

a single reason to change. Classes with multiple responsibilities should delegate one

or more responsibilities to other classes /28/. The example in Code Snippet 3 shows

a class, which violates the SRP.

 21

@Component({

 selector: 'app-root',

 template: '{{message}}'

})

export class ShowMessageComponent implements OnInit {

 public message: string;

 constructor() { }

 ngOnInit() {

 this.showMessage();

 setTimeout(() => this.showAnotherMessage(), 1500);

 }

 showMessage() {

 this.message = "Message";

 console.log("Message shown was: " + this.message);

 }

 showAnotherMessage() {

 this.message = "Another message";

 console.log("Another message was: " + this.message);

 }

}

Code Snippet 3. A class that violates the single responsibility principle

The example in Code Snippet 3 consists of three methods, ngOnInit() which is a

lifecycle hook for Angular that triggers when the component is initialized.

ShowMessage() and showAnotherMessage()-methods display messages to the user

and logs the shown message to the console. Therefore, this class has two reasons to

change. Possibly the message logic should be changed to allow setting the message

manually, or perhaps all the logs should be saved to a database. To solve this prob-

lem the logging functionality should be separated to a service, which is then injected

to the component. If the logging functionality needs to be reworked, it will only

affect the logging service and thus follows the single responsibility principle. By

moving the logging functionality to a service, it can be injected to other components

 22

that might need logging functionality. The example in Code Snippet 4 shows how

to implement the same functionality adhering to the single responsibility principle.

@Injectable()

export class LoggingService {

 public log(message: string) {

 console.log(message);

 }

}

@Component({

 selector: 'app-root',

 template: '{{message}}',

 providers: [LoggingService]

})

export class AppComponent implements OnInit {

 public message: string;

 constructor(private logger: LoggingService) { }

 ngOnInit() {

 this.showMessage();

 setTimeout(() => this.showAnotherMessage(), 1500);

 }

 showMessage() {

 this.message = "Message";

 this.logger.log("Message shown was: " + this.message);

 }

 showAnotherMessage() {

 this.message = "Another message";

 this.logger.log("Another message was: " + this.message);

 }

}

Code Snippet 4. Example of a class that follows the SRP

 23

Code is now a bit more complicated but it follows the single responsibility princi-

ple. The example in Code Snippet 4 is obviously more complex than it needs to be.

In bigger applications, the logging-service can be shared across multiple compo-

nents and changes to logging functionality would only be done in the logging ser-

vice. If the first solution was used across multiple components, changing logging

from simple console output to logging every message to a database would require

a lot more work.

7.2 Open/Closed Principle

Definition for open/closed principle (OCP) was described in the 1980s by Bertrand

Mayer in his book Object-Oriented Software Construction. He defined the OCP as

follows:

“Software entities should be open for extension, but closed for modification”.

 By following the OCP developers can reduce the risk of breaking the system when

introducing new functionality by leaving the old implementation intact and extend-

ing the existing class with new features /28/. The example in Code Snippet 5

demonstrates a way to extend the LoggingService functionality to support logging

to a database.

 24

export abstract class ILogger {

 logMessage: (message: string) => void;

}

@Injectable()

export class ConsoleLoggerService implements ILogger {

 logMessage(message: string) {

 console.log(message);

 }

}

@Injectable()

export class DatabaseLoggerService implements ILogger {

 constructor(private http: Http) { }

 logMessage(message: string) {

 this.http.post('http://localhost:3000/logs/',
{message}).subscribe();

 }

}

@Component({

 selector: 'app-ocp',

 template: '<h1>OCP Example</h1>',

 providers: [{provide: ILogger,

useClass: ConsoleLoggerService}]

})

export class OcpComponent implements OnInit {

 constructor(private logger: ILogger) { }

 ngOnInit() {

 this.logger.logMessage('Logged this');

 }

}

Code Snippet 5. Example of the open/closed principle using class-interface

 25

As the example in Code Snippet 5 shows, different implementations for ILogger

can be substituted with each other by configuring them in the providers array. De-

pending on requirements, the ConsoleLoggerService could be used on some com-

ponents or modules and the DatabaseLoggerService on others. Extension points in

TypeScript classes can be created with abstract methods, interfaces or even extend-

ing a class and overriding (rewriting) the method. However, TypeScript interfaces

are lost after compiling, since JavaScript has no support for interfaces. If the devel-

oper tries to give an interface implementation of ILogger instead of an abstract class

to providers array, it will result in a compile time error.

