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Tiivistelmä 

Oluen teollinen valmistus tukeutuu enenevissä määrin kemiaan ja kemiallisiin menetelmiin 
vaikkakin oluen panemisella on ikivanhat perinteet. Syy tähän on tämän päivän 
laatuvaatimuksissa, tuotekehittelyssä ja kilpailussa markkinaosuuksista. Pakollisten analyysien 
määrä on pieni, mutta uudenaikaiset analyysimenetelmät tuovat mukanaan huikeita 
mahdollisuuksia tuotekehittelyyn ja laadunvalvontaan. Oluen flavoriaineita on suuri määrä ja jos 
lisätään siihen lukuun vielä alkuperäiset (esim. humalan) aromiaineet, mahdolliset välimuodot, 
johdannaiset sekä oluen maulle haitalliset yhdisteet, saadaan erittäin suuri määrä tunnistettavia 
yhdisteitä. Panimo joutuu siten jossain vaiheessa päättämään haluaako se hyödyntää näitä 
mahdollisuuksia tuotekehittelyssä tai laadun tarkkailussa. Laboratorion perustaminen on 
kuitenkin kallista ja vaatii lisäksi hyvää kemian sekä analyysimenetelmien ja -laitteiden 
tuntemusta ja hallintaa. Tässä tutkielmassa oluen panoa tarkasteltiin lähinnä kemistin 
näkökulmasta siten että painotus on aromiaineiden karakterisoimisessa sekä niiden määrän ja 
laadun analysoimisessa. 

Laboratorion perustamisen taloussuunnittelu voidaan aloittaa selvittämällä sen hyödyt ja haitat 
esim. laadun varmistuksen tai panimon talouden kannalta. Kirjallisuuskatsaus osoitti, että oluen 
tärkeimmät yhdisteet, ovat erilaiset karbonyylit kuten aldehydit, ketonit ja orgaaniset hapot. Muita 
makuun vaikuttavia komponentteja ovat proteiinit, rikkiä sisältävät yhdisteet, polyfenolit ja 
liuenneet mineraalit. Näiden yhdisteiden analysoimiseen tarvitaan kallista teknologiaa, joten 
budjetin tulisi siten olla melko suuri. Investointilaskelmien kolmiarvoiset (realistiset-, optimistiset- 
ja pessimistiset-) odotuslaskelmat osoittivat että suurenkin investoinnin takaisinmaksuaika on 
hallittavissa analysointikapasiteettia ja suurimpia kuluja, lähinnä palkkoja, optimoimalla. Selvitys 
osoitti, että HPLC-laitteiston hankinta voisi olla riittävä, mikäli laboratorio tuottaa analyysejä 
panimon omiin tarpeisiin. Mikäli tarve syntyy herkemmälle analytiikalle, esim. tarkkoja tietoja 
raaka-aineista, vierteen aromiaineista, kontaminanteista, jne., on harkittava GC-MS laitteiston 
hankkimista. Tällöin on syytä tarjota analyysipalveluja kolmansille osapuolille, jotta laboratorion 
toiminta olisi kannattavaa. 
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Abstract 

Brewing beer is a craft with ancient traditions. Breweries of today, however, must rely increasingly 
on chemistry in addition to traditions, to meet the demands for quality control, product 
development and market shares. The minimum number of required chemical analyses are few 
but the opportunities provided by modern chemical analysis methods are vast. Establishing a 
laboratory is, however, costly and requires often deep knowledge of chemistry, analysis 
techniques and equipment. The knowledge of flavor development and transformations of an 
enormous number of compounds are needed for the laboratory to function successfully. There 
are some analyses that are obvious, such as the determination of the alcohol (ethanol) content. 
When the brewing becomes more focused on economic issues, the need for identification of off-
flavors, flavor components, and problems in the process planning, increase. The demand for 
detailed knowledge of the amounts and types of chemical compounds in the raw materials, and 
the final beer, inevitably grows. In the present study, brewing is thus studied mainly from a 
chemist´s point of view with the emphasis on the impact of different flavor compounds on beer 
taste and how to analyze their content.  

Economic planning of a laboratory can be started by outlining the advantages and disadvantages 
of analysis instruments, and what their role in for example quality control could be. A literature 
survey showed that the most important flavor components, in beer, are carbonyl compounds such 
as aldehydes, ketones and organic acids. Other important flavor affecting compounds are 
proteins, sulphur-containing compounds, polyphenols, and solubilized minerals (sulphates and 
calcium bi-carbonate). The analysis equipment needed to analyze and quantify these compounds 
must, therefore, be sophisticated enough and the investment should thus be rather large. Tri-
valued re-payment time calculations showed that large investments can be made if only the 
analysis capacity is optimally used and the fixed costs, mostly salaries, are closely controlled. 
Analyses must thus be sold to third parties to handle the costs. An investment in a HPLC system 
would suffice for a small brewery, if the analyses were made solely for the brewery’s own use. A 
detailed analysis of raw materials, intermediate products (e.g. malt, samples during fermentation 
etc.) and the final beer, calls for more potent analysis methods e.g. a GC-MS.  
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Abbreviation Explanations to the used abbreviations or concepts 

ABC Activity Based Costing, a method by which costs (resources) 
are assigned to identified activities and activities to cost objec-
tives (based on consumption approximations) using cost driv-
ers. In that way resource consumption can be traced, and pric-
ing is more accurate.   

Analogue (chemical) A compound having a similar structure, to another compound, 
but that differs regarding a certain component (e.g. one or more 
atoms, functional groups, or substructures) 

Cis-trans isomerism Cis indicates that the functional groups (often denoted “R”) are 
situated on the same side while trans indicates that the substit-
uents are on the opposing side of the carbon chain. Cis-trans 
(Latin) isomers, also known as geometric or conformational iso-
mers, are stereoisomers.  

Coke A solid carbonaceous material derived from pyrolysis (heating 
at a low oxygen content) of low-ash and low-sulfur bituminous 
coal 
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IoB The Institute of Brewing 
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another molecule, but with a different chemical structure. The 
isomerism can be structural or spatial (stereoisomerism). 

Kiln(ing) Oven for drying, drying in a specially constructed oven 

ºL Degrees Lovibond is a measure of the color of a substance  

Mash Mixture of malt and brewing water  

MBT 3-methylbut-2-ene-1-thiol, a skunky off-flavor 

PFPD Pulsed Flame Photometric Detector 

SG Specific Gravity. The relative density, compared to water, of the 
wort. The SG is measured using a hygrometer, a pycnometer, 
a refractometer, or a oscillating U-tube electronic meter. 

SPME Solid-Phase Micro Extraction 

SRM Standard Reference Method is a system to specify beer color 

TSN  Total soluble nitrogen  

UV-Vis The ultraviolet and visible light regions of the spectrum 

VDK Vicinal Diketone (also called diacetyle) 

WACC Weighted average cost of capital 
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1 INTRODUCTION 

The skill of brewing is more than 8000 years old and it is known that, at least all major 

early civilizations (e.g. in Mesopotamia, Egypt and Greece) mastered the art of brewing. 

Although the principles of brewing are simple, the end result depends of how skillful the 

brewer is, and how well he/she can take advantage of the many possibilities to fine-tune 

taste and flavor of the beer. Most cultures and countries have their own typical beers. 

The differences arise primarily from choices of raw materials and brewing methods. 

There are thus many types of beers differing in taste, color, strength, and composition. 

Different beer types have their typical color intensities as can be seen from Table 1.  

 

SRM/Lovibond Example Beer color EBC

2 Pale lager, Witbier, Pilsener, Berliner Weisse  4 

3 Maibock, Blonde Ale  6 

4 Weissbier  8 

6 American Pale Ale, India Pale Ale  12 

8 Weissbier, Saison  16 

10 English Bitter, ESB  20 

13 Biere de Garde, Double IPA  26 

17 Dark lager, Vienna lager, Marzen, Amber Ale  33 

20 Brown Ale, Bock, Dunkel, Dunkelweizen  39 

24 Irish Dry Stout, Doppelbock, Porter  47 

29 Stout  57 

35 Foreign Stout, Baltic Porter  69 

40+ Imperial Stout  79 

SRM (The Standard reference method), Lovibond (scale devised by J.W. Lovibond, a British brewer) and EBC (Stand-
ard Reference Method). Table adopted from https://en.wikipedia.org/wiki/Beer_measurement#Colour 

Table 1. Beer types classified according to their color.  
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Beer color can thus also be seen as a measure of quality. The beer quality is traditionally 

followed using sensory impression where the flavor, aroma, mouthfeel, and color are the 

most important issues to follow. This has resulted in highly developed brewing methods 

based on experience and traditions. One example of this is could be the German Beer 

Purity Law (reinheitsgebot), from 1516, which stipulates that (apart from the price of 1-2 

pfennig / ~1,07 L beer) only water, barley, and hops must be used in brewing beer. Mod-

ern breweries produce huge volumes (trillions of liters) of beer at minimum time which 

imposes strict demands on process control and economy.  

The necessary analyses (the minimum amount) a brewer needs are only a few. The 

perhaps most important analysis, already because of the current legislation, is the meas-

urement of the ethanol content. Other important analyses are microbiological identifi-

cations of beer spoiling microbes, and the oxygen and CO2 contents. Other frequently 

used analyses are pH measurements and assessments of physical appearance, e.g. 

beer haziness, color, and foam (head) stability. However, to increase the possibilities to 

a successful business development, the assortment of analysis equipment should be 

increased so that beer composition can be analyzed. Already measurements of beer 

bitterness require analysis instruments and qualified personnel to use these apparat-

uses.  

Today’s chemistry and, above all, new and developed chemical analysis methods, make 

it possible to plan chemical reactions, monitor processes and detect unwanted reactions. 

The concentrations and proportions of the various flavor components form a fingerprint 

that tells you, immediately, if the flavor is correct.  The brewing conditions can be followed 

by sampling and analyzed at suitable intervals, and if the resulting component propor-

tions are wrong, appropriate measures can be taken. Possible reasons can be eluci-

dated, for example if the brew has been contaminated with poor raw materials or if beer 

spoiling microorganisms are present.  

The acquisition of analysis equipment means often a considerable expense to the com-

pany and, especially if the firm has a small turnover, can thus turn out to be a heavy 

economic burden. All aspects of the purchase must therefore be made and the most 

common way to do that is to perform an investment analysis. An investment analysis 

must be made in such a way that it takes into account the economic investment itself, all 

costs involved in maintaining – and repaying- the investment, and the resulting profit. 
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2 BASICS OF BREWING AND THE MOST IMPORTANT 

FLAVOR COMPONENTS IN BEER 

Beers are made all over the world using a multitude of methods and raw materials. To 

limit the scope, types of beers and brewing methods, mentioned in the present thesis, 

are therefore limited to those developed in Europe. Brewing is, simply, to steep a starch 

source in water releasing sugars and then to ferment this liquid. However, brewing is a 

much more sophisticated procedure where every step in the process is carefully planned 

and optimized (Figure 1). An apparent key step in beer production is the selection and 

preparation of good raw materials. The main cereal used for brewing is barley but also 

wheat, corn, sorghum, rye, and oats are used for making beer.  

