

Khoa Mai

Building High Availability Infrastructure in Cloud

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme

Bachelor’s Thesis

23 November 2017

 Abstract

Author
Title

Number of Pages
Date

Khoa Mai
Building High Availability Infrastructure in Cloud

34 pages
23 November 2017

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Olli Hämäläinen, Senior Lecturer

Software development has always been a race. Companies want to release new products

to users as soon as possible. Therefore, nowadays most software development companies

implement Continuous Delivery and Infrastructure as Code practices to not only shorten the

release process but also to ensure the quality of the software applications.

The main goal of the project was to build a high availability infrastructure in cloud for a

microservices backend architecture. The study is based on the principles of Microservices

architecture and Continuous Delivery and Infrastructure as Code software engineering

practices. The process of creating a deployment pipeline was studied. Two types of

deployment, EC2 instances and Containers, were studied to deploy the microservices.

Based on the results, Amazon Web Services was selected as cloud provider. Suitable tools

and services were selected to build the deployment pipelines. For most of the use cases,

the deployment of Containers was selected, but there were situations where EC2 instances

was the most suitable choice.

Keywords Cloud Computing, Microservices, Infrastructure as Code,

Continuous Delivery, Containers, Kubernetes, AWS

Contents

List of Abbreviations

1. Introduction 1

2. High Availability Infrastructure and Microservices 3

2.1 High Availability Infrastructure 3

2.2 Microservices 4

3. Continuous Integration and Continuous Delivery 8

3.1 Deployment Pipeline 9

3.2 Releasing Strategy 11

3.2.1 Blue-green Deployment 11

3.2.2 Canary Deployment 12

4. Infrastructure as Code 13

4.1 Infrastructure Definition Tool 13

4.2 Server Configuration Tool 14

5. Building the Infrastructure 17

5.1 The Example Microservice 18

5.2 EC2 Instance Deployment 19

5.2.1 Build Immutable Server AMI with HashiCorp Packer 19

5.2.2 Deployment Pipeline 21

5.2.3 Working Web Server 22

5.3 Container Deployment with Kubernetes 23

5.3.1 Container 23

5.3.2 Kubernetes 25

5.3.3 Deployment with Kubernetes 27

5.4 Fault Tolerance and Autoscaling 30

5.4.1 Fault Tolerance 30

5.4.2 Autoscaling 32

5.5 Discussion 33

6. Conclusion 34

References 35

List of Abbreviations

AWS Amazon Web Services. Cloud computing services provider.

IaC Infrastructure as Code. The process of managing and provisioning

computer data centers through machine-readable definition files, rather

than physical hardware configuration or interactive configuration tools.

CI Continuous Integration. Software development practice where members of

a team integrate their work frequently, usually each person integrates at

least daily – leading to multiple integrations per day.

CD Continuous Delivery. The ability to get changes of all types – including new

features, configuration changes, bug fixes and experiments – into

production, or into the hands of users, safely and quickly in a sustainable

way.

K8s Kubernetes. Open-source system for automating deployment, scaling, and

management of containerized applications.

EC2 Elastic Compute Cloud. A web service that provides secure, resizable

compute capacity in the cloud.

AMI Amazon machine images. A special type of virtual appliance that is used

to create a virtual machine, which Amazon calls an “instance”, within the

Amazon EC2.

HTTP Hypertext transfer protocol. HTTP is a data access protocol currently run

over TCP and is the basis of World-Wide Web.

JSON JavaScript object notation. JSON is a lightweight data-interchange format.

YAML YAML Ain't Markup Language. YAML is a human-friendly data serialization

standard for all programming languages.

 1

1. Introduction

The case company in this report wanted to build a product consisting of a cloud-hosted

backend infrastructure and mobile software development kits (SDK). The mobile SDKs

abstract the communication between mobile devices and the backend infrastructure, so

that application programmers can quickly integrate the product's features into their

applications in minutes. With the product, application developers only need to think about

their application's core features. The cloud-hosted backend infrastructure automatically

scales based on the usage, which gives the product a flexible pricing model and ability

to reach out to small companies.

Since security is a top requirement, the first challenge is to have separated backend

infrastructure for each customer. To fulfill that challenge, the company’s engineers had

to automate all the steps needed to boot up the backend infrastructure without human

interaction. Thus, cloud computing was selected to host the infrastructure instead of a

traditional datacenter. Together with Infrastructure as Code (IaC), the company could

boot up the infrastructure for a new customer in minutes. Amazon Web Services (AWS)

was selected as the cloud service provider.

Another challenge is that the company wanted to shorten time-to-market. Instead of

developing a full-fledged product, it was decided to prioritize features and to deliver

minimum viable product first, then later adding features based on customer feedback.

To be fast in delivery with a good quality product, Continuous Delivery (CD) was selected

as the engineering approach from day one of development.

The author of this thesis is responsible for maintaining both the company’s and

customers’ infrastructures. His tasks include automating development and deployment

process, ensuring the availability and performance of systems, participating in the design

and selection of technologies for backend microservices. Therefore, this report focuses

on software engineering practices rather than the technical implementation of backend

services.

This document has 6 sections. It provides a short introduction to microservices

architecture in section 2. After that, section 3 and 4 explain IaC and CD and how those

 2

two practices help in the deployment process for microservices architecture. Finally,

section 5 demonstrates the deployment in AWS cloud platform. The examples in this

document are simplified for demonstration purposes only because the source code of

microservices and infrastructure definitions are confidential.

 3

2. High Availability Infrastructure and Microservices

Nowadays, users expect online services to be fast, reliable and feature rich. Companies

not only need to ensure the uptime of their applications but also to constantly add new

features. It is hard to fulfill those needs with traditional monolith architecture, leading to

the design of high availability infrastructure and microservices architecture.