The example in Code Snippet 5 demonstrates a way where developer can use the

abstract class as an interface aka class-interface. The class name will be used as a

dependency injection token in Angular to map the interface to an implementation.

Implementing this interface in the service classes is not necessary, but it improves

the tooling support and can be considered as a better practice. Inheriting the base

class for subclasses (services) and overriding the methods is also possible, but it

raises another issue. Since multiple inheritance is not supported in TypeScript, in-

heriting the ILogger abstract class would prevent inheriting another, more suitable

class. There are several other ways to achieve the same functionality. An abstract

class could implement multiple interfaces and then the service could extend the base

class. Along with the single inheritance issue mentioned previously, it leads to “in-

terface soup” anti-pattern which is explained in the Interface Segregation Principle-

section. Another method would be using the @Inject()-decorator in the constructor

of the component and inject the concrete implementation to an interface.

7.3 Liskov Substitution Principle

The Liskov substitution principle (LSP) is a guideline for creating inheritance hier-

archies for classes. If the LSP is being followed, client can use any class or subclass

without compromising the expected behavior. Whenever the LSP is followed, the

clients remain unaware of changes to the class hierarchy. When there are no changes

to the interface, there should be no reason to change the existing code. The LSP

 26

helps to enforce the open/closed and single responsibility principles /28/. The au-

thor of the principle, Barbara Liskov, defined it as follows:

“If S is a subtype of T, then objects of type T may be replaced with objects of type

S, without breaking the program.”.

Consider the example in Code Snippet 6, where RubberDuck class extends Duck

class.

export class Duck {

 fly(): void { console.log('Flying!'); }

 quack(): void { console.log('Quack!'); }

 swim(): void { console.log('Swimming!'); }

}

export class RealDuck extends Duck {

 dive() { console.log('Diving!'); }

}

export class RubberDuck extends Duck {

 quack(): void { console.log('Squeak!'); }

 fly(): void {

 throw new Error('Rubber duck cannot fly');

 }

}

Code Snippet 6. Example of a class that violates the LSP

The rubber duck class in Code Snippet 6 breaks the Liskov substitution principle.

If the class names are injected to the definition, it is obvious. “If RubberDuck is a

subtype of Duck, then objects of type Duck may be replaced with objects of type

RubberDuck, without breaking the program”. Since the fly()-method in Rubber-

Duck-class throws an error, it breaks the program and is a violation of the LSP.

RealDuck-class does not break the LSP, since any object of type RealDuck could

be used as a Duck without problems.

7.4 Interface Segregation Principle

Interfaces are important tools in modern object-oriented programming. They repre-

sent the boundaries between the behavior that the client code needs and how that

 27

behavior is implemented. Interface segregation principle (ISP) suggests that inter-

faces should be small. If a client does not need a member from an interface, it does

not make sense to require it to be implemented. All members of an interface must

be implemented by the client /28/. Consider the following example in Code Snippet

7 where two ducks implement the IDuck-interface with three common duck behav-

iors flying, swimming and quacking.

export interface IDuck {

 fly();

 swim();

 quack();

}

export class RegularDuck implements IDuck {

 fly() { /* Flying logic */}

 swim() { /* Swimming logic */}

 quack() { /* Quacking logic */ }

}

export class RubberDuck implements IDuck {

 fly() {

 throw new Error('Rubber duck cannot fly');

 }

 swim() { /* Swimming logic */}

 quack() { /* Quacking logic */ }

}

Code Snippet 7. Example of a class that violates the ISP

RubberDucks cannot fly, even though they can swim and quack. Instead of a large

IDuck-interface, the methods should be split to smaller interfaces to be imple-

mented by the clients that can and should have that behavior. The next example

follows the interface segregation principle by dividing the functionality into sepa-

rate interfaces and the clients only implement the functionality they need.

