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1 INTRODUCTION 

Modern mobile game development seems to heavily focus on social interac-

tions, and multiplayer aspects of gaming. This can be realized if searched 

through either Apple App store or Google Play store. The focus on creating 

communities around games and having them create a social phenomenon can 

be seen on games like Supercell’s Clash Royale, Plarium’s Vikings: War of 

Clans and Wargaming’s World of Tanks Blitz. Every one of these games im-

plements multiplayer feature its own way, but a common factor is that they are 

using servers to allow this level of interaction. 

 

1.1 Purpose of this thesis 

The topic of this thesis is a Unity multiplayer game server and its development 

and implementation for a free-to-play mobile real-time strategy game called 

Medals of War which is currently, at the time of writing, being developed by a 

Finnish mobile game developer Nitro Games Plc. 

 

This thesis is the means to study, document and describe the implementation 

of creating a multiplayer server for a mobile game using Unity, a game devel-

opment platform, and its HLAPI system in together with Master Server Frame-

work. The idea is to provide an easy to access document that conveys the 

theory behind the implementations and the explanations of those implementa-

tions used in the development of said server. 

 

The main structure contains of the requirements of the server and what it 

should be capable and able to do. This is followed by introducing the theory 

behind networking and game servers in general. Unity HLAPI and the tools it 

provides for creating this server are also explained. Theory is followed by 

practice, where implementation is discussed and backed by theory and re-

quirements previously handled. Implementation detail is the main chapter and 

focus of this thesis. After implementation is handled it is time to evaluate the 

development and implementation process and deduce what could have been 

done differently and what is still left to do. 
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1.2 Approach to the subject 

The subject was approached with no prior knowledge of Unity’s multiplayer 

implementations and thus all the epiphanies are a large combination of theory, 

prior knowledge of the existing employees of the company, and tremendous 

amount of research, trial, errors and experimenting. 

 

Prior work related to multiplayer matches in the game were done with the 

mind on host-to-client multiplayer and minimum viable product. This gave a lot 

of ground work and structure for the server, but also introduced various parts 

that required reimplementation and redesign programming and functionality 

wise. 

 

The work presented in this thesis lays open many key functionalities of the 

game server core and the match logic of the game Medals of War. When pos-

sible, pros and cons are considered with reasonings behind the implementa-

tion choices. 

 

1.3 Medals of War 

Medals of War is to be the newest addition to the mobile game portfolio of Ni-

tro Games Plc and is a product of iteration heavy minimum viable product 

(MVP) process. During the writing of this thesis, the game had reached a soft-

launch stage, and was available for download in Sweden and Netherlands 

from iTunes for iOS. 

 

Medals of War itself, as previously mentioned, is a free-to-play real-time strat-

egy game that is set into a World War 2 fantasy themed world of Warland. The 

game is community-focused, and almost every aspect of the game is de-

signed to serve that purpose. 

 

The revealed key features of the game are to collect various cards and Offic-

ers that are used to fill battle decks and to control the battlefield against the 

opponent in an intense player versus player battles and to compete against 

other player created communities (Medals of War 2017). 
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The most relevant aspect in the game, especially related to this thesis, is the 

player versus player feature that happens on Unity based game servers. The 

game servers are produced internally, and this thesis is a by-product of that 

process. Guidance of player connections to available game servers and de-

ploying of said game servers is handled by the Master Server Framework, a 

Unity asset available from the Unity Asset Store. 

 

The responsibilities of game servers are to handle the player input, produce 

the expected output based on said input, use player data to validate players’ 

actions, and to deduce the match outcome, which allows correct distribution of 

player rewards. 

 

1.4 Nitro Games Plc 

Nitro Games Plc is a mobile game developer based in Finland, Kotka, and 

was founded 2007. The company’s business entity type changed from a pri-

vate company limited by shares to a public type during summer 2017, and 

was officially ringing the bell at Nasdaq First North Stockholm 16th of June for 

their first day of trading. 

 

Nitro Games was during the writing of this thesis developing its new free-to-

play mobile strategy game Medals of War. This thesis is heavily focused on 

the development and implementation of the Unity multiplayer server that is 

used to power every PvP match occurring in the game. 

 

Nitro Games has previously focused on PC games but has since the release 

of Charlie Chucker, which was released on Windows Phone in 2013, focused 

on mobile games, and especially on free-to-play strategy games. 

 

2 FUNCTIONAL REQUIREMENTS 

Full-fledged document of the software requirements specifications (SRS) are 

out of the scope of this thesis but will not to be left out in entirety. It must be 

noted that the game server is not an independent software but more of a sub-

set of an existing software. The following paragraphs should be adequate of 

giving a sufficient view of the key functional requirements of the Unity game 
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server that is used in the Medals of War. 

 

2.1 Network connection 

The game server is an entity with the purpose of being the meeting ground for 

two client instances of the game. From the match result validation point of 

view, the result of the match on the game server is the correct state and as 

such, the result for the clients. Implemented back-end side of the game will 

also be used to supplement the valid state of the ongoing matches. 

 

When synchronizing the variable and state info of the match, the bandwidth 

available should not be cluttered or otherwise abused with constant state syn-

chronizations. Instead, state synchronizations should be integrated into the 

events of the game that the game server perceives as important for the clients 

to replicate and synchronize their states into. 

 

The game server should be able to handle received client connections with 

the ability to accept the clients into the game, store the clients’ info for the du-

ration of the match, and disconnect the clients as well. The client-side of the 

game used by the player should not crash or otherwise throw an exception 

when the connection is disconnected from the game server. 

 

2.2 Client input handling 

The state of match is required to be in precise knowledge of the game server, 

and the state that is present on the server must be the one used to determine 

the outcome of the match for all the connected clients. The invalid game state 

of the match present on the clients should be synchronized and forced by the 

server to match the server’s state. 

 

All client inputs that alter the state of the match, will be handled and validated 

by the game server. Resources used by the clients are resolved by the game 

server and all the actions the clients invoke without enough resources are 

deemed to be invalid and discarded. 
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All interactions between game entities are handled by the game server to pre-

serve the integrity of the game state. Visual and audio feedback are to be left 

out from the game server for performance and no recipient reasons. 

  

2.3 Authority distribution 

Due to the competitive nature of the Medals of War, the clients will not able to 

gain any leverage or advantage against each other’s through questionable ac-

tions performed through any third-party software or an external code. 

 

The game server in Medals of War is an authoritative form of a server. There-

fore, like previously mentioned, the state of the match and the variables that 

are significant to uphold this state, are most accurate and complete on the 

server. The game server dictates everything related to the match state, and 

enforces this by forcibly synchronizing its data onto the clients. 

 

The players themselves will have client authority on their respective player ob-

jects. The clients will use their player objects to send commands, more easily 

perceived as inputs, to the game server, which in turn calculates the outcome 

and will either comply in accordance to the game logic or discard the player in-

put as an invalid action. 

 

2.4 Action validation 

The game server will use the client sent data in the beginning of the match to 

cache the possible actions available to each client. This data is validated 

through the back-end server that has the knowledge of the available actions 

the player can do with his or her active battle deck. 

