

Improving Crash Uniqueness

Detection in Fuzzy Testing

Case JyvSectec

Mikko Pudas

Master’s thesis

Month Year (March 2017)

Technology

Master’s Programme in Cyber Security

Description

Author(s)

Pudas, Mikko

Type of publication

Master’s thesis

Date

March 2017

Language of publication:
English

Number of pages

89

Permission for web publi-

cation: x

Title of publication

Improving Crash Uniqueness Detection in Fuzzy Testing

Case JyvSectec

Degree programme

Master’s Programme in Cyber Security

Supervisor(s)

Kotikoski, Sampo

 Assigned by

JyvSectec, Silokunnas, Marko

Abstract

The purpose of fuzzing was defined to send malformed data in order to crash the program

under test. Fuzzing has been defined as the most powerful test automation tool for dis-

covering the security critical problems of software. JyvSectec ran into issues during one of

the fuzzing sessions. When a program was fuzzed by AFL it indicated many unique crashes.

A crash analysis was performed with the use Bash scripts, GDB, SQLite3 and a manual

analysis pointed out that there were many almost identical crashes where the backtrace

and even parameters were the same or almost same.

The task and objectives were set to replace the Bash script based crash analysis system by

Python. One of the tasks before coding the Python program was to code a sample C pro-

gram to be fuzzed by AFL. The Python program was implemented to carry out some clean-

up of GDB outputs and Python program output results to a CSV database. After that, the

crash analysis process in JyvSectec would have continued by SQLite3; howver, that part of

the crash analysis was omitted.

Design research was used with intervention to measure the status before and after the use

of the Python program to replace the Bash script based analysis method. Questionnaires

were sent to all JyvSectec staff with structured and semi-structured questions.

The results of the intervention were mixed and indicated that satisfaction improved and

the amount of manual work needed with the provided Python program decreased. How-

ever, separating different crashes remained an issue, and differentiating same or similar

crashes and crash categorization were not improved by the intervention and the provided

Python program.

Keywords/tags (subjects)

fuzzing, AFL, JyvSectec, crash analysis, American Fuzzy Lop, GDB

Miscellaneous

Kuvailulehti

Tekijä(t)

Pudas, Mikko

Julkaisun laji

Opinnäytetyö, ylempi AMK

Päivämäärä

Maaliskuu 2017

Sivumäärä

89

Julkaisun kieli

Englanti

 Verkkojulkaisulupa

myönnetty: x

Työn nimi

Improving Crash Uniqueness Detection in Fuzzy Testing

Case JyvSectec

Tutkinto-ohjelma

Master’s Programme in Cyber Security

Työn ohjaaja(t)

Sampo Kotikoski

 Toimeksiantaja(t)

JyvSectec, Marko Silokunnas

Tiivistelmä

Fuzzaus määriteltiin testattavan ohjelman kaatamiseksi viallista dataa käyttäen. Fuzzausta

kuvailtiin tehokkaimpana testiautomaatiotyökaluna, jolla ohjelmiston turvallisuuskriittisiä

ongelmia voitiin löytää. JyvSectec törmäsi yhdessä AFL-fuzzaustestaustapauksessa ongel-

miin työkalun kaatumisten tunnistamisen suhteen. Fuzzattaessa AFL raportoi useita uniik-

keja kaatumisia, mutta kun kaatumisia analysoitiin Bash scripteillä, GDBllä, SQLite3llä sekä

manuaalisesti, oli uniikkeja kaatumisia vähän. Parametrit sekä niin sanottu GDBn backtrace

olivat joko samoja tai lähes samoja, eli kaatumiset eivät olleetkaan uniikkeja toisin kuin

AFL-työkalu tunnisti.

Tehtävänä sekä tavoitteena oli korvata Bash-skriptipohjainen kaatumisien analysointijärje-

telmä Pythonilla koodatulla ohjelmistolla. Ennen Python ohjelmiston koodaamista C-

kielinen sovellus koodattiin ongelman toistamiseksi ja sitä fuzzattin AFL-sovelluksella. Pyt-

hon-ohjelmisto koodattiin siivoamaan GDB-tulosteita duplikaattien tunnistamisen helpot-

tamiseksi. Python-ohjelmistossa luotiin CSV-tietokanta, jota SQLite3-ohjelmisto käytti kaa-

tumisien analysoinnissa. SQLite3-ohjelmistolla tehtävä kaatumisien analysointiosuus rajat-

tiin opinnäytetyön ulkopuolelle.