2.1 High Availability Infrastructure

To determine the availability level of a system, we need to define availability and how to

measure it. There are four elements of availability:

• Reliability: the ability to perform under stated conditions for a stated period of

time.

• Recoverability: the ability to easily bypass and recover from a component failure

• Serviceability: the ability to perform effective problem determination, diagnosis,

and repair.

• Manageability: the ability to create and maintain an environment that limits the

negative impact people may have on the system. [4, 28.]

Then how can it be measured if the system is "high" in availability? Often, to determine

the availability of a system, we measure the uptime of the system in a given month or

year. A metric called nines is usually used to show the availability measurement of a

system, that is how many "9" digits are there in the percentage of a system uptime. For

example, a system achieves five nines (99.999% uptime) meaning it has a maximum of

twenty-six seconds downtime in a month or five minutes and fifteen seconds downtime

in a year.

A software application can also fail. In fact, one of the keys for designing high availability

infrastructure is to always expect failures, but then it needs to be recovered fast. When

problems occur, often there is a need to reboot the system. As the monolith system

becomes bigger, the restarting time becomes longer which means longer downtime.

Therefore, reliability and recoverability are hard to accomplish with monolith architecture.

Monolith architecture relies on programming language features like function, class or

 4

modules packing system to de-couple components. Over time, the application becomes

complex because of more functions, classes, modules added to the application, making

it hard to reason about and to maintain. Thus, serviceability and manageability are hard

to accomplish with monolith architecture. All in all, getting high availability with monolith

architecture is challenging. Microservices architecture is designed to overcome that and

to get more nines for the system.

2.2 Microservices

As stated by Sam Newman [5, 2], "microservices are small, autonomous services that

work together". Autonomous service means it is a separated entity that can be deployed

independently without changing anything else. Microservices communicate over network

connectivity. For example, figure 1 shows a microservice that can be reached via HTTP

requests.

Figure 1. An example microservice that can uppercase and count characters of a
string.

As shown in figure 1, the microservice has two capabilities: uppercasing all characters

of a string or counting the number of characters of a string. Figure 2 shows a microservice

that can be reached via gRPC call.

Figure 2. An example microservice that can summarize two numbers and be remotely
called using gRPC.

 5

As shown in figure 2, the microservice can summarize two numbers.

To build a successful microservices system, there are a few principles to follow as shown

in Figure 3.

Figure 3. Principles of microservices. [5, 246]

As seen in Figure 3, 7 highly important principles are needed. They are explained in

more detail below one by one.

Modeled around business concepts

Services in microservices architecture are divided and organized around business

capability. It creates a system that models real-world business domains. Domain-driven

design [6] can help you find stable, reusable boundaries.

Highly observable

Within microservices architecture, observing the status of a single machine or a server

is not enough. Fake events that simulate real-user behavior should be injected to test if

the system is working correctly, semantically. Logs and metric statistics should be

aggregated to trace the problem down to the source.

Isolate failure

 6

Microservices are not reliable by default. Since microservices use the network to

communicate, network timeout might happen. In some situation, make the right tradeoff

decision between availability or consistency. Expect failure can happen anytime,

anywhere and design the application so that it can tolerate the failure. Monitoring is a

vital part when building microservices infrastructure.

Deploy independently

The decision when and why to update a microservice should be decided by the service.

Each service should be hosted on a single computing environment so that deploying one

service should not have impacts on other services. The delivery team gains confidence

when doing deployment by testing as much as possible. Blue-green or canary release

techniques should be considered to avoid errors in releasing.

Decentralize all the things

There is an observation named Conway's Law which appears to hold true:

"Any organization that designs a system (defined broadly) will produce a

design whose structure is a copy of the organization's communication

structure." Melvin Conway, 1967. [7]

And the inverse of Conway's Law is also valid and especially relevant to the

microservices ecosystem: the organizational structure of a company is determined by

the architecture of its product [8]. Because of Conway's Laws, siloed functional teams

(separated team focusing only on one part of development like user experience team,

backend server-side team) lead to siloed application architecture. A simple change in

siloed functional teams can lead to a cross-team project taking time and budgetary

approval [9]. To reduce the overhead of siloed functional team, cross-functional teams

are introduced. A cross-functional team has the full range of skills: user experience,

backend server-side and project management to make the decision and build the feature.

For example, Netflix company, which heavily utilizes microservices architecture, has

started to adopt cross-functional teams [10]. Conway's Law and the inverse of it hold true

for a company like Netflix. Therefore, power should be pushed out of the center,

organizationally and architecturally [11].

 7

Hide internal implementation details

A service should evolve independently. A service should not know any implementation

details of other services. In fact, each service can have completely different technology

stack. The one certainty with technology is change. Select new programming languages,

frameworks that best suit for building specific service.

Culture of automation

Human operators are one of the biggest sources of errors in any complex system [12].

There are lots of moving parts to deal with because of complexity in microservices

architecture. Automated tests and automated deployment are essential to have a

functioning microservices system. Many of systems being built with microservices are

being built by a team with extensive experience of Continuous Delivery [9].

 8

3. Continuous Integration and Continuous Delivery

Software application often is a product of collaboration with many members of a team.

Continuous Integration (CI) and Continuous Delivery (CD) are software development

practices that help team members communicate, detect problems and speed up

delivering the application to users. The processes of delivering software to users can be

summarized in four steps:

• Build: in this step, depending on the programming languages, either compile the

source code (C/C++, Golang, ...) into libraries, executable binaries or package

the source code (Python, JavaScript, …).

• Deploy: the result – artifact – of build step is shipped to an environment (server)

that can run the artifact.

• Test: various kind of testing technique can be executed: unit test, integration test,

performance test, end to end test, security test.

• Release: after tested that the changes meet all requirements in a development

environment, deploy the artifact to the production environment where new

changes will serve users.

CI is focused on automatically building and testing code, whereas, CD going one step

further by (ideally) automatically delivering software to production environment or users.