 

The cards the clients use, are validated with the game server cached data. In-

valid data is discarded and the player commands that were used to send the 

data are ignored. Invalid data will not initially require any other actions from 

the game server except ignoring and discarding the data. Receiving an invalid 

data will not penalize the client that sent the data as there is a chance that the 

data was corrupted or otherwise invalidated through a client-side error. 
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3 THEORETICAL FRAMEWORK 

Due to the nature of this thesis and the complexity of the subject in hand, a 

certain amount of theory was required to achieve the quality Nitro Games re-

quired. Many of the terms and definitions used in this thesis are handled in 

this chapter. 

 

The definition of a server can vary in many situations and especially in differ-

ent context-scenarios. For simplicity and to avoid confusion, the game server 

can be called an instance of the game which simulates the matches and repli-

cates the match state to the connected clients (Valve Developer Community 

2001). In this thesis, the terms game server, server and dedicated server are 

used almost interchangeably. The term back-end server is used to describe 

the whole process that runs the database queries and handles the player cor-

responding data and the game configurations. 

 

In this thesis, the game server is equivalent to the dedicated server. Dedicated 

servers are simply headless client instances void of rendering and user inputs 

and are hosted on a single machine or multiple server machines using multi-

ple different programs to tie together (Weilbacher 2012). 

 

3.1 Network 

MVP version of the game was not using dedicated servers to run the course of 

the matches but trusted one of the clients to be a host. In a game where peer-

to-peer or host-to-client network model is established, it is possible for the 

other peers or the host of the match to gain unfair advantage over the others 

through use of cheating software or, if the cheater is prone to use all tools 

available, through usage of a lag switch, especially if the host or the peer is fa-

voring WLAN connection. 

 

3.1.1 Network topology 

Previously mentioned network topology is a way to define and describe the 

connection structure of each device and component in the network, and the 

topology can be viewed through logical or physical topology (Pandya 2013). 

Our perception is mostly logical. 
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Out of possible logical topologies, Unity HLAPI directly supports only two of 

them; those two being star and peer-to-peer topologies. The star topology can 

be divided into host-to-client and dedicated server-to-client networking mod-

els. In star topology, the network utilizes a central hub, a host or a game 

server in our case, and all the other devices are connected to that server or 

host. In server-to-client network, the failure of one client is not disruptive to the 

functionality of the server and other clients. This gives reliability on the multi-

player matches. However, in the case that the game server fails, the match is 

unresolved, and the clients must failsafe their way out the situation (Pandya 

2013). 

  

In peer-to-peer topology the main idea is to give each client control over the 

running game state, and to allow each peer’s device to simulate the game 

state through dividing the network and resources in an evenly manner and 

synchronized pattern (Schollmeier 2002). 

 

To best serve the features of the game server, the logical network topology 

chosen was star topology, and more precisely server-to-client model. This 

serves and fulfills the concept of the dedicated game server. Consequently, 

this allow the largest possible integrity and amount of control over the game 

state. Furthermore, authoritative model of the server mitigates with possible 

vulnerabilities of the match state. 

 

3.1.2 Latency 

Released games have to contend with various negative factors that may or 

may not be present during the development. When networked games are not 

played in the development local network, a negative factor known as latency 

must be taken into account. Technically the word latency is referred to as per-

ceivable time and delay between the client issued action and the outcome 

shown on the client after being processed through the game server (Glazer & 

Madhav 2015). 

 

Latency is measured through the round-trip time (RTT), which consists of the 

time of a sent packet from a peer to another and the time it takes for that peer 

to receive a response packet. However, RTT is not only a combination of 
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forming, sending and receiving times of network packages, but frame rate and 

computing time to handle and deserialize the package, are factors as well 

(Glazer & Madhav 2015). 

 

Figure 1 illustrates package sending and receiving on both, the server and the 

clients. To depict RTT, the client can send a CMD package to the server, con-

veying the client’s input and the desired action.  

 

Figure 1. CMD package. 

 

As the latency and the RTT are not constant values, the next RTT measure-

ment example uses arbitrary but reasonable values. If deducing the client’s in-

put and the wanted action takes 15 ms and the amount of time it would take 

for the action consisting CMD package to reach was 30 ms, then the first half 

of the round would be 45 ms. The next round would consist of server’s deduc-

tion and computation of the wanted action, its validity and possibility related to 

the current state of the server state. Reasonable time assumption, depending 

on the action, could be 15 ms, and fulfilling the command another 15 ms, sum-

ming up to a total of 30 ms on the server-side. Having updated the server 

state, the refreshed state with the response related to the received action con-

sisting package, could take the same amount of transfer time as it did from the 

client to the server, that is 30 ms. To sum up the whole round, the first round 

being 45 ms, and the second being 60 ms, the whole RTT would be 105 ms. 

Thus, RTT consists of the computation and over the network transfer times. 

 

Low RTT and latency are not self-evident however. In a situation where it can 

be expected or there is a possibility that the RTT stays low, there rises a re-

quirement to stem the problem through reducing the discrepancy of the re-

sponse times through lag compensation, which effectively means either the 
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client-side or the server-side lag compensation implementations (Xicota 

2013). 

 

It must also be taken into consideration that the latency is not just hardware 

and software related. When measuring the elapsed time for something to hap-

pen through the latency, the latency can be stated to be some arbitrary value. 

However, the perceivable delay in the latency is just as psychological as it is a 

measurable number, and different actions have a certain degree of acceptable 

latencies in contrast to others (Ignatchenko 2017). 

 

3.2 Unity HLAPI 

The main framework used for building the game server of this thesis, is Unity’s 

engineered and implemented HLAPI. HLAPI was designed and built on top of 

the OSI-models transport real-time communication layer, which would allow it 

to handle various common tasks related to the multiplayer capabilities of multi-

player games (Unity’s HLAPI 2017). Match logic of the game server is solely 

based on the HLAPI provided functionalities. 

 

All networked and synchronized match objects are spawned through the game 

server. When an object is spawned, HLAPI will assign an available Net-

workIdentity and a valid authority model to the object. Spawned objects with 

their serializable values are instantiated to all the available clients and the 

server (Unity’s Object Spawning 2017). The NetworkIdentity assigned to the 

spawned object is unique and identical through the network participants and 

can be used as a tool for action validations. 

 

Spawnable objects are required to be registered to the active NetworkMan-

ager. Spawnable objects are handled by the spawn manager, NetworkServer 

and ClientScene classes during the spawning process. NetworkServer runs 

an internal update method which compares the dirty bit of each NetworkIden-

tity containing object. Objects that are marked dirty, build UpdateVars pack-

ages that are forwarded by the server to each client’s corresponding object 

and update SyncVar attributed variables (Unity’s State Synchronization 2017). 

 

SyncVar attributed variables can be attached with hooks. Synchronization 
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hooks take the new value of the variable as an argument and are only called 

on the clients. To illustrate, if the client instance is bound to launch an event, 

such as a sound at a certain value of the hook attached variable, the hook 

method can launch the event and refresh the variable in the same call. Using 

the hooks to launch client-side only methods is a convenience. 

 

Due to an authoritative model of the game server, the SyncVar attributed vari-

ables offer an additional security layer. Automatically forwarded UpdateVars 

packages are dominant with their variable states and will override the client-

side values by the default HLAPI implementation, thus rendering the tamper-

ing of the said values futile. 

 

However, the SyncVar variables cause an additional load for the game and 

the network in general. Unity HLAPI presents a hard cap of 32 SyncVar at-

tributed variables on a class before starting to generate UNET compilation er-

rors. The limit can be raised, but before proceeding, it might be best to rethink 

the design of the class requiring that many SyncVar variables. 