 28

export interface IFlyable {

 fly();

}

export interface ISwimmable {

 swim();

}

export interface IQuackable {

 quack();

}

export class RubberDuck implements ISwimmable, IQuackable {

 swim() { /* Swimming logic */}

 quack() { /* Quacking logic */ }

}

export class RegularDuck implements IFlyable, ISwimmable, IQuackable {

 fly() { /* Flying logic */}

 swim() { /* Swimming logic */}

 quack() { /* Quacking logic */ }

}

Code Snippet 8. IDuck interface split into smaller interfaces

Some developers reunify segregated interfaces to avoid multiple interface injection

in classes. This could be done in the Code Snippet 8 by combining ISwimmable-

and IQuackable-interfaces to e.g. ICommonDuckBehavior. However, this could

lead to the interface soup anti-pattern as it removes the benefits that the ISP offers

/28/. Anti-patterns are solutions to common problems where the solution is ineffec-

tive and may result in undesired consequences /29/. By combining the interfaces,

the clients are again required to provide implementations for both methods. Even

though the example has only one method per interface, following the ISP principle

does not mean that every method should be in a separate interface.

7.5 Dependency Inversion Principle

The last principle and the D of SOLID-principles is called the dependency inversion

principle (DIP) and it is defined as follows:

 29

A. High-level modules should not depend on low-level modules. Both should

depend on abstractions.

B. Abstractions should not depend on details. Details should depend on ab-

stractions.

In practice, this means that dependency inversion introduces abstractions that are

depended on by client code and by the implementers /28/. Following UML (Unified

Modeling Language) diagram demonstrates a situation where the OcpComponent

uses a separate ConsoleLogger-class for logging and below that is the same thing

expressed as code.

Figure 2. OcpComponent with direct dependency to ConsoleLogger

export class ConsoleLogger {

 logToConsole(message: string) {

 console.log(message);

 }

}

export class OcpComponent {

 logEvent() {

 const cl = new ConsoleLogger();

 cl.logToConsole('Event');

 }

}

Code Snippet 9. Direct dependency to ConsoleLogger

In the OCP section, the requirement was to have a possibility for console and data-

base logging, depending on the situation. To fulfill the same requirements, it would

be possible to create a new class with database logging functionality, and use it with

the “new” keyword when necessary. However, any changes to these functionalities

require a lot of work, especially when these functions would most probably be used

 30

across the application. By following the DIP and changing the classes to depend on

an abstraction, the code will look like in Code Snippet 5. Example of the

open/closed principle using class-interfacein the OCP section. Below in Figure 3.

is an example of the UML-diagram after the high- and low-level modules depend

on the same interface.

Figure 3. OcpComponent and Logger classes depend on the same interface

One thing to note that an interface is not necessarily a great abstraction. Well-ab-

stracted interfaces can be used in many contexts, when poorly abstracted interfaces

can be used only on very specific use-cases. An example of an abstraction that could

be improved was shown in the ISP-section in the Code Snippet 8. IDuck interface

split into smaller interfaces The IQuackable-interface could be renamed to e.g.

ISound or a similar interface, which could then be used on other classes of animals

or things that can emit a sound.

7.6 Dependency Injection

Dependency injection (DI) is not the same as DIP, even though they are closely

related. Dependency injection is a technique that can be used to achieve the depend-

ency inversion. DI itself can be achieved in multiple ways such as constructor or

parameter injection or using an external DI framework. Angular has its own built-

in dependency injection framework, which is used in almost every Angular project

/30/.

