

Creating Motion Graphics in Blender

with Animation Nodes

Rolands Tiss

Bachelor’s thesis

November 2017

Degree Programme in Media and Arts

2

ABSTRACT

Tampereen ammattikorkeakoulu

Tampere University of Applied Sciences

Degree Programme in Media and Arts

TISS, ROLANDS:

Creating Motion Graphics in Blender with Animation Nodes

Bachelor's thesis 75 pages, appendices 5 pages

November 2017

In the past decades motion graphics has evolved dramatically. From analog signal syn-

thesizing and processing to keyframing and digital computer graphics. Among the evolu-

tion of technology also motion graphics development methods have changed. If 40 years

ago there was a Scanimate, an analog computer animation system, then now there exist

dozens of computer graphics development software.

As a rule of thumb, paid software should deliver higher quality content and offer more

technical features than Open Source Software but is it possible to deliver competitive

results with a free software? The goal of this thesis is to examine open source software -

Blender’s and Animation Nodes’ potential in motion graphics.

Blender has been an Open Source Software since October 13, 2002 and keyframe anima-

tion features within it. Even though node based procedural animation techniques were

known way before keyframing, Blender was lacking these features until 2015 when Ani-

mation Nodes appeared. Two animation techniques, but what differs them from each

other in the same working environment? The purpose of this thesis is to compare these

techniques; to find their strengths and weaknesses.

To compare Animation Nodes features to the already well known keyframe animation

method, two by appearance similar animations were created using two mentioned tech-

niques.

The case study revealed differences in motion graphics development pipeline when using

two different animation methods. Also, it was found that almost the same outcome can

be achieved using different techniques from which each has its cons and pros.

The findings verify that Animation Nodes is a great and powerful add-on for Blender.

Instead of replacing already implemented animation features in Blender, Animation

Nodes expands their capabilities to create competitive motion graphics for free.

Keywords: motion graphics, animation nodes, animation, blender, 3d

3

CONTENTS

1 INTRODUCTION ... 6

2 WHAT IS MOTION GRAPHICS ... 9

3 NODES .. 10

3.1 Nodes in Blender ... 10

3.2 Animation Nodes ... 12

4 ANIMATION NODES .. 13

4.1 Installing Animation Nodes ... 13

4.2 Workspace of Animation Nodes .. 13

4.3 Nodes ... 14

4.3.1 Hidden node sockets ... 14

4.3.2 Advanced Node Settings ... 15

4.3.3 Socket types .. 16

4.3.4 Connecting nodes .. 18

4.3.5 Input, function and output nodes ... 19

4.4 Animation Nodes execution in Blender ... 20

4.5 Main programs and Subprograms .. 22

4.5.1 Main programs .. 23

4.5.2 Subprograms ... 23

 Loop .. 24

 Group ... 25

 Scripts .. 27

5 CASE STUDY: ANIMATION DEVELOPMENT COMPARISON USING

ANIMATION NODES AND KEYFRAME ANIMATION TECHNIQUES . 28

5.1 Location, Rotation and Scale animation .. 29

5.1.1 Location, Rotation and Scale animation using Animation Nodes

only ... 29

5.1.2 Location, Rotation and Scale animation using keyframe animation

method only .. 37

5.2 Object hiding and unhiding .. 44

5.2.1 Object hiding and unhiding using Animation Nodes 44

5.2.2 Object hiding and unhiding using keyframe animation method ... 46

5.3 “CurbStone” animation .. 47

5.3.1 “CurbStone” animation using Animation Nodes 47

5.3.2 “CurbStone” animation using keyframe animation method 49

5.4 “Mug’s” Location and Rotation animation .. 49

4

5.4.1 “Mug’s” Location and Rotation animation using Animation Nodes

 .. 49

5.4.2 “Mug’s” Location and Rotation animation using keyframe

animation method ... 51

5.5 “VentBlade.n” rotation .. 52

5.5.1 “VentBlade.n” rotation using Animation Nodes 53

5.5.2 “VentBlade.n” rotation using keyframe animation method 55

5.6 Spline bevel for “Sign_AnimationNodes_Circle” animation 57

5.6.1 Spline bevel for “Sign_AnimationNodes_Circle” animation using

Animation Nodes .. 57

5.6.2 Spline bevel for “Sign_AnimationNodes_Circle” animation using

keyframe animation method ... 60

5.7 “Neon_Blue” and “Neon_Pink” material wiggle animation 62

5.7.1 “Neon_Blue” and “Neon_Pink” material wiggle animation using

Animation Nodes .. 62

5.7.2 “Sign_AnimationNodes_Sign” and

“Sign_AnimationNodes_Circle” material wiggle animation using

keyframe animation method ... 65

5.8 Text animation ... 67

5.8.1 Text animation using Animation Nodes 67

5.8.2 Text animation using keyframe animation method 68

5.9 Main differences between Animation Nodes and keyframe animation

method ... 69

5.9.1 Production value ... 69

DISCUSSION ... 70

REFERENCES .. 73

APPENDICES .. 76

Appendix 1. Skype Interview with Jacques Lucke 06.04.2017. 76

Appendix 2. Case Study’s production files. .. 79

Appendix 3. Examples created during the learning process............................ 80

5

GLOSSARY

3D Three dimensional

n Non-negative integer

AN Animation Nodes

Active node The last selected node in Node Editor

Active object The last selected object in Object Mode and is shown in a

lighter orange color than other selected objects

Add-on A piece of software that enhances and customizes software’s

applications

Blender Full feature 3D creation software

CGI Computer Generated Image

Interpolation A method of constructing new data points within the range of

a discrete set of known data points

OSS Open-source software

Python A High-level programming language

Shader A program that runs on a graphics card which processes 3D

scene during the rendering pipeline, controlling lighting and

shading effects, before image is drawn on a computer’s screen

Vector Algebra Algebraic operations in vector spaces

VFX Visual effects

6

1 INTRODUCTION

In the recent decades motion graphics has conquered a significant role in the animation

industry. The 3D animation market is predicted to grow from USD 12.01 Billion in 2017

to USD 21.05 Billion by 2022 (MarketsandMarkets™, 2017). Nowadays one cannot im-

agine commercials, TV shows, movies, music videos, video games or other digital me-

dium which does not contain a piece of digitally made animation.

Because of the tremendous demand from the animation industry, software developers

have created dozens of digital animation production tools. Regardless of the developer

and software suites they offer, most of them share similar features like 3D modelling,

Animation, Rendering, 3D Tracking etc (Slick, J. 2016).

Roy Weinstock, Scanimate animator, tells that the origins of computer motion graphics

started in 1960 in Lee Harrisons’ attic in Blue Bell, Pennsylvania, United States (Scani-

mate: The Origins of Computer Motion Graphics – Film 2016). According to HistoryofIn-

formation, the first hybrid graphic animation computer – ANIMAC was built by Lee Har-

rison III in 1962, which was predecessor for Scanimate. Scanimate was analog computer

animation system designed and built by Harrison and the Computer Image Corporation

in Denver. From around 1969 up to computer era in mid-1980’s it was the main motion

graphics creation tool in television and film industries. (HistoryofInformation)

Scanimate became a standard solution in 1970’s and 1980’s. According to Scanimate:

The Origins of Computer Motion Graphics – Film (2016), Dave Sieg and Roy Weinstock

tell that Scanimate was used for show openings, commercials, TV shows and other ani-

mations. The principle of Scanimate system is analog signal processing. Altogether there

were 8 systems built and only one is still in working condition owned by Scanimate en-

gineer Dave Sieg. This system was a significant turning point for motion graphics. Engi-

neers who made Scanimate not only built the whole system, they also created formulas

of video effects that nowadays are used in CGI by every motion graphics artist. (Scani-

mate: The Origins of Computer Motion Graphics – Film 2016)

7

Nowadays there is more than just one motion graphics creation tool. Despite the amount

and variety of offered animation development software, there have been set a few stand-

ards in animation industry. The most frequently used software suites in motion graphics

studios are 3ds Max and Maya from Autodesk Inc., Adobe After Effects from Autodesk

Inc., Cinema4D from Maxon Computers GmbH or Houdini from Side Effects Software

Inc. Without a doubt, all these tools are powerful and do their tasks at the top quality but

for small companies and freelancers they might not be the most cost-efficient solutions

for commercial purposes because of their relatively high licensing cost (Autodesk Inc.;

Maxon Computers GmbH; Side Effects Software Inc.; Adobe Systems Inc.). Table 1 lists

most popular 3D software licensing cost on 24.10.2017.

TABLE 1: Most used 3D software price comparison on 24.10.2017.

No. Software Package Company License Cost Options

1 3ds Max Autodesk Inc. 242.00 €/month

1936.00 €/1 year

5808.00 €/3 years

2 Maya Autodesk Inc. 242.00 €/month

1936.00 €/1 year

5808.00 €/3 years

3 Cinema 4D Broadcast R19 Maxon Computers

GmbH

1547.00 € Standalone

4 Adobe After Effects Adobe Systems Inc. Starting from

24.19 €/month

5 Houdini Indie Side Effects Software

Inc.

199 $/1 year

According to Slick (2017), among all above mentioned expensive industry standards there

also exist several 3D software suites that are available for free: Blender from Blender

Foundation, SketchUp from Trimble Inc., Sculptris from Pixologix Inc., Daz Studio from

Daz Productions Inc. etc. It is important to point out that most of mentioned software

above are not full feature 3D creation suites except Blender from Blender Foundation. It

is one of the best full feature open source 3D software packages at the time. It has gained

popularity among CG artists rapidly in past few years with its equivalent features that

other developers offer for excessive cost. (Slick 2017)

8

It is completely free of charge for any kind of commercial and/or non-commercial pur-

pose with strong community and developer support all over the world. Blender is a full

feature 3D creation tool, which offers 3D modelling, rigging, shading, animation, particle

simulation etc. (Blender Foundation: About)

Thanks to Jaques Lucke, a Blender developer from Henningsdorf in Germany, Blender

has gotten its own add-on for procedural effect creation – Animation Nodes. This extra

feature is also an OSS which does not cost anything and is freely available online for

everyone.