In practice, a team often tests in a staging environment, which try to mimic production

environment as much as possible, to ensure code changes are always in a release-able

state. After that, the product owner can decide when to deploy by just clicking a button

and the steps of releasing should be automatically done. There are few reasons why the

final approval is needed before releasing like making sure the graphics look good or

application has good enough user experience with nice animation for example. Basically,

the final approval is needed for steps that are hard to automate.

 9

3.1 Deployment Pipeline

CD introduces a pattern called deployment pipeline to automate build, deploy, test and

release effectively. Figure 4 illustrates the changes moving through the deployment

pipeline.

Figure 4. Changes moving through the deployment pipeline. [13, 109]

As showed in figure 4, all the steps from version control up to automated acceptance

tests can be considered as parts of the CI process. The final two steps, user acceptance

tests and release, can be considered as parts of the CD process. The main purposes of

deployment pipeline to achieve are threefold:

• Make build, deploy, test, release process visible to everybody involved

(developers, testers, project managers, or even customers).

 10

• Identify problems as early as possible

• Enable teams to release software through a fully automated process.

Figure 4 is greatly simplified, but the automated acceptance tests often involve many

steps: configure the staging environments, run smoke tests (cover most of the high-level

functions of software but not in depth), run performance tests (ensure latency, startup

time, stability, capacity within requirement). Because of many moving parts, all the steps

involved in the deployment pipeline need to be automated. It would be risky whenever

releasing the software, an engineer needs to manually type in lots of commands.

Since almost all steps are automated, CD encourages a team to make code changes or

commits small and frequently, often few times in a working day. Because of small code

changes, reasoning and communicating between team members become easier. Small

code commits also good for maintaining because it is easier to locate the lines of code

that introduce bugs.

Not only the deployment pipeline needs to be automated, but it also needs to run fast.

The shorter runtime, the better. Ideal runtime for a deployment pipeline should be within

ten minutes. If the deployment pipeline run too slow, it discourages team members to

make code changes. Instead, they will avoid waiting for the pipeline by making big

commits. Code commits size might be enforced by using code review and making sure

all developers follow set of rules while reviewing. However, when deployment pipeline

run slow, a company is wasting employee working time.

A deployment pipeline is also a collaboration tool for management. A project manager

can keep track of current state of development and delivery process in detail. Security

policy or performance specifications should be part of deployment pipeline to ensure

customer's requirements. Documentation and reports produced by deployment pipeline

can be used as proof to show the customer.

 11

3.2 Releasing Strategy

The last step in a deployment pipeline is rolling out new changes to users. There are two

releasing strategies often used to minimize risks of downtime: blue-green and canary

deployment.

3.2.1 Blue-green Deployment

In blue-green deployment, there are two production environments as identical as

possible. One environment is live and serving users, another one is idle. The network

router is the switch that determines which environment is live. When the releasing

process is triggered by deployment pipeline, new changes will be deployed into the idle

environment. Final testing, often synthetic test, will then be proceeded. After the synthetic

test passed, flip environment color by switching the network router. If problems occurred

after the flip, roll back to the previous known-good-version is extremely easy, just switch

the router again. In practice, the idle environment is only kept running for short period of

time (few hours, few days) then destroyed. Figure 5 describes the process of blue-green

deployment.

Figure 5. Blue-green deployment. [18]

As shown in figure 5, in blue-green deployment, the network router switches all

connections from the old environment to the new environment.

 12

3.2.2 Canary Deployment

Canary deployment has the same fundamental process as blue-green deployment.

Instead of only one environment which is live on a blue-green deployment, in a canary

release, both environments are live during the release process. However, one

environment, the one that is deployed with new changes, serves a smaller amount of

traffic compared to the environment. The network router acts as a load balancer and

slowly increases traffic to the newly deployed environment. Monitoring and testing are

continuously executed while traffic is re-distributed. When all traffic is re-routed, the old

environment can be destroyed. If problems occurred, simply route back all traffic to the

old environment. The advantage of canary deployment over blue-green deployment is

reducing impacts. In case problems occur, because only a small volume of traffic serving

the new version, the number of users experiencing the defects is smaller compared to

blue-green deployment. Figure 6 describes the process of canary deployment.

Figure 6. Canary deployment. [18]

As shown in figure 6, in canary deployment, the network router switches some

connections first then gradually switches the rest if no problems occurred.

 13

4. Infrastructure as Code

When building microservices backend infrastructure with Continuous Delivery, each

microservice will have its own deployment pipeline. For a big scale system, the backend

infrastructure might have hundreds of microservices. Each individual microservice has

its own specific requirements and configurations. Those microservices also evolve over

time, requiring repeatable, consistent routines for creating, changing, managing. With

cloud computing platform like Amazon Web Services, all resources, and steps to

provision can be described in code. Creating a server, adding storages, making network

connections are done with HTTP requests. Infrastructure as Code (IaC) is an approach

to infrastructure automation based on practices from software development. [14, 5].

There are two important sets of tools in IaC: infrastructure definition tool and server

configuration tool.

4.1 Infrastructure Definition Tool

Infrastructure definition tool helps to provision and to manage barebone infrastructure

resources such as storages, servers, and networking. AWS provides software

development kit (SDK) to create and manage resources. The SDKs are available in

multiple languages: Python, Java, Golang, JavaScript. However, there are tools like

Cloudformation, Terraform, which enable us to describe resources in a declarative way.

We only need to define resources and their states. Cloudformation or Terraform will

check and change AWS resources to match the defined definitions. In this study,

Cloudformation is used as infrastructure definition tool.