 31

When using dependency injection, the required dependencies are passed into the

requiring class, instead of creating them inside the client. This was demonstrated in

the previous section about DIP. Code Snippet 9. Direct dependency to Con-

soleLogger. included an example of a class that did not use dependency injection.

The class itself created its own dependency using the “new”-keyword. The example

in Code Snippet 5. Example of the open/closed principle using class-interfaceuses

dependency injection to pass in the ILogger-interface, and the Angular-frameworks

inbuilt Http-class in the DatabaseLoggerService gets injected to the service with

DI. These dependencies are defined in the components constructor and the Angular

DI framework resolves the dependencies and injects them for the class to use.

DI helps developers to create more reusable and testable code. Dependencies can

be configured externally to allow more reusable components and unit testing be-

comes easier when developers can control and mock the dependencies during test-

ing /31/. Unit tests are used to test parts of the software in isolation so that they

function as intended. The objective of mocking is to focus on the actual “unit” or

piece of code under test, and provide a simplified and simulated implementation of

a required dependency /32/. Since adhering to SOLID-principles generates a lot of

dependencies inside the codebase, DI is an important technique for managing them.

 32

8 STRUCTURING ANGULAR APPLICATIONS

The bigger applications built with Angular include multiple components. The com-

ponents can be split roughly to “smart” and “dumb” components, also known as

container and presentational components. Using smart and dumb components helps

developers to separate responsibilities (SRP) and improve reusability. The compo-

nents can then be further bundled into NgModules which can be used to isolate, test

and re-use features /33/.

8.1 Dumb Component

A dumb or a presentational component is only aware of itself. It does not know

what happens outside of it. It receives input via property bindings, using the @Input

decorator, and emits output data as events using the @Output decorator /34/. Dumb

components are ideally configurable to maximize reusability. These components

are concerned how things look, and do not care how the data is loaded and might

contain both smart and dumb components inside /35/.

An example of configurability could be an HTML input component, where the user

could type in some text. As for configuration, the component could take in an In-

putOptions-class with attributes such as “useIcon”, “iconName” and “placeholder-

Text”. These are defined in the parent component and injected to the dumb compo-

nent. Configuration options would then alter the visual layout of the component by

setting or removing the icon and adjusting the placeholder text. As a result, the same

HTML input-element component can be used in multiple contexts. As an output,

the component can just emit the value it received from the user to the parent com-

ponent. The parent component will handle the output value as necessary or pass it

forward to the smart component.

Dumb components do not necessarily have to be taken to the extreme like in the

example. They can also be used to a more specific use-case inside the application

e.g. a BirdListComponent, which would take an array of birds as an input. This

component could still be reusable across the application, since it does not care

where the data comes from. BirdListComponent could display all birds from a data

 33

source or a filtered list of birds, which includes only those entries that start with the

letter “b”. The data is handed to it with DI and the BirdListComponents only job is

to display the given list of birds it receives.

8.2 Smart Component

Smart components are concerned with how things work. They provide the data and

behavior for the dumb components. As for presentation, smart components should

only layout the components they hold, not style them /35/. Since the smart compo-

nent includes application specific dependencies such as services, it makes them a

lot less reusable at least across different applications. The top level of a view is

usually going to be a smart component /36/. These components are also responsible

for working with the data they receive from dumb components.

In Figure 4 there is a mockup of a view. This mockup could be split to three separate

components. Two dumb components for search and table controls, and one smart

component that acts as a container for them.

Figure 4. User interface for filtering registered users table

 34

In this hypothetical use-case, an admin can view a list of all registered users. When

the view is loaded, the smart component fetches all the users from a database to the

table component. When the user types something to the search input, the search

component reads and emits it to the smart component. After that, the smart compo-

nent can filter the users list according to the search term and send the filtered array

back to the table component to display.