2.1 Malting 

Apart from best quality; water, cereal grains, hops and yeast, the malting process is 

crucial for the brewing process and the resulting taste of the beer. Malting starts by acti-

vating the dormant grains. This is done by drying the grains to <14% humidity. Germina-

tion of the grains is then started by steeping them in brewing process water until they 

sprout. This process activates enzymes needed for starch (amylases) and protein deg-

radation (proteases) into various sugars and amino acids. The sugars are mostly malto-

dextrins (higher sugars), maltotriose (trisaccharide), maltose (disaccharide), and glucose 

(monosaccharide). Proteins are degraded into smaller fragments which are then later 

used by the yeast. The sprouting is stopped, at a suitable time, by heating the malt up to 

~80 - 100 ◌֯ C. The germinated seeds are simultaneously dried in a kiln to a moisture 

content of 1,5 – 6% (on fresh weight basis). The deactivation of the germination (enzyme 

activity) can also be made using hot smoke or by roasting. The kilning conditions (es-

pecially temperature and moisture) may be varied according to process demands. The 

grains are then ground (dressed) to ease the conversion of starch (release of sugars) 

during mashing and to remove unwanted parts like rootlets and dust. These treatments 

give beer special flavors and colors and can be varied according to demand. The pro-

duced material is now called malt and the quality of this beer raw material is essential 

for the value of the final product (Figure 1). Many malt characteristics, e.g. the nitrogen- 

(protein) and β-glucan contents must be considered when the barley is malted. Malt 

properties (and price) are sometimes adjusted using adjuncts (usually 10 – 20% of the 

brewed extract) such as soluble sugars and different syrups.  
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One other measure of the wide variety of different beers and brewing techniques can be 

seen from the amount and types of different malts. Pale ale and bitter are made from, 

mostly, pale malt which is dried at temperatures low enough to retain the activity of the 

grain enzymes (i.e. the malt has a high diastatic power, DP). The color is therefore light 

and is often used as base malt (the major component in the grist) in many beers. Pale 

lager is made using pilsner malt (lager malt) as the base wort component. The required 

enzymes are, also here, retained in the grains. Mild ale is made from mild malt which is 

kilned at somewhat higher temperatures than pale malt. This gives the beer a less neutral 

flavor usually called “nutty”. Amber malt is kilned at 150–160 °C and retains, therefore, 

no DP. This malt gives the brew an intense bitter flavor which matures with time and is 

used for brewing brown porter and many British beers. Stout beer main ingredient is 

stout malt which has a light color and a maximum DP. The high DP is needed to solu-

bilize starch and proteins in dark malts and un-malted grains which are used in brewing 

stout beer. [1, pp. 27-67] 
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2.2 The brewing process 

The brewing process starts with prepar-

ing the wort (Fig. 1). The malt (and pos-

sible adjuncts) is mashed with the brew-

ing water [1, pp. 101-186]. The sugars 

and amino acids, liberated during malt-

ing, are transferred into the hot liquid. 

Some hydrolyzing enzymes might still be 

active in the malt, depending on the used 

temperature during malting. This resting 

enzyme activity (enzymatic rest e.g. β-

glucanase-, protease-, and amylase 

rest) can be utilized during mashing, to 

liquefy carbohydrates and proteins. 

Mashing temperature should thus be 

raised slowly according to the optimal 

temperatures of the mashing enzymes; 

40–45 °C for β-glucanase, 50–54 °C for 

protease, 62–67 °C for β-amylase, and 

71–72 °C for α-amylase. The slurry is 

then filtered (lautered) and the resulting 

wort, is mixed with selected hops (and 

other possible ingredients) and boiled in 

the brewing kettle. The function of the 

hops, besides adding bitterness and fla-

vors to the beer, is to hinder the growth 

of micro-organisms in the wort after ster-

ilization during boiling. Possible solids 

are removed, after boiling, and the mix-

ture (the hopped wort) is transferred to a 

fermentation tank. The slurry is cooled 

down until a temperature is reached 

where the yeast can grow and work 

safely (Fig. 1). [1, pp. 17-23] 

CEREALS WATER 

Activation of cereal 
enzymes (MALTING) 

Kilning + filtration  

WORT  
Boiling + filtration 

Fermentation 

 

 

Packaging 

Figure 1. The brewing process outlined.  
A schematic overview of the brewing process, including produc-
tion of the malt.  

Temperature adjustment 
and addition of yeast  

Mashing 
 

Lautering 
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The fermentation, either bottom- or top fermentation, is performed at strictly regulated 

conditions until the desired concentration of alcohol is reached. The fermentation starts 

by pitching the yeast which means, simply, that the yeast is added to the wort and the 

fermentation is thus initiated. Before the yeast is added the wort has to be cooled (to 

below 27ºC) and aerated properly. The specific gravity is measured before the yeast is 

added (suspended into a small amount of wort) to the main batch. [1, pp. 379-558] 

2.3 Basic types of brewing techniques and types of beers 

Below is a short list of some basic beer types. Most beers are made using some combi-

nations of ingredients used for ales, lagers, pilsner and stouts/porters. 

An ale has a sweet-, fruity-, and full-bodied flavor and is produced using a so called warm 

brewing method and the yeast species Saccharomyces cerevisiae. The temperature is 

usually ~15 – 24  ◌֯C and a foam is formed on the top of the ferment (also called “top-

fermenting“ or “top-cropping”). The bittering agents were earlier herbs and spices but 

today they have been replaced with hops. There are several types of ales with distinct 

characteristics much depending on hop amount and quality, e.g. pale ale (bitter), India 

Pale Ale (IPA), brown ale, Scotch ale, American Pale Ale (APA), Burton ale, mild ale, 

Belgian ales, golden ale, old ale, and barley wine. A pale ale (or “bitter”) is made using 

mostly pale malt and abundantly hops, giving it a light color and often a hoppy flavor. 

Lager (from the German word “lagern” for “storing”) style beers are pale lagers matured 

and conditioned at low temperatures. Lager beer is also produced using a specific, bot-

tom-fermenting, yeast, Saccharomyces pastorianus, which is different from the ones 

used for brewing ale. Strong lagers (alc. >5,8 vol.%), of German style, are called bock 

and they can be dark, amber or pale in color. They can thus be of many styles varying in 

hop content, color and alcoholic strength (e.g. helles bock, doppelbock, eisbock and 

weizenbock) 

A pilsner is a pale lager-type beer with a distinct hop aroma and flavor. The pilsner beer 

styles can be grouped into Czech-, German-, and European-style pilsner and has usually 

an alcohol content of 4,5 – 5% (vol.%).  

Stouts and porters (e.g. dry stout, Baltic porter, milk stout, oyster stout, imperial stout) 

are strong (7 – 8 vol.%), beers, made using roasted malt (or barley), hops, water and 

yeast. Porters and stouts are in many cases synonymous and, thus, today stouts are 

associated with very dark colored beers. Historically stout and porter meant the same 
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brew although the denotation “stout” was often used for strong porter. Today porters are 

characterized by a flavor of roasted malted barley while stouts are brews earlier denoted 

as dry stouts. The malt used for stout contains usually a small amount of un-malted roast 

barley and sweet stouts, for example milk stout, are also seen as typical stouts. 

Other types of beers are for example weizenbier (beer made using predominantly 

malted wheat), lambic (a Belgian beer which is fermented using wild yeasts or Lacto-

bascillus bacteria). [1, pp. 17-23] 

2.4 Main flavor compounds in hops and malt 

Hops are the flowers of Humulus lupulus and, originally (in the middle ages), the hops 

were included in the brewing of beer predominantly because of its ability to prolong the 

shelf-life of the beer. Other herbs were also used but the best suited additive seems to 

have been hops because of its pronounced bacteriostatic properties and the bitter and 

hoppy flavors it added to the otherwise sweet brew.  Hops account for most of the flavor 

components in beer. It is therefore crucial that the selected hops are of an excellent 

quality. The flavor components in hops are very complex mixtures of volatile and semi-

volatile compounds. Recommendations by the Nomenclature Committee of the Hops 

Liaison Committee defined non-specific fractions and specific compounds and mix-

tures of specific compounds [1, pp. 271-321].  

The non-specific fractions are: 

Those hop constituents that solubilize in both cold methanol and diethyl ether (excluding 

hop wax) are called total resins. These compounds include hard resins, uncharacter-

ized soft resins and α- and β-acids.  

The total soft resins are those that solubilize in hexane (principally α- and β-acids and 

uncharacterized soft resins).  

The hard resins are those compounds, in the total resins that do not solubilize in hex-

ane, and they are thus calculated by subtracting total soft resins from total resins.  

A subtraction of the amount of α-acids, from the total soft resins. gives the β-fraction. 

The uncharacterized compounds, included in the total soft resins, are called uncharac-

terized soft resins. 

 

Specific compounds and mixtures of specific compounds are: 

The α- and β-acids which are mainly, humulone, cohumulone, adhumulone, and lu-

pulone, colupulone, and adlupulone, respectively. 
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The α- and β-acids analogues isohumulone, isocohumulone and iso-adhumulone (all 

mixtures of cis- and trans-isomers). 

The allo-iso-α-acids (α-acid isomers, both cis- and trans) e.g. cis- and trans-allo-isohu-

mulone, cis- and trans-allo-isocohumulone, cis- and trans-allo-isoadhumulone. 

The hulupones (hulupone, cohulupone and adhulupone.) which are oxidation products 

of β-acids. 

The humulinic acids (both cis- and trans forms) cohumulinic- and adhumulinic acid. 

 

The α- and β-acids are the most important components for preventing microbial growth. 

Many of the compounds undergo transformations during wort boiling, e.g. oxidation and 

isomerization. It is therefore common that brewers add more valuable hops (aroma hops) 

to the wort at the end of the boiling so as to preserve desired, original, hop flavors in the 

brew. This procedure is called late hopping which must be distinguished from dry hop-

ping where selected hops are added to the beer just before bottling [1, pp. 243-270, 2]. 

Besides organic acids and polyphenols, hops contain important compounds, for the beer 

taste and mouthfeel like terpenes, resins, essential oils and esters. 

2.4.1 Alpha- and beta-acids 

The α- and β-acids (humulones and lupulones, 

Figs. 2 a and b, respectively) are oily substances 

from the hops (the lupulin glands) that add bitter-

ness to the beer (after transformation reactions) 

and possess antiseptic properties, in inhibiting ef-

ficiently the growth of Gram positive bacteria. 

There are several analogues of both α- and β-ac-

ids differing in the composition of the acyl side 

chain. The antiseptic activity is attributed to the 

prenyl groups which cause leakage of the bacte-

rial primary membrane [3]. Both the α- and β-acids undergo transformations during wort 

boiling which enable them to solubilize into the wort. The transformations are mainly 

isomerization and oxidation reactions which can also be detrimental to the flavor. The 

most unfavorable reactions are those, induced by light, that occur between iso-α-acids 

and riboflavin (from the malt) producing compounds with an unpleasant taste 

a b 

The α- and β-acids humulone (a) and lupulone (b), re-
spectively. The red dotted circles show the placement 
of the acyl chains that give rise to α- and β-acid ana-
logues. 
Structures modified from the Wikipedia (https://en.wikipedia.org/wiki/) 

Figure 2 a and b. Chemical structures 
of humulone and lupulone. 
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(“lightstruck” beer). The reactions involve the formation of free radicals, by homolytic 

cleavage of exocyclic carbon – carbon bonds.  

Isomerization of α-acids into iso-α-acids takes place during wort boiling and proceeds by 

conversion of humulone to isohumulone (cis- or trans-iso-α-humulone), and further to 

humulinic acid (Figure 3). The latter is found in only trace amounts in beer, when it is 

brewed using conventional methods. Practically all α-acids undergo isomerization so that 

only trace amounts of them are left in the mature beer. The humulone and the humulinic 

acid do not have bitter flavors. Apart from humulone other α-acid analogues such as 

adhumulone, cohumulone, posthumulone, and prehumulone are commonly found in 

hops. The major formed bittering agents, in α-acid isomerizations, are the iso-α-acids 

isohumulone, isocohumulone, and isoadhumulone.  

 

 

 

 

Also the β-acids are found as analogues and the most frequently occurring are called 

lupulone, colupulone and adlupulone. The β-acids dissolve poorly into water and con-

tribute therefore only little to the beer flavor. They are, however easily degraded, by oxi-

dation, into compounds that have an unpleasant taste. The β-acids are usually unwanted 

because of their tendency to oxidize although the bitter hulupone contribute to the beer 

flavor. 

The α- and β-acids are very insoluble in water, compared to their iso-acids which are 

readily soluble and bitter.  

[1, pp. 271-321] 

2.4.2 Essential oils, terpenes, and terpenoids  

Essential oils are constituted largely of terpenes and terpenoids. The essential oils are 

found in many plants and they are often wanted for their fragrances (perfumes), for the 

use in alternative medicine (e.g. aroma therapy), and for giving flavors to foodstuffs 

(beer). A large part of the aroma and flavor in beer is derived from the essential oils. The 

oils are usually very volatile and up to 250 of these substances have been identified in 

hop essential oils so that all hop varieties have their own characteristic oil composition 

Lupulone Hulupone Hulupinic acid  

Oxidation pathway of the β-acid lupulone. 

Figure 4. Isomerization of lupulone 

Humulone Iso-α-humulone
Humulinic acid + iso-

hexenoic acid 

The major isomerization pathway of humulone to humulinic acid, via iso-α-humulone. The production rate of hu-
mulinic- and iso-hexenoic acid is slow and the concentrations, in beer, of these compounds are therefore small. 