The goal of this thesis is to investigate AN in depth. Most of the new companies, artists

or freelancers do not have funding for expensive software. Therefore, the main question

is – what Animation Nodes is capable of?

In this thesis, the basics of Animation Nodes will be covered. There will be given an

overview of general AN principles and implementations. Also included is a practical case

study to compare two different animation techniques – Animation Nodes and keyframe

animation method.

This thesis is aimed for everyone who has an interest in 3D visualisation, motion graphics

and details related to procedural animation effect creation. The focus is put on Animation

Nodes add-on; therefore, basic knowledge of Blender and Vector Algebra is required.

9

2 WHAT IS MOTION GRAPHICS

Motion Graphics is a specific animation discipline which combines different media forms

such as graphic design, animation or/and visual effects depending on the desired outcome.

All these disciplines share common methodologies and techniques to be created but there

are major differences that help to distinguish motion graphics from classical animation or

VFX.

Asset translation on screen over time does not define what is motion graphics and how it

differs from classical animation or visual effects. Motion graphics is derived from graphic

design, inheriting simplicity and abstraction but is not limited to use any other visual

elements. The most significant difference between motion graphics and animation is an

extra layer of information. If animation and visual effects are created more for storytelling

and viewing experience then motion graphics’ purpose is to carry information that helps

to explain an idea or concept. (Crook & Beare 2015, 10)

According to Crook and Beare (2015), classic animation and motion graphics share a lot

in common: the tools they are created with, development methods, animation principles

and many others. The attribute that differs these two disciplines is the purpose. If ani-

mated film’s or short film’s main purpose is to tell a story, send a message and entertain,

then motion graphics purpose is to explain information. It is important to keep in mind

that animation is derived from illustration but motion graphics comes from graphic design

which is meant to deliver information rather than emotions. (Crook & Beare 2015, 12)

Crook and Beare (2015) emphasise that, the difference between motion graphics and VFX

is that in VFX footage and images are composed in a way that they look like one piece

while in motion graphics it is not always necessary. Both can share the same tools and

methods to be created, such as particle generators and physics simulations but again the

attribute that differentiate these disciplines is the purpose. (Crook & Beare 2015, 14)

10

3 NODES

3.1 Nodes in Blender

In computer science nodes are known as an approach of organizing, structuring and com-

bining data network (TechTerms). Also, nodes are known as a visual scripting method

which is more artist friendly for complex mathematical function creation. This technique

allows one to avoid traditional scripting until a certain point. Nodes can be reconsidered

as coding machines, which process raw data and output the final product (Steinmetz &

Gottfried 2014, 9). Simplified node operating principle is shown in figure 1. Official

Blender releases have already implemented node-based systems for material, texture and

compositing data. They all consist of nodes and links.

FIGURE 1. Simplified node operating principle (Based on Lampel 2015, 39)

Lampel (2015) explains, that each node represents a block of functions it performs on

data. There are three types of nodes: input, operation and output nodes. (Lampel 2015,

39.) Input nodes provide the node system with data from various sources. Operation node

executes operations based on data it receives from previous nodes or predefined values

and outputs the result to the next node in the graph. Output nodes receive data from the

rest of the node system and assigns them to linked dependencies. Link is a connection

between two nodes and is represented as a line. An example of a Material node system in

Blender is shown in picture 1.

11

PICTURE 1. Simple Material node system in Blender (Tiss, 2017)

Picture 1 represents a Material node tree in Blender that creates a simple diffuse material.

The RGB node defines the color data, which is passed to the Diffuse BSDF node. Diffuse

BSDF node process color data and outputs a shader based on the color data it receives

from the RGB node. From the Diffuse BSDF node, data is passed to the Material Output

node which creates final look of shader basing on three inputs – Surface, Volume, Dis-

placement. Node system as any other program has its command execution sequence.

Unlike in written scripting languages where code is structured from top to bottom, node

graphs in Blender commonly are composed and read from left to right. It is also possible

to make collapsible node groups to keep node trees more structured. In Blender node

systems are converted into scripts which are given to render engine to do all the mathe-

matics in the background. Using nodes takes away the obligation to know programming

languages and their libraries which helps artists significantly in producing art. Therefore,

visual scripting in CG is becoming more popular. Node systems have been already im-

plemented in such video editing, compositing and 3D software as:

• Natron from Natron project

• Houdini from Side Effects Software Inc.

• 3DS Max from Autodesk Inc.

• Substance Designer from Allegorithmic

• Nuke from The Foundry Visionmongers Ltd.

12

3.2 Animation Nodes

In official Blender releases, there are few implemented tools for creating procedural ani-

mation effects - modifiers. Modifiers are very flexible in adding randomness and auto-

mating different processes but at the same time they are fairly limited in feature adjust-

ment. Therefore, Jacques Lucke, a Computer Science student and a Blender add-on de-

veloper from Henningsdorf in Germany decided to take an effort. In 2015, he started the

development of Animation Nodes to expand Blender capabilities.

Lucke (2017) reveals that he had several ideas for motion graphics add-ons for Blender,

but many of them would share the same base, therefore he decided to combine all the

ideas into one, besides maintaining one add-on seemed more efficient than many. Making

Animation Nodes as a node based system seemed the most logical way how to implement

all the features that were. (Lucke, 2017)

Animation Nodes is an Open Source node based scripting system designed for motion

graphics in Blender. It is designed for procedural animation effect creation in Blender.

The add-on is mainly used to create motion graphics but is capable of a lot more – it is as

capable as Python scripting language is. In general, Animation Nodes is visualizing math-

ematical functions. (Lucke, 2017)

Currently (October 2017) Animation Nodes v2.0.4 is officially released. Since this add-

on is based on executing mathematical functions, the only limitations are the users’ crea-

tivity, knowledge of Math and problem-solving skills. According to Lucke (2017), it is

very hard to enumerate cons and pros of AN because of the fact that it works very similar

to programming. Many artists find themselves very confused in-front of node graphs

while others highly appreciate the approach of Animation Nodes. It is each artists’ indi-

vidual preference. (Lucke, 2017)

It is important to keep in mind that Animation Nodes is developed continuously. Blender

community and artists affect this open source project significantly. That means that sug-

gestions and criticism is highly valued during the development process and is imple-

mented into upcoming releases. This tight cooperation between the supporting commu-

nity and Jacques Lucke ensures that the add-on will become user friendlier and more

powerful in the future.

13

4 ANIMATION NODES

4.1 Installing Animation Nodes

Animation Nodes v2.0.4 is not included into original Blender releases, its latest version

must be downloaded from an external source, provided by the developer

(https://github.com/JacquesLucke/animation_nodes/releases/tag/v2.0). Installing an ex-

ternal add-on can be done by following the standard procedure described in the official

Blender User’s manual (https://docs.blender.org/manual/en/dev/preferences/ad-

dons.html) or following instructions in official Animation Nodes User Guide (http://ani-

mation-nodes-manual.readthedocs.io/en/latest/user_guide/install/install.html).

.

4.2 Workspace of Animation Nodes

When Animation Nodes is successfully installed, in the Node Editor header new button

appears, highlighted in picture 2.

PICTURE 2. An empty Animation Nodes workspace in the Node Editor window (Tiss,

2017)

“The Node Editor is used with node-based workflows. The node tree type can be changed

using the buttons in the Node editor header.” (Blender Foundation: Node Editor - Intro-

duction).

The user interface of Animation Nodes is withheld like other node tree types found in

Blender. It consists of four main components, shown in picture 3: tool shelf, properties

shelf, header and main workspace where to place nodes. Also, keyboard shortcut combi-

nations, such as toggling the tool shelf or properties shelf, are kept the same as in other

https://github.com/JacquesLucke/animation_nodes/releases/tag/v2.0
https://docs.blender.org/manual/en/dev/preferences/addons.html
https://docs.blender.org/manual/en/dev/preferences/addons.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/install/install.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/install/install.html

14

node tree types to maintain consistent workflow over different node system modes in

Blender.

PICTURE 3. Structure of Animation Nodes node editor (Tiss, 2017)

4.3 Nodes

Nodes in Animation Nodes do not differ visually from nodes used in other types of node

systems found in Blender, like Material, Texture or Compositing nodes. Despite the com-

mon node features among other node systems, there are several vital details to pay extra

attention while working specifically with nodes in AN.

4.3.1 Hidden node sockets

There are nodes that can handle many different data and therefore some nodes have hid-

den data input and data output sockets. This is for keeping node graphs in order without

unused node sockets. The difference between the same node with hidden and unhidden

data input sockets is represented in picture 4. Available node sockets of active node only

can be found in the Properties Shelf or by pressing the keyboard shortcut key “u”. By

default, most used node sockets are unhidden.

TOOL SHELF

PROPORTIES SHELF

HEADER

MAIN WORKSPACE

15

PICTURE 4. The difference between nodes with hidden data input sockets on the left and

unhidden data input sockets on the right (Tiss, 2017)

4.3.2 Advanced Node Settings

Several nodes have advanced settings that can extend or change functionality of the node

but are not used frequently (Animation Nodes: Interface 2017). Therefore, these settings

are placed outside the node to maintain clean structure of certain nodes. Advanced Node

Settings of an active node can be found in the Properties Shelf or by pressing keyboard

shortcut “u”, these settings are highlighted in picture 5.

PICTURE 5. Advanced Node Settings (Tiss, 2017)

16

4.3.3 Socket types

Sockets serve as connection points between two or more nodes. Even though Animation

Nodes is a visual scripting system and contains different data types already known in

programming, for users it is more important to understand socket types. According to

Animation Nodes manual, there are 36 different socket types (Animation Nodes: Socket

Types 2015). The information presented in Animation Nodes manual is outdated, in AN

v2.0.4 socket type list has changed and all socket types can be found in Animation Nodes’

GitHub repository. Most of them have list option but currently (24.10.2017.) they are not

listed in the manual. Picture 6 represents the latest socket type list.