8.3 Feature Modules

When the application grows, code should be organized relevant for a specific fea-

ture. Similar functionality should be included in a NgModule making it a feature

module. With feature modules code related to a specific functionality or a feature

can be separated from other code /37/. Separated modules allow developers to iso-

late the modules for testing and modules can be routed to load eagerly and lazily to

affect performance /33/. Lazy loading improves application startup time since the

application does not need to load everything all at once, it can only load the modules

the user is required to use /38/. An example of a lazy loaded feature module could

be an admin interface. Most users cannot use the admin page so it would make sense

to load it on demand. Eager loading is the default application loading method. All

eagerly loaded modules are loaded on startup.

Most feature modules depend on the application in question but the Angular style-

guide suggests using core module and shared module in every application that takes

advantage of feature modules. The core feature module should include all the sin-

gleton services that are shared across the application, modules required by the assets

such as FormsModule and application-wide single-use components e.g. Naviga-

tionComponent. Core module is then imported only in the base AppModule. If the

core module is imported in a lazy loaded module, the lazy loaded module will create

its own copy of services, which will likely have undesirable results. Eagerly loaded

modules have access to the AppModule’s injector, so all the services in core module

are available for them /33/.

A shared module should include all the components, directives and pipes that are

reused in other feature modules. Providing services from a shared module should

 35

be avoided. Since the shared module includes all the reused components, it should

also import the modules required by these components, such as the FormsModule.

As a summary, core module provides all the application-wide singleton services

and single-use components and the shared module provides reusable components,

directives and pipes for other feature modules /33/.

 36

9 EXAMPLE PROJECT: SIMPLE USER MANAGEMENT

Before the application design can be started there must be some context on what

should be built. In this case, the example application should include different views

for an admin and a regular user and the possibility to login with an admin account.

Both roles should have the possibility to view and filter the users table. The admin

should be able to add, edit and delete users from the application. A deletion button

must be placed next to the individual user records inside a table. These capabilities

must not be available for regular users.

9.1 High-level Design of the Example Application

In this small example application, it is possible to design the system completely

upfront. The application has high-level specifications for the architect to work with.

The implementation details such as algorithms or styling do not have to be taken

into consideration in this phase. All the structural specifications are known, but in

bigger applications this is not usually the case.

Starting from the top of the requirements, it is specified that admin and user view

should be separate, and admin view must not be available for regular users. This

implies that the views should be at least different components. In most cases, regu-

lar user amount bypasses the amount of admin users in an application. With this

knowledge, it makes sense to separate both functionalities into own modules for

isolation and enable performance optimizations for regular users by lazy-loading

the admin module when needed. Even without the lazy-loading, separating the dis-

tinct features to own feature-modules is the correct choice.

The admin and the regular users should both have the possibility to view and search

from the users table. This is a clear indicator that the components should be shared

across the application and thus, placed into a shared module. However, the admin

must be able to delete the users from the table and a regular user can only view the

table. The table should then be a configurable dumb-component to adjust it based

on user role. It also makes sense to separate the search box from the table compo-

nent in case the application needs to grow. Creating components with the Angular

 37

CLI is fast and easy, so the separation does not add much overhead but offers great

benefits in the long run if the application development is continued.

So far it is known that three modules need to be created; admin, user and a shared

module. Search-feature requires a shared service across the application, so that the

search-component itself can stay “dumb”. Application-wide services should be

placed into a core module, so a fourth module is required for the application.

Figure 5. Folder structure of modules for the example application

Routing is added as a fifth module to separate routing logic from other modules,

again to adhere to the SRP.

9.2 Component- and Service-level Design

Modules are now decided and more detail can be added. To fulfill the admin-mod-

ule requirements, six components are needed. A user creation-, a creation dialog-

and a login-component (specific for admin-module), user-table and the search com-

ponent (reusable and shared dumb-components from shared-module) and the smart

management component. For the login functionality, the module also includes the

authguard-service for restricting access to the admin panel and the login-service.