 

3.2.1 Remote actions 

SyncVar packages are limited in their capabilities of transferring data due to 

their restrictions to be able to be declared on only the basic built-in types such 

as byte, Vector3 and structs containing the allowed types. To preserve the 

match integrity, various match events require more comprehensive methods 

for synchronizing these events. 

 

Unity HLAPI is provided with three types of remote actions. When the client 

wants to affect the match state, the game server can’t comply without proper 

validation. The clients can affect the game state through actions called com-

mands in the HLAPI and they can only be sent from the client authority con-

taining player objects and, after Unity 5.2, client authority containing non-

player-objects. However, UNET disallows player object deprived client con-

nections from sending commands, allowing only the basic network messages 

being transmitted. There are restrictions to the command methods as well. 

Methods that are commands can’t be static methods and must be prefixed 

with a keyword Cmd and attributed with the [Command] attribute. Command 
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methods can have parameters of basic types and HLAPI relative networking 

variables or structs consisting of the listed basic types (Unity’s CommandAt-

tribute 2017). 

 

Unity serializes the given arguments into byte arrays that are transmitted with 

the command to the corresponding active game server instance. This allows 

the command to be invoked on the server with the exact same values as it 

was called on the invoking client. UNET doesn’t differentiate if the command is 

initially invoked on the client or on the server due to commands are only exe-

cuted on the server-side. 

 

The other two remote actions provided grant network server instances the ca-

pability to invoke ClientRpc and TargetRpc attributed methods that will be 

called on the server but invoked on both clients (ClientRpc) or a specified cli-

ent (TargetRpc). RPC methods must be prefixed with a Rpc and attributed 

with [ClientRpc] or [TargetRpc]. Like commands, client replication methods 

can have parameters of basic types, HLAPI relative network variables and 

structs of listed basic types (Unity’s ClientRpcAttribute 2017). 

 

3.2.2 Web requests 

All the client data can’t be trusted to be provided by the clients and as such, 

requires a neutral, trustworthy participant, such as a database. The database 

stores all the player data in a neutral form and can be accessed through the 

back-end. As the back-end is not locally available for the game server, the 

connection must be made through a HTTP request. 

 

HLAPI allows the forming and handling of HTTP or HTTPS requests and re-

sponses through a UnityWebRequest, which is working through the HLAPI 

and LLAPI. The LLAPI allows the developers to implement customized Uni-

tyWebRequests, UploadHandlers and DownloadHandlers for specific scenar-

ios that the default requests can’t handle as required (Unity’s Advanced oper-

ations: Using the LLAPI 2017). 

 

Basic retrieval of data from the database and through the back-end, can be 
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achieved through a UnityWebRequest’s GET method which allows Unity in-

stances to connect to any web service through the previously mentioned pro-

tocols. In the contrary, a UnityWebRequest’s POST method allows the send-

ing of data to the back-end for storing purposes. Responses from both re-

quests can be handled through attachable callback methods. 

 

The response from the request can be handled through Unity’s coroutines by 

yielding UnityWebRequests Send (Unity 2017.1 and downwards) or SendWe-

bRequest (Unity 2017.2 and upwards) methods as they will set the coroutine 

on a pause until system error or finished communications (Unity’s SendWe-

bRequest 2017), or by creating a fully customized class inheriting a Unity pro-

vided DownloadHandlerScript, which has various callbacks for when the re-

spond has arrived for the request (Unity’s Creating DownloadHandlers 2017). 

 

3.3 Master Server Framework 

Master Server Framework is an API and a framework designed by Alvydas 

Poškevičius that is barebones for creating the logic and implementation of the 

server pipeline for Unity multiplayer games and its fully open-source and freely 

downloadable as a Unity asset from the Unity asset store or the GitHub repos-

itory (Poškevičius 2017). 

 

MSF provides a server pipeline framework and a couple of demos for net-

worked games with three differently tasked server types for maximum scalabil-

ity and distribution of logic and implementation: master server, spawner server 

and game server. 

 

The framework has an emphasis on a root level master server where all the 

instances of the game and the server infrastructure connect as can be seen in 

Figure 2. The master server can direct clients to available game servers or as-

sign a spawner server to create a new game server instance for the clients to 

connect into (Poškevičius 2017). This form of functionality can also be availa-

ble to various forms of matchmaking servers, as they can direct the clients to 

available game instances with different parameters such as any game availa-

ble or a game that matches with the possibly provided comparable variables 

(Ignatchenko 2017, 32). 
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Figure 2. The server structure and pipeline of MSF. The Big Picture (Poškevičius 2017). 

 

Spawner servers are mainly connected to the master server, and are a tool to 

extend and scale the availability of the game server instances when required. 

In a scenario where a client is querying for a game server and there is none to 

offer, a spawner server is assigned by the master server to boot a game 

server instance and inform the master server when the game server’s game 

room is available for the players (Poškevičius 2017). 

 

As the MSF is only a framework, it doesn’t offer a full server infrastructure and 

pipeline solution for games, and requires extensive knowledge of C# and 

UNET programming (Poškevičius 2017). MSF offers a lot of boilerplate code 

and default modules but encourages developers to create their own imple-

mentations. It must be noted that the MSF is not only about programming, it 

requires server deployment knowledge to be properly deployed for usage in a 

commercial game. 

 

3.3.1 MSF network 

MSF provides its own network API to differentiate itself from the UNET imple-

mentation and to offer customizable and different solutions. However, it does 

not discard Unity as it is meant to be developed within Unity. Various layers of 

abstractions are meant to be efficient and conveniently extendable. Two con-

nection protocols are provided with the MSF, called Websockets/TCP, which 
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is based on websocket-sharp, and UDP/RUDP, which is based on UNET Net-

work Transport Layer API (Barebones-Masterserver’s Networking API 2017).  

Both protocols are socket based and are meant to establish a connection be-

tween two endpoints. In the MSF, one of the endpoints must be of an interface 

client type IClientSocket, and other of a server type IServerSocket. The con-

nection participants will perceive each other as peers. In the MSF peers are 

perceived as an interface type IPeers and every connection has the peer infor-

mation embedded into them (Barebones-Masterserver’s Networking API 

2017). 

 

Each peer can send network messages, identified as of an interface type 

IMessage, and receive network messages, identified as of an interface type 

IIncomingMessage. Each network message is related to the connection be-

tween the endpoints, and expose multiple properties and events to tap into. All 

MSF network messages are identified through specified message handlers 

that are set to work with different MsfOpCode containing network messages. 

MsfOpCodes are enumerations of aptly identified types of network messages 

such as the RegisterRoom and the GetRoomAccess. 

 

3.3.2 MSF peer 

Technically peers are important entities in the MSF. Peers are conceptually 

entities with corresponding layers such as different machines, software, hu-

man beings and hardware (Tanebaum & Wetherhall 2010). Connections and 

messages between differently characterized game instances happen between 

peers. In the MSF, each peer is represented through the IPeer interface.  