PICTURE 6: All the socket types in Animation Nodes v2.0.4 (Screenshot from Animation

Nodes’ GitHub Repository, 2017)

17

Each socket type represents collection of data type it returns in the data output or requires

in the data input socket for correct node functionality. Socket types are colour coded and

named to ease the recognition of their data type. Many socket types have two options:

single data and certain data list option. In picture 7 is shown the Create Integer List node.

All sockets are coloured light blue to indicate that they are Integer type sockets but input

sockets are solid light blue while the output socket is also light blue but partly transparent.

Transparency means that the socket requires or outputs certain data list. This rule applies

to all socket types which are eligible for list option. In picture 8 are shown several nodes

with different socket types.

PICTURE 7. The Create Input List node (Tiss, 2017)

PICTURE 8. Nodes with different socket types (Tiss, 2017)

18

One node can contain different socket types as well. In picture 9, Spline Info node has

only one Spline input socket and four outputs: Points, Radii, Cyclic and Point Amount.

By their colours, it is possible to recognize what kind of socket type they are and what

type of data they handle. Spline input socket gathers data from Spline object and separates

information into four different data types. Points socket return spline’s point location vec-

tor list, Radii returns each points radius as float list, Cyclic socket outputs Boolean value

weather the spline is cyclic or not and Point Amount returns a single integer number with

point amount in the spline, all these data are shown in Viewer nodes in picture 9.

PICTURE 9. Spline Info node with different socket types (Tiss, 2017)

4.3.4 Connecting nodes

Thanks to the fact that node socket types are colour coded it is easy to connect different

nodes together. The main rule is that the input socket must receive data from the same

colour output socket that comes from previous node. In picture 10 is shown an example

of connected node tree. The Get List Length node is an exception. It is because the Get

List Length node does not process data from the list but returns the amount of entries in

it (Animation Nodes: Get List Length 2017).

19

PICTURE 10. Node connection example (Tiss, 2017)

4.3.5 Input, function and output nodes

Nodes in Animation Nodes cannot really be divided into specific data input, data output

or data function node types because their role varies depending on their location in the

node tree.

In picture 11 is shown mathematical equation

(10 × 5) × (6 + 3) = 450

made in Animation Nodes. Three Math nodes are placed in various locations in the node

tree. In this case, the blue Math nodes serve as data input nodes because the user manually

defines their values. Meanwhile the red Math node processes the data provided by blue

Math nodes. Therefore, it is not needed to divide nodes into different node types in Ani-

mation Nodes. Even though there are several unambiguous output nodes their purpose is

comprehensible, such as the Viewer nodes.

20

PICTURE 11. Math nodes as different node types (Tiss, 2017)

4.4 Animation Nodes execution in Blender

Blender, like any other computer program, consists of many different script units which

are responsible for certain task flawless execution like viewport and UI drawing, anima-

tion execution etc. All these script units are structured in a specific order to ensure proper

and most effective program operation. This data execution structure has its routine and

each necessary data block, it consists of, is called and accomplished once per cycle exe-

cution. This approach provides that the latest data is represented on the computer’s screen

in the shortest time.

FIGURE 2. Blender's most basic structure (Roosendaal, 2011)

“This diagram depicts Blender’s most basic structure. The “data-visualize-edit” cycle is

in its core, and separated from the GUI (blue) which works on three distinctive levels.”

(Roosendaal, 2011).

21

According to Roosendaal (2011), the cycle represented in figure 2 shows three main ex-

ecution blocks of Blender – Data, Visualize and Edit block. The “data-visualize-edit”

cycle is executed repeatedly while Blender is running. It starts at the same time when

Blender is launched. It starts with Data block, reading all the data from pre-defined start-

up file and sends the information to Visualize stage where the gathered data is sent to the

computer’s screen. In the following Edit section, all changes made by user are applied.

Then updated information is passed back to the Data block and the cycle starts all over

again. The “data-visualize-edit” cycle is repeated until Blender is closed. (Roosendaal

2011)

Animation Nodes is nothing else but collection of script units in the hierarchy of Blender.

It has its own place in the program’s structure, from where it gets called and compiled

once per each “data-visualize-edit” cycle execution, if default AN execution settings are

not changed. Otherwise Animation Nodes is executed as defined by user.

To be sure about Animation Nodes execution in the “data-visualize-edit” cycle, simple

feedback loop can be created in the node tree editor, shown in picture 12. The node tree

consists of five nodes:

• Object Transform Input node

• Vector Math node

• Object Transform Output node

• Two Viewer nodes.

Object Transform Input node reads the location of “Cube” and returns three-dimensional

vector value u⃗ = (11.0, 0.0, 0.0) which is displayed in the first Viewer node from the left.

Then the read location value (u⃗) is passed to the Vector Math node, which in this case

does vector addition and returns the value of u⃗ + v⃗ , where v⃗ = (0.25, 0.0, 0.0) is defined

value in the Vector Math node by the user.

u⃗ + v⃗ = (ux + vx, uy + vy, uz + vz)

u⃗ + v⃗ = (11.25, 0.0, 0.0)

Vector Math node returns value u⃗ + v⃗ which is displayed in the second Viewer node from

the left. After mathematical operation execution, the updated value is assigned as location

vector value to the same “Cube”. If AN execution settings stay unchanged (“Always” by

22

default) then Cube’s location value along x axis will be incremented by 0.25 (as defined)

per each “data-visualize-edit” cycle execution.

PICTURE 12. AN placement in the Blender’s structure by example (Tiss, 2017)

4.5 Main programs and Subprograms

In general, each node system which is made with Animation Nodes is an executable pro-

gram in visual form. Ideologically by isolating/separating AN from the rest of Blender’s

structure, it is easy to comprehend it as an independent program which loops and executes

its functions infinitely. Node graphs in Animation Nodes are built up from two main

building blocks: main programs and subprograms. Visually all main node trees are col-

oured neutral grey while each subprogram has its own color which is assigned randomly.

In figure 3 is shown the ideological execution process of Animation Nodes in time.

FIGURE 3. Ideological Animation Nodes execution cycle (Tiss, 2017)

23

4.5.1 Main programs

Each working node tree in Animation Nodes must have at least one Main program. It is

executed only once in each cycle. It is possible to have more than one Main program in

one node graph. In that case these programs are stacked and executed consecutively. Their

execution order is undefined but in most cases, it makes no difference. Picture 13 illus-

trates the execution of a single Main program’s execution on the left and multiple Main

program execution schemes on the right with practical examples accordingly below.

PICTURE 13. Main Program’s execution scheme with practical example (Tiss, 2017)

4.5.2 Subprograms

According to Animation Nodes manual (2017), every node tree made with Animation

Nodes can be considered as a program. In programming, to repeat specific command lines

with different parameters, it is good practice to use functions or loops. The same rules

apply to Animation Nodes. (Animation Nodes: Subprograms 2017)

24

Subprograms allow user to create specific block of functions that can be called from an-

ywhere in the node tree with corresponding Invoke Subprogram node. Each subprogram

has its own unifying color. All nodes in the same subprogram share the same node color,

it eases the recognition of each nodes’ affiliation. In Animation Nodes v2.0.4 there are

three subprogram types available: loops, groups and scripts.

 Loop

Loop is a special subprogram type in Animation Nodes that can be repeated more than

once in each Blender’s main cycle, depending on the count of iterations, it is similar to

loops in programming (Animation Nodes: Loop 2017). Its trait is iteration count feature

which defines, how many times the loop will be repeated. Model of Loop’s execution in

Animation Nodes is shown in figure 4.

FIGURE 4. Model of Loop's execution in Animation Nodes (Tiss, 2017)

Iteration amount can be defined by a user by manually entering the value in the Iterations

input socket of the Invoke Subprogram node, highlighted in picture 14, or by any type of

List. Note that if there are more than one list passed as a parameter to the Invoke Subpro-

gram node, then the shortest of them will define the iteration amount. In most cases the

length of different lists, prepared for loops, are even. In picture 15 is shown a practical

example, where the iteration count is defined by the shortest list. The Loop Input node

iterates through lists and returns single values gathered from input lists at corresponding

index. The Index is a sequence number of the current iteration.

25

PICTURE 14. Manual iteration value set for Loop Input node (Tiss, 2017)

PICTURE 15. Defining loop’s iteration amount with shortest list (Tiss, 2017)

 Group

Group in Animation Nodes can be reconsidered as function in programming (Animation

Nodes: Group 2017). It can be reused with different parameters without copying all con-

sisting nodes. This approach allows efficiently the reuse collection of specific node trees.

Group can be called from anywhere in the node tree by using the corresponding Invoke

Subprogram node. Group is executed once per each call. Group’s Invoke Subprogram

node can also be implemented into loop’s cycle and vice versa. In figure 5 is illustrated

group’s execution in Animation Nodes.

26

FIGURE 5. Model of Group's execution in Animation Nodes (Tiss, 2017)

In picture 16 is shown a practical example, how Group can be reused with different pa-

rameters. Each Invoke Subprogram node has different parameters: different objects and

vector values. The Group Input node executes its functions with submitted data individ-

ually. Therefore, each object is placed at defined coordinates.

PICTURE 16. Practical example of Group's reusability in Animation Nodes (Tiss, 2017)

27

 Scripts

Even though Animation Nodes is considered as visual scripting language and offers many

different nodes, sometimes users can be limited by their functionality, therefore script

node allows user to write Python code and execute it with the related Invoke Subprogram

node (Animation Nodes: Script 2017). The Script node is considered as advanced feature

and requires knowledge of Python programming language.