Figure 3. Isomerization of humulone 
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pattern [4]. Plants, especially conifers, produce hydrocarbons called terpenes (derived 

from the word turpentine) that protect the plants by deterring herbivores and/or by at-

tracting parasites that feed on the herbivores. Terpenes serve also as central biosyn-

thetic building blocks in almost all living organisms. The terpenes are sticky substances 

with a strong odor and they are the main constituents in resin. The terpenoids (also 

called isoprenoids) are terpenes with additional functional groups. The principal unit in 

terpenes is the isoprene (C5H8, Figure 5) unit which can be linked together forming lin-

ear-, or ring formed molecules. There are, thus, a large variation in the terpene types so 

that the prefix in the name indicates the number of isoprene units, e.g. hemiterpenes 

(only one isoprene unit), monoterpenes (two isoprene units), ses-

quiterpenes (three isoprene units), diterpenes (four isoprene 

units), sesterterpenes (five isoprene units) and triterpenes (six iso-

prene units), etc. The terpenes in hops are principally (~90%) mon-

oterpenes (myrcene, linalool, limonene) and sesquiterpenes (hu-

mulene, farnesene, and caryophyllene) so that ~80-90% of them 

are humulene, caryophyllene, and humulene. Terpenes add flavors like citrus (myrcene), 

orange (limonene), spicy aroma (caryophyllene), pine (pinene, myrcene, and limonene), 

herbs (myrcene), floral (geraniol) tropical fruit, etc., to beer.  

The volatile nature of the terpenes (and α-acids) cause substantial losses (usually 50 – 

90%) of the original volatiles amounts, during brewing. To overcome this problem many 

brewers have developed techniques how to add the desired flavors into the brew, later 

in the brewing process. By late hopping a brewer can add a part of the total hops (or 

specially cultivated aroma hops) to the wort near the end (e.g. during the last 10 minutes) 

of boiling. Another much used technique is to add aroma hops to the brew after wort 

cooling (before or during fermentation) by dry hopping. Because of the reactivity of the 

terpenes (with e.g. Sulphur containing compounds), the hopping method (late-, or dry 

hopping) matters in that different aromas are formed [1, pp. 271-321]. 

2.4.3 Esters and aldehydes 

Esters are formed in reactions between organic acids (from hops) and alcohols (pro-

duced during fermentation) during the later parts of brewing. The formed esters can add 

crucial (fruity) flavors to, especially, ale-type beers. Aromas given by esters like isoamyl 

The chemical structure of 
the isoprene unit 

Figure 5. Structure 
of isoprene 
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acetate (banana), ethyl acetate (pear), ethyl hexanoate (apple/anise), and ethyl buta-

noate (tropical / pineapple) are often found in beers. Acetaldehyde will give apple flavors 

to the beer. 

2.4.4 Phenols and polyphenols 

Both malt and hops contain phenols and 

polyphenols that are important for the fla-

vor and mouthfeel of beer. Hop polyphe-

nols are mainly phenolic acids such as hy-

droxybenzoic acids and hydroxycinnamic 

acids. Hops contain also flavonols (mostly 

as glycosides). Hop polyphenols are 

found as monomers, dimers, trimers and 

complexes with nitrous compounds. Alt-

hough hop polyphenols are important the 

majority (70-80%) of polyphenols in beer comes from the malt [2, 5].  Barley contain 

many phenols e.g. tyrosine, tyramine and hordenine. Barley contain, additionally, several 

phenolic acids which can be divided into two main groups (Figures 6 a and b). The 

substituted cinnamic acids (most abundant in malt is ferulic acid) and the substituted 

benzoic acids (most abundant in wort is vanillic acid) which can be found both free and 

in combination (as esters) with e.g. carbohydrates like glycosides and sugars. [1 pp. 101-

186] 

2.5 Important sampling points for beer quality analysis  

The selection of the time-point during the brewing process (sampling moment), and com-

pounds to be analyzed, can be difficult especially if the objectives of the analysis are 

vague. Proper product control obviously demands that at least the end product (the beer) 

is analyzed and assessed. However, several sampling points can be selected if the in-

tention is to monitor the whole brewing process. 

2.5.1 Raw materials 

The most important beer components are the water, the starch source, and the hops. 

The main component in beer is water which must be clean and available in large quan-

tities. Water quality affects directly on the beer quality so that if inadequate quality water, 

The chemical structures of the phenolic acid main groups, 
cinnamic- (a) and benzoic acids (b), respectively. The points 
of substitution are marked with a red R. 
Basic structures modified from: NEUROtiker - Own work, Public Domain, 
https://commons.wikimedia.org/w/inde.g.php?curid=1378738 and -
curid=3228267

b a 

Figures 6 a and b. Chemical structure of 
phenols. 
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or contaminated with even a single solubilized foreign element, the beer value might be 

affected negatively. Naturally occurring calcium minerals, such as calcium- bi-carbonate, 

or sulphate, will have a positive impact on the beer taste provided that the kind and 

nature of these minerals are considered when choosing the type of beer to be brewed. 

Generally, hard waters (containing much minerals) are better suited for stouts while soft 

waters (containing less minerals) are more appropriate for pale lagers. An example of 

manipulation of water quality, to favor flavor release from the hops, is Burtonisation (from 

Burton upon Trent, a town in England) where gypsum (sulphates) is added to the water 

in order to brew good quality pale ales. Another way to manipulate water is to add vita-

mins and minerals to the water to produce Irish stout-like beers (Guinness).  

The quality of the starch source, usually barley, is crucial for the produced beer. Barley 

is cultivated in many varieties and the grains differ with respect to size and constituent 

qualities [1, pp. 27-30]. 

2.5.2 The malting process  

The plant (seed) growth commences during malting which means that the synthesis of 

several hydrolytic enzymes starts. Besides starch hydrolyzing enzymes, also proteins, 

hormones and lipids begin to metabolize. The most important compounds, for the beer 

taste and properties, are the nitrogenous (proteins, amino acids and melanoidins) com-

pounds released during malting. There are several similar analysis methods (e.g. nitro-

gen/protein determinations) in use because of many differing malting methods and brew-

ing traditions. These compounds are very important, not only for the beer flavors and 

aromas, but also for the beer color and foam quality. Malt analysis show that typical 

ranges of e.g. non-protein extract, crude protein, ash, and fiber, to be 35-50%, 20-35%, 

6-8%, and 9-15%, respectively. However, the methods differ significantly depending on 

brewing technique and which recommendations the brewery follows (IoB, EBC, ASBC, 

or MEBAK). The nitrogen (protein) analysis is the most important of the analyses when 

considering flavor and quality (e.g. beer foam and mouthfeel). Usually, total soluble ni-

trogen (TSN) and free amino nitrogen (FAN, mostly small peptides and amino acids) are 

measured but often the SNR (Soluble Nitrogen Ratio = TSN / total nitrogen, IoB method) 

is given for the malt. The SNR can also be given as Kolbach Index (soluble protein / total 

protein ratio, ASBC and EBC methods). Other important measurements are % humidity 

and diastatic power (hydrolytic enzyme activity). Brown compounds called melanoidins, 

formed through Maillard reactions between reducing high molecular weight sugars (large 
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polymeric dextrins) and amino acids, are determined by measuring the color intensity. 

Contaminant analysis, e.g. iron, cadmium, arsenic and lead, must occasionally be meas-

ured as well as determinations on the levels of microbes (esp. Fusaria), pesticides, and 

halogenated contaminants [1 pp. 27-67]. The malting process is thus important seen 

from the quality control point of view. However, the emphasis of analysis is much on the 

used raw materials and the end product rather than on the process. 

2.5.3 The wort 

Most compounds important for beer taste, are added to the brew during wort boiling (see 

2.4). In this process, the resins (including humulones and lupulones), polyphenols, es-

ters, aldehydes etc., are solubilized into the wort which makes the wort-making process 

an obvious point of sampling.  

2.5.4 During fermentation 

Fermentation is a step in brewing, where dras-

tic changes in the brew composition takes 

place. Therefore, the analysis of the ferment-

ing wort can be performed from several view-

points. One point of view is to follow the de-

velopment of components that are important 

for the final flavor of the beer. Another need 

for analysis could be to check the efficiency of 

the process, and a third to monitor off-flavors 

caused by other micro-organisms such as 

bacteria and wild yeast. The most important 

beer flavor affecting yeast metabolites are 

ethanol and higher alcohols (Figure 7 a), and 

carbonyls like esters, aldehydes and vicinal di-ketones (Figures 7 b-d). Yeast excretes 

also organic acids like lactic-, citric-, pyruvic-, malic-, acetic-, formic-, succinic- and bu-

tyric acid into the medium, which also affect the taste of the final product. The formation 

of carbon dioxide (CO2) is crucial, especially for the mouthfeel of beer and to maintain 

anaerobic conditions.  

The mostly used species of yeast, for brewing, are Saccharomyces cerevisiae and 

Saccharomyces pastorianus (formerly “S. Carlsbergensis”). S. cerevisiae, also called 

R — C — O — H 

H
│

│
H

The structural formulas of a) methanol and higher alcohols,
b) a carboxylate ester or a carboxylic acid if the R´ is a hy-
drogen atom, c) aldehydes, d) a vicinal di-ketone (VDK).  
R and R′ denote any alkyl or aryl group. R and R´ can also 
be a hydrogen atom. 

C

O
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Figures 7 a-d. Structural formulas 
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“brewer’s yeast”, is also well known to bakers and wine makers although the strains are 

different. S. cerevisiae is a top fermenting yeast, forming a foam at the surface of the 

fermenting wort, while S. pastorianus (called “ale yeast”) is a bottom fermenting yeast 

and precipitates thus at the bottom of the brewing vessel. The yeasts are also called 

“top”- and “bottom cropping”, respectively. 

The complex metabolic reactions (pathways), catalyzed by enzymes, can roughly be di-

vided into catabolic and anabolic. During catabolic reactions, organic compounds like 

starch (and very large carbohydrate polymers), proteins and fatty acids are degraded 

into their constituents (glucose, amino acids and acyl-Coenzyme A, respectively) at the 

same time as energy is produced. The anabolic reactions consume energy while pro-

ducing vital components for yeast growth and bi-products like ethanol, CO2, and esters. 

These metabolic events (pathways) are highly regulated and it is thus, from the brewer’s 

point of view, essential to control the outcome of the processes. For example, the for-

mation of higher alcohols (from aldehydes) and ketones (from amino acids) as well as 

the reduction of vicinal diketones (VDK, by-products in biosynthesis of the amino acids 

valine and leucine), are important beer flavor affecting reactions. Regulation occurs at 

both gene- and metabolic levels (protein synthesis and enzyme activity, respectively) so 

that the produced compounds might inhibit the formation of the same compound. Strict 

regulation is needed for the organism to maintain a balance between redox (reduction 

and oxidation) reactions. During aerobic growth (respiration), cell respiration is triggered 

to direct the energy production through the so-called electron transport chain where ox-

ygen is the final electron acceptor, resulting in the formation of energy (ATP), water, and 

CO2. The large number of ATP produced lead to a considerable increase in the yeast 

cell population. When the dissolved O2 in the wort is depleted, anaerobic respiration 

takes place. Anaerobic respiration (fermentation) means that acetaldehyde is the final 

electron acceptor (instead of oxygen) producing, ultimately, energy (ATP) during the pro-

duction of pyruvate and its conversion to acetaldehyde and then ethanol. Fermentation 

is thus an anaerobic process which is incomplete with respect to oxidation of organic 

compounds. Only 2 ATP are produced from glucose during fermentation, so yeast me-

tabolism speeds up nearly 10-fold, rapidly consuming glucose, in order to produce suffi-

cient energy for the yeast cell. The fermentation of one molecule of glucose yields two 

molecules of ethanol and carbon dioxide according to the formula: C6H12O6 → 2 C2H5OH 

+ 2 CO2.  Fermentation is an exergonic (exotherm) reaction, where produced energy is 

released as heat. The yeast metabolism is very sensitive to disturbances, and thus, to 

beer quality. The biochemical reactions during fermentation, deplete the wort of nutrients 
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while ethanol, carbon dioxide and metabolites are formed. Important cellular mecha-

nisms, like uptake of nutrients and the transport of nutrients and metabolites, between 

cellular compartments, are strictly regulated and can thus be “bottlenecks” in yeast func-

tion if the conditions are not optimal. It is, for example, common in biochemical reactions 

that metabolites inhibit the formation of one or several products or cellular mechanisms. 