Cloudformation

AWS Cloudformation template can be written using JSON or YAML format. Both JSON

and YAML are data serialization standards. YAML is designed to be easier for human,

therefore YAML format will be used to write Cloudformation template. Figure 7 shows a

simple Cloudformation template that provisions an S3 bucket (AWS S3 is a service to

store and share files):

 14

Figure 7. Cloudformation template to create S3 bucket

In figure 7, an S3 bucket is created with a policy that allows everybody to read files stored

in the bucket. The bucket name is referenced by the parameter BucketName, which

defaults to "example-bucket-name". When invoking the template, all parameters in

Parameters map can be changed, making above template to be re-useable.

4.2 Server Configuration Tool

A server configuration tool can also be called configuration management tool. A

configuration management tool helps to deal with details of servers like managing

processes, configuration of services running on the servers. There are two models in

configuration management tool: push and pull.

 15

In the push model, we only need network connections to all the nodes/servers that we

want to manage. When executing the changes, the tool will translate the definitions into

machine executable code (for example shellcode), send/push the code over the network

to the nodes, run the code and return responses. Ansible is an example of push model.

In the pull model, the managed nodes have an agent running in the background, listening

to commands from master nodes. When executing the changes, the definitions stored in

master nodes are changed, then agents of slave nodes will periodically fetch definition

and execute the changes. Puppet and Chef are examples following pull model.

Immutable server

Traditionally, a configuration management tool such as Ansible, Puppet, Chef are used

to deploy new code changes to the servers in place. For the system using pull model

tools like Puppet or Chef, the background agent might have an impact on the services

inside the server. For example, when the agent executing the changes, computing

resources are taken from the services. In the worst case, the agent can crash the whole

server, in turn, shut down the server, leading to downtime. Another problem is

configuration drift. Configuration drift is a phenomenon where servers in an infrastructure

become more and more different from one another as time goes on, due to manual ad-

hoc changes and updates, and general entropy [15].

Immutable server is another approach to deploy changes without having the above

problems. The main benefit of this approach is that it allows us to be certain what the

state of a server is once it has been provisioned [16]. Instead of introducing changes in

place to the servers, we build new image (amazon machine images - AMI) containing

configured configuration, then boot up new servers and destroy the old servers. If newly

deployed servers have problems, we can simply boot up new servers using the previous

known-good-version AMI to rollback. The process of building and immutable server AMI

can be described in 8 steps:

• Boot a temporary server

• Install and update latest packages and security patches

 16

• Install the configuration management tool like Ansible or Puppet

• Download the configuration definitions from source code repository

• Run Ansible or Puppet with downloaded configuration definitions to configure

itself (masterless mode)

• Uninstall Ansible or Puppet

• Create server image AMI by dumping the storage blocks of the server (AWS

provided application programming interface to do this)

• Shutdown the temporary server

Of course, immutable server has cons. For example, because of dumping the whole

storage blocks, it increases the cost of AWS charge for data storage usages. Addition

steps needed to tag and manage the versions of AMI. However, experience shows that

advantages outweigh the disadvantages.

 17

5. Building the Infrastructure

The author’s main responsibilities are to automate the releasing process of all

microservices and to ensure high availability for all infrastructures. The tasks include:

- Research available CI, CD tools.

- Evaluate and select suitable CI, CD tools by creating a deployment pipeline for a

fake microservice.

- Automate creating the deployment pipeline by applying IaC practice. Put

resources and configurations to code that can be reused.

- Provision a development infrastructure for real backend microservices by

adapting and modifying the deployment pipeline of the fake microservice.

- After having the development infrastructure, start looking for solutions to make

the infrastructure more resilient and fault tolerant.

- Continue by looking for solutions to auto scale the infrastructure.

- Propose solutions and discuss with colleagues.

- When the company gets new customer, replicate the infrastructure to a new one.

- Repeat all above steps and continuously improve both the development

infrastructure of the company and customers’ infrastructures.

There are many free and self-hosted tools for CI, CD, IaC like Gitlab CI, Jenkins, GoCD,

Terraform. However, self-hosting those tools requires the author maintaining another set

of servers. With the strict deadline for the minimum viable product, the author decided to

reuse available AWS services as much as possible. The decision was made that

Cloudformation for templating infrastructure as code, Codebuild for CI builder and

Codepipeline for deployment pipeline.

 18

There are two methods to run a microservice in AWS cloud. The first and simpler way is

to run the microservice in an EC2 instance (virtual machines). The second one runs the

microservice in a container. The deployment of both EC2 instances and containers is

demonstrated in the following chapter. While showing both ways of deployment,

observations and discussions when and how to select a proper deployment method in

different situations are given.

Since the source code of the company's microservices is confidential, a simple

microservice for demonstration purpose is made. There is no need for a complex

microservice because the goal is to show how to apply IaC and CD practices to do EC2

instances and containers deployment.

5.1 The Example Microservice

The example service for this section will be a web server that renders a simple HTML

page showing the local IPv4 address of the server and the version number of the service.

Showing the local IPv4 address enables checking the autoscaling when multiple

instances or containers of the same microservice are load balanced. Figure 8 shows the

structure of the source code repository.

Figure 8. Structure of code repository. Github: https://github.com/mdk194/ipsvc

As shown in figure 8, the code repository contains source code and definitions of both

infrastructure and the service configuration.

https://github.com/mdk194/ipsvc

 19

The example service will be called ipsvc. Figure 9 shows the example ipsvc running in

localhost.

Figure 9. Example ipsvc service running on localhost.

As shown in figure 9, the example ipsvc service shows the local IP address and version

number when accessed.

5.2 EC2 Instance Deployment

The main purpose of this section is to demonstrate immutable server, deployment

pipeline, and Infrastructure as Code concepts. Codebuild is used as CI builder to compile

server binary and build AMI. Cloudformation is used for defining AWS resources and for

releasing process also. Codepipeline is used to make the deployment pipeline. We will

use Codecommit as git version control.