28

5 CASE STUDY: ANIMATION DEVELOPMENT COMPARISON USING

ANIMATION NODES AND KEYFRAME ANIMATION TECHNIQUES

To show an example of the previously described Animation Nodes’ main program and

subprogram features and compare them to the keyframe animation method, a simple

scene, that can be animated using both techniques almost equally well, was made. To

evaluate features between AN and the keyframe animation method, the test scene, shown

in picture 17, is animated in two different techniques:

• Using Animation Nodes only

• Using the keyframe animation method only

PICTURE 17: Test scene output graphics, made with Blender (Tiss, 2017)

Beside modelling, shading and lighting some preparation tasks, which ease animation

workflow, were done beforehand. To make the Group Input nodes work correctly and to

ease object selection when using the keyframe animation method, object groups were

created beforehand. To ensure correct object scaling and rotation, their pivot points were

changed by necessity. “VentBlade.n” objects were parented to corresponding

“VentBox.n” object to exclude manual animation of “VentBlade.n” translation.

29

The task for this animation is to build up a part of a city. The most frequently animated

object parameters are:

• Object translation

• Object rotation around local axis

• Object scale

• Object hide/unhide

Objects are grouped by their nature to ease their selection during the animation process

and to separate them from other objects, because grouped objects can share the same

animation settings with different timing. This is achievable by creating a reusable node

group with Animation Nodes or by sharing Action Strips when using keyframe animation

method.

Even though there are many objects that must be animated individually, thanks to anima-

tion reusability, it is possible to split the whole animation task in eight subtasks:

• Location, Rotation and Scale animation

• Object hiding and unhiding from the scene and render

• “CurbStone” animation

• “Mug” Location and Rotation animation

• “VentBlade.n” Rotation

• Spline bevel for “Sign_AnimationNodes_Circle” animation

• “Neon_Blue” and “Neon_Pink” material wiggle animation

• Text animation

5.1 Location, Rotation and Scale animation

5.1.1 Location, Rotation and Scale animation using Animation Nodes only

For the animation task, most object’s location, rotation and scale values must be animated,

therefore when using AN, big advantage is reusability of a node group with certain con-

figurable input sockets. Before creating a reusable node group, it is important to recon-

sider all the necessary attributes and options which are going to be animated and also

would ease tweaking animation afterwards. Therefore, it is good practice to define all

animation attributes beforehand and only after that start making the node tree. To create

30

a reusable Location, Rotation and Scale animation node group with few extra settings,

following features must be included in the group:

• When does object, animation start – Animation Delay

• Interval between same group object’s animations – Falloff Interval

• For how long each animation will last – Falloff Duration

• Interpolation mode

• Object Delta Transform – Translation

• Object Delta Rotation – Rotation

• Object Delta Scale – Scale

• Use initialized or random object animation sequence – Shuffle

• Change Shuffle seed

• Object group input to get object list and theit “Initial Transforms” matrices

• Object List input for text animation

The Structure of a “LocRotScale” node group is represented in picture 18. The “Lo-

cRotScale” node group is created in order to animate all the attributes mentioned above.

In picture 19 is shown the “LocRotScale” group’s Invoke Subprogram node which calls

and executes the whole “LocRotScale” node tree with settings set in the Invoke Subpro-

gam’s node. Thus, there is no need to copy the whole node tree. This node group lets the

user animate all objects in the same object group automatically according to set settings.

By reusing this node group, it is possible to accomplish most of the whole animation task.

31

PICTURE 18: The “LocRotScale” animation node group made with AN in Blender (Tiss, 2017)

32

PICTURE 19: The “LocRotScale” group’s Invoke Subprogram node made with AN in

Blender (Tiss, 2017)

In picture 20 is shown a “Sidewalk” object group’s animation settings on the left and the

scene on the right side. The advantage of using the “LocRotScale” node group is that this

single group animates all the objects which are in the same object group using the same

animation settings between these objects. In the “Sidewalk” object group there are 25

separate objects. This approach eases and fastens the animation process by excluding

manual action strip adjustment which is described in section 5.1.2.

33

PICTURE 20: “Sidewalk” object group’s animation with set setting in the Node Tree

(Tiss, 2017)

In figure 6 is represented Animation Delay, Falloff Interval and Falloff Duration socket’s

approximate look on timeline in Blender. An Animation Delay socket defines after how

many frames animation of the “Sidewalk” object group will start. It must be kept in mind

that this value is added to the “Delay for The Whole Animation” delay node’s value in

the “LocRotScale” group’s structure, highlighted with a green frame in picture 18.

“Falloff Interval” defines how many frames there are between beginning of two object

animations. Meanwhile “Falloff Duration” defines the length of each object’s animation

in frames.

FIGURE 6: The “LocRotScale” Invoke Subprogram node’s graphic (Tiss, 2017)

34

The Interpolation socket defines the animation curve in time for animated values – Trans-

lation, Rotation and Scale. In Animation Nodes interpolation curves can be constructed

in many ways which introduce flexibility in animation. Along custom curve creation us-

ing the “Curve Interpolation” node there are also pre-defined values found in the “Con-

struct Interpolation” node which can be tweaked easily. Even though mostly interpolation

method is picked from the Invoke Subprogram node, these features are very handy in

other scenarios. In picture 21 are shown various ways how interpolation curves can be

constructed in Animation Nodes.

PICTURE 21: Interpolation curve creation in Animation Nodes (Tiss, 2017)

To animate Translation, Rotation and Scale values, Offset Matrices node in the “Lo-

cRotScale” node group is used, shown in picture 22. This node uses a list of Matrices to

define each object’s Start or End state in the scene. Each object has corresponding matrix

which contains the object’s Initial Transforms – Location, Rotation and Scale. These val-

ues must be initialized before passing them to offset matrix node. It can be done in 3D

View AN tool shelf, highlighted with green in picture 23. These matrices are initialized

for the whole object group at the same time. This operation can be compared to Lo-

cRotScale keyframe insertion for each object except values are not tied to a specific

frame. The Offset Matrices node also has an advanced settings menu which allows to use

various Transform methods. These extra settings ease the control of Transforms and fas-

tens animation process.

35

PICTURE 22: Offset Matrices node with Advanced Nodes Settings above (Tiss, 2017)

The next feature of this node group is the Shuffle setting. By checking this checkbox, it

is possible to determine whether an object group is animated in a random or defined se-

quence order. Defining object order is a fairly simple process – user must select objects

in order in which they should be animated and create a new Object Sequence, highlighted

with orange square in picture 23, in which ID Keys tool shelf is shown.

PICTURE 23: ID Keys tool shelf (Tiss, 2017)

36

Along the Shuffle feature the next implemented Shuffle Seed feature is related. By chang-

ing the seed value, the object animation sequence changes randomly and most importantly

– it happens immediately to the whole chosen object group. This feature excludes manual

animation strip dragging to get randomness effect. figure 7 shows ideological “Shuffle

Seed” feature while using “Sidewalk” object group.

FIGURE 7: Ideological Shuffle Seed feature graph (Tiss, 2017)

The Object group socket determines which object group is going to be animated with

applied settings above. Group can be chosen from the drop-down menu which contains

all object groups in current scene.

“Object List for Separated Text” is meant to work in combination with another node –

The Separate Text Object node. In picture 24 is shown the combination of two. Separate

Text Object separates each letter from text object and makes them separate objects. The

benefit of this node is that the text can be modified and after pressing Update button the

object list updates immediately. This feature excludes manual work for letter separation

and pivot point repositioning. In this case study, this feature is used for text animations,

described in section 5.8.1.

37

PICTURE 24: Separate Text Object combination with "LocRotScale" Invoke Subpro-

gram node (Tiss, 2017)

5.1.2 Location, Rotation and Scale animation using keyframe animation method

only

To compare a node tree setup made with Animation Nodes and the keyframe animation

method “Sidewalk”, the same object group, is animated, this time using keyframe anima-

tion method only. These two methods have different workflows but share the same values

that must be animated. In this chapter, it will be explained how previously manipulated

values can be animated without using Animation Nodes. To compare these two methods

as equally as possible the same object group’s animation is repeated with the keyframe

animation method.

To work with the keyframe animation method fluently it is more comfortable to have at

least two displays. It is because many different working windows must be accessed fre-

quently. An example of workspace configuration is shown in picture 25.

38

PICTURE 25: Comfortable workspace setup to work with keyframe animation method in Blender (Tiss, 2017)

39

The keyframe animation method is straightforward, therefore user does not have to re-

consider all necessary settings beforehand and values can be animated on the go. Not like

when using Animation Nodes, user does not have to predefine necessary values. Exclud-

ing this stage, it is possible to save time and animate single objects faster.

Instead of initializing the end Transforms of the object, using the keyframe animation

method, the animator must set keyframes in the end state of each animated value. To

replicate previously made animation, following settings must be taken account:

• The start of animation of the first object is frame 60 (Animation Delay (30 frames)

+ Delay for The Whole Animation (30 frames))

• Delay of the next object’s animation is 3 frames from previous

• Duration of animation is 8 frames

• Interpolation method: Back, Ease Out

• Translation along Z axis by 5 Blender units

• Rotation along Z axis by 90°

• Start scale of the object is 0

• “SidewalkPlate.n” objects are animated in following sequence

According, to predefined values the end of the first object’s animation is frame 68. That

is the frame at which end Transforms must be set. To keep the animation project orga-

nized it is recommended to create a new action in Dope Sheet. In picture 26 is represented

a set keyframes in a new action strip of animated values.

PICTURE 26: Set keyframes of Location, Rotation and Scale end values for Sidewalk-

Plate.000 (Tiss, 2017)

40

The Animating Delta Transform values is more equal to AN node tree execution, in which

delta values are submitted only. Using Delta Transform allows user to set rounded values

which fastens the animation development process. To finish the SidewalkPlate.000 ani-

mation, the beginning keyframe of the animation must be set on frame 60. In picture 27

are shown the Delta Transform values at frame 60.

PICTURE 27: Set keyframes of Location, Rotation and Scale start values for Sidewalk-

Plate.000 (Tiss, 2017)

These steps are equivalent to Animation Delay, Falloff Duration, Translation, Rotation

and Scale functions in the “LocRotScale” node group.