The level of different compounds can serve as markers on the state of the process so 

that, for e.g., a high concentration of glycerol is a sign of stress, caused by a high os-

motic pressure (a high concentration of solutes). Another important marker is the pH of 

the fermenting wort. The yeast needs nitrogen for growth but it is not able to utilize (as-

similate) atmospheric nitrogen. The most important nitrogen sources are amino acids, 

peptides, amines, purines and pyrimidines, primarily originating from the malt.  

Minerals, especially sulphur (from sulphur containing amino acids) and essential miner-

als for catalytic- and other biochemical reactions, like B+, Ca2+, Co2+, Cu2+, Fe3+, K+, Mo2+, 

Mn2+, Mg2+, Ni2+ and Zn2+, are needed, in adequate amounts (<10 µM) for proper function 

of the yeast. Organic growth factors like vitamins, certain lipids, nucleosides, nucleotides 

and some purines and pyrimidines are obligatory for the yeast metabolism and growth. 

Some yeast strains also require essential compounds like biotin, inositol, thiamine and 

pantothenic acid.  

A very large number of different metabolites are formed during fermentation or as a result 

of shock excretion (caused by, for example, a high concentration of a certain metabolite 

or unfavorable temperatures or pH) or cell death. However, the concentration of many of 

the metabolites is so small that, at normal conditions, the flavor is not affected. Organic- 

and fatty acids, aliphatic (non-aromatic) alcohols, and esters of alcohols, are the most 

important metabolites affecting beer flavor. These compounds are thus the main objec-

tives of analysis.  

The most important compounds of interest are: 

Alcohols (Figure 7 a) 

Organic- (acetic-, citric-, lactic-, malic-, α-ketoglutaric-, pyruvic-, and succinic-), and 

fatty acids (short- and medium chain length fatty acids, C6 – C18), are off-flavors and 

inhibit beer foam formation. 

Carbonyl compounds contain C=O functional groups (Figures 7 b-d), such as alde-

hydes, carboxylic acids, and vicinal di-ketones, are common in beer. Many are, however, 

detrimental to the beer taste and therefore the concentrations of these compounds 

should be minimized. Acetaldehyde, which is the precursor for ethanol, is an important 
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compound. Acetaldehyde might accumulate to an excess during fermentation, and it will 

give the brew an unpleasant flavor and aroma if the flavor threshold (10 – 20 ppm,) is 

exceeded. The most common reasons, for too much acetaldehyde in the brew are the 

use of a poor-quality yeast, a too high temperature during fermentation, a too fast addi-

tion of the yeast or a too high pitching rate, and a too high level of wort oxygenation [1, 

page 472]. Other important carbonyl compounds, especially for lager beers, are VDK: s, 

diacetyl (2, 3-butanedione) and 2, 3-pentanedione. These compounds are harmful for 

the beer taste if their flavor thresholds are exceeded. VDK: s are by-products that form 

during the synthesis of the amino acids valine and isoleucine and their formation is con-

nected to the FAN concentration (the selection of produced amino acids) through meta-

bolic biochemical processes [1 pp. 417-485]. 

2.5.5 The beer maturation process 

Beer components constantly undergo equilibrium reactions where the concentration of 

some flavor components diminish and others increase. Some components can even dis-

appear or an entirely new species can form. Beer flavor deterioration reactions are thus 

a result of both synthesis- and degradation reactions, which should be considered al-

ready when the raw materials for the beer are chosen and their weights are calculated. 

Aging flavors and colors are therefore not usually regarded as off-flavors, except if the 

consumer is accustomed to a special brand with a specific taste [6]. Aging reactions will 

ultimately reach a state of chemical equilibrium where the reactions proceed only slowly. 

The flavor components in mature beer will have a distinct (analysis) profile showing how 

well the flavors correspond to the planned taste. The content of e.g. α- and β-acids have 

an impact on the bitterness and the amounts of terpenes will affect the fruity and spicy 

flavors of the final product. Bitterness (the content of, especially, α-acids), fruity (estery) 

and floral aromas tend to decrease, while the development of sweet aroma components 

will increase, during aging. A strict distinction, between beer- staling and aging, is some-

times difficult to make since same components affect both phenomena [7]. The emer-

gence of typical aging flavors during beer storage can be linked to Maillard reactions, the 

formation of linear aldehydes, ester- formations and degradations, acetal formation and 

etherification and degradation of bitter compounds from hops. Carbonyl compounds, es-

pecially unsaturated long chain aldehydes having a low taste and odor threshold, are 

readily formed during beer storage [6,8,9]. Beer aging, as a phenomenon, is thus a very 

complex issue which has been the subject of much research [10]. Many of the introduced 

flavors (mainly from the hops) undergo changes during the beer maturation process. The 
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changes are of chemical nature and are various forms of breakdown reactions, for ex-

ample de-carboxylations, isomerizations and Maillard reactions. Especially compounds 

important for beer flavor (volatiles) will undergo Maillard reactions and can be used as 

markers for beer aging [11].  These types of reactions are common among, especially, 

the polyphenols, flavonoids and diketones. One important group of compounds are the 

vicinal diketones (VDK) which are often used as markers of the beer maturity. The VDKs 

give beer a buttery flavor and are therefore mostly unwanted. The beer is thus consid-

ered mature when the VDK levels have fallen under a certain level. 

Beer contains several, both volatile and non-volatile, sulphur containing constituents. 

Often these compounds have a low flavor threshold and might therefore become a prob-

lem as many of them are off-flavors. A majority of the non-volatile organic sulphur com-

pounds are proteins and peptides containing the amino acids methionine and cysteine 

found predominantly in the wort but can also be present in the final beer. Sulphur con-

taining compounds are also found, in small amounts, in hop oil as polysulphides. Poly-

sulphides are readily formed, especially if the hop oils are produced using steam distilla-

tion because of reactions between elementary sulphur and sesquiterpenes. Volatile sul-

phur compounds are preferentially analyzed using GC, equipped with a headspace sam-

pling apparatus, because of their reactivity in conditions where they are exposed to light 

or oxygen. The perhaps most important volatile sulphur containing compound is dimethyl 

sulphide (DMS), which is an off-flavor, typically found in lager beer [1 pp. 707–710]. 

2.5.6 Beer staling 
The chemical processes taking place and tastes emerging during beer- aging and staling 

are much the same. However, beer aging differs from staling in that aging is usually seen 

as a positive phenomenon, where a (planned) flavor balance is reached between the 

flavor components, while staling is associated with beer spoiling agents like microorgan-

isms, O2, too elevated temperatures, and unwanted chemical reactions induced by light, 

etc. Beer staling is not only noticed by the appearance of off-flavors but it is also charac-

terized by the disappearance of the pleasant fresh flavors. Different types of beers have 

their own distinct stale off-flavors which, when found in another beer type, might not be 

a problem (when present in reasonable concentrations). The stale and aging flavors are 

often difficult to pinpoint by tasting because other beer components might mask their 

taste or the off-flavor concentrations can be just below their flavor olfactory thresholds 

[7,11]. The flavor of staling is often referred to that of cardboard (especially for lager-type 

beers), sweet-, caramel- or toffee-like-, “ribes-”, and burnt-sugar flavors. The source for 
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these tastes is the perhaps predominant off-flavor compound occurring during staling, 

an unsaturated aldehyde (E)-2-nonenal. This compound occurs especially if beer has 

been stored in elevated temperatures. Much research has been done to elucidate the 

primary source of (E)-2-nonenal and it seems most likely that it is formed by oxidation of 

lipids (mainly the unsaturated fatty acids, linoleic-, and linolenic acid) during mashing or 

wort boiling [10]. Mashing activates several fatty acid degrading enzymes which produce 

(by oxidation) precursors to carbonyl compounds like (E)-2-nonenal.  

Even the lowest contents of oxygen in the final beer will cause a rapid deterioration of 

flavor agents. Brewers try therefore to prevent oxidation reactions by deterring oxygen 

at all stages after malting and, especially, fermentation. Off-flavor agents, like Strecker 

aldehydes (e.g. 2-methyl propanal, 2-methyl butanal, 3-methyl butanal, benzaldehyde, 

phenylacetaldehyde and methional), are reported to increase at elevated oxygen con-

centrations. The origin of these carbonyl compounds is still under much debate and there 

are principally two main theories on the origin of these off-flavors. One model states that 

the compounds are released from a bound state during beer aging. Others have sug-

gested pathways for their formation during wort production or in the final beer by Maillard 

reactions from oligosaccharides or by the influence of reactive oxygen species (e.g. O2
•-

, OH•-, HO2
•-, and H2O2) and/or Fe2+ through Fenton- or Haber Weiss reactions. Strecker 

aldehydes are, most probably, a result of the so called Strecker degradation of amino 

acids (mostly valine and leucine) under the influence of Cu- and Fe ions [6,10,12].  

The temperature has a crucial importance in the development of staling reactions. Cool 

temperatures slow down the reactions while even a slight increase in the temperature 

above 4ºC will markedly increase the rate of beer staling reactions. Elevated tempera-

tures can be used in quality control to predict the shelf life of the beer [13,14]. 

Beer is said to be “lightstruck” when a skunky off-flavor appears. These flavors are 

caused by sunlight, which induces photo-oxidation of hop derived compounds, e.g. iso-

humulones to MBT (3-methylbut-2-ene-1-thiol) via photosensitized riboflavin [15]. 

There are several other types of reactions, e.g. acetalization of aldehydes, Maillard re-

actions, synthesis and hydrolysis of volatile esters, degradation of polyphenols, aldol 

condensations, etc., affecting the quality and flavor of beer [1 pp. 678-731,10]. These 

reactions complicate further the analysis (and especially the interpretations of analysis 

results) of beer and sets an intense pressure on both the laboratory personnel and equip-

ment, and on training, again accentuating the importance of careful planning when a 

laboratory is started.  



19 

3 ANALYSIS METHODS FOR BEER COMPONENTS 

When choosing the appropriate analysis methods, for any purpose, the precise require-

ments must be recognized and followed. There are several organizations with their own 

recommendations for analyzes, e.g. IoB (The Institute of Brewing), EBC (European 

Brewery Convention), ASBC (The American Society of Brewing Chemists), and MEBAK 

(Brautechnische Analysenmethoden: Methodensammlung der Mitteleuropäischen-

Brautechnischer Analysenkommission). Proper analysis method choices are especially 

important when analyzing foodstuffs, already because of the strict regulations imposed 

by the legislation. The following requirements were taken from the book Analytical Chem-

istry of Foods [16] and show clearly the types of demands that one should set on the 

chosen analyzes: 

Precision is a measure of the ability to reproduce an answer between determinations 

performed by the same scientist or by different scientists in the same laboratory using 

the same procedure and instrument.  

Reproducibility is similar to precision, but based on the ability to reproduce an answer 

by different analysts and /or laboratories using the same procedure.  

Accuracy, expressed in terms of the ability to measure what is intended to be measured; 

e.g. the fat content of a foodstuff rather than all substances of similar solubility’s, or the 

protein content of a food rather than all nitrogen containing substances.  

Simplicity of operation is a measure of the ease with which the analysis may be carried 

out by relatively unskilled workers.  

Economy expressed in terms of the costs involved in the analyses in terms of, reagents, 

instrumentation, and time.  

Speed, based on the time to complete a particular analysis. Important in cases where 

follow-up actions need to be undertaken quickly. For example, if some (unwanted) com-

ponent(s) appear in excess or are too low.  

Sensitivity measured in terms of the capacity of the method to detect and quantify food 

constituents and / or contaminants at very low concentrations such as might occur with 

trace elements or pesticide residues.  
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Specificity expressed in terms of the ability to detect and quantify specific food constit-

uents even in the presence of similar compounds, e.g. individual sugars (e.g. reducing 

and non-reducing sugars).  

Safety, many reagents used in food analysis are potentially hazardous, e.g. corrosive 

acids flammable solvents.  

Official approval is crucial because various international bodies give official approval to 

methods that have been comprehensively studied by independent analysis and shown 

to be acceptable to the various organizations involved. E.g. ISO (International Organiza-

tion for Standardization), AOAC (Association of Official Analytical Chemists). 