 

IPeer is an interface that is used by the MSF server objects to identify and 

control the data available to or from an entity that in this case can be called as 

a client, which in the context of the MSF can be a player connecting to a game 

server, a spawner server or anything that is connected to the master server or 

even the master server itself. (Barebones-Masterserver’s Peer Extensions and 

Properties 2017). In the MSF, between client-server connection, the client per-

ceives the server as a peer while the server perceives the client as a peer. 
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Using the IPeer interface allows the server to cache all the unique peers cur-

rently connected to it. Each active peer on the server has a state and can 

have various additional privileges or different methods of handling through in-

terface extensions. In the game server’s case, when the master server re-

ceives a connection from the game server in an attempt to register itself into 

the master server, the IPeer of the game server can for example be provided 

with the game room extensions that contain customized handlers and proper-

ties for the game room identified IPeer. In addition to having differentiated in-

terface extensions on the master server, the game server can do the same for 

its peers, the client players. The IPeers connected to the server have a state 

that the server can modify. IPeer state is both, indicated through IPeer proper-

ties and interface extensions. 

 

4 IMPLEMENTATION 

The development and implementation of the game server was started during 

the end of April and has not ceased during the writing of this thesis. Various 

components of the game server are described in this chapter, and all the main 

components and sub components are split to their own perspective subsec-

tions. To understand what the explained implementations are about, one must 

understand the match concept. 

 

4.1 Match concept 

Ranked games, or networked matches as interchangeably referred in this the-

sis, are the cause and the reasoning behind the need for the game server on 

the Medals of War. The games are meant to be competitive and fast paced 

with strategic and tactical elements fit to the genre of free-to-play real-time 

multiplayer strategy games. 

 

Matches are held between two client players each holding their own base, re-

ferred to as Headquarters (HQ), on the corners of opposing sides of the map. 

These HQs are the main lifeforce and most conclusive objects when calculat-

ing the winning side of the match. Although being the game world representa-

tive of the players presence in the match, each HQ has the capability of 

launching a devastating missile fire against opposing HQ if the player has the 
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control of two capturable areas, located at the center of the map, called No 

Man’s Land’s sections. 

 

The No Man’s Land (NML) is one of the driving forces during the match as the 

control of the area guarantees constant damage against the opposing player’s 

HQ. In some situations, the players can be equally matched, and no conclu-

sive outcome seem reasonable in that situation. The games are timed and 

during the writing of this thesis, the matches game time limit was set to three 

minutes through the database. If the time runs out the match ends. If the time 

runs out and both HQs are alive and both NML’s sections are without owners, 

the match results into a draw and no rewards are distributed. In time out situa-

tion, if one of the players own both the NML’s sections, that player wins. 

 

Available actions are measured through manpower and command points. Ac-

tions can be perceived as calling infantry, vehicles and commands into the 

battlefield. Manpower generates steadily as the match progresses, though 

during the last minute of the game, the generating speed is doubled. Com-

mand points are generated through drawing of non-command cards. Com-

mands can be anything from calling a squad of paratroopers, calling down na-

val bombardments or plain establishing of a foothold through placing buildings 

in the battlefield. Each card has its own cost and work better against certain 

types of cards than others. Manpower is capped at the score of ten, while thee 

command points are capped to the number five. 

 

Drawing cards is the only way to progress during the match as most interac-

tions between the game entities are done through the game world representa-

tives of the cards used by the players. Thus, it could be said that the main 

core loop of the game is to draw cards, try to control the NML’s sections and 

to finally destroy the opponent’s HQ. 

 

4.2 Game server core 

To provide a starting point for the required functionalities of the game server, a 

prefab containing the GameServer script component was created and at-

tached to the required scenes as a not destroyable object. To have one ac-

cess point for handling match and master server connections offered simplicity 
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and a starting point for the game server. 

 

The initialization, as seen in the Figure 3, and the release of the attached con-

nections were implemented into the MonoBehaviour derived Awake, Start and 

OnDestroy methods. Each GameServer instance, is a singleton object. In the 

Singleton pattern, a class has a single instance active and a single access 

point from the global namespace of the code during the lifetime of the program 

(Nystrom, 2014). 

 

Figure 3. GameServer Awake method. 

 

Awake method was implemented to find the UnetGameRoom and the Match-

Maker component references and to determine whether the instance of the 

game is a headless game server or not. This is important to branch the logic 

between the client and the dedicated server. The connections to the MSF del-

egates are populated during this sequence, and depending on the server sta-

tus of the game instance, either the client or server objects are discarded from 

the memory. 
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4.2.1 Connection to the master server 

The GameServer component itself is not connected to the match logic in any 

way. The task of the GameServer is to connect to the correct master server 

when booted up and it is to handle the connections of the active clients during 

the match. GameServer connection to the master server is initiated by fetch-

ing the configuration data from the command line or the back-end as seen in 

Figure 4. 

 

Figure 4. GameServer WaitConfigs coroutine. 

 

To handle the connection to the master server, the server’s port and the IP are 

required. Due to various situations, these two can change, which is why the 

correct values are best left to be fetched from the back-end. It is possible that 

all the game configs are not loaded when trying to connect to the master 

server, which is why coroutines are utilized to guarantee all the game data is 

available before choosing the master server and invoking connection. 

The back-end provides a country specified IP address and a port number for 

the clients when trying to connect to the master server. The game servers 

have these parameters provided through a spawner server or direct command 

line arguments. 

 

Connecting to the master server is an asynchronous task due to not being an 

instantaneous task. The master server must accept the connection before it is 

established. The initialization of the connection works the same way for both, 

the client and the game server and can be seen in Figure 5. 
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Figure 5. ConnectionToMaster's InitConnection coroutine. 

 

A lot depended on the geographical location of the master server and the 

available connection of the mobile device in use when initiated from the client. 

Game servers do not have this issue due to being spawned geographically to 

the exact same location as the master server. This geographical factor did 

cause some unfortunate issues on the clients though. Initially the coroutine 

was built to initiate the connection and wait for the response from the master 

server until the connection timeout threshold. In many situations, multiple con-

nections to the master server could be established due to varying response 

times, which initially led to disconnections. It was best to create connected 

and failure flags to allow better distinction of the actual state of the connection. 

Connection result was set to be caught through an anonymous lambda 
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method. If met by a failure, the clients didn’t stop the connection routine auto-

matically and this was corrected. To remedy multiple connections, each con-

nection attempt was given a certain time before trying again. 

The game server can be manually booted standby instance waiting for the cli-

ents to join, or it can be a spawned instance through the master server called 

spawner server. Both possibilities need to be handled accordingly when the 

game server has connected to the master server as can be seen in Figure 6. 

 

Figure 6. GameServer's OnConnected method. 

 

Having started the game server as a standby instance, which is waiting for cli-

ents to join, can be done without further settings. If the listener port for the 

game server has been supplied through the command line arguments, then 

that port will be used and the server listening routines are started as imple-

mented in the Unity HLAPI. Standby instances of the game server can also be 

used during the development as sort of a debug game servers as they can be 

debugged locally. It is definitely faster to boot up developers own game server 

up and connect to that one with the client instances, instead of hoping to con-

nect through the normal initiation of ranked matches on the clients where 

matchmaking and room searches are utilized. 

 

Many game servers are simply spawned processes and are started on an as-

needed basis. These instances are required to connect to the master server 

and register as a spawned process. Spawn task controller is constructed and 

cached from the response into the game server instance’s local UnetGam-

eRoom as shown in Figure 7. 
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Figure 7. ConnectionToMaster's StartSpawned method. 

 

UnetGameRoom handles the game room registering, access into the game 

server and caches the match properties provided through the spawn task con-

troller further down the pipeline. Spawn task controllers are used to relay data, 

instantiate and kill game server processes. Default settings provided with the 

MSF are adequate for the job. 