Smart management component needs access to registeredusers- and the search-ser-

vice, which are in the core-module, to fulfill the requirements.

 38

The shared-module includes search- and usertable-components and the models used

in this application. Finally, the user-module requires the shared-module compo-

nents and the smart details-component, which manages them.

9.3 Implementing the Application

At this point all the required modules, components and services are decided. While

developing the application, the knowledge of the application and its limitations in-

creases. During the development, it came apparent that the user experience could

be improved greatly by adding a navigation bar. Navigation should include the ad-

min- and user-views and a logout-button if a user is logged in. The navigation-

component can be placed into the core-module, since it is shared across the appli-

cation, but it is not a dumb-component used by other modules.

The admin-module is a lazy-loaded module, so Angular-injector does not have ac-

cess to it unless the route is activated and the module contents loaded. Therefore,

the login-service must be moved to core-module to gain access to logout()-method

and isLoggedIn-property inside the navigation-component. However, the au-

thguard-service was kept inside admin-module.

Both authguard-, and login-service could be inside the core-module and be consid-

ered as a valid solution, better than the current one if the application development

continues. However, the example application is not under constant development, so

the authguard-service can reside under admin-module to be lazy-loaded. It could

also be argued that the performance gains from lazy-loading this service are non-

existent, thus bad practice to place it inside the admin-module instead of the core-

module. This example shows that design is not always straightforward. By creating

a loosely-coupled architecture like this, adapting to change is easy. Moving the au-

thguard-service from the admin-module to the core-module requires changes only

to import statements and providers array inside the respective modules.

 39

9.4 Finished Application

The finished application fulfills all the given requirements. The folder structure is

good and the features are isolated into their modules. The folder structure of the

finished application can be seen in Figure 6.

Figure 6. Folder structure for the finished application

Screenshots of the application in Figure 7 display the differences between the ad-

min- and user-views. The admin-view has the added functionality of deletion inside

 40

the table but the component is the same as in the user-view. The table component

can receive TableOptions-class, which is used to alter the appearance and function-

ality by adding an extra column for delete-buttons.

Figure 7. Comparison of the admin- and user-view

Lastly, the difference between dumb- and smart-components can be seen in Code

Snippet 10 and Code Snippet 11.

 41

@Component({

 selector: 'app-search',

 template: `

 <mat-form-field>

 <input matInput [formControl]="searchField" placeholder="Search"
(blur)="searchField.reset()">

 </mat-form-field>`,

 styleUrls: ['./search.component.css']

})

export class SearchComponent implements OnInit {

 @Output() searchTerm: EventEmitter<string> = new EventEmitter();

 searchField: FormControl = new FormControl();

 ngOnInit() {

 this.searchField.valueChanges

 .subscribe(term => {

 this.searchTerm.emit(term != null ? term : '');

 });

 }

}

Code Snippet 10. The “dumb” search-component that emits values

The search-component emits all the values it receives to the input-element. Sub-

scribing to value changes happens on component load, inside the ngOnInit()-life-

cycle hook. When the value changes, it is forwarded to the details component in

Code Snippet 11.

 42

@Component({

 selector: 'app-details',

 template: `

<div class="row">

 <div class="col-md-3 offset-md-3">

 <app-search (searchTerm)="search($event)"></app-search>

 </div>

</div>

<div class="row">

 <div class="col-md-6 offset-md-3">

 <app-user-table [dataSource]="filteredUsers"></app-user-table>

 </div>

</div>

`

})

export class DetailsComponent implements OnInit {

 users: User[];

 filteredUsers: User[];

 constructor(private userService: RegisteredUsersService, private
searchService: SearchService) { }

 ngOnInit() {

 this.users = this.userService.readAllUsers();

 this.filteredUsers = this.users;

 }

 search(term: string) {

 this.filteredUsers = this.searchService.search(term, this.users);

 }

}

Code Snippet 11. "Smart" details-component that processes values from dumb

components.