Beer is a complex mixture of components containing more than 450 characterized sub-

stances. Beer contains chemical compounds such as proteins, nucleic acids, polysac-

charides, and lipids. Most identified components affecting beer flavor are smaller com-

pounds like organic- and amino acids, aldehydes, ketones, esters, alcohols, essential 

oils, resins (mostly terpenes and terpene alcohols), polyphenols (e.g. flavonoids), lipids 

and sulphur containing compounds. For convenience, the solubilized components are 

often divided into volatile and non-volatile substances where the former have grater va-

por pressure and give beer its aroma (bouquet). The latter substances (such as, sugars, 

amino acids, polyphenols, inorganic salts, nucleotides, and hop resins) remain solubil-

ized in the beer contributing to the flavor and mouthfeel of the beer. There are, thus, a 

myriad of possible components to analyze. Volatile compounds are concentrated in the 

headspace and can conveniently be analyzed using gas chromatography with mass-

spectrometric detection (GC-MS). The non-volatile constituents include also macromol-

ecules such as proteins, nucleic acids, and polysaccharides. These compounds are usu-

ally analyzed using high pressure liquid chromatography (HPLC) [1, pp. 678-731]. 

3.1 Traditional analysis methods 

Traditional analysis methods are often time consuming and even vague for today’s de-

mands for production speed and efficiency. Economic facts dictate that the brewing pro-

cess must be planned carefully and monitored for faults and essential component levels 

(e.g. the ethanol content and organic acids). This means that a large number of samples 

have to be analyzed, in a relatively short time, for the process to run smoothly. Many 

older methods require laborious extraction steps where the material is treated with polar 
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and non-polar solvents and then the extracts are concentrated and analyzed using, usu-

ally, some chromatographic methods. Physical methods have also frequently been used, 

e.g. for measuring the ethanol content. These methods involve often the measurement 

of the relative density (or specific gravity), using instruments like a pycnometer, an oscil-

lating U-tube, or a hydrometer. The old traditional methods (before the development of 

chemical analysis methods) rely often on the taste- and smell senses which, although 

being relatively fast and cheap, can produce errors depending on the person who per-

forms them. 

3.2 Modern analysis methods 

The development of chemistry, and especially chemical separation methods, have ena-

bled analysis of individual compounds in a relative short time. Especially the develop-

ment of the chromatographic methods, where mixtures of compounds are analyzed, en-

ables an exact quantification of even minute amounts of compounds. Chromatography 

is based on the separation of dissolved (in the mobile phase) molecules when they are 

passed through a chromatography, by means of a mobile phase, column holding a sta-

tionary phase. The separation, of the dissolved compounds, is based on differential par-

titioning between the mobile and the stationary phases so that molecule species travel 

through the column at a different speed. The retention of molecules to the stationary 

phase (the partition coefficient, P, of the compound) is thus the key to the separation of 

compounds in the chromatography column. Flavor components are usually analyzed us-

ing gas chromatography because these components are predominantly volatile. Liquid 

chromatography (HPLC) is also frequently used and the target analytes are then usually 

carbohydrates, hop acids, the essential oils, and hop flavonoids in ex the identification 

of hop varieties [17].  

HPLC  

HPLC, or High Pressure (sometimes Performance) Liquid Chromatography, is an anal-

ysis method by which chemical compounds can be separated from each other and thus 

identified and quantified. HPLC is a fast and therefore a frequently used analysis method 

of, practically, all types of especially organic molecules e.g. proteins, fats, alcohols, hor-

mones, different toxins, drugs, amino acids, and so on. The sole requirement is that you 

must able to solubilize the analytes of interest into a liquid medium. The solvent can be 

aqueous (i.e. polar e.g. water or an alcohol) or an organic solvent such as acetonitrile 

(ACN), methanol, tetrahydrofuran (THF), or isopropanol. The acidity of the elution media 
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can be adjusted using various compounds such as tri-fluoroacetic acid (TFA), ammonium 

acetate or formic acid. A traditional HPLC column is relatively small, usually 10 – 30 cm 

long and having a diameter of 50 – 100 mm. The column is packed with small (~3 – 10 

µm) particles (often silica beads) having polar surfaces (the stationary phase) and con-

taining pores of varying sizes. The pores give the stationary phase a larger surface area 

as well as characteristics like optimal kinetics for e.g. bulky proteins (large pore size). 

Small column volumes and particle sizes demand a high and steady pressure to work. 

Pressures around 100 MPa are therefore not unusual in the HPLC which sets high de-

mands on the hardware, especially on the pumps. The particle and the pore sizes play 

an important role in the separation efficiency of the HPLC system. Larger particles are 

usually used primarily for preparative separations where the analytical separation is not 

so important. 

Separation of analytes 

There are several types of HPLC to choose from when you decide on an HPLC analysis 

method.  

Partition chromatography is one of the classical chromatographic methods and sepa-

rates the analytes based on their polarity. The partition chromatography uses an inert 

stationary phase onto (or into) which a polar solvent is retained. The analytes then diffuse 

into the polar stationary phase and elute depending on their polarity so that the more 

polar groups the analytes contain, the longer it takes for them to elute from the column. 

The time it takes for the analytes to pass through the column (the retention time) is 

unique for each chemical compound, meaning that compounds can be identified by their 

retention time, provided that the conditions (e.g. temperature, pH, and ionic strength) 

remain the same. Polar solvents will thus shorten the elution time while hydrophobic 

solvents usually increase the retention time.  

Normal-phase chromatography separates analytes based on their affinity for a polar 

stationary phase. The polar interactions (e.g. hydrogen bonding and dipole-dipole inter-

actions) between the stationary phase and the analytes are therefore crucial for the sep-

aration efficiency. The analytes interact with, and are retained by (adsorbed to), the sta-

tionary phase so that compounds having many polar groups (e.g. –OH, -NH3 or phos-

phate groups) will be efficiently retained by the sorbent material in the column. The ana-

lytes can then be eluted from the column using a non-polar and non-aqueous eluent 

(mobile phase) such as chloroform. Thus, more polar solvents in the mobile phase will 
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shorten-, and non-polar solvents prolong the elution times. Also, the physical properties 

of the stationary phase play an important role in the separation process, especially if the 

packed particles contain pores. In these cases, the analyte size and bulkiness matter in 

that steric hindrance will affect the elution speed. The separation of structural isomers is 

therefore possible when these factors are utilized. The disadvantages with normal-phase 

chromatography is that the presence of protic compounds (chemical compounds con-

taining labile H+ groups like –OH and -NH2 groups, e.g. in water, organic acids and dif-

ferent amines) will cause drifting of the base line and thus the reproducibility of retention 

times suffer.  

Reversed-phase HPLC (RP-HPLC) has therefore largely replaced both partition- and 

normal phase chromatography. In RP-HPLC the separation principle is “turned around” 

so that the stationary phase is non-polar and the mobile phase is aqueous or moderately 

polar. The non-polar (hydrophobic) analytes have thus affinity for the stationary phase 

while polar components elute from the column with the polar mobile phase. This experi-

mental set-up increases the reproducibility of the experiments because the hydrophobic 

matrix is less prone to chemical reactions caused by the used eluents. Usually the sta-

tionary phase is composed of silica, coated with carbon chains being mostly 8 or 18 

carbon atoms long (there are also 1-, 4-, and 12-carbon materials). These materials are 

called C8- or C18-bonded (octyl- and octadecyl carbon chain-bonded silica, respectively) 

silica. The difference (in separation efficiency) between these two coatings is not very 

big. The main difference between these two sorbents is in the degree of hydrophobicity 

which increases with a longer carbon chain. In general, on can say that a C8-coater 

material is better suited for the separation of smaller molecules e.g. organic acids while 

a C18 sorbent is more suited for the separation of e.g. long chain fatty acids. Generally, 

C8 sorbents result in shorter retention times and less selectivity. A too high polarity can 

result in so called “carryover” which is a situation where some analyte material will remain 

in the column (because of a too strong affinity for the sorbent material) and thus give rise 

to “ghost peaks” in subsequent runs. Columns available today can be of many types, 

having different polarities. The coating can, consequently, contain amino-, cyano-, pen-

tafluorphenyl- or nitrile groups, according to the demand for stationary phase polarity. 

The analytes can be eluted isocratically, meaning that the water-solvent contents are 

constant during elution, or using a two-component gradient (linear gradients) containing 

water (or aqueous buffers) and an organic solvent, that is miscible with water. Such or-

ganic solvents are acetonitrile, methanol, tetrahydrofuran, ethanol and 2-propanol. In 
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some cases, the mobile phase pH is crucial because the retention efficiency (selectivity 

of analytes, i.e. their polarity) might be dependent on the surrounding pH. 

Detection 

A HPLC system can have a wide range of detectors depending on the analytes and 

purpose of the analysis. Some of those are listed below. 

The refractive index (RI) of molecules can be used to detect analytes after HPLC sep-

aration. The RI detector measures the refractive index of any dissolved compound (that 

differs from that of the solvent) and is thus capable of detecting the presence of all dis-

solved components. These detectors are called universal detectors because they indeed 

detect practically all molecules applied onto the column. However, the aims of most anal-

yses are to detect and quantify only specific components and therefore we usually chose 

more specific detection methods. 

An ultra-violet visible (UV-Vis) detector operates in the ultra violet- (200 – 400 nm) and 

the visible regions (400 – 700 nm), and sometimes even into the near-infrared (700 – 

1400 nm) region.  This is why this detection method is the most popular among the HPLC 

detection methods. In UV-Vis detection, the detector range is expressed in absorbance 

units (A). One absorbance unit corresponds to the depreciation of the light intensity by 

90% of the incident light. Molar absorptivity, also called the molar extinction coefficient, 

corresponds to the absorbance for a molar concentration of the substance with a path 

length of 1 cm.  

Light scattering- (a less accurate detection method), fluorescence-, flame ionization- 

(FID) and mass spectrophotometry (MS) detectors (very accurate detection methods) 

are other frequently used detection methods. 

Gas chromatography 

The chemistry in analyte separation using gas chromatography (gas-liquid partition chro-

matography, GLPC), is much the same as in liquid chromatography. The largest differ-

ence is that the mobile phase during GC is a gas which gives the analysis method many 

opportunities but also some challenges. The carrier gas must be inert to avoid reactions 

with the analytes. The most usual carrier gas is therefore helium but also nitrogen and 

hydrogen (unreactive) gases are used. The stationary phase is a very thin (microscopic) 

layer of an (inert) solid, liquid, or polymer, covering the inner side of a thin (glass or metal) 

tubing (column).  
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One obvious challenge is to solubilize (vaporize) the analytes without their decomposi-

tion, so that they can be carried through the capillary column by the mobile phase (gas). 

The introduction of the sample, into the gas chromatograph is done through the injector 

(also called the inlet) situated on the column head. There are several types of inlets that 

are suitable for different sample amounts and different physical states of the sample. 

Samples can be introduced into the GC as gases or liquids. Depending on the type of 

column inlet, the proper quantity of analytes is adjusted by fine-tuning the sample 

amount, or by regulating the volatilization temperature. In the analysis of beer aroma 

components, the sample is already in a liquid form and, thus, ready for analysis. Beer 

contains a lot of non-volatile compounds that will clog the GC and thus damage the ca-

pillary column. However, most of the beer analytes are volatile or semi-volatile making 

different head-space-, or SPME (Solid Phase Micro Extraction) techniques attractive for 

efficient analyte sampling [18,19,20,21,22]. In automated headspace techniques (e.g. 

dynamic- and static head-space technologies) the analytes are driven into the gas phase 

(called headspace) by increasing the temperature, stirring, and /or by introducing a suit-

able amount of salt into the sample. The combination of heat, stirring, and salt addition 

are efficient means to vaporize when SPME is used for analysis of volatiles in beer [18-

21]. The analytes are adsorbed onto thin fibers coated with adsorbing materials (coated 

fused silica) e.g. Polydimethylsiloxane (PDMS) which is a silicon-based organic polymer, 

Divinylbenzene (DVB), and porous carbon adsorbents (Carboxen® by Sigma-Aldrich). 

The analytes are then desorbed, by raising the temperature to ~250 – 290 ºC, and con-

sequently transferred into the GC. 

The separation of the analytes is accomplished by the differences in the analyte physico-

chemical properties and thereby due to their affinity to the stationary phase. The retention 

time will thus determine the identity of individual compounds.  