 

4.2.2 Unet Game Room 

Unity HLAPI provides an internal system for building staging areas for multi-

player matches through a networking class called NetworkLobbyManager 

which is derived from the NetworkManager class (Unity’s NetworkLobbyMan-

ager 2017). Lobbies could be described as game rooms prior to the actual 

multiplayer match where the rooms have a limited number of open positions 

available for the match joining players. MSF does, however, make a difference 

between the functionalities of a lobby and a game room. In terms of having a 

competent multiplayer match, the lobby or the game room waits that it has 

enough players and all the players are ready before initiating the match. MSF 

provides the UnetGameRoom component that is designed to work with the 

other MSF provided components and functionalities. 

 

Important for the UnetGameRoom component is to register itself as an availa-

ble game room for the master server, handle client access to the game server 

and invoke methods attached to the system actions related to player joining 

and player leaving. Initiating the registration can be seen in Figure 8. 
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Figure 8. UnetGameRoom's OnStartServer method. 

 

Connecting to the master server allows the game server to register itself as a 

valid game server ready to receive connection from the clients and start a 

match. Unity allows the overriding of the OnStartServer method that is called 

when the HLAPI starts the server process of the game instance when called 

as can be seen in Figure 8. Pre-registration and registration of the game room 

calls are called through this method as well, and depicted in Figure 9. 

 

Figure 9. UnetGameRoom's BeforeRegisteringRoom method. 

 

Before registration of the game room, the spawner of the game server might 

have provided properties for the game server to cache and to abide by. If the 

game server was started as a debug game server, the Unity Editor preproces-

sor region can be used for setting up the game server with the wanted proper-

ties. Possible properties are provided through the specified argument and 
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property keys with their own respective values as defined in the Spawn-

TaskController. MSF comes with a few predefined keys, and adding or delet-

ing keys was fundamentally modifying the declaration of the MsfDictKeys 

class. 

 

Figure 10. UnetGameRoom's RegisterRoom method. 

 

Concluding the pre-registration phase initiates the actual registration se-

quence (Figure 10) where all the properties that define the match, which is run 

by the game server, are cached into the network serializable class called 

RoomOptions. Cached properties in the RoomOptions is sent through to the 

MsfRoomsServer as can be seen in Figure 11. 
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Figure 11. MsfRoomsServer's RegisterRoom method. 

 

To register the room, the MsfOpCodes.RegisterRoom message is sent with 

the RoomOptions constructed as seen in Figure 10. RoomOptions class is a 

serializable data transfer object (DTO) class with overridden to-binary and 

from-binary writers that are used for serialization and deserialization. 

RoomOptions hold the properties of the game server’s game room. Room-

Controller, which is built with the essential master server identifiable room id, 

is used to handle the access to the game server and to notify the master 

server of changes to the game server properties and the player connections. 

With both, the RoomOptions and the RoomController, the default implementa-

tions of the classes are sufficient and don’t require significant changes. 

 

To handle the MsfOpCodes.RegisterRoom message, the master server is re-

quired to utilize message handler for that specific MsfOpCode. Handling of the 

RegisterRoom message is illustrated in Figure 12. 
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Figure 12. RoomsModule's HandleRegisterRoom method. 

 

As the final step of registering the game server’s game room available for the 

master server to distribute, is to simply check that the game server instance is 

valid with its registration permissions. Having passed the checkpoint, the 

RoomOptions are cached and constructed as a RegisteredRoom which repre-

sents the game servers game rooms on the master server. To construct the 

RegisteredRoom from the cached RoomOptions, a public virtual method 

named RegisterRoom is utilized and implemented as in Figure 13. 

 

Figure 13. RoomModule's RegisterRoom method. 

 

RegisterRoom method as seen above, takes an IPeer, which in this case is 

the game server instance, and RoomOptions arguments. RegisteredRoom 

handles the access requests to the room by communicating with the game 

server’s RoomController and represents the game server on the master 
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server. MSF does allow multiple game rooms on a single game server in-

stance if necessary. The performance could, however, take a hit from such 

endeavor and ensuring the functionality could have been arduous. Therefore, 

such was not implemented. Each game server instance has only one game 

room in the current implementation and as such, the IPeer passed into the 

method doesn’t have already registered rooms in its properties. The fresh 

master server registered room is also registered for the game server’s peer 

data as well as into the master server for further distribution when a client is 

trying to find a match. 

 

4.2.3 Game server access 

As the game server is open for two players or certain players as in companies’ 

friendly matches, the game server can’t allow everyone to join the game room 

with every connection. One of the greatest issues without the access valida-

tion is that the room could have more clients than it was supposed to handle. 

That would lead to situations such as bugged out matches, network errors and 

disconnections. The solution for this issue is to have a game server access 

validation. This section explains the access pipeline to the game server’s 

game room. 

 

Handling the access happens on both, the client and the server-side. The cli-

ent initiates the access request from the server, as seen in Figure 14, through 

a basic network message which is sent through the connection to the master 

server. MSF provides various MsfOpCodes for different network messages by 

default. To easily distinguish these server pipeline network messages from 

UNET’s own ones, it is best to use MsfOpCodes instead of NetworkMessage 

codes. MSF does, however, support UNET’s default MessageBase derived 

NetworkMessages (Barebones-Masterserver’s Networking API 2017) if re-

quired. 
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Figure 14. MsfRoomsClient's GetAccess method. 

 

Access to the game room is requested by the player clients. Initiating a match 

connects to the master server and fetches the best suited room candidate for 

the client through the match making functionalities. After finding a room to 

connect, and to be on the safe side, it was best to check that the master 

server connection was still intact to avoid network errors. Having validated the 

active connection, the RoomAccessRequestPacket DTO should be populated 

with the required parameters such as the room id, which without the master 

server cannot deduce the wanted game server the client wants to access. 

RoomAccessRequestPacket is sent through with the MsfOpCode 

GetRoomAccess network message to the master server, and an anonymous 

lambda callback is used to catch the response when the callback is invoked 

as illustrated in Figure 14. MsfOpCodes can be customized for developers’ 

convenience, and the MsfOpCode sent can be a different one from 

GetRoomAccess, as long as the master server has a handler assigned for that 
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network message. Failure to have a handler will trigger a logged and handled 

error in the master server but leaves the message ignored.  

 

Response from the room access handler can contain an error due to the DTO 

not correctly being transferred, invalid password if one is used, or no room 

was found with the given room id. The error state should be checked prior to 

further tries to establish the connection to the game server’s game room. If try-

ing to connect to the game server’s game room with error message, the con-

nection is more than likely going to throw a network error in the form of a 

timeout. 

 

Successful response from the access request yields a RoomAccessPacket 

DTO, which is deserialized and sent down the pipeline of connecting to the 

game server through the access and the room connector callbacks as seen in 

Figure 14, which is the client-side requesting method for the room access. 

 

Using the default RoomAccessRequestPacket and RoomAccessPacket DTOs 

are not mandatory, and a custom implementation can be done. In this phase 

of the game server implementation it was derived that it was not necessary, 

and the default packets were sufficient. Furthermore, addition of new proper-

ties to the DTOs could be done by plain variable declarations, reducing the 

need to create and test customized solutions. During the deployment of the 

master server pipeline, the room access DTOs worked as intended. 

 

Having the client send the room access request to the game server’s game 

room, a respond will be determined on the server-side by the master server. In 

Figure 15, this room access request handling is depicted further. The packet 

data needs to be deserialized into more readable form, and the room extrac-

tion try with the room id is initiated from the now constructed RoomAccessRe-

questPacket the deserialized packet gave. 
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Figure 15. RoomsModule's HandleGetRoomAccess method. 