The details-component receives the value from the search-component and calls the

injected search-service to perform filtering to the array. The filteredUsers-array

contains the records left after search has been performed. The framework notices

this change, and passes the changed array to the table component, which displays

 43

the results. The details-component does not have any CSS-styles. It only contains

the necessary wrapping divs for laying out the dumb-components.

 44

10 CONCLUSIONS

The goal of this thesis was to find ways to structure Angular-applications so that

they can adapt to changing requirements. This thesis was a high-level look to An-

gular-application structure and SOLID-principles.

Common issues with applications such as performance, testing and collaboration

were solved by using feature modules inside Angular-applications. Feature modules

allowed testing in isolation and lazy loading. Lazy loading improved performance

by loading only the required parts of the application. Application development with

multiple developers became easier due to isolated feature modules, compared to a

single module.

The smart/dumb-model was introduced to provide a pattern which applies the sin-

gle-responsibility-, interface segregation-, and dependency inversion principles.

This pattern could be used to create reusable components. The Liskov substitution

principle should be taken into consideration when creating inheritance hierarchies.

Although components and services can be extended, it has not been used a lot to

this date so the LSP applies more to regular TypeScript-classes. The open/closed

principle was used to add features without altering the existing functionality. In

most cases the SOLID-principles are applied by using interfaces. However, since

TypeScript is compiled to JavaScript, which has no support for interfaces, it be-

comes difficult. Alternative solution was introduced by using class-interfaces.

Finally, the example project was provided for bringing theoretical concepts into

practice. The thought process behind the decisions were explained. The project fol-

lows best practices and should be used as an example for future projects to keep the

project as maintainable and scalable as possible.

 45

REFERENCES

/1/ Kremer, J. 2016. Angular, version 2: proprioception-reinforcement.

https://blog.angularjs.org/2016/09/angular2-final.html Accessed 24.2.2018.

/2/ Poe, C. 2017. What are the benefits of a Single Page App?

https://www.bytelion.com/benefits-of-a-single-page-app/ Accessed 3.2.2018.

/3/ Martin, R. C. 2005. The Principles of OOD.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod Accessed 1.2.2018

/4/ Wapice basic info. 2017. https://www.wapice.com/contact Accessed 6.2.2018.

/5/ Wapice economic information. 2017. https://www.finder.fi/IT-sovelluksia+IT-

ohjelmistoja/Wapice+Oy/Vaasa/yhteystiedot/225253 Accessed 6.2.2018.

/6/ Wapice products. 2018. https://www.wapice.com/products Accessed 6.2.2018.

/7/ Mikowski M. S., Powell J. C. 2012. Single Page Web Applications. Manning

Publications. 1-5. http://deals.manningpublications.com/spa.pdf Accessed

17.2.2018.

/8/ Harbeck, R. 1999. Definition of strongly typed programming language.

http://whatis.techtarget.com/definition/strongly-typed Accessed 13.2.2018.

/9/ Oracle. 2015. Difference between static and dynamic typing.

https://docs.oracle.com/cd/E57471_01/bigData.100/extensions_bdd/src/cext_trans

form_typing.html Accessed 13.2.2018.

/10/ Somasegar, S. 2012. TypeScript: JavaScript Development at Application Scale.

https://blogs.msdn.microsoft.com/somasegar/2012/10/01/typescript-javascript-

development-at-application-scale/ Accessed 13.2.2018.

/11/ Heisler, Y. 2016. Mobile internet usage surpasses desktop usage for the first

time in history. https://bgr.com/2016/11/02/internet-usage-desktop-vs-mobile/

Accessed 24.2.2018.

 46

/12/ Dziwoki, M. 2017. What’s the difference between AngularJS and Angular?

https://gorrion.io/blog/angularjs-vs-angular/ Accessed 24.2.2018.

/13/ Ecma International. 2016. ECMAScript® 2016 Language Specification.

https://www.ecma-international.org/ecma-262/7.0/ Accessed 24.2.2018.