5.2.1 Build Immutable Server AMI with HashiCorp Packer

Packer is an opensource tool to build virtual machine image from a source configuration

[19]. We will use Packer to build custom AMI image base on Ubuntu image. The built

AMI is configured so that when booted up, the init system will automatically run the web

server.

Figure 10 shows the packer template to build the AMI for ipsvc.

 20

Figure 10. Packer template to build and configure AMI.

As shown in figure 10, the packer builder type "aws-builder" is specified and the latest

Ubuntu image is selected as the base image. The packer supports multiple provisioner

types to configure the image, but in this example, file provisioner and remote shell

provisioner is used. The file provisioner will copy statically compiled server binary and

the systemd service to the AMI. The shell provisioner takes care of putting binary and

systemd service into a correct location with correct permission then enable the service

to run at boot.

 21

5.2.2 Deployment Pipeline

Figure 11 shows the deployment pipeline created by the Cloudformation template.

Figure 11. Deployment pipeline for ipsvc service.

As shown in figure 11, the deployment pipeline has three stages run in this order: source,

build and deploy. The source state detects changes from code repository then trigger

 22

pipeline run. The build states will take the source code, compile binary and invoke packer

to build AMI. Finally, the deploy state boot up new EC2 instance base on new built AMI,

destroy the old instance, then swap the Elastic IP to serve the new version of the web

server.

5.2.3 Working Web Server

When the deploy stage has finished successfully, testing the web server can be done by

accessing to the instance public IP address. Figure 12 depicts a working web server.

Figure 12. Working example ipsvc web server deployed in an EC2 instance.

As shown in figure 12, the deployed ipsvc web server returns local IP address of the

server that matches with the IP address shown in AWS console dashboard.

After months doing the deployment with this method, the team noticed some issues.

First, packer takes time to build the AMI. The minimum time to build an AMI is three

minutes. For AMI with complex configuration, the time to build can take more than ten

minutes. The deployment pipeline should run as fast as possible. A faster deployment

pipeline allows developers to integrate and test changes more frequently. Second, it is a

 23

waste of CPU, RAM and blocks storage resources for many use cases. There are

services that only need few megabytes of RAM and do not need storage at all. Since

EBS volume is required for EC2 instance and the minimum size of EBS is four gigabytes,

making the AMI size to be at least 4GB. Keeping multiple versions of AMI for rollback is

needed, leading to the high cost of hosting the system. Third, the author needs to script

and create quite lots of custom tools to maintain the system, even with lots of

documentation and already available open-source tools. Those reasons lead to the

exploration of Container and Kubernetes.

5.3 Container Deployment with Kubernetes

Container is new technology that is a good fit for microservices style system. AWS has

built-in EC2 Container Service (ECS) to manage docker container. Another alternative

for managing container is Kubernetes (k8s). After days evaluating and experimenting, it

was decided to use k8s as container orchestration. With k8s, vendor lock-in is avoided

and the infrastructure can be migrated to another cloud computing providers like Google

Cloud Platform or Microsoft Azure. Section 5.3.1 introduces what is a container. Section

5.3.2 introduces k8s and some k8s terminologies. Section 5.3.3 demonstrates container

deployment with k8s and show why most of the use cases, container deployment with

k8s is a better solution than EC2 instance AMI deployment.

5.3.1 Container

AWS EC2 or Google Compute Engine (GCE) use hardware virtualization (also known

as virtual machines) to provide isolated computing environment. Hardware virtualization

allows running multiple operating systems: Linux, Windows, BSD on same physical

hardware: mainboard, CPU, RAM. When EC2 instance deployment is done like in

section 5.1 above, a virtual machine is deployed. Container does not use hardware

virtualization technique but relies on kernel (operating system) features to do isolation.

Historically, a UNIX-style operating system has used the term jail to provide resources

protection for processes. Since 2005, after the release of Sun's Solaris 10 and Solaris

Containers, container has become preferred term instead of jail [20, 4]. There are

multiple implementations of container engine: LXD from Ubuntu, RKT from CoreOS,

 24

Docker from Docker with Docker is the most ubiquitous engine at the time of writing this

document. Docker is implemented using Linux kernel features. The containers that

Docker builds are isolated with respect to eight aspects [20, 6]:

• PID namespace: Process identifiers and capabilities

• UTS namespace: Host and domain name

• MNT namespace: File system access and structure

• IPC namespace: Process communication over shared memory

• NET namespace: Network access and structure

• USR namespace: Usernames and identifiers

• Chroot(): Controls the location of file system root

• Cgroups: Resource protection

To deploy a Docker container, a Docker image is built then shipped to a Docker registry.

A Docker image is a bundled snapshot of all the files that should be available to a

program running inside a container [20, 7]. Building Docker image in high-level viewpoint

is same as building AMI. A base Docker image is selected, then install needed

dependencies, add service binary and its configuration to the image. The result is a new

docker image ready to be shipped to a Docker registry. The Docker registry is a stateless,

highly scalable server-side application that stores and lets you distribute Docker images

[21].

Figure 11 shows the content of the Dockerfile for the ipsvc service.

Figure 11. Dockerfile for ipsvc service

 25

As shown in figure 11, since the binary is statically linked, there is no need to install any

libraries or dependencies, so the base image is the scratch image. A scratch base image

means nothing or empty. After that, the compiled binary is copied to the Docker image

and specify the starting command by executing the binary.

The Docker image of ipsvc service has the size of 5.53MB which is tiny compared to the

AMI with the size of 4GB. Since the size of Docker image is small, the cost of storage on

AWS is vastly reduced. Building the Docker image is faster than AMI, less than minutes,

leading to quick feedback cycle for deployment pipeline.