 

In case the target room of the GetRoomAccess message exists, the peer info 

of the client is sent to the registered game room in the server pipeline, and an 

anonymous lambda method is used to catch the respond when it arrives 

through the callback method further down. The access possibility of the client 

for the wanted room, is deduced on the fly when the request arrives to the 

master server. With hundreds of thousands of players this can taxing for the 

master server. The process could be made run on multiple threads, but during 

the development there was not enough time for that. It is more than likely, that 

the server pipeline will be made to run concurrently on multiple threads with 

more asynchronous tasks in the future. 

 

Final step to deduce the room access is to let the master server registered 

rooms distribute the accesses to themselves as seen in Figure 16. Mainly the 

client info parameter as an outside argument is used in this deduction. If the 

client is already in the room or the request is being progressed there is noth-

ing to be done, the client must wait, and will be told to do so. 
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Figure 16. RegisteredRoom's GetAccess method. 

 

It is also possible that the client-side has not confirmed the game server ac-

cess due to possible packet loss or unfortunate miscalculation on the client-

side. In that situation, the already existing access can be sent back with a re-

freshed timeout period. As a reminder, the process in Figure 16 can be done 

differently due to different requirements, design patterns and specific needs 

for the functionality. If the peer data is otherwise valid for the game server ac-

cess, the limitations of maximum players in the match needs to be considered. 

To avoid unnecessary waiting times for the clients, the room is already full if 



37 
 

there are enough clients in the game server, or the combined amount of ac-

cess requests in progress and unconfirmed accesses is enough to fill the 

room. The room will still be available if the accesses are not accepted, and the 

game server doesn’t have enough clients to start the game. 

 

In Figure 17, the room access checker that will double check the room exist-

ence and constructs access providers in the form of a RoomAccessPacket 

DTOs. MSF provides a default access provider if there are no specific needs 

to modify the RoomAccessPackets. The access packet mainly contains the 

game server IP and a port in addition to wanted properties. 

 

Figure 17. RoomController's HandleProvideRoomAccessCheck method. 

 

After the RoomAccessPacket is provided either as a successful access or not, 

the access validation is done, and the access results can be responded back 

to the client. Depending on the response, the client will join the match through 

a successful access or initiate a new request to another game server. 
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The room access pipeline, albeit long, is easily customizable for different sce-

narios. The current implementation is not perfected yet as can be seen from 

the logs received from the live game, where various players do get the “Room 

is already full” message internally. The denied clients will simply try to find an-

other match until enough tries have been initiated and a room creating request 

is called on the master server due to unavailable rooms or just purely enough 

access failures. Getting into the match takes the longest if all find match tries 

have been used and a new game server is created. In the future, the finding of 

matches could be taken care of by having a master server room for the clients 

to wait until a match is found or a room is created for them. For the sakes of a 

convenient match making and accelerated finding of game servers, the client 

does not have to get into a room and after that check if the opponent is worthy 

as deemed through the match making logic. The rooms and players are fil-

tered through the match making algorithm, thus saving the time for needless 

room accesses and disconnections due to an invalid opponent. 

 

4.3 Networked objects 

For synchronization and interaction purposes, the active objects in the net-

work require network components to be valid networked objects. The game 

state of the match handles multiple objects from infantry units to buildings and 

various explosive components that need to be synchronized through the 

HLAPI. To be able to synchronize object states, these objects are required to 

have a component that derives from a NetworkBehaviour class and have a 

provided NetworkIdentity as well. This section of the implementation handles 

objects the networked game match requires with the purpose of introducing 

and reasoning their existence. 

 

4.3.1 Player prefab 

Each active network system player on the server is represented through 

player objects that are client instances with the ability to initiate command 

calls to the server. The HLAPI and the server can this way validate that the 

commands are issued from the correct client and connection. 
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Player object can be a prefab that is registered to the NetworkManager to al-

low default spawning of the player object when the client connects to the 

game, or the player object can be created by other means (Unity’s Player Ob-

ject 2017). For the game servers purposes the default way was deemed effi-

cient and convenient enough as there were no specific needs to implement 

customized pipeline for creating the player object. The player object is impera-

tive for the associated client connection as otherwise the client is unable to is-

sue commands that are executed on the client connection associated player 

object on the game server-side (Unity’s Player Object 2017). 

 

In the game, the player objects were designed to be the central hub for han-

dling the commands and inputs the clients would issue, such as spawning of 

card representative objects. This process would be supported through the 

match specific Match Manager object. 

 

4.3.2 Match Manager object 

Match Manager is used as a central hub for actions related to the match, 

whether they were caching of player specific resource points, sending of ana-

lytic events for development and marketing purposes, caching various match 

related statistics for later usage and numerous other match related tasks. 

 

Client-side validation and a few elements in the battle UI are leaning on the 

data cached in the Match Manager. It is also an important tool when synchro-

nizing the state of the match running on the clients while also handling the ex-

ecution of various client issued remote commands. 

 

Match Managers are Singleton instances and unique to each match. After the 

server scene of the game is loaded, prefab hosting the Match Manager is 

spawned, providing fresh values for each match. The current game implemen-

tation doesn’t allow using the same Match Manager due destroying the object 

after each match. 
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4.3.3 Deployable cards 

During the writing process of this thesis, there was a total of 41 different de-

ployable cards available for players. Out of those cards, only a few were using 

multiple instances of related character, command or building prefabs. Spawn-

able prefabs were required to be registered intro NetworkManager due to 

HLAPI requirements for spawnable objects. To easily differentiate card enti-

ties, each character, command and building was stored as an individual pre-

fab. The word character is used interchangeably between infantry and vehi-

cles units because of shared implementations. 

 

Each card is drawn to the battlefield issues a call to spawn a squad which is 

the connecting link between many operations available to characters and 

buildings alike. However, the usage of squads has its roots to the NGPlat-

form’s game template, and is slowly turning out to be a legacy component 

pending for removal. Prior to removal and refactoring of key components, the 

squads are the first step in spawning the card entity into the battlefield. 

Spawned squads’ references are registered and cached as each correspond-

ing clients’ property and are used to trigger the spawning of related charac-

ters, buildings or command agents. 

 

Command agents are objects spawned by commands and they can take the 

form of a missile or even a building. To reduce the load of spawning single, 

multiple objects containing prefab instance, have a variable defining the 

amount of command agents to be spawned. 

 

4.4 Game server match logic 

Implementations of the match logic are technical and require knowledge of 

programming to fully grasp. Various match related scripted components are 

revealed and their reasonings explained as snippets of code are abstracted 

and partially written in pseudo to convey general insight and understanding 

into the codebase of Medals of War. 

 

Generalization of code extractions was reasoned for the purposes of this the-

sis, allowing extended amount of shareable knowledge to be written. Full im-

plementations can’t be shown due to security and NDA reasons. 



41 
 

4.4.1 Match Manager logic 

MatchManager is one of the largest scripts related to the functionality and co-

herence of the game server state. Focusing mainly on the server-side, Match-

Manager is void of its main functionalities on the clients and is there to ensure 

that the clients abide to the game server state through synchronization calls 

and RPC calls. 

 

Illustrated in Figure 18, the MonoBehaviour provided Start method was over-

ridden as a coroutine to halt the execution for a duration of the battle objective 

briefing to allow keeping the starting of the match in one method. 