The next step is to set interpolation. There are four interpolation curves that must be

changed to “Back” with Ease Out. When selecting the Interpolation mode in the node

group, it affects all values at the same time. When using the keyframe animation method

each interpolation curve must be adjusted individually. This preference gives extra flexi-

bility to animation but in such short animation there is no need for such adjustments.

Therefore, in this case it just ads extra work when using the keyframe animation method.

In picture 28 the visual presentation of setting the interpolation method in Graph Editor

on the left and Node Editor on the right are being compared.

41

PICTURE 28: Interpolation settings in Graph Editor on the left and “LocRotScale” In-

voke subprogram node on the right.

To reuse the same animation for the rest of the objects in “Sidewalk” object group and

implement Falloff Interval and the Use Sequence settings, user must Push Down the Side-

walkPlate_LocRotScale Action to create an action strip in NLA Editor. After that all ob-

jects in the object group must be selected. Note that the already animated object must be

the active object. Then using Make Links (shortcut key in 3D View: Ctrl+L), Animation

Data is selected, shown in picture 29. These steps copy the already made Animation Strip

from the active object to other objects. Now all objects in the Sidewalk object group share

the same animation strip, shown in picture 30. Naming objects incrementally helps to

keep animation organized and eases to create proper object animation sequence.

42

PICTURE 29: Copying Animation Data from active object to selected objects (Tiss,

2017)

PICTURE 30: “SidewalkPlate.n” objects’ animation strips in NLA Editor (Tiss, 2017)

To achieve the Falloff Interval setting with the keyframe animation method, user manu-

ally must drag animation strips in the NLA Editor. In picture 31 is shown finished action

strip sequence for the object animations of the “Sidewalk” object group.

43

PICTURE 31: Finished action strip sequence for object animations of “Sidewalk” object

group (Tiss, 2017)

44

5.2 Object hiding and unhiding

5.2.1 Object hiding and unhiding using Animation Nodes

In this animation, there are objects that are not scaled along all axes, therefore one or

more scale values are kept constant. Because at least two scale values are not changed,

there appears unwanted scale effect of object in the animation scene, shown in picture 32.

To avoid this artefact, the object must be hidden from 3D Viewport and Render until the

beginning of certain object’s animation.

PICTURE 32: “Buildings” object group in 3D Viewport with Z scale 0.0 (Tiss, 2017)

To hide and unhide objects from the scene by using Animation Nodes, it is effective to

set threshold value, which controls either object is hidden or not. In this case study, a

reusable loop is created, which hides objects, which at least have one scale value equal or

less than 0.01, which is nearly invisible. “Hide/Unhide Objects” loop, is shown in picture

33.

45

PICTURE 33: “Hide/Unhide Objects” Loop’s node tree (Tiss, 2017)

46

The “LocRotScale” node group outputs object list, which contains each object’s Location,

Rotation and Scale values. In this case, only Scale values are necessary. “Hide/Unhide

Objects” loop iterates trough returned Object List from “LocRotScale” Invoke Subpro-

gram node and compares each object’s scale to threshold value 0.01 which is defined by

the user. If any of the object’s Scale value is equal or less than threshold value, then it is

hidden from Viewport and Render. picture 34 represents the combination of “Lo-

cRotScale” and “Hide/Unhide Objects” Invoke Subprogram nodes.

PICTURE 34: Combination of the “LocRotScale” and "Hide/Unhide Objects" Invoke

Subprogram nodes (Tiss, 2017)

5.2.2 Object hiding and unhiding using keyframe animation method

When using the keyframe animation method different approach is used. Instead of hiding

or unhiding object regarding to its scale, each object is hidden straightforward until the

beginning of its animation. User must animate object’s hide from the viewport and hide

from the render settings. This is done by inserting hide/unhide keyframes before object’s

animation when creating a new action. In picture 35 is shown hide/unhide keyframes in

the “Building_Scale” action.

47

PICTURE 35: Object hide/unhide from 3D Viewport and Render using keyframe anima-

tion method (Tiss, 2017)

5.3 “CurbStone” animation

5.3.1 “CurbStone” animation using Animation Nodes

“CurbStone”, shown in picture 36, is a curve object, therefore it desires different approach

of animation than mesh objects. To animate “CurbStone” with Animation Nodes a sepa-

rate program is needed. Since there is only one “CurbStone” object it is enough to execute

the program only once during the “data-visualize-edit” cycle. “CurbStone” animation’s

node tree is shown in picture 37. Note that Delay for The Whole Animation is not applied

to this node tree, therefore Delay Time value is set separately. Bevel End value is a float

number therefore the Animate Float node is used from which float value from 0.0 to 1.0

in time of 80 frames is passed linearly to Curve Object Output node. In Curve Object

Output node “CurbStone” object is selected as object to be affected. In this case study

Bevel_Curbstone is selected as Bevel Object which defines the shape of Bevel.

Bevel_Curbstone is a spline object, shown in picture 38.

48

PICTURE 36. “CurbStone” object (Tiss, 2017)

PICTURE 37: “CurbStone” animation node tree (Tiss, 2017)

PICTURE 38: Bevel_Curbstone spline object (Tiss, 2017)

49

5.3.2 “CurbStone” animation using keyframe animation method

To replicate the same effect with keyframe animation method, Bevel value must be ani-

mated in the Object Data panel. In picture 39 is shown “CurbStone” animation settings

using the keyframe animation method. Interpolation must be changed to linear in the

Graph Editor. The Bevel_Curbstone must be selected as the Bevel Object.

PICTURE 39: “CurbStone” animation using keyframe animation method (Tiss, 2017)

5.4 “Mug’s” Location and Rotation animation

5.4.1 “Mug’s” Location and Rotation animation using Animation Nodes

“Mug’s” animation differs from other animations with its infinite rotation during the an-

imation. Since “LocRotScale” node group is finite, endless rotation is not achievable by

using this node group. Even though there are workarounds to make this animation happen

by reusing the same node group, more controllable setup is achievable by creating a sep-

arate node tree. In picture 40 is shown “Mug’s” animation using Animation Nodes.

50

PICTURE 40: Node tree for “Mug’s” Location and Rotation animation (Tiss, 2017)

To animate “Mug’s” location, Animate Vector node is used. It receives two vector values

to define the start and the end location and passes the result to the Object Transforms

Output node. To make infinite rotation the Combine Euler node is used so rotation around

X and Y axis can stay constant. Only rotation around Z axis is necessary. To define Z

rotation value each frame number is divided by predefined step size – 40 in the Float

Math node. This approach ensures linear rotation increment. Math node’s output results

from frame 1 to 10 are shown in table 2.

TABLE 2. The Float Math node’s output results according to frame number in range from

1 to 10 (Tiss, 2017)

Frame number

Output result

(Frame number / 40)

1 0.025

2 0.05

3 0.075

4 0.1

5 0.125

6 0.15

7 0.175

8 0.2

9 0.225

10 0.25

n n/40

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Z
 a

xi
s

ro
ta

tio
n

va
lu

e

Frame Number

Output result (Frame number / 40)

51

5.4.2 “Mug’s” Location and Rotation animation using keyframe animation

method

To achieve a similar result by using the keyframe animation method there must be two

separate actions: one which is responsible for translation and another which is responsible

for rotation only.

In picture 41 is shown “Mug’s” translation animation setup using the keyframe animation

method. Z Delta Location value is 75.0 at frame 85 and 0 at frame 165.

PICTURE 41: "Mug's" translation animation setup using the keyframe animation method

(Tiss, 2017)

To create an infinite rotation loop it is mandatory to create a seamless repeatable action

strip with “Mug’s” rotation. In picture 42 is shown “Mug’s” rotation, in 30 frames, it turns

by 359.176° along Z axis. It is recommended to make interpolation to linear, to keep

rotation even unless other effect is desired. The rotation in the next frame must be 360°

or 0° along Z axis, therefore it is possible seamlessly repeat “Mug Rotation” action

throughout the whole animation by using Repeat setting, highlighted in picture 43. This

could also be done with Cycles modifier in the Graph Editor.

52

PICTURE 42: “Mug’s” rotation value along local Z axis in 30 frames (Tiss, 2017)

PICTURE 43: Repeat setting in NLA Editor (Tiss, 2017)

5.5 “VentBlade.n” rotation

Approach to rotate “VentBlades” is very like “Mug’s” rotation animation – the animation

must be infinite. Since each “VentBlade.n” is parented to a corresponding “VentBox.n”

object, there is no need to take care of each object’s Translation. The main difference

between “Mug” and “VentBlades” is that there are more than one object and they are

rotated differently in the 3D space. In picture 44 are shown “VentBlades” local axis.

PICTURE 44: "VentBlades" local axes in 3D space (Tiss, 2017)

53

5.5.1 “VentBlade.n” rotation using Animation Nodes

Although the “VentBlades” are rotated in different directions they all share a common

interest – each of them must be rotated around the local Y axis. When working with An-

imation Nodes, rotating objects around local axes is possible by using an Offset Matrices

node. Therefore, Transforms must be initialized before passing the object group into the

Object ID Key node. In picture 45 is shown the node tree of the “FanController” loop’s

node setup for infinite “VentBlade” rotation.

54

PICTURE 45: Node tree for “VentBlade.n” infinite rotation (Tiss, 2017)

55

The created node tree collects data from the “VentBlade” object group and passes them

to a Fan Controller loop, in which each “VentBlade’s” rotation is treated individually.

The loop has two inputs: an Object List and a Matrix List. Selected object from the Object

List determines which object is rotated while corresponding matrix provides the infor-

mation about the object’s transforms including rotation data which are changed over time.

Since in the Offset Matrices’ Advanced Node Settings Rotation is set to Local axis, all

“VentBlades” turn around their pivot points in local space.

Random Rotation Speed/Direction block allows to set each “VentBlade’s” speed ran-

domly in specified range. Since Random Number value is set from -3.0 to 3.0 it also

determines whether “VentBlade.n” will rotate clockwise or counter clockwise. By setting

minimum and maximum Random Number values it is possible to determine the range of

minimum and maximum speed. The random number becomes a step size of rotation and

stays constant over time. This preference assures linearity in VentBlade’s animation.