Sample treatment 

Beer and samples from different stages of brewing must be handled with care since 

many of the analytes are volatile and light and/or elevated temperatures might damage 

the flavor compounds. A GC, used for analysis of volatile components, is usually 

equipped with a headspace. The headspace technology samples gaseous components 

from the closed space where liquids or solids are placed. The principle of function is that 

an airtight seal is formed around the sample so that volatiles are concentrated in the void 

space. The volatiles are then transferred from the space into the GC column using vac-

uum and an inert gas. Another sampling technique, developed especially for volatile 
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compounds, is SPME (Solid Phase Micro Extraction) where a fiber, covered with a vola-

tile collecting material (e.g. Carboxene, PDMS, DVB, or Polyacrylate) is inserted, using 

a specially developed syringe, into the headspace of a (closed and air tight) sampling 

vessel. Analytes are sorbed onto the collecting material and, once equilibrium is reached, 

the coated fiber is transferred to the injection port of e.g. a GC where the analytes (both 

volatiles and semi-volatiles) are desorbed from the fiber using heat (~230 - 290ºC). This 

technique has enabled rapid analysis of food flavor components and is therefore used 

increasingly in research [19,20,21,23]. The SPME technique allows also on-fiber derivat-

izations which increases the accuracy for e.g. carbonyl compound analysis [24]. SPME 

was especially developed for GC but this technique can also be used for HPLC analysis.  

Detection 

There are, as for HPLC, a wide range of detection methods for gas chromatography. The 

perhaps most frequently used analyte detection methods for GC analysis of beer aroma 

components are FID (Flame Ionization Detection) and MS (Mass Spectrometry).  

The FID detector functions by detecting organic ions, produced by combustion of ana-

lytes in a hydrogen flame. Inorganic compounds and non-volatile compounds are thus 

not detected. The detection is accomplished by producing a potential difference using 

two electrodes (a positive- and a negative) placed before- and after (the positive- and 

the negative electrode, resp.) the flame. The ions induce a current by colliding (induced 

by attraction) with a collector plate. The formed current is then measured using a high-

impedance pico ammeter and analyzed using a computer. 

In mass spectrometry, ionized chemical species are produced and then sorted according 

to their mass-to-charge (m/z) ratio. The working principle of a mass spectrometer is rel-

atively simple but different modifications and combinations with various ionization meth-

ods might complicate the general picture of the method. A simple description of the 

method is that the analytes are ionized and then directed through a magnetic field which 

will bend their path. The degree of deflection will depend on the analyte m/z-ratio so that 

heavier particles will deflect less than lighter particles. Generally, when MS is used in 

combination with GC, the used ionization methods produce single-charged ions (z=1), 

meaning thus that the detected signals can be regarded as the mass of the ion. Mass 

spectrometry is, simply, an instrumental technique where analytes are converted to pos-

itive ions by electron bombardment and then separated according to their masses (Fig. 

8). A mass spectrum is, consequently, a plot of relative abundances versus the m/z. 
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Mass spectrometry is used when special accuracy is needed, for e.g. when researchers 

want to find and characterize unknown biological compounds. Beer is therefore an ex-

cellent object for studies because of its complexity and variability [1, 2, 5].   

First, the sample analytes are separated into species in the GC. The species are then 

ionized by the ionizer and directed into a magnetic or electric field, where the ionized 

analytes are separated based on their mass to charge ratio (Fig. 8). The mechanism of 

ionization can be either by electron- (hard ionization) or by chemical (soft ionization) ion-

ization. Hard ionization (performed using a large amount of energy) results often in the 

defragmentation of the analytes so that charged fragments, typical for the respective 

analyte species, are formed. Soft ionization means that analytes are ionized using a 

small amount of energy. GC-MS uses many of these ionization techniques, e.g. chemical 

ionization (CI), electron ionization (EI), positive- or negative chemical ionization (PCI and 

NCI, resp.), fast atom bombardment (FAB), electrospray ionization (ESI) or matrix-as-

sisted laser desorption/ionization (MALDI). The subject molecules are, thus, fragmented 

only to a small degree and the resulting “base peak” (the most intensive signal) in the 

spectrogram is used for identifying compounds.  
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After separation into molecular species, the analytes are led into
the mass spectrometer where they are ionized. The molecular ions,
and fragments, are then separated by the magnetic field according
to their m/z ratio and, finally, analyzed. 

Figure 8. The working principle of a mass spectrometer.
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3.3 Other frequently used analysis instruments at a brewery 

A brewer does not only measure chemical compounds but also parameters such as the 

haziness, the color, the bitterness, and foam stability. 

- The haziness is measured using a nephelometer. A nephelometer measures the 

concentration of suspended particles (particulates) in a liquid or a gas colloid by 

employing a beam of light through a sample and then detecting reflecting light, usu-

ally at 90º of the source beam. 

- The color intensity is measured using a spectrophotometer (SRM method), at 430 

nm.  

- The bitterness can be measured using a spectrophotometer or by using a suitable 

chromatographic method. 

- The beer head is important for the mouthfeel, aesthetics, and aroma of the beer. 

Therefore, foam stability (durability) is assessed observing the time it takes for the 

foam to drain, i.e. the time required for 50% of the liquid to drain from foam (a 50% 

reduction in foam volume).  

3.4 Metabolomics, a future opportunity 

A future analysis approach benefiting brewers could be metabolomics, where many 

metabolic reactions are studied simultaneously. In metabolomics, the focus can be on a 

detailed study of metabolism (specific metabolic events) during e.g. fermentation, or on 

a broad unbiased approach (nontargeted) where many simultaneous metabolic events 

are “recorded”. This is done by determining the amounts and types of produced metab-

olites and thereby elucidating the chemistry in metabolic processes. A metabolome is, 

consequently, a complete set (can be from several hundred up to several thousand) of 

small molecule chemicals present even in an entire organism, a tissue, an organ, a cell, 

or cellular organelle. We are, thus, able to produce accurate and unique metabolic “fin-

gerprints” from which one can see if e.g. unwanted reactions, such as bacterial contam-

inations, take place or to monitor yeast cultures for their potential.  These investigations 

demand highly sophisticated analytical instruments, like GC-MS-MS (two mass spec-

trometers in an array to get a precise structure of the analytes) and NMR (Nuclear Mag-

netic Resonance Spectroscopy), and additionally, well-educated personnel to master 

both the analyses and the interpretations of the results. Much of the focus in today’s 

system biology is laid on the correlation of genetic expression (mRNA gene expression), 

proteomics, and metabolomics, so that detailed cellular functions can be elucidated. [25] 
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4 ASSESSMENT OF SUITABLE LABORATORY 

EQUIPMENT FOR A SMALL BREWERY 

4.1 Assessment of the necessity of laboratory analyses.  

The need for chemical analyses, for a small brewery, might not be obvious especially 

since the only chemical analysis required by authorities is the ethanol content of the 

finished beer. However, if the brewery wants to compete for customer using e.g. quality 

and products having balanced flavors, the need for analysis soon becomes apparent. 

Large breweries producing beer in millions of liters use predominantly semi-manufac-

tured raw materials that are delivered with analysis results. Small breweries should be 

able to follow the quality of their raw-materials and the contents of α- and β-acids, car-

bonyl compounds, proteins, etc. in their final products to be able to compete and expand. 

At some stage quality control issues, e.g. identification of the reasons for off-flavors, will 

be important. The ability to maintain a steady production, demands from authorities, and 

the ability to resolve product development- and quality issues, are key questions in the 

expansion of the activities.  

The acquisition of laboratory equipment should be planned carefully because especially 

the more accurate analysis instruments are expensive, especially when purchased as 

new. The decision to implement a new analysis method does not only mean a monetary 

investment but it also leads to investments in the form of e.g. training and possibly new 

recruitments. 

The EBC has listed more than 240 analytical laboratory methods (Analytica-EBC, 

http://www.analytica-ebc.com/), covering raw material analyses, process parameters, 

and packaged products, to co-ordinate and standardize used analyses in Europe. The 

analysis method descriptions were written and harmonized with the ISO 78/2-, and ISO 

5725 standards.  

One option for the brewer is to compose a list of analysis methods that can analyze the 

most important compounds in beer and raw materials. This data can then be used to 

organize and prioritize the most useful compounds to be analyzed and analysis methods 

to be implemented. Below is a list focusing on analysis methods that require (for a small 

brewery) a relatively large investment, omitting the most simple and inexpensive meth-

ods (Table 2). 
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Table 2. Suitable analysis methods for significant beer flavor compounds.  

Analysis method and detection Analytes Type of compound 

Spectrophotometric methods 
Bitterness, color, FAN, total 
polyphenols, diacetyl 

Compounds from hops 
and malt 

 
HPLC 

  

UV-Vis (Ultra Violet and Visible light) alpha acids Compounds from hops 
Ion chromatography ions Water analyses 
RID (Refractive Index) Carbohydrates Compounds from malt 
RF  amino acids Compounds from malt 
Electroconductive detection Organic acids Compounds from hops 
MS-MS (Mass spectrometry) Amino acids Compounds from malt 

 
GC 

  

Sampling using headspace Diacetyl and VDK Volatiles 

FID (Flame Ionization Detection) Alcohols, Esters, Aldehydes 
Volatiles and semi-vola-
tiles 

MS  Amino acid derivatives Compounds from malt 

Sulphur detectors (FPD, PFPD, SCD)
H2S, Mercaptans, SO2, 
(CH3)2S (DMS) 

Off-flavors 

 

When the analyses are arranged in order of priority, the assessment of the required in-

vestment is relatively simple.  

Table 3. Analysis methods arranged according to priority. 

Compound type Analytes 
Analysis method, sampling 

and detection 

Vital for product devel-
opment and quality  

Amino- and alpha acids, proteins, 
VDK, diacetyl and water components

GC, and HPLC systems us-
ing headspace- or SPME 

sampling, with UV-Vis-, MS-
MS-, MS-, RI- electro conduc-
tive-, ion-and FID detectors, 
(and spectrophotometry)  

   

Important for flavor 
components originating 

from malt or hops  

Carbohydrates, amino acids and their 
derivatives, bitterness- and color af-
fecting agents, organic acids, amino 
acids, total polyphenols, sulphur con-

taining compounds  

GC, and HPLC systems us-
ing headspace- or SPME 
sampling, with UV-Vis, RI, 

MS, MS-MS, electro conduc-
tive, and FID detectors, (and 

spectrophotometry)  
   

Harmful  H2S, Mercaptans, SO2, DMS GC with sulphur detectors 
 

According to the brief survey above, the most useful analysis systems for brewers would 

be based on chromatographic methods and preferentially MS detection. The apparent 

advantages with these methods are their accuracy, speed, and versatility. However, 
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most small breweries could find it economically difficult to purchase sophisticated instru-

ments. Therefore, a financial plan should be made where investment costs are subjected 

to a sensitivity analysis towards e.g. labor costs, flexible- and fixed costs, or utilization 

rate. 

4.2 Experimental setup for the investment calculations 

In the present experimental setup, a small brewery is planning to start a laboratory for 

quality control and product development purposes. The business idea includes selling 

analyses to third parties, to shorten the loan payback time. The needed funds will be 

borrowed and the estimated utility time is 6 years. The critical issue is the size of the 

investment with respect to incomes and the time it takes to repay the loan. The payback 

time was estimated to be 6 years, at a maximum. According to the present survey out-

lined in chapters 3 and 4, the most useful analysis instruments seem to be a spectropho-

tometer, a HPLC, and a GC using mass spectrometric detection (or FID). These instru-

ments (HPLC and GC) are, however, very expensive especially if purchased as new. 

The budgets presented below might therefore be too low, and the instruments may have 

to be acquired as secondhand. 

Granted funds for investments (€): 

A. Investments with a small budget.  Loan sum: 20.000 €  

Includes basic laboratory equipment and a spectrophotometer. The incomes and costs 

are given on a yearly basis and calculated from approximations made for only spectro-

photometric analyses. 

Additional flexible costs, specific for case A: 500 € / month. 

B. Investments with an average budget. Loan sum: 40.000 € 

Includes basic laboratory equipment together with a spectrophotometer and an HPLC. 

The incomes and costs are given on a yearly basis and calculated from approximations 

made for HPLC- and spectrophotometric analyses. 

Additional flexible costs, specific for case B: 800 € / month. 

C. Investments with a large budget. Loan sum: 70.000 € 

Includes basic laboratory equipment together with a spectrophotometer and a GC-MS. 

All incomes and costs are given on a yearly basis and calculated from approximations 

made for GC-MS- and spectrophotometric analyses.  