5.3.2 Kubernetes

Kubernetes (k8s) is an open-source system for automating deployment, scaling, and

management of containerized applications [22]. From the high-level point of view,

Kubernetes can be described as a scheduler continuously looping through three steps:

• Keep track of state of current resources

• Look up the desired state

• Manage resources to meet the desired state

To get started with k8s, a running k8s cluster is needed. K8s cluster is constructed by a

group of nodes. The nodes backing up a k8s cluster can be physical machines or virtual

machines (EC2 instances) in a cloud platform. There are multiple ways to get a functional

k8s cluster. For local testing and experimenting, minikube [23] can be used. When

running in production, a managed k8s platform as a service such as Google Container

Engine, Openshift can be used. AWS do not provide managed k8s cluster as service,

but there are open-source tools to install k8s on top of AWS EC2: kops [24], kube-aws

[25]. K8s abstracts the process of managing computing resources by introducing new

concepts. The following explains a minimal set of concepts that need to be understand

before being able to deploy the ipsvc example service.

Pod

 26

A pod is a group of one or more containers with shared network and storage. K8s pod is

the smallest object/resource that can be scheduled by the k8s scheduler. To run a

service, the service is wrapped in a pod. Each pod will have its own IP address. K8s

treats pod as an ephemeral entity and can re-schedule it at any time. Therefore, the

service can be terminated at any time. Conversely, when the service crashed, k8s will

auto re-schedule the service.

Labels and Selectors

Labels are key, value pairs attach to a k8s object. Selectors select and group k8s objects

base on labels attached to the objects. Selectors support equality-based requirement

(environment = production) or set-based requirement (environment in production and

development). Labels and Selectors together is a powerful tool to implement different

deployment strategies like blue-green deployment, canary deployment, which we will

dive deep into later.

Replication controller and replica set

Replication controller ensures a specific number of pod replicas are running at any one

time. K8s replica set is the newer version of replication controller. The only difference is

that the replica set supports the set-based requirement selector. The replication

controller or replica set are the components in k8s that make the service self-healing.

For example, you define to run an application with replica count equaling one. When the

service crashes, the replica set will automatically create another instance of the

application. The replication controller and replica set are barebone components

supporting horizontal scaling for the service.

Deployment controller

A deployment controller provides declarative updates for the pod and replica set.

Typically, the pod and replica set for a service are defined in a deployment controller

object. Therefore, definitions such as pod environment, storage and mount point, how

many replicas of the pod, computing resources (CPU, RAM) requirement can be found

in a deployment controller object.

Service

 27

K8s service defines a logical set of pods and a policy to access them. Simply put, k8s

service select the pods by label selector and then defines accessibility to the pods. A

pod can be exposed for public access so that users or clients can connect to it, or be

exposed internally so only other pods can connect to it. K8s service provides support for

service discovery problem of microservices architecture. A service can be discovered by

environment variables (IP address and port number) or by cluster DNS records.

5.3.3 Deployment with Kubernetes

Figure 12 show the definition of the k8s deployment object for ipsvc service.

Figure 12. Ipsvc k8s deployment definition and details of pod created.

As illustrated in figure 12, a pod is created by k8s with labels defined by the template.

The created pod has a random name managed by the k8s replica set.

Figure 13 shows the k8s service object for the ipsvc service.

 28

Figure 13. Ipsvc k8s service definition and details of service created.

As illustrated in figure 13, the created k8s service selects the pod with label app: ipsvc.

The k8s service exposes the pod and make it publicly accessible. Since the type of the

service is NordPort, k8s will map a random node port in range 30000-32000 by default

to the pod's port 8000. In this case, the ipsvc web server can be accessed at port 32366.

Figure 14 shows the working ipsvc service deployed to a k8s cluster.

Figure 14. The ipsvc container deployed to a k8s cluster.

As shown in figure 14, the container running the ipsvc has local IP address matches with

the returned IP of the ipsvc web server.

Canary deployment with kubernetes

Doing canary deployment in k8s is simple. Two conditions need to be ensured:

• Having two k8s deployment objects: one for old version, one for new version

• Making the selector of k8s service object select both those deployment objects

For example, the old deployment object, which running ipsvc pod version 1.0, has pods

labeled: "app=ipsvc". The new deployment object has pods labeled: "app=ipsvc,

 29

version=2.0". The selector of service object selects the label: "app=ipsvc". Kubernetes

service will then round-robin routed the connection to the old pods and new pods. If one

pod runs version 1.0, another pod runs version 2.0, then half of traffic is routed to the

new pod. Figure 15 illustrates canary deployment with k8s.

Figure 15. Canary deployment using k8s service and labels selector.

As illustrated in figure 15, the k8s service selects both old and new pods. Therefore,

traffic is divided to both pods.

Blue-green deployment in kubernetes

For blue-green deployment with k8s, two conditions need to be ensured:

• Having two deployment objects: one for old version, one for new version

• Making the selector of k8s service object select only one version

For example, the ipsvc pod version 1.0 has labels: "app=ipsvc, version=1.0". The

selector of k8s service selects version 1.0 only by selecting labels: "app=ipsvc,

version=1.0". The ipsvc pod version 2.0 has labels: “app=ipsvc, version=2.0”. After the

pod for version 2.0 created and initialized without error, the labels selector of k8s service

is changed to: "app=ipsvc, version=2.0". Now traffic will only be routed to the pod running

version 2.0 and the deployment for version 1.0 can be deleted.

Figure 16 illustrates blue-green deployment using k8s service and labels selector.

 30

Figure 16. Blue-green deployment using k8s service and labels selector.

As illustrated in figure 16, after the service label selector is changed to “app: ipsvc,

version: 2.0”, the k8s service routes traffic to the version 2.0 pod only even though there

are pod running version 1.0 and pod running version 2.0.

5.4 Fault Tolerance and Autoscaling

This section discusses about fault tolerance and autoscaling for two types of deployment:

EC2 instance and Containers.

5.4.1 Fault Tolerance

A fault tolerant microservice is the one able to withstand both internal and external

failures. Internal failures are those coming from the microservice itself like code bugs,

memory leak, deadlock, panic. External failures are the factors such as machine power

outages, or network connectivity.