 

Figure 18. MatchManager StartMatch coroutine. 

 

To avoid unnecessary animations being run on the server, only the clients will 

execute the animation through a RPC call. NML sections do not exist on the 

server scene initially and are spawned in the starting process. Spawned NML 
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sections are registered on the server and client-sides which after the contest-

ants’ resource points are initialized and cached. Yielding the execution of the 

coroutine allows the clients focus on the objectives and to avoid the battle to 

start prematurely when the game is being initialized. After continuing the 

coroutine execution, the length of the battle is initialized through back-end 

sought variable and the analytically important variables are cached and sent 

to clients to be structured in more readable format. Analytical data is of struct 

type to allow default serialization over the network. In the end of the coroutine, 

clients’ officer battle perks are cached and the request for match data is sent 

to the back-end, which in turn constructs the data in more iterative format and 

sends it back to the game server to be cached until the match ends. 

 

It is important that the matches start in quick order and there are no unneces-

sary wait times after getting into battle. To have valid data being sent to ana-

lytics, it is important that the game server builds the data packets as can be 

seen in the coroutine in Figure 18. 

 

Generation of manpower resource is done each frame by a coroutine. Rate of 

generation is calculated to cumulate one manpower after each back-end 

sought interval variable as seen in Figure 19. 

 

Figure 19. MatchManager BaseManPowerGainRoutine coroutine. 

 

Due to significant relation to the prevalent match state, resource generation is 

controlled by the game server. Separating the manpower gain routine from the 

Update method allows to control the intervals between resource gains instead 

of having to follow separate variable measuring current interval period in the 

Update method. To safeguard the coroutine, it is declared private with a 

server callback attribute. 
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Due to being one floating-point value, synchronizing the manpower value each 

frame is trivial to the bandwidth and processing tasks. Prior to being increased 

every frame, the manpower points were increased by one-third between rou-

tine intervals and this caused unnecessary complexity to the client-side pre-

diction of available manpower points, leading to mislead observations of the 

available manpower after certain timeframe. Gradually generating manpower 

allows the players to assume the time between their next action more easily. 

 

Synchronization of changed manpower values are handled automatically by 

UNET’s SyncVar attribute on the manpower variable when the value has 

changed. To have the client instances of the game properly update the battle 

UI on the proper client, OnTeamManpowerChange method is an additional 

method hook attached to the SyncVar attribute to be invoked every time the 

synchronization is initialized on the clients as shown in Figure 20. 

 

Figure 20. MatchManager OnTeamManpowerChange method. 

 

To ensure no needless UI refreshes are issued, a basic equal comparison is 

issued before continuing the execution of the OnTeamManpowerChange 

method. ManpowerChanged is a System.Action delegate to allow methods at-

tached to the delegate to be called as needed. In the end, the battle UI is told 

to refresh the manpower bar at the bottom of the screen if the player in-

stance’s team is corresponding to the manpower related team. 

 

Implementation-wise, command points are gained through similar methods as 

manpower. Instead of being incremented each frame, however, a command 

point is gained through card spawning. MatchManager caches these points 

and modifies the values based on client inputs. Same methods are used when 
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decreasing the points as well. The possible resource values are clamped be-

tween zero and the maximum resource value defined through the database. 

 

Controlling every aspect of the game state, the match results must be equal 

among the clients and the server. There are three result states for the clients: 

victory, defeat and draw. For analytical purposes, match result variables were 

required to be relative to the match result. Match result is therefore deter-

mined by the game server, but the reward calculations are sent to be done on 

the back-end side as illustrated by Figure 21. 

 

Figure 21. MatchManger RequestMatchResults method. 

 

As the reward formula is not constant, having it reside over in the game server 

would require a new build distribution after every change. Having the formula 

on the back-end side is not without negative aspects however. If the back-end 

is under heavy load, the access to results panel can be stalled. It is required 

that only the correct match result is shown when the match ends. Failure to do 

so can result in drastically decreased UX. Fortunately, the back-end imple-

mentation can be improved and optimized without distributing a new client 

build. 
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In the previous host-to-client model, the host could discard opponent com-

mands and have unlimited resources by tampering with the game. Due to this 

reason, it is mandatory to grant the game server authority over the clients and 

to have authoritative server hosting the match. 

 

Having authority over the match state, various state affecting properties such 

as NML ownership states are internally accessible from the MatchManager. 

To sustain continue match state integrity, HLAPI allows server only objects to 

exist in the scene. These objects, such as spawn points and area colliders are 

in the direct control of the MatchManager. On the client-side, synchronized 

MatchManager distributed variables such as NML ownership states are availa-

ble for clients to provide feedback for the players. 

 

4.4.2 Player object Squad 

HLAPI registered client connection can send and receive byte data and net-

work messages over the network, but to be able to issue remote action com-

mands, a player object is required by UNET as mentioned in the chapter Re-

mote actions. Client remote command calls are always handled through the 

player object on the server-side and outputs on the client-side. 

 

Deploying of cards through spawning was designed to be a straightforward 

pipeline. Initially the client-side constructs a DTO of the wanted card and vali-

dates spawning availability locally. Player objects are used to call a wrapper 

method for spawning different cards. These wrapper methods are shown in 

Figure 22. 

 

Figure 22. Squad SpawnCard methods. 

 

The wrapper method allows both the game server and the client to call the 

same method where rest of the spawning pipeline is determined by basic 
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comparisons of peer privileges through the HLAPI variables isClient and is-

Server Booleans. A good example of what the game server doesn’t require is 

the analytics events, which could be left out from the game server-side imple-

mentation. As seen in Figure 22, the game server is informed of the intent to 

spawn a card through command attributed spawn methods for units and com-

mands. 

 

When issuing an area of effect based command, the command agents were 

attached with a Vector3 argument accepting callback method activated on a 

collision event. Entities within the radius of the effect would be affected as de-

fined by the command. As seen in Figure 23 the agent activation method is 

guarded with Server attribute to ensure only the server can issue the callback 

method. 

 

Figure 23. Squad’s OnAgentActivation method. 
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To illustrate damaging area of effect methods, each health instance is cached 

in a list that is iterated to find valid damageable targets for the agent’s damage 

and activation radius. Dependent on the command, the agent activation 

callbacks are modified to match the command requirements. Commands, 

such as Napalm Strike and Gas Strike, that share similarities have been ab-

stracted to slightly differentiated activation methods. 

 

The player object was deemed as a sufficient handler for client specific server-

side outputs when processing client’s input as this is well according to how 

Unity’s own documentation suggests doing. HLAPI makes it mandatory to 

have exclusively defined player object in networked games or the client is un-

able to use commands as explained in chapter Remote actions. 

 

4.4.3 Characters and buildings 

Formerly mentioned Deployable cards includes characters and buildings that 

are AI controlled objects fighting for the clients with behavioral tasks in priori-

tized order: attack enemies in range, capture the NML section in the same 

side of the map and finally destroy the enemy HQ. This flow of behavioral 

tasks, especially with characters, can be affected through command cards Dig 

In and Rally during the writing of this thesis. 

 

Characters and buildings consist of multiple scripts working together. Each 

weapon has a script that takes care of instantiating muzzle flash and tracers, 

while each object is using a special shooting AI to validate available targets 

and making the targets take damage. In addition, the namesake scripts of the 

character and building objects were created to be filled with wrapper and con-

venience methods to help simulate the match. Each character and building 

entity has its own behaviour tree consisting of behavioural tasks to differenti-

ate their actions. The game server runs all the active behaviour trees, utilizing 

all the functionalities the characters and buildings offer in behavioural tasks. 