Multiplying step size with the frame number user gets the final rotation value at current

frame which is passed to Combine Euler node and sets new start rotation value of each

object. Since Start value is changed rotation will last until animation is interrupted.

5.5.2 “VentBlade.n” rotation using keyframe animation method

To achieve the effect described in section 5.5.1 with keyframe animation method all

“VentBlades” must be animated at the same time, thus it is possible to animate each ob-

ject’s rotation along its local axis at the same time. Copy animation data does not work

in this case because it copies rotation settings along global axis. In picture 46 is shown

set keyframes for “VentBlade” 360° rotation along their local Y axis.

56

PICTURE 46. “VentBlades” being rotated by 360° in duration of 31 frames (Tiss, 2017)

After creating 360° rotation along their local Y axis, a seamless animation loop must be

created. To create a seamlessly repeatable action strip, it is possible to use the approach

described in section 5.4.2. After setting the last keyframes and changing the interpolation

method to linear, each action must be pushed down in the NLA Editor individually and

then these strips must be dragged to the beginning of the animation. Repetition could also

be achievable by the Cycles modifier in the Graph Editor.

To change the rotation direction of a certain “VentBlade” in the NLA Editor at the Active

Strip Settings Reversed option must be checked, highlighted in picture 47.

PICTURE 47: Reversed setting in NLA Editor (Tiss, 2017)

To change rotation speed of certain “VentBlade” in NLA Editor at Action Strip settings

Scale must be adjusted, shown in picture 48.

57

PICTURE 48: Scale setting in the NLA Editor allows the adjusment of the duration of

the action strip (Tiss, 2017)

5.6 Spline bevel for the “Sign_AnimationNodes_Circle” animation

5.6.1 Spline bevel for the “Sign_AnimationNodes_Circle” animation using Ani-

mation Nodes

“Sign_AnimationNodes_Circle” is a curve object but different from “CurbStone”. The

difference between these two objects is that “Sign_AnimationNodes_Circle” consist of

four splines, shown in picture 49. Therefore, approach of this curve’s bevel animation

differs from the one presented in section 5.3.1.

PICTURE 49: “Sign_AnimationNodes_Circle” splines (Tiss, 2017)

58

When using Animation Nodes, it is possible to separate splines in one object. This ap-

proach allows the animation of each spline individually, which means that it is possible

to set animation delay, duration independently and randomly if such option is imple-

mented in the node tree. To achieve independent spline bevel animation, a loop which

iterates through the spline list, a reading from curve object is needed. The task of this loop

is to give each spline different animation duration times and to set interval between the

beginning of each spline’s animation and after that to recreate a Spline List which can be

passed to the Curve Object Output node. The described node tree’s structure is repre-

sented in picture 50.

59

PICTURE 50: Node tree for “Sign_AnimationNodes_Circle” bevel animation (Tiss, 2017)

60

In picture 51 on the left side is shown how bevelling of each spline looks at frame 130

and on the right side how do they look at frame 165. Note that the bottom spline starts the

last and finishes the animation first – this means that its animation delay is the longest but

duration is the shortest.

PICTURE 51: “ANSign_Circle” bevel animation at frame 130 on the left and at frame

165 on the right (Tiss, 2017)

5.6.2 Spline bevel for “Sign_AnimationNodes_Circle” animation using keyframe

animation method

To replicate the same animation by using a keyframe animation method the spline must

be separated into individual curve objects. When using this specific animation method, it

is impossible to access each spline of an object individually. Therefore, to imitate the

animation made with Animation Nodes, user must make a new action with the Curve

bevel animation where the Bevel Factor, End value must be animated manually from 0.0

to 1.0. The settings of this procedure are highlighted in picture 52.

61

PICTURE 52: “Sign_AnimationNodes_Circle” bevel animation settings with keyframe

animation method (Tiss, 2017)

After making the action strip for at least one curve object, it is possible to link animation

data as described in chapter 5.1.2. To achieve animation delay and different duration,

action strips can be dragged and scaled along the time axis in the NLA Editor, shown in

picture 53.

PICTURE 53: “Sign_AnimationNodes_Circle” splines’ action strip placement in NLA

Editor (Tiss, 2017)

Afterwards animation strips can be dragged to desired location on the timeline.

62

5.7 “Neon_Blue” and “Neon_Pink” material wiggle animation

5.7.1 “Neon_Blue” and “Neon_Pink” material wiggle animation using Animation

Nodes

Animation Nodes can not only manipulate the object Tranforms, but also access Cycles

material settings. It is possible to change shader settings by using the Cycles Material

Output node. Two materials were created to achieve the “Sign_AnimationNodes_Circle”

and the “Sign_AnimationNodes” wiggling shader effect: “Neon_Blue” and

“Neon_Pink”. These two material node setups are shown in picture 54. The only differ-

ence between these materials are color values in the Mix RGB node.

PICTURE 54: “Neon_Pink” and “Neon_Blue” material setups in Material Node Editor

(Tiss, 2017)

The Cycles Material Output node can access different material settings of each node in a

certain material node tree. In this Case Study to achieve wiggling “on/off” light effect,

the Mix Shader Factor value between the Diffuse and Emission shaders, highlighted in

picture 54, is the setting of interest. Factor value is a float number between 0 and 1 which

defines predominance between two input values. In this case predominance of the Diffuse

BSDF over the Emission shader. When the factor value of the Mix Shader node is 0 then

100% of Diffuse BSDF and 0% Emission shader is used but when factor value is 1 – 0%

Diffuse BSDF and 100% Emission shader is applied.

63

In Animation Nodes, there is a Number Wiggle node which wiggles number value in

defined range. Even though this node does exactly what is needed to do, it cannot guar-

antee the end value of the animation to be 1. Therefore, a different approach is needed.

Curve Interpolation node allows user to create a custom interpolation curve, giving the

user more control over the animation and to set its behaviour as needed. In picture 55 is

shown the Curve Interpolation node created for the case study on the left and its explana-

tion graph on the right.

PICTURE 55: Interpolation Curve node for Mix Shader Factor value animation on the

left and its graph on the right (Tiss, 2017)

Once the Interpolation is defined it is possible to animate the float number value in the

desired way. To do that for two materials a reusable node group can be applied. In picture

56 is shown the “Sign Light Wiggle” node tree.

64

PICTURE 56: “Sign Light Wiggle” node tree (Tiss, 2017)

“Sign Light Wiggle” node group takes two input values: Animation Delay and Interpola-

tion. The group animates the float number value from 0.00 to 1.00 with a Duration of 24

frames. Animate Float node animates output value in time based on the given interpola-

tion curve. Later the Animate Float output value is set as a Factor for the Mix Shader

nodes to the associated materials. In figure 8 are shown output values of the Animate

Float node over time at frames 0, 8, 16 and 24 of the Duration.

65

FIGURE 8: Output values of the Animate Float node over time at frames 0, 8, 16 and 24

of Duration (Tiss, 2017)

5.7.2 “Sign_AnimationNodes_Sign” and “Sign_AnimationNodes_Circle” mate-

rial wiggle animation using the keyframe animation method

To replicate a created animation with the keyframe animation method, the factor value of

the Mix Shader must be animated manually. Again, there are more than one approach to

achieve the desired result: set many “on/off” keyframes or use Noise modifier in Graph

Editor. In this case study, a Noise modifier is used. To apply the modifier between

keyframes start and end values must be set. In picture 57 is shown the default interpolation

between the start and the end keyframes of the Facture value animation.

66

PICTURE 57: Default interpolation between the start and end keyframes of the Factor

value animation (Tiss, 2017)

Adding a Noise modifier eases and fastens the animation process. Even though a Noise

modifier is randomly generated it offers several controls to adjust amplitude, phase, off-

set, scale, depth and set a frame range. In picture 58 is highlighted set a Noise modifier

to the Factor value interpolation curve with applied settings. After creating an animation

strip, Animation Data can be linked to other materials as well and edited in the NLA

Editor later.

PICTURE 58: Set Noise modifier to the Factor value interpolation curve with applied

values on the right (Tiss, 2017)

67

5.8 Text animation

5.8.1 Text animation using Animation Nodes

In this Case Study text animation is very like a mesh object animation. The text object

must be divided in the way that each letter becomes a single object. To get the desired

result their pivot points must be adjusted accordingly. Since each letter is a single object,

it is possible to create an object group or an Object List of selected objects and reuse the

LocRotScale node group.

When using Animation Nodes, a Separate Text Object node becomes handy. The node

takes text object as input value, copies it and hides the original from the Viewport and

Render. Copied text is converted into a specified object type, each letter separated and

each pivot point adjusted accordingly. In picture 59 is shown the object hierarchy in the

Outliner after the Separate Text Object node is executed, the text in 3D Viewport and the

node tree in the Node Editor. Notice that the original “Text_Example” is hidden from the

Viewport and the Render and there are four new objects created instead.

PICTURE 59: Object hierarchy in the Outliner after a Separate Text Object node is exe-

cuted (Tiss, 2017)

This approach allows one to keep the original text object intended. The benefit of it is that

the original text object can be changed after and by toggling “Update” in the Separate

Text Object node, the output object list gets updated automatically. Since output the Ob-

ject List is forwarded to a LocRotScale Invoke Subprogram node, no animation data is

68

changed nor lost. In picture 60 is shown the combination of Separate Text Object and

LocRotScale Invoke Subprogram node, that is used in the case study.

PICTURE 60. Separate Text Object node in combination with LocRotScale’s Invoke

Subprogram node (Tiss, 2017)

5.8.2 Text animation using keyframe animation method

To replicate text animation with keyframe animation method, few different approaches

exist:

• Create certain amount of single letter text objects and adjust their pivot points

manually,

• Create the text object, convert it to a Curve or a Mesh object, separate each

letter individually and adjust their pivot points manually.