External failures

 31

When hosting infrastructure in cloud computing platform, external failures cannot be

predicted. Failures can happen from instance level to availability zone (AZ), to region or

even all regions. One common strategy to mitigate Amazon EC2 outages is to spread

the EC2 instances over multiple AZs or multiple regions. Implementing this strategy often

require running redundant instances of one service for fast fail-over.

Implementing multi AZs failover in one region is simple. Instances are attached to an

Elastic Load Balancer (ELB) and the health status of attached instances are continuously

monitored. If an attached instance failed the health status ping, remove that server and

boot up a new one then attaches it to the same ELB. This is straightforward for EC2

instance deployment style in AWS. K8s automatically re-schedule or spread the pods to

multiple nodes. Therefore, implementing multi AZs failover in k8s is also simple, just

ensure the nodes hosting the pods are spread evenly across AZs.

Multi regions failover can be implemented using DNS. Multiple entries can be added to

one DNS record, with each entry is the DNS record of an ELB in a region. This strategy

works for both EC2 instance or k8s deployment.

Spreading EC2 instances for fast failover is simple and fast to implement. The biggest

concern with this strategy is cost-effectiveness. The smallest and cheapest instance type

that AWS provides is t2.nano with 1 virtual CPU and 512MB of RAM. It is a waste of

computing resources when running multiple EC2 t2.nano instances when the

microservice take little CPU time and less than 512MB of RAM. For example, the ipsvc

example service takes at peak only 5MB of RAM while running. Since k8s can allocate

and manage computing resources in smaller trunks, it is the winner in this case.

Internal failures

Software development is hard. Even after lots of testing: unit tests, regression tests,

integration tests, problems such as deadlock or memory leak can still happen and will

eventually lead to downtime of the service. Those services are still functioning correctly.

While running, they still provide value for the system. One way to mitigate this kind of

problems is simply by restarting the whole service. This strategy works well with stateless

service, but not for stateful service. For stateful service, often there is only one instance

of the service running at any time. Restarting a stateful service will lead to downtime,

 32

depending on how fast the service will be re-spawned, recovered. Starting an EC2

instance takes more than one minute from experience. Starting a pod with k8s takes,

most of the time, only a few seconds (when the container image is already present).

Therefore, recovering a stateful service in k8s is often faster, leading to less downtime.

Containers deployment with k8s is also the winner in this case.

5.4.2 Autoscaling

Nowadays, an application can suddenly become prominent because of social media.

During that time, lots of traffic is generated. Depending on the kind of application, users

might only use the service during a specified time of the day. On-demand scaling is a

hard requirement for modern architecture. The process of scaling is the process of

adding more power to the system.

There are two types of scaling: horizontal scaling (scale in/out) and vertical scaling (scale

up/down). Vertical scaling means taking existing actors in a system and increasing their

individual power [26]. Horizontal scaling means adding more actors to the system [26].

For vertical scaling of infrastructure, for EC2 instance deployment, the EC2 instance type

can be changed to make the instance stronger or weaker. For containers deployment

with k8s more computing resources are added to the pods. Since the maximum capacity

for a pod in k8s is bound by the node hosting the pod. Therefore sometimes, vertical

scale up of the pod requires scaling up the EC2 instance.

For horizontal scaling of infrastructure, for EC2 instance deployment, auto scaling group

[27] feature can be used. The desired number of EC2 instances for idling system is set.

That number often bigger or equal two for fault tolerance discussed above. The traffic

coming to the ELB is continuously monitored, and the computing resources usage of all

servers are aggregate. When the ELB has a certain amount of traffic or the aggregated

computing resource usage meets a threshold (say 80% utilization), then the instances

count can be increased to meet the demand. For k8s deployment, a feature called

horizontal pod autoscale [28] can be used to automatically adding pod replicas. Since

the capacity of a k8s cluster equals total capacity of all the nodes (EC2 instances). In

conjunction with horizontal pod autoscaling, a strategy to scale the cluster is needed.

The same autoscaling group feature can be used to scale k8s cluster with custom scripts,

 33

but k8s have a feature called cluster autoscaler [29] to manage the auto scaling group

automatically.

Horizontal scaling is favored over vertical scaling. Since there is limit for the instance

type that AWS provides, but no limit about the number of EC2 instances can be launched

(to be precise, it is limited by physical capability, but the number is huge and can be

considered as infinite). On-demand scaling works better with horizontal scaling.

Changing EC2 instance type require restarting the instance leading to downtime. While

adding/removing instances to an auto scaling group, attaching/detaching instances to an

ELB can happen asynchronously, the power capacity immediately increased/decreased

without any downtime.

In practice, horizontal and vertical scaling should be considered at the same time to find

the balance. A robust monitoring system is a must to identify the bottlenecks and

planning for the capacity to ensure a performant system.

5.5 Discussion

As discussed when experimenting the deployment of EC2 instances and containers with

k8s, in most use cases, k8s tend to be the better solution. However, containers and k8s

are quite young technologies. Container’s runtime engine is not as well studied as the

operating system. Therefore, sometimes containers might not able to utilize the

computing resources as effective as directly running on top of the operating system.

Container’s runtime might also not be as stable as the operating system. For a critical

system like a database for example, where reliability is the most important aspect,

deploying the database system using EC2 instance style might be a better solution

compared with container deployment. Analyzing and selecting the right solutions is

significant to build a high availability infrastructure.

 34

6. Conclusion

The main purpose of this study was to build a high availability infrastructure in cloud. The

requirements were strict. The project team had only a few months of researching and

implementing before releasing the first minimum viable product. Microservices

architecture with Continuous Delivery practice helped the team meet the requirements.