Additional flexible costs, specific for case C: 1400 € / month. 
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The funds needed to start a simple laboratory do not have to be large (~20 000 €) but 

then the amount and quality of acquired information is relatively restricted and shallow. 

Spectrophotometric analysis can show the color and the compound level (e.g. µg/ml) of 

compounds but not details e.g. individual- amino acids, carbohydrates or carbonyl com-

pounds. On the other hand, a large investment (~70 000 €) would give the laboratory an 

instrument that would enable the analysis of most compounds, at a high accuracy. A 

third option would be a sum in between that would give a reasonably good analysis 

equipment, but not as accurate and efficient as “option C”.  To aid in the choice between 

these options, income- and cost evaluations were made and this data was then used to 

perform investment calculations. The investment options “B”, and “C”, included also op-

tion “A” (a spectrophotometer is the only instrument by which color can be measured), 

affecting the usage of the main instruments in resp. scenario. The approximated analysis 

time for the main instruments in scenarios “B” and “C” (a HPLC or a GC-MS, resp.), was 

70% and the remaining 30% analysis time was allocated to the use of the spectropho-

tometer.  

4.2.1 Items of expenditures 

Certain investments must be made, for all chosen cases (outlined below) on basic labor-

atory equipment. These investments include consumables (e.g. glassware, pipette tips, 

parafilm, syringes, protecting gloves, test tubes, etc.), pipettes, magnetic stirrers, fume 

boards, laboratory centrifuges, basic chemicals, refrigerators, etc. The items of expend-

itures, and incomes, for cases A, B, and C, are outlined below. 

Fixed costs:  ~48 500 € / year 

Flexible costs:  ~8 700 € / year 

Total fixed- and flexible costs: ~57 200 € / year 

The major part (85%) of the costs are fixed costs, such as salaries, book keeping, mar-

keting, rent (+ water and electricity), insurance fees, etc. The flexible costs (e.g. consum-

ables, development, and subcontracting) constitute only ~15% of the expenses and will 

therefore not have a decisive impact on the profitability of the laboratory.  

The calculations of costs and prices were first approximated by attempts to follow the 

principles of ABC (Activity Based Costing). At this initial stage the cost structure was, 

however, simple and the accurate demand of resources (e.g. time for the various anal-

yses) was not correctly known. This approach would therefore have complicated unnec-

essarily the calculations and therefore process costing was used instead to price the 
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analyses. The total yearly costs were, thus, divided with the total hours of laboratory work 

(sample preparation, analysis time, interpretation of results, and cleaning).  

The working hours in one month were calculated to be 160 h (8 h * 5 days * 4 weeks) of 

which ~35% must be assigned to office work (activity planning + bureaucracy), leaving 

the rest (~65%) for laboratory work (sample preparation, analysis time, interpretation of 

results, and cleaning). The cost differences for the different analyses cases (A, B, and 

C) were adjusted using a specific additional flexible cost (overhead). The analysis costs, 

per hour, were derived by dividing the total costs (in one year) with the total working 

hours (in one year) so that case specific costs were considered.  

The costs for using and maintaining a laboratory was, according to calculations: 

A: ~56 -, B: ~58 -, and C: ~63 € / h 

4.2.2 Incomes 

The average analysis prices obtained from the web pages of five commercial laboratories 

were, seen from a small brewery point of view, high. The prices were usually given ac-

cording to used analysis time which included normal preparation of the samples (not 

more elaborate preparations or sampling). The common trend was, as expected, that the 

price increased with increasing accuracy of the used analysis method.  

The average analysis prices for competitors, per hour, were: 

- Spectrophotometric analysis: 60 €/h 

- HPLC analysis: 200 €/h 

- Gas chromatographic analyses: 200 - 250 €/h 

Prices (incl. a 20% profit margin), per hour, provided by the new laboratory, were: 

- Spectrophotometric analysis: 104 €/h 

- HPLC analysis: 108 €/h 

- GC analysis: 115 €/h 

4.2.3 Investment calculation variables, parameters of interest 

In the present investment calculations three (3) set-ups are considered, according to the 

amount of funds granted for the laboratory investments. The granted funds were denoted 

as “small”, “average”, and “large”, based purely on appraised costs for the main analysis 
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instruments (a spectrophotometer, a HPLC, and a GC-MS, cases A, B, and C, resp. See 

below for details). Additional flexible costs were added to the costs so that they were 

presumed to be somewhat higher for the cases having more expensive instruments.  

The calculations comprise scenarios where the income varied ±10% so that the “Realist” 

was 100%, the “Optimist” was 110%, and the “Pessimist” was 90% of the estimated 

income from analysis fees (the resp. number of performed analyses multiplied with 1,1 

and 0,9 for the optimist and the pessimist scenarios, respectively). The input data on 

incomes did not differentiate between the analyses made on own samples and those 

made for customers.  

Initial tests revealed that the labor costs were, by far, the highest expenditure (64% 

when the salary was 3000 € / month) for the laboratory. This parameter was therefore 

studied. Another parameter was the rate of utilization. A substantial part of the labora-

tory work must be assigned to maintenance, planning (with administration), and devel-

opment, including quality control and research. In these scenarios the rate of laboratory 

utilization is especially important since there will be only one person working in the la-

boratory and the above mentioned issues are vital for the survival of the laboratory. The 

optimum share of time spent at laboratory work was estimated to be 65% of the total 

working time. The estimated amount of analyses was approximated to be 65% of the 

maximum (because the number of customers will, in the beginning, be low).  

The calculated interest is used to discount incomes and expenses to their present value, 

i.e. an internal rate of return (%) is assigned that gives a (net-) present value of zero for 

the investment. The internal rate of return (internal rate of investment) thus shows the 

profitability of the investment and is thereby an important parameter to follow.  

The analysis of the different scenarios (Cases A-C) were made using a MS Excel work-

book (Perusinvestointilaskentapohja.xls, version 2.02∗) which discounts the invested 

funds and calculates the repayment time according to current incomes and costs. 

 

 

 

                                                 
∗  Varis, K., Lecture material from the course: “Financial administration in management”, Spring  

2017. 
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5 RESULTS AND DISCUSSION  

The calculated interest was approximated to be 20% which was also set to be the aimed 

yield of the investments. The parameters were adjusted to give a realistic representation 

of the income- and cost structures. In preliminary calculations (results not shown), it was 

found that an internal rate of return was good when this value was ≥20%. 

The calculated price for the most simple scenario (Case A), where a spectrophotometer 

was purchased, the analyses prices were markedly higher for the planned laboratory 

than for existing laboratories (104:- and ~60 €/h, resp.). The reason for the expensive 

analyses was that the prices were calculated according to costs per unit time. This will 

be a problem because the price difference was so large. However, the calculated prices 

for the more advanced analyses (Cases B and C) would be ~50% cheaper, when made 

by the planned laboratory, making the prices very competitive. 

5.1 Initial calculations 

The opening calculations, for the simplest laboratory set-up (Case A), showed that the 

profit would be small and that the number of sold analyses must be large if the business 

was to be profitable. 

Key variable figures, in the present survey, were: 

- Salaries  

- Sold analysis hours (capacity) 

- Internal rate of interest 

- Incomes and expenses 
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5.2 Case A: Investment budget of 20 000 € 

An investment of ~20 000 € will give the 

brewery the ability to perform simple anal-

yses that, although comprising several dif-

ferent types of analyses, are time consum-

ing and give a relatively small profit. An-

other severe problem, in this case, is that 

the price of the analyses is much higher 

compared to those of the competitors. The 

amount of sold analyses will, therefore, be 

low (exemplified by the low level of used ca-

pacity). 

Annual economic figures: 
Incomes 65,47 k€* 
Optimist 72,02  k€* 
Pessimist 58,92  k€* 
Costs 63,20 k€*  
Internal rate of return -7,0% 
Repayment period: Not feasible 
Used laboratory capacity: 55%  
(*1k€ = 1000€) 

Calculations showing the net cash flow (cal-

culated using the “realist” values) and the 

tri-valued re-payment rate showed that the 

investment will not pay for itself unless the 

optimist conditions lasts for at least 2 - 3 

years (Figures 9 a and b). This scenario of 

a laboratory setup was also unusable be-

cause only 55% of the laboratory time ca-

pacity was utilized and the internal rate of 

return was negative. Thus, these results 

showed, that spectrophotometric analyses 

alone are too laborious and expensive 

bringing in too little incomes to constitute 

the sole selection of analyses. The salaries 

constituted ~63% of all costs (data not 

shown) so a test was made where the sala-

ries were lowered by 20%. 

Figure 9. Case A. Initial calculations on a 20
k€ investment. 

a)

b)

The figure shows the net cash flow, k€/year (a) and 
tri-valued re-payment time calculations (b).

Figure 10. Case A, scenario with lower salary.

b)

a)

The figure shows the net cash flow, k€/year (a) and tri-
valued re-payment time calculations (b). 
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Figures 10 a and b show the drastic effect of a 20% monthly reduction (from 3000 € to 

2400 €) of the salary.

Annual economic figures: 
Incomes 65,47 k€* 
Optimist 84,48 k€* 
Pessimist 69,12 k€* 
Costs 56,00 k€* 
Internal rate of return 88% 
Repayment period: ~2,5 years 
Used laboratory capacity: 55% 
(*1k€ = 1000€) 

The realism of the calculations improved significantly for all figures, although the aimed 

utilization rate of 65% laboratory work (enough customers) time was not met. Further-

more, the salary was far too low after the reduction, making it very difficult to find anyone 

who would do this demanding work for that salary. 

An investment of 20 000 € was, thus, clearly too small to be sustainable. 

5.3 Case B: Investment budget of 40 000 € 

A doubling of the investment budget would al-

low the acquisition of a HPLC analysis sys-

tem. The opportunities for flavor component 

identification and quantification would thereby 

be significantly improved. The increase in the 

amount of more detailed analyses thus justi-

fies the increase, by 10%, in used capacity.  

Annual economic figures: 
Incomes 80,18 k€* 
Optimist 88,20 k€* 
Pessimist 72,17 k€* 
Costs 66,80  k€*  
Internal rate of return 45% 
Repayment period: ~3,5 years 
Used laboratory capacity: 65% 
(*1k€ = 1000€) 

The pronounced effect of sold analyses was 

seen also in this scenario (Figures 11 a and 

b). The realistic investment pay-back time is ~3,5 years and, under optimistic conditions 

(increase in laboratory analyses by 10%), only ~2 years. The pessimistic conditions (de-

crease in laboratory analyses by 10%) will not allow payback of the investment, making 

this scenario somewhat risky. The effect of a salary reduction (-10%), was tested and 

Figure 11. Case B, a 40 k€ investment.

a)

b)

The figure shows the net cash flow, k€/year (a) and
tri-valued re-payment time calculations (b). 
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this scenario resulted in a reduction of the pay-back time with about one year and an 

increase in the internal rate of return by almost 30% (results shown in the appendix). 

These results indicated that although a clear improvement in the profitability (compared 

to the case in 5.2) was seen, the opportunities to develop the laboratory further for ex-

ample by employing a laboratory assistant, would be difficult. An investment of this size 

would perhaps be suitable for a brewery that does not have ambitions to sell analyses to 

third parties. 

5.4 Case C: Investment budget of 70 000 € 

An investment of 70 000 € (70 k€), on a labor-

atory is a considerable economical risk for a 

small brewery. In this scenario, all the hours 

allocated for flavor component analysis, must 

be used to give realism to the calculations (re-

sults not shown). The profitability was signifi-

cantly improved when full laboratory capacity 

was used (Figures 12 a and b), showing that 

there is much potential in this scenario pro-

vided that the laboratory has enough custom-

ers.  

Annual economic figures: 
Incomes 123,16 k€ 
Optimist 135,70 k€ 
Pessimist 111,02 k€ 
Costs 66,80  k€ 
Internal rate of return 380% 
Repayment period: ~1,2 years 
Used laboratory capacity: 100 % 
 

The loan repayment time was relatively short, only ~1,2 years, and even in the pessimist 

scenario the repayment time was about 1,5 years. However, the internal rate of return is 

extremely high (~380%) which is misleading. Nevertheless, the combination of an in-

crease in incomes from analysis time and a more efficient usage of laboratory time has 

a substantial impact on the profitability. Because of the importance of steady and rela-

tively high incomes, a test was made where the sold laboratory hours were only 80% of 

the maximum capacity. This test should also clarify the level of vulnerability on the activ-

ities, if incomes are low. The laboratory activities must have a chance to expand and 

Figure 12. Case C, a 70 k€ investment.

a)

b)

The figure shows the net cash flow, k€/year (a) 
and tri-valued re-payment time calculations (b). 
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develop and thereby to remain competitive. Figures 13 a and b show the influence of a 

substantial (20%) reduction in the incomes. The repayment period (~4,5 years) was now 

much longer, but still within acceptable limits. 