After creating separate objects and readjusting their pivot points, their animations are held

the same way as other objects, described in section 5.1.2.

69

5.9 Main differences between Animation Nodes and keyframe animation method

Both methods deliver very similar outcomes but in two different approaches. Each

method has its advantages and disadvantages. While working with Animation Nodes cer-

tain preparation is desirable to ease reusable node tree creation which takes time and some

effort to do while keyframe animation method is straightforward. Despite the diversity in

animation development, the main differences between these two methods reveal when

user must tweak an animation.

When using Animation Nodes all settings can be tweaked in the Node Editor window.

The advantage is that when tweaking certain settings, these settings are applied to the

whole object group at the same time. This approach fastens animation adjustments.

Keyframe animation method is very flexible and allows to animate each object separately,

giving them different settings. Settings created with this method can also be tweaked but

for each object individually which makes the task very repeatable and time consuming.

5.9.1 Production value

Not always there is a clear winner when it comes down to animation tools or methods.

Sometimes several methods combined can deliver most interesting, surprising and effec-

tive results. Even though many things are not covered in this Case Study, using the same

principles it is possible to achieve many different effects. Also, few of most interesting

effects are achievable when keyframe animation method is combined with modifiers and

Animation Nodes. During the learning process, it was found that Animation Nodes is

capable of a lot more than described in this thesis. Several author examples can be found

in appendix 3.

70

DISCUSSION

Motion graphics has evolved dramatically. Nowadays there are plenty of 3D software

suites available for motion graphic development. Which one is the best? Each of them

has its cons and pros but in bigger scope they all share the same features and principles.

Many artists and studios prefer to use tools which are often called industry standards as

Cinema4D, Maya, 3dsMax and others. Without a doubt those are great software suites

that deliver high quality outcomes. Meanwhile Blender is somehow left outside the in-

dustry standard group. According to author’s experience, it can be noticed in labour mar-

ket where most animation studios prefer applicants with knowledge of industry standard

software more than Blender users.

Blender is very powerful tool, when it comes to 3D artwork creation. It is possible to

create flat design animations, complex photorealistic architecture renders, game assets

and a lot more. Even though it is possible to deliver top quality content with Blender, it

lacks something very important and valuable in daily work – full time technical support.

While big brands as Autodesk Inc. or Side Effects Software Inc. employ hundreds of

people all around the globe to make their products great, Blender’s development and sup-

port more relies on volunteer community and sponsors of Blender Foundation. Animation

Nodes is going the same path.

Jacques Lucke develops Animation Nodes mostly by himself with some support from

other programmers. He also gathers feedback from users and improves Animation Nodes

with each release. He delivers OSS product by free will in his spare time along studies at

the university without getting paid for it, except voluntarily donations from people. It is

great effort and amazing human feature nowadays to give something away for free.

Animation Nodes is very a powerful Blender add-on already, regardless it is not, devel-

oped by professional software development team. Animation Nodes offers way more pos-

sibilities for motion graphics than described in this thesis. Even though it might seem

complex and esoteric system at the beginning, it is becoming intuitive within a time.

71

As shown in the case study it is not always mandatory to use one or other technique to

create certain type of animation. Many similar effects can be achieved in different ways.

Main differences reveal when user must tweak the animation – it is way faster to adjust

couple values in a node tree than drag or scale tens of keyframes or animation strips,

which do not even fit the computer’s screen. But on the other hand, setting keyframes

manually can lead to better tuned animation.

Animation Nodes calculates everything in the background, which means that more data

to process there are, the slower node tree execution and viewport update will be. This is

something in what keyframe animation method is slightly ahead – it plays animation

closer to real time in 3D viewport when shading is set to solid. On the other hand, it is

possible to bake almost everything that is made with Animation Nodes to keyframes al-

lowing to speed up viewport update.

From user perspective, it is almost impossible to compare which animation method is

better or worse, faster or slower. It highly depends on personal knowledge and preference.

For example, Midge Sinnaeve (www.themantissa.net), a Blender artist from Antwerp,

Belgium, produces abstract procedural motion graphics and VJ loops mostly using mod-

ifiers and other features that are already implemented in official Blender releases.

“A lot of people tell me that AN absolutely awesome, and everything makes sense, and

love it. But at least the same amount of people tells me that it is stupid to give artists a

tool that works like a programming language.” (Lucke 2017).

Animation Nodes truly is based on programming rules and for AN user it is only benefi-

cial to understand programming principles. Even though it might be complicated for be-

ginners, for more advanced users this approach allows to create new and unseen effects.

Within time of using Animation Nodes, the add-on becomes quite intuitive and usage of

it becomes logical. Its abilities of object animation are tremendous and once combined

with built in features like modifiers or keyframe animation method – almost infinite. For

author, it has become an everyday tool.

Everything has a workaround. There is no bad or great software to create art – tool does

not make an artist. Blender and Animation Nodes are OSS which allow people to make

72

art for free and with some effort involved it is possible to deliver at least the same if not

even better results than paid software suites can.

73

REFERENCES

Adobe Systems Inc. Adobe After Effects Licensing Cost. Read 24.10.2017.

https://www.adobe.com/fi/creativecloud/plans.html?single_app=aftereffects&pro-

moid=RPZBNCW8&mv=other

Animation Nodes. 2017. Interface. Animation Nodes Manual. Released 27.08.2015. Up-

dated 20.06.2017. Read 24.10.2017. http://animation-nodes-man-

ual.readthedocs.io/en/latest/user_guide/getting_started/interface.html#node-settings

Animation Nodes. 2017. Get List Length. Animation Nodes Manual. Released

27.09.2016. Updated 03.05.2017. Read 24.10.2017. http://animation-nodes-man-

ual.readthedocs.io/en/latest/user_guide/nodes/list/get_list_length.html

Animation Nodes. 2017. Group. Animation Nodes Manual. Released 29.08.2015. Up-

dated 29.05.2017. Read 24.10.2017. http://animation-nodes-man-

ual.readthedocs.io/en/latest/user_guide/subprograms/group.html

Animation Nodes. 2017. Loop. Animation Nodes Manual. Released 29.08.2015. Updated

29.05.2017. Read 24.10.2017. http://animation-nodes-manual.readthedocs.io/en/lat-

est/user_guide/subprograms/loop.html

Animation Nodes. 2017. Script. Animation Nodes Manual. Released 29.08.2015. Up-

dated 19.06.2017. Read 24.10.2017. http://animation-nodes-man-

ual.readthedocs.io/en/latest/user_guide/subprograms/script.html

Animation Nodes. 2015. Socket Types. Animation Nodes Manual. Released 25.08.2015.

Updated 04.09.2015. Read 24.10.2017. http://animation-nodes-man-

ual.readthedocs.io/en/latest/dev_guide/socket_types.html

Animation Nodes. 2017. Subprograms. Animation Nodes Manual. Released 29.08.2015.

Updated 13.05.2017. Read 24.10.2017 http://animation-nodes-man-

ual.readthedocs.io/en/latest/user_guide/subprograms/index.html

https://www.adobe.com/fi/creativecloud/plans.html?single_app=aftereffects&promoid=RPZBNCW8&mv=other
https://www.adobe.com/fi/creativecloud/plans.html?single_app=aftereffects&promoid=RPZBNCW8&mv=other
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/getting_started/interface.html#node-settings
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/getting_started/interface.html#node-settings
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/nodes/list/get_list_length.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/nodes/list/get_list_length.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/group.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/group.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/loop.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/loop.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/script.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/script.html
http://animation-nodes-manual.readthedocs.io/en/latest/dev_guide/socket_types.html
http://animation-nodes-manual.readthedocs.io/en/latest/dev_guide/socket_types.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/index.html
http://animation-nodes-manual.readthedocs.io/en/latest/user_guide/subprograms/index.html

74

Autodesk Inc. 3ds Max Licensing Cost. Read 24.10.2017. https://www.autodesk.eu/prod-

ucts/3ds-max/subscribe?plc=3DSMAX&term=1-YEAR&support=AD-

VANCED&quantity=1

Autodesk Inc. Maya Licensing Cost. Read 24.10.2017.

https://www.autodesk.eu/products/maya/subscribe?plc=MAYA&term=1-YEAR&sup-

port=ADVANCED&quantity=1

Blender Foundation. About. Read 21.10.2017. https://www.blender.org/about/

Blender Foundation. Introduction to Nodes. Blender 2.79 Manual. Read 20.10.2017.

https://docs.blender.org/manual/en/dev/render/blender_render/materials/nodes/introduc-

tion.html

Blender Foundation. Node Editor. Blender 2.79 Manual. Read 29.09.2017.

https://docs.blender.org/manual/en/dev/editors/node_editor/introduction.html

Crook, I. & Beare, P. 2015. Motion Graphics Principles and Practices from the Ground

Up. Bloomsbury Publishing Plc.

HistoryofInformation. Lee Harrison's Scanimate: The First Widely Applied Analog Com-

puter Animation System. Read 02.11.2017. http://www.historyofinformation.com/ex-

panded.php?id=4469

Lampel, J. 2015. The Beginners Guide to Blender. eBook. Read 23.10.2017.

http://www.blenderhd.com/wp-content/uploads/2015/08/BeginnersGuideToBlender.pdf

Lucke, J. Developer of Animation Nodes. 2017. Skype interview 04.04.2017. Interviewer

Tiss, R.