/14/ Angular press kit, official branding guidelines. https://angular.io/presskit

Accessed 24.2.2018.

/15/ Lämmel, R., Jones S. L. P. 2003. Scrap Your Boilerplate: A Practical Design

Pattern for Generic Programming.

https://www.researchgate.net/publication/221282345_Scrap_Your_Boilerplate_A

_Practical_Design_Pattern_for_Generic_Programming Accessed 24.2.2018.

/16/ Multiple authors. 2017. Angular CLI wiki. https://github.com/angular/angular-

cli/wiki Accessed 24.2.2018.

/17/ Angular CLI homepage. https://cli.angular.io/ Accessed 24.2.2018.

/18/ Van de Moere, J. 2017. The Ultimate Angular CLI Reference Guide.

https://www.sitepoint.com/ultimate-angular-cli-reference/ Accessed 24.2.2018.

/19/ Multiple authors. Official Karma GitHub repository.

https://github.com/karma-runner/karma Accessed 24.2.2018.

/20/ Official Protractor homepage. http://www.protractortest.org/#/ Accessed

24.2.2018.

/21/ Microsoft. 2009. Microsoft Application Architecture Guide, 2nd Edition.

https://msdn.microsoft.com/en-us/library/ff650706.aspx Accessed 24.2.2018.

/22/ Angular documentation. Architecture overview.

https://angular.io/guide/architecture Accessed 13.3.2018.

/23/ Angular Documentation. Bootstrapping.

https://angular.io/guide/bootstrapping# Accessed 13.3.2018.

 47

/24/ Angular documentation. JavaScript Modules vs. NgModules.

https://angular.io/guide/ngmodule-vs-jsmodule Accessed 13.3.2018.

/25/ Angular Documentation. NgModules. https://angular.io/guide/ngmodules

Accessed: 13.3.2018.

/26/ Angular Documentation. Introduction to Components.

https://angular.io/guide/architecture-components Accessed: 17.3.2018.

/27/ Angular Documentation. Introduction to Services and Dependency Injection.

https://angular.io/guide/architecture-services Accessed: 17.3.2018.

/28/ McLean Hall, G. 2017. Agile coding with design patterns and SOLID

principles. Microsoft Press. 213-215, 259, 291, 308-309, 323

/29/ Agile Alliance. Definition of Antipattern.

https://www.agilealliance.org/glossary/antipattern/ Accessed 3.4.2018

/30/ Angular documentation. The Dependency Injection pattern.

https://angular.io/guide/dependency-injection-pattern Accessed 8.4.2018

/31/ Dependency Injection Benefits. http://tutorials.jenkov.com/dependency-

injection/dependency-injection-benefits.html Accessed 9.4.2018

/32/ Telerik. Unit Testing and Mocking Explained.

https://www.telerik.com/products/mocking/unit-testing.aspx Accessed 9.4.2018

/33/ Angular documentation. Style guide.

https://angular.io/guide/styleguide#application-structure-and-ngmodules

Accessed: 21.4.2018

/34/ Van de Moere, J. 2018. Understanding Component Architecture: Refactoring

an Angular App. https://www.sitepoint.com/understanding-component-

architecture-angular/ Accessed 11.4.2018

 48

/35/ Abramov, D. 2015. Presentational and Container Components

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0

Accessed 11.4.2018

/36/ Angular University. 2017. Angular Architecture - Smart Components vs

Presentational Components. https://blog.angular-university.io/angular-2-smart-

components-vs-presentation-components-whats-the-difference-when-to-use-each-

and-why/ Accessed 11.4.2018

/37/ Angular Documentation. Feature Modules. https://angular.io/guide/feature-

modules Accessed 21.4.2018

/38/ Rangle.IO. Lazy Loading a Module. https://angular-2-training-

book.rangle.io/handout/modules/lazy-loading-module.html Accessed 21.4.2018