There are many topics this thesis has not touched upon such as logging, monitoring, or

security. They are important aspects to consider. For instance, logging and monitoring

help to debug and to trace bugs, planning for scaling, optimizing performance and saving

cost as well as alerting for a quick incident response. Security helps to protect the

company brand reputation. Each one of these topics is worth its own study. Having solid

infrastructure and the right engineering approach allow to continuously improve the

quality of the product.

The project was a great learning process. Even though only one cloud service provider,

AWS, was selected, core ideas of cloud computing could be directly mapped to other

providers. Through this project, it was easy to see that automation is the key to success.

To sum up, it enables both learning more and doing more.

 35

References

1 Wittig, Andreas; Wittig, Michael. Amazon Web Services in Action. Manning Press;

2016.

2 Martin Fowler. Continuous Integration [online]. 01 May 2006. URL:

https://martinfowler.com/articles/continuousIntegration.html Accessed 25 October

2017.

3 Jez Humble. Continuous delivery [online]. URL: https://continuousdelivery.com/

Accessed 25 October 2017.

4 Floyd Piedad and Michael W. Hawkins; High Availability: Design, Techniques,

and Processes. Prentice Hall; 2000.

5 Sam Newman. Building Microservices. O'Reilly Media; 2015.

6 Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of Software.

Addison-Wesley; 2003.

7 Melvin Conway. Conway's Laws [online]. URL:

http://www.melconway.com/Home/Conways_Law.html Accessed 29 October

2017.

8 Susan J. Fowler. Production-ready microservices. O'Reilly Media; 2016.

9 James Lewis; Martin Fowler. Microservices [online]. 25 March 2014. URL:

https://www.martinfowler.com/articles/microservices.html Accessed 29 October

2017.

10 Reed Hastings, CEO Netflix. Culture [online]. 1 August 2009. URL:

https://www.slideshare.net/reed2001/culture-1798664 Accessed 29 October

2017.

11 Sam Newman. The principles of microservices. August 2015. URL:

https://www.safaribooksonline.com/library/view/the-principles-of/9781491935811

Accessed 29 October 2017.

12 Charles P. Shelton. Human Interface/Human Error [online]. Spring 1999 URL:

https://users.ece.cmu.edu/~koopman/des_s99/human/ Accessed 29 October

2017.

13 Jez Humble; David Farley. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. Addison-Wesley; 2010.

14 Kief Morris. Infrastructure as Code. O'Reilly Media; 2016.

15 Kief Morris. Configuration Drift [online]. December 2011. URL:

http://kief.com/configuration-drift.html Accessed 04 November 2017.

https://martinfowler.com/articles/continuousIntegration.html%20Accessed%2025%20October%202017
https://martinfowler.com/articles/continuousIntegration.html%20Accessed%2025%20October%202017
https://continuousdelivery.com/
http://www.melconway.com/Home/Conways_Law.html
https://www.martinfowler.com/articles/microservices.html
https://www.slideshare.net/reed2001/culture-1798664
https://www.safaribooksonline.com/library/view/the-principles-of/9781491935811
https://users.ece.cmu.edu/~koopman/des_s99/human/
http://kief.com/configuration-drift.html

 36

16 Ben Butler-Cole. Rethinking building on the cloud: part 4: immutable servers

[online]. June 2013. URL: https://www.thoughtworks.com/insights/blog/rethinking-

building-cloud-part-4-immutable-servers Accessed 04 November 2017

17 Martin Fowler. Blue-green deployment [online]. URL:

https://www.martinfowler.com/bliki/BlueGreenDeployment.html Accessed 04

November 2017.

18 Danilo Sato. Canary release [online]. URL:

https://martinfowler.com/bliki/CanaryRelease.html Accessed 04 November 2017.

19 Hashicorp. Packer.io [online]. URL: https://www.packer.io/intro/index.html

Accessed 05 November 2017.

20 Jeff Nikoloff. Docker in Action. Manning Publications Co; 2016.

21 Docker Registry [online]. URL: https://docs.docker.com/registry/ Accessed 09

November 2017.

22 Kubernetes [online]. URL: https://kubernetes.io Accessed 11 November 2017.

23 Minikube [online]. URL: https://github.com/kubernetes/minikube Accessed 11

November 2017.

24 Kubernetes Operations [online]. URL: https://github.com/kubernetes/kops

Accessed 11 November 2017.

25 Kubernetes on AWS [online]. URL: https://github.com/kubernetes-incubator/kube-

aws Accessed 11 November 2017.

26 Blake Smith. Understanding horizontal and vertical scaling [online]. URL:

http://blakesmith.me/2012/12/08/understanding-horizontal-and-vertical-

scaling.html Accessed 11 November 2017.

27 Amazon EC2 Auto scaling groups [online]. URL:

http://docs.aws.amazon.com/autoscaling/latest/userguide/AutoScalingGroup.html

Accessed 11 November 2017.

28 Kubernetes horizontal pod autoscale [online]. URL:

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Accessed 11 November 2017.

29 Kubernetes cluster autoscaler [online]. URL:

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

Accessed 11 November 2017.

https://www.thoughtworks.com/insights/blog/rethinking-building-cloud-part-4-immutable-servers
https://www.thoughtworks.com/insights/blog/rethinking-building-cloud-part-4-immutable-servers
https://www.martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/CanaryRelease.html
https://www.packer.io/intro/index.html
https://docs.docker.com/registry/
https://kubernetes.io/
https://github.com/kubernetes/minikube
https://github.com/kubernetes/kops
https://github.com/kubernetes-incubator/kube-aws
https://github.com/kubernetes-incubator/kube-aws
http://blakesmith.me/2012/12/08/understanding-horizontal-and-vertical-scaling.html
http://blakesmith.me/2012/12/08/understanding-horizontal-and-vertical-scaling.html
http://docs.aws.amazon.com/autoscaling/latest/userguide/AutoScalingGroup.html
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