MarketsandMarkets™ Research Private Ltd. 2017. 3D Animation Market by Technology

(3D Modeling, Motion Graphics, 3D Rendering, and Visual Effects), Vertical (Media and

Entertainment, Healthcare and Lifesciences, Manufacturing), Services, Deployment, and

Region - Global Forecast to 2022. Released April 2017. Read 21.10.2017.

https://www.autodesk.eu/products/3ds-max/subscribe?plc=3DSMAX&term=1-YEAR&support=ADVANCED&quantity=1%20
https://www.autodesk.eu/products/3ds-max/subscribe?plc=3DSMAX&term=1-YEAR&support=ADVANCED&quantity=1%20
https://www.autodesk.eu/products/3ds-max/subscribe?plc=3DSMAX&term=1-YEAR&support=ADVANCED&quantity=1%20
https://www.autodesk.eu/products/maya/subscribe?plc=MAYA&term=1-YEAR&support=ADVANCED&quantity=1
https://www.autodesk.eu/products/maya/subscribe?plc=MAYA&term=1-YEAR&support=ADVANCED&quantity=1
https://www.blender.org/about/
https://docs.blender.org/manual/en/dev/render/blender_render/materials/nodes/introduction.html
https://docs.blender.org/manual/en/dev/render/blender_render/materials/nodes/introduction.html
https://docs.blender.org/manual/en/dev/editors/node_editor/introduction.html
http://www.historyofinformation.com/expanded.php?id=4469
http://www.historyofinformation.com/expanded.php?id=4469
http://www.blenderhd.com/wp-content/uploads/2015/08/BeginnersGuideToBlender.pdf

75

http://www.marketsandmarkets.com/Market-Reports/3d-animation-market-

92736816.html

Maxon Computers GmbH. Cinema 4D Broadcast R19 Licensing Cost. Read 24.10.2017.

http://www.maxonshop.de/epages/es10565932.sf/de_DE/?Ob-

jectPath=/Shops/es10565932/Products/%2219%204%2000%22/SubProd-

ucts/%2219%204%2000-0002%22

Roosendaal, T. 2011. Blender Wiki. Read 29.09.2017.

https://wiki.blender.org/index.php/Dev:Source/Architecture/Overview

Scanimate: The Origins of Computer Motion Graphics – Film. 2016. Lynda.com. Re-

leased 29.06.2016. https://www.lynda.com/Motion-Graphics-tutorials/Documentary-

Feature/474683/510578-4.html

Side Effects Software Inc. Houdini Indie Licensing Cost. Read 24.10. 2017.

https://www.sidefx.com/buy/#houdini1

Slick, J. 2016. List of 3D Software – Full 3D Suites. Read 24.10.2017.

https://www.lifewire.com/full-3d-suites-2006

Slick, J. 2017. The Best Free 3D Software To Download. Read 21.10.2017.

https://www.lifewire.com/free-3d-software-list-2005

Steinmetz, F. & Hofmann, G. 2014. The Cycles Encyclopedia. Your Guide to Everything

Cycles. Version 1.4. eBook. Blender Diplom.

TechTerms. Node. Read 24.10.2017. https://techterms.com/definition/node

http://www.marketsandmarkets.com/Market-Reports/3d-animation-market-92736816.html
http://www.marketsandmarkets.com/Market-Reports/3d-animation-market-92736816.html
http://www.maxonshop.de/epages/es10565932.sf/de_DE/?ObjectPath=/Shops/es10565932/Products/%2219%204%2000%22/SubProducts/%2219%204%2000-0002%22
http://www.maxonshop.de/epages/es10565932.sf/de_DE/?ObjectPath=/Shops/es10565932/Products/%2219%204%2000%22/SubProducts/%2219%204%2000-0002%22
http://www.maxonshop.de/epages/es10565932.sf/de_DE/?ObjectPath=/Shops/es10565932/Products/%2219%204%2000%22/SubProducts/%2219%204%2000-0002%22
https://wiki.blender.org/index.php/Dev:Source/Architecture/Overview
https://www.lynda.com/Motion-Graphics-tutorials/Documentary-Feature/474683/510578-4.html
https://www.lynda.com/Motion-Graphics-tutorials/Documentary-Feature/474683/510578-4.html
https://www.sidefx.com/buy/#houdini1
https://www.lifewire.com/free-3d-software-list-2005
https://techterms.com/definition/node

76

APPENDICES

Appendix 1. Skype Interview with Jacques Lucke 06.04.2017.

1. Please tell briefly about yourself.

I am Jacques Lucke, currently I am 19 years old. I live in Hennigsdorf (very close to

Berlin). Now, I am 3rd semester student of computer sciences. Got into programming,

video/image editing, vfx and other related stuff about 9 years ago.

2. What is Animation Nodes?

Animation Nodes is a node based visual scripting system designed for motion graphics

in Blender. If you consider all these things (nodes, visual, scripting, designed for motion

graphics, Blender, ...) together, you'll get Animation Nodes. I call it a "system", because

it is not just a language but a whole framework and "designed for", because it's mainly

used for motion graphics, but it was always a goal to be able to do a lot more with it.

One interesting fact is that AN is completely open source and available since the first day

of development. On the second day, I uploaded the first video about AN on my Youtube

channel (it's still online) and started the AN thread on www.blenderartists.org. Now the

thread is the largest in that category of the forum.

3. How and why did you start to develop Animation Nodes?

I have been using Blender for 5 years now, started to develop add-ons 2.5 years ago.

My first add-on (to get started with the Blender Python API) was the Sniper add-on. My

second add-on for Blender is already Animation Nodes (note that I had quite a bit of

programming knowledge before).

I had many ideas for different Motion Graphics add-ons for Blender but I found that many

of them share the same base. So, I tried to figure out a way to combine all that stuff into

one add-on (also because I was lazy and did not want to write and maintain that many

add-ons).

Making it node based was just a logical conclusion. I was fascinated by node based sys-

tems for a few years already (since I worked with Nuke during a two-week internship)

and thought about developing one myself for a long time.

77

4. What is Animation Nodes capable of?

It's hard to say what is Animation Nodes capable of because it is a scripting system. It's

like asking what Python or any other programming language is capable of. It has hundreds

of nodes built in already for motion graphics, math, ...

One of the great strengths of Animation Nodes is its high flexibility and extensibility. I

heard of people who developed their own set of nodes for whatever they are trying to

achieve. That does not have to do something with Motion Graphics.

5. What are cons and pros of Animation Nodes?

Talking about pros and cons in general is also not easy. It always depends on what you

are trying to solve. Also note that Animation Nodes is never really finished, so talking

about individual features as cons might not be a good idea. Also, many things are pros

for some people and cons for others. For example, the fact that it works very similar like

a programming language. A lot of people tell me that AN absolutely awesome, and eve-

rything makes sense, and love it. But at least the same amount of people tells me that it is

stupid to give artists a tool that works like a programming language.

This makes it sometimes difficult to make decisions of course. It's hard, if not impossible,

to design software for so many different people.

6. What is the future of Animation Nodes?

I'm currently working on the AN 2.0 release. It will either come out in roughly 2-3 months

or in summer, depending on how far I get when I have holidays. Big goals for the future

(unlikely that they make it all into the same release):

• Cython: Cython is awesome, it allows me to optimize AN where performance is

important. I plan to "cythonize" more aspects of AN to make it faster for many

common things.

• Vectorization: example - if you put a single float value into a math node, it should

operate on this element. However, when you plug in a list of floats you want it to

operate on all the floats at once. I don't want separate nodes for that. (It's like

function overloading if you know the terminology). This will have many benefits

as you will see in the next release.

• Declarative: So far most of the time you want to do something in AN you can't

just say what you want, but you have to know how to get there. It would be more

artist friendly the other way around. The first step into this direction is the new

78

Falloff system I'm working on. Checkout my latest videos to see roughly how it

works.

• Plugins: Allow others to develop their own nodes for AN and quickly share them

with others via a little plugin manager within AN.

This is what I can think of right now. I'm sure there is more but I don't have and never

had a master plan for AN so I'll adjust priorities on the go.

Also, the users always have high influence on the areas I work on.

79

Appendix 2. Case Study’s production files.

All files in this appendix were created by the author of this thesis and for undefined time

frame are available online:

https://drive.google.com/drive/folders/1w3919GIb0QZ6mYVA0v6uiL4SsGOaPrO-?usp=sharing

• CaseStudy_AN.blend - Blender file with case study’s animation developed with

Animation Nodes

• CaseStudy_Keyframe.blend - Blender file with case study’s animation devel-

oped with keyframe animation method

• CaseStudy_AN_30fps.mp4 - rendered animation of the case study developed

with Animation Nodes at framerate 30fps

• CaseStudy_AN_60fps.mp4 - rendered animation of the case study developed

with Animation Nodes at framerate 60fps

• CaseStudy_Keyframe_30fps.mp4 - rendered animation of the case study devel-

oped with keyframe animation method at framerate 30fps

• CaseStudy_Keyframe_60fps.mp4 - rendered animation of the case study devel-

oped with keyframe animation method at framerate 60fps

• CaseStudy_Keyframe_vs_AN_30fps.mp4 – side by side comparison of Cas-

eStudy_Keyframe_30fps.mp4 and CaseStudy_AN_30fps.mp4

• CaseStudy_Keyframe_vs_AN_60fps.mp4 – side by side comparison of Cas-

eStudy_Keyframe_60fps.mp4 and CaseStudy_AN_60fps.mp4

https://drive.google.com/drive/folders/1w3919GIb0QZ6mYVA0v6uiL4SsGOaPrO-?usp=sharing

80

Appendix 3. Examples created during the learning process.

All files in this appendix were created by the author of this thesis and for undefined time

frame are available online:

https://drive.google.com/drive/folders/1-TxMmJRQG2lv7EYRqS_ffYlbl7EmJ77t?usp=sharing

• Amber_Rings.mp4 – animation created combining keyframe animation method

and Animation Nodes

• Pipes.mp4 - animation created combining keyframe animation method, modifiers

and Animation Nodes

• Spikes.mp4 - animation created combining keyframe animation method, modifi-

ers and Animation Nodes

• Spiral.mp4 - animation created combining keyframe animation method and Ani-

mation Nodes

• Tapes.mp4 - animation created combining keyframe animation method and Ani-

mation Nodes

• Towers.mp4 - animation created combining keyframe animation method and An-

imation Nodes

• Tubes.mp4 - animation created combining keyframe animation method, modifiers

and Animation Nodes

https://drive.google.com/drive/folders/1-TxMmJRQG2lv7EYRqS_ffYlbl7EmJ77t?usp=sharing