The internal rate of return was now still high 

but at the same time realistic. Re-payment cal-

culations showed that a 10% increase in the 

incomes enhance clearly profitability, and a 

further lowering of incomes would make the 

activities unprofitable (the optimist- and pessi-

mist scenarios, resp., Fig. 13 b). 

Annual economic figures: 
Incomes 98,69 k€ 
Optimist 108,56 k€ 
Pessimist 88,82 k€ 
Costs 66,80  k€ 
Internal rate of return 35% 
Repayment period: ~4,5 years 
Used laboratory capacity: 80% 

The net-cash flow calculations (Figs. 12 a and 

13 a) showed, thus, that the laboratory would 

have a much more solid economy with this 

higher investment than in the other scenarios (Figs. 9 a, 10 a, and 11a). One drawback 

in the scenarios, so far, has been that the calculations have not shown any possibilities 

for expanding the activities (e.g. by employing laboratory personnel). The net -cash flow 

prediction was, after the first year, ~8 - 13 k€ in the scenarios where the investment was 

20 – 40 k€ and > 50 k€, when the investment was 70 k€ (Fig. 12 a). The calculations 

showed a net -cash flow ~25 k€ (after the first year) even after the laboratory capacity 

usage was lowered to 80% of the optimal (Fig. 13 a). These figures gave a reason to 

test possibilities for the employment of a laboratory assistant. The incomes, however, 

were not high enough to enable further hiring, if the employment was done already at 

the first year of operation (results not shown). Figures 14 a, and b, show the economical 

prediction in the case that an employment was made after the two first years of operation 

and the laboratory usage is at its full potential (100%). The prediction was optimistic in 

Figure 13. A 70 k€ investment and 80% la-
boratory usage efficiency. 

a)

b)

The figure shows the net cash flow, k€/year (a) 
and tri-valued re-payment time calculations (b). 
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that, after the greater part of the investment was re-payed, the present value of the 

investment increased at a steady rate of 

~8 k€ / year.  

Annual economic figures: 
Incomes 123,4 k€ 
Optimist 135,7 k€ 
Pessimist 111,0 k€ 
Costs 106,8  k€ 
Internal rate of return 70% 
Repayment period: ~2,0 years 
Used laboratory capacity: 100% 

The calculation, thus showed that the 

present scenario allowed more options 

for development and expansion. It 

seemed obvious that a laboratory needs, 

for expansion, more performed analyses 

and a broader range of analyses, as 

seen from previous calculations (Cases 

A and B). 

In the last scenario (holding time: 10 years), the initial investment was a GC equipped 

with a mass spectrophotometric detector (70 k€).  

- After 2 years from start, the laboratory will employ a laboratory assistant (salary: 

2200 €/month + 880 €/month social security costs) increasing the overall share 

(potential) of laboratory work with ~30 hours per week (from 26 to 35 h / week, 

an increase by >300%) of which ~80% is expected to be used. The effect of this 

measure would be that the incomes are expected to increase by ~53% and the 

price per analysis hour will increase (by ~46%). 

- A HPLC will be acquired after 5 years (an investment of 30 k€ and will be utilized 

10% of the used laboratory time) increasing the amount and type of analyses (the 

utilized analysis time) to ~90% of the used laboratory capacity. The incomes were 

estimated to increase further by ~14%. 

The results were encouraging in that the repayment time was short for all situations (the 

realist, optimist, and pessimist), allowing a repayment and recovery from increased ex-

penses, within a period of ~2 – 3,5 years (Figs. 15 a and b).  

Figure 14. A 70 k€ investment and employ-
ment after the second year. 

a)

b)

The figure shows the net cash flow, k€/year (a) and 
tri-valued re-payment time calculations (b). 
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Annual economic figures: 
Incomes 202,3 k€ 
Optimist 222,5 k€ 
Pessimist 182,1 k€ 
Costs 114,0  k€ 
Internal rate of return 99,6% 
Repayment period: ~2 – 3,5 years 
Used laboratory capacity: 80% 

The price of the analysis time was not raised 

at any time, during the present experimental 

setup, giving the impression of a robust and 

profitable scenario. The internal rate of return 

was, however, very high (~100%) which 

gave a reason to examine the results criti-

cally. There could, nonetheless, be a risk that 

the incomes were calculated too optimisti-

cally and that the real quantity of incomes 

could be much less. This was tested by low-

ering the analysis prices with 10%, and 20%. 

These test conditions showed that the internal rate of return was lowered to 68%, and 

43% (income decrease of 10% and 20%, resp.) and the repayment period was prolonged 

to ~3,5 - 5 years (income decrease of 10% and 20%, resp.). The net cash flow was 

lowered with ~10 k€ annually for every 10% decrease and the activities remained profit-

able until the income decrease was 30% (results shown in the appendix).  

To test the reliability of the present experimental setup, a test was made where a pension 

insurance premium (20 % of the salary, i.e. 7,2 k€ / year) was added to the costs, reduc-

ing the demand for a high internal rate of return. The rates of interest were, at the time 

of writing, low. The calculated interest was thus estimated according to WACC (weighted 

average cost of capital), which at the moment, was estimated to be 1,8% (interest of 

liabilities ~0,8% + 1,0% marginal interest rate of the bank). However, the interest rates 

might increase during the loan period (6 years), which should be considered, and there-

fore an interest rate of 3,5% was chosen (results shown in the appendix). This test did 

not show any marked worsening of the economy compared to those seen in Figures 15 

a and b. 

Figure 15. A combination of investments. 

a)

b)

The figure shows the net cash flow, k€/year (a) and 
tri-valued re-payment time calculations (b). 
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In the final test, the laboratory efficiency rate was lowered until the activities became 

unprofitable (at ~62% of used laboratory capacity). The conditions were as above includ-

ing a pension insurance premium and a calculated interest according to WACC. The 

results can be seen from Figures 16 a and b. 

 

Annual economic figures: 
Incomes 156,8 k€ 
Optimist 172,5 k€ 
Pessimist 141,1 k€ 
Costs 121,2  k€ 
Internal rate of return 29,7% 
Repayment period: ~5,5 years 
Used laboratory capacity: 62% 

In this test the internal rate of return was still 

~30% even when the used laboratory capac-

ity was only 62%, confirming the earlier tests 

(Figs 13 and “Case C: 20% decrease in in-

comes from sold analyses” in the appendix) 

where incomes were lowered. The repay-

ment time and in this test, was ~5,5 years 

which was still within the acceptable time 

frame, showing the potential of this labora-

tory set-up (case C). 

 

 

 

 

 

 

 

Figure 16. A test of tolerance towards a low 
market demand for laboratory analyses. 

a)

b)

The figure shows the net cash flow, k€/year (a) and
tri-valued re-payment time calculations (b). 
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6 CONCLUSIONS 

Beer and the raw materials for brewing contain a vast number of components that affect 

the flavor of a brew. There are also many flavor components that should not be present 

in beer and which must be identified and traced so that corrective measures can be 

taken. The origin of off-flavors can be clarified provided that suitable analysis equipment 

is at hand. There are multiple motives for chemical analysis of beer. The motives can be 

based on quality control (on raw materials as well as on the intermediate or final brew), 

product development, or purely on business. Quality control analyses can be used to 

track faulty raw materials as well as the origin of problems in the brewing process. Mod-

ern analysis instruments provide many opportunities but they also demand a lot of edu-

cation and practice. Planning of analyses should therefore be thorough and further edu-

cation should be included in the laboratory development plan. Most flavor components 

in beer are different carbonyl species and amino acid derived compounds. Their identifi-

cation and quantification should be the goal of any laboratory that has invested in anal-

ysis equipment such as HPLC or gas chromatography. Other interesting molecules are 

sulphur containing compounds and polyphenols.  

Analysis instruments that is usually used to accomplish the analyses are HPLC or GC 

(with MS- or FID). These instruments are selective enough to separate and quantify the 

molecular species provided that suitable standards can be found. New flavor species 

can be identified if mass spectrometry is used as detection method. Beer can also be 

analyzed using simpler analysis methods, such as spectrophotometry. These methods 

show, however, only some components (often after laborious preparations) and are 

therefore more suitable for routine quality control analyses, e.g. for quantifying beer color 

and bitterness.  

Founding a laboratory is expensive and the planning process should therefore be thor-

ough and cover all areas from analyte identification to economic planning. Economic 

planning is essential when the investments are large and no previous experience has 

been gathered about incomes, demand for analyses, or quality requirements. Some of 

the analysis instruments are so expensive that second hand equipment should be con-

sidered although there are risks (e.g. guarantee issues) with used instruments.  Tests 

were therefore made, using economic models where the investment (costs and in-
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comes), covering a period of six years, was discounted to present value and the repay-

ment time of the loan(s) was calculated. The tests indicated strongly that the invested 

funds can well be rather large provided that the analysis results are informative, and that 

the largest expenses (salaries) are under control. A smaller investment (20 000 €) was 

enough to acquire simpler analysis equipment but it is unlikely that customers would pay 

enough for the analyses, so that the laboratory could develop within a reasonable period 

of time. The analysis prices (price of analysis time) and analysis time utilization rate were 

thus the most important parameters in these calculations. The present survey showed 

that analysis quality is vital for the feasibility of a laboratory, especially if the analysis time 

will be sold to third parties. A substantial increase in analysis capacity can be achieved 

by employing personnel to the laboratory. Vital issues, such as analysis- and economic 

planning can now be made more thoroughly while the analysis equipment is in productive 

use. The survey showed also that the largest economical risk is a situation where the 

laboratory does not get enough analysis orders (below ~60% of maximum laboratory 

analysis capacity) to cover the costs of the laboratory. This limit (~60% of the laboratory 

capacity), as the minimum usage of laboratory, should therefore be considered a guide-

line for market- and feasibility analysis. 
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7 APPENDIX 

Investment calculations: 

Case B: Effect of a 10% salary reduc-

tion. 

Annual economic figures: 
Incomes 80,18 k€ 
Optimist 88,20 k€ 
Pessimist 72,17 k€ 
Costs 63,20 k€  
Internal rate of return 70,8 % 
Repayment period: ~2,7 years 
% used laboratory capacity: 65% 
 

 

 

 

 

Case C: 10% decrease in incomes from 

sold analyses. 

Annual economic figures: 
Incomes 182,0 k€ 
Optimist 200,3 k€ 
Pessimist 163,9 k€ 
Costs 114,0 k€  
Internal rate of return 65,2% 
Repayment period: ~3 - 5 years 
% used laboratory capacity: 80% 
 

 

 

 

 

 

Case B, net cash flow (a) and tri-valued re-
payment time calculations (b). The effect of 
a 10% salary reduction. 

a)

b)

Case C, net cash flow (a) and tri-valued 
re-payment time calculations (b). The ef-
fect of a 10% analysis price reduction. 

a)

b)
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Case C: 20% decrease in incomes from sold analyses. 

Annual economic figures:  

Incomes 161,9 k€ 
Optimist 178,0 k€ 
Pessimist 145,7 k€ 
Costs 114,0 k€  
Internal rate of return 40,9% 
Repayment period: ~4 - 8 years 
% used laboratory capacity: 80% 
 

 

 

 

 

 

 

 
Case C:  An addition of a pension insur-

ance premium (20% of the salary) to the 

costs and a concurrent reduction (to 

3,5%) of the calculated interest.  

Annual economic figures: 
Incomes 202,3 k€ 
Optimist 222,5 k€ 
Pessimist 182,1 k€ 
Costs 121,2 k€  
Internal rate of return 81% 
Repayment period: ~3 years 
% used laboratory capacity: 80% 

 

 

 

 

Case C, net cash flow (a) and tri-valued 
re-payment time calculations (b). The ef-
fect of a pension insurance premium, of 
20% of the salary. 

a)

b)

Case C, net cash flow (a) and tri-valued 
re-payment time calculations (b). The ef-
fect of a 20% analysis price reduction. 

a)

b)
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