Due to being an enormous topic themselves, the AI and behaviour tree are 

only mentioned as one of the ruling factors when determining entities actions 

in the game world. 

 

 



48 
 

Being active and mutable objects, especially character entities require focused 

consideration to ensure smooth synchronization and interaction over net-

worked instances of the match. Unity provides basic tools to help with this, 

though the community gives it the features of a non-trivial matter, as it seems 

to be one of the most asked questions related to networked objects. 

 

Especially the synchronization of character movement is imperative for the UX 

and proper inspection of the match. Warping and stuttering characters are ra-

ther grievous to watch. Unity’s HLAPI provides a NetworkTransform compo-

nent as a solution. After basic prototyping, the component did not yield suffi-

cient results. At its best, decreasing the send interval of UpdateVar packages 

and synchronizing the 3D Rigidbody Unity component did offer a measure of 

smooth synchronization. NetworkTransform does provide intermediate inter-

polation by sending predicted velocities through only position difference and 

ratio between the interpolation step and network send interval of UpdateVar 

packages (Unity’s NetworkTransform 2017). This was not enough due to ef-

fortlessly perceivable warping and stuttering, and a custom implementation 

was derived as seen in Figure 24. 

 

 

Figure 24. Characters TransformSync method. 

 

To alleviate NetworkTransform’s stuttering and warping, the movement syn-

chronization was implemented through server-side caching of real positions, 
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rotations and velocities. The whole calculation can be seen in Figure 24. 

These server-side real values are enforced on the clients by the authoritative 

server model. To stem possible latency issues, client instances utilize interpo-

lation between the real values and current values by calculating position and 

rotation differences and uses them to calculate the interpolation step every 

frame and not only when the UpdateVar packages have reached the client. 

This allows better predicted future position to alleviate the interpolation steep-

ness in the next UpdateVar receival. 

 

Arguably one of the most important interactions between characters and build-

ings is damage dealing. To avoid client tampering, the TakeDamage method 

responsible for distilling and dealing the damage amount, is guarded by server 

only attribute, disallowing client access. TakeDamage as seen in Figure 25, is 

a character side implementation. Due to significant similarities, it provides the 

idea behind the implementation. 

 

Figure 25. Character's TakeDamage method. 

 

Execution of the TakeDamage method is halted if the match is over, avoiding 
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unnecessary computations. Damage dealer is used to prompt the damaged 

party take counter actions and chase the target down if possible. Distilled 

damage is subtracted from the current health and sent down to On-

HealthChanged method. State of the damage dealer doesn’t affect the dam-

age if damaging projectile has left the barrel, and is thus independent of the 

source after damaging action is triggered. Depending on the number of active 

entities of the match, the interval for TakeDamage calls can be abruptly short. 

Therefore, to avoid performance hits during networking, the damaging pipeline 

is needed to be light. Dealing with cached entity statistical variables and multi-

pliers makes the pipeline fast and efficient as well. 

 

More in related to the buildings, the buildings hitpoints decrease over time 

through decaying, which is a form of taking damage and falls into the same 

category of server only methods. Implementation of the decaying is depicted 

in Figure 26. 

 

Figure 26. Building's UpdateDecay method. 

 

Decaying logic is based on the concept of damage over time effects. Each de-

cay interval, the building takes damage which is calculated to take down the 

building in certain number of seconds in a situation where the building doesn’t 

receive external damage. Retaining the decaying logic on the server-side, the 

buildings won’t be out of sync by decaying feature. 

 

HQs of each client are already on the server scene loaded by clients. Being 

networked objects, in HLAPI this means that the objects are automatically 

spawned and assigned valid NetworkInstanceId when the sever scene is 
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loaded. Due to the HQs level is linked to the owner player, the client is re-

quired to be connected to the game properly by having his or her player object 

spawned into the scene. Without proper safe guards, the MatchManager can 

initiate the game start sequence without client’s level data, causing miscon-

ceived level variables attached to the HQ. 

 

To contend against mismatched level variables, the method responsible from 

assigning these variables required halting of execution in case of no valid 

data. The method is illustrated in Figure 27. 

 

Figure 27. HQ Start coroutine. 

 

During the testing, the problem seemed to be from a couple of hundred milli-

seconds to a few seconds. In relation to the waiting delay of client’s proper 

connection it was trivial, but regarding mismatched levels it was quite signifi-

cant. It is beneficial to use coroutines to handle the tasks that require arbitrary 

data that might not be loaded when calling the execution of the method. The 

Start coroutine of HQs, as seen in Figure 27, merely waits for matching team 

indexed player object to appear, allowing it to assimilate the player’s level 

when fetching the correct level data for the HQ. 
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It was tempting to use SyncVar variables on various occasions during the de-

velopment. However, HLAPI has a hard cap of 32 SyncVar attributes on one 

class whether all of them being on one class or combination of classes 

through polymorphism. It must be noted that having continuous synchroniza-

tion and SyncVar hook calls from multiple representatives of the class does in-

crease the network traffic considerably. To alleviate these issues, various 

SyncVar variables were discarded of their attributes and were refactored to 

work without them during the development. It is practical to synchronize varia-

bles that are related to the perceived game of the client and variables such as 

internal timings, if not communicated to the player, are best left out from syn-

chronized variables. 

 

5 CONCLUSIONS 

This thesis was meant to describe an implementation of Unity and MSF based 

game server which is currently in an active use going through modifications to 

the structure and logic. The processes and implementation sections in this 

thesis introduced the game server pipeline and what needs to be considered 

when developing a dedicated game server. The finished product can be con-

sidered as a success. 

 

As stated in the beginning of this thesis (Functional Requirements chapter), 

there were certain requirements for the game server to abide by. During the 

final testing process, all the requirements were met. The clients were not able 

to perform any invalid actions that would affect the state of the match. Imple-

mented functionalities did not bloat the bandwidth, and the match specific data 

was properly bound to the game server and communicated with the back-end. 

 

On its own, this thesis can act as a documentation about implementing MSF 

based game server logic and even as an exemplary for UNET and MSF imple-

mentations. The game server logic contains starting the game server, connec-

tion to the closest or parameter-bound master server, registering to the master 

server and giving access to the game server’s game room. More specific to 

the game Medals of War and its matches, the match logic is described and 

dissected to document the code structures and implementations of the match 

and how they serve the set requirements. 
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As a project, the writing of this thesis was an extremely interesting task. With 

no prior knowledge of UNET and MSF in general, working with both of them 

was enlightening, rewarding and taught a lot. MSF provided documentation 

gave quite a lot headwork on the internal workings of the game server, but to 

get everything to work properly was challenging. Tremendous support from 

the Nitro Games senior personnel was imperative in getting the game server 

to work the way it was required, and the insights given from them were learn-

ing experiences on their own. 

 

To have a good structure for the future was important as having the game be-

ing live and playable in the public makes it more difficult to implement new 

features and functionalities. The learnings made during the development have 

given a lot of structure for future modifications, which are mainly optimizations 

and increased scalability in functionalities. Future game server implementa-

tions for other projects are most likely easier when done in conjunction with 

this thesis due to the amount of knowledge and the descriptions of functionali-

ties provided.  
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