Kehittämistutkimuksena interventiolla mitattiin tyytyväisyyttä ennen ja Python-

ohjelmiston käytön jälkeen. Strukturoituja sekä puolistrukturoituja kysymyksiä sisältävät

sähköpostikyselylomakkeet lähetettiin jokaiselle JyvSectecissä.

Tulokset olivat vaihtelevia, sillä tulosten mukaan tyytyväisyys kasvoi ja manuaalisen työn

määrä väheni. Kuitenkin eri kaatumisien erottaminen oli yhä ongelma eikä samankaltaisten

kaatumisien tai kaatumisien luokittelu parantunut interventiossa.

Avainsanat (asiasanat)

fuzzaus, AFL, JyvSectec, crash analysis, American Fuzzy Lop, GDB

Muut tiedot

1

Contents

1 Introduction .. 5

1.1 Thesis Background ... 5

1.2 Research Problem And Research Methods ... 7

1.3 Thesis Structure ... 9

2 Software Testing and Information Security ... 9

2.1 What Is Software Testing? ... 9

2.1.1 Software Quality Attributes .. 11

2.1.2 Software Testing Models .. 16

2.1.3 Software Testing Methods ... 18

2.1.4 The Role of Software Testing to the Information Security 23

2.2 Fuzzy Testing ... 25

2.2.1 Fuzzer Categories and Fuzzing Process .. 27

2.2.2 Types of Fuzzers and Sources of Data Used for Fuzzing 28

2.2.3 Fuzzy Testing with American Fuzzy Lop Fuzzer 31

2.3 Current Issues with Fuzzy Testing in JyvSectec ... 37

3 Thesis Implementation ... 37

3.1 Evaluation of Implementation Options ... 38

3.2 Information Gathering for the Chosen Approach 39

3.3 Crash Uniqueness Detection Challenges of the Chosen Approach 39

4 Crash Uniqueness Detection Intervention Results of the Chosen Approach and

Conclusions ... 40

4.1 Crash Uniqueness Questionnaire Results before Intervention 40

4.2 Crash Uniqueness Questionnaire Results after Intervention.................... 45

4.3 Crash Uniqueness Intervention Impact ... 50

5 Discussion ... 55

2

References .. 58

Appendices ... 60

Figures

Figure 1. The user interface of AFL. ... 32

Figure 2. Instrumenting software code for AFL Fuzzer. ... 33

Figure 3. Fuzzing with instrumented code. .. 33

Figure 4. AFL Fuzzing with failing test case as an input. .. 36

Figure 5. GDB crash dump from one of the inputs by AFL. .. 37

Tables

Table 1. An example of the content of store directory with a lot of timeouts. 35

Table 2. How satisfied is the respondent with the current process before

intervention? .. 41

Table 3. How does the respondent see the amount of manual work before

intervention? .. 42

Table 4. How easy it is to separate crashes before intervention? 43

Table 5. How much automated results processing should be used before

intervention? .. 44

Table 6. The biggest issues in crash analysis before intervention. 45

Table 7. How satisfied is the respondent with the current process after intervention?

 .. 46

Table 8. How does the respondent see the amount of manual work after

intervention? .. 47

Table 9. How easy it is to separate crashes after intervention? 48

Table 10. How much automated results processing should be used after

intervention? .. 49

Table 11. The biggest issues in crash analysis after intervention. 50

3

Table 12. Satisfaction results before and after intervention. 51

Table 13. Amount of Manual work results before and after intervention. 52

Table 14. Results of how easy it is to separate different crashes before and after

intervention. ... 53

Table 15. Results of how much automated results processing should be done before

and after intervention. ... 54

Table 16. Results of theme categories about the biggest issues before and after

intervention. ... 54

4

Acronyms and Abbreviations

AFL American Fuzzy Lop

API Application Programming Interface

Backtrace A list of function calls indicating how program ended up where it is

BASH Unix shell and command language created by Brian Fox

CSV Comma separated values

GDB The GNU Project Debugger

AFL-GCC A tool that injects instrumentation for AFL when source code is avail-

able

5

1 Introduction

The purpose of this thesis was to evaluate and depict how crash dumps and unique-

ness detection can be improved to require as little manual work as possible in

JyvSectec. American Fuzzy Lop or AFL fuzzer is used as an example fuzzer and the

program to be fuzzed is a simple self coded C program. Python is used to code a sim-

ple replacement tool for the current Bash script based process.

1.1 Thesis Background

Computer software is created by humans and humans make mistakes (Lagus 2013,

30). Before the Internet became mainstream, not much attention was paid to vul-

nerabilities since getting most of the limited resources was paramount (Lagus 2013,

30). According to Lagus (2013, 31), another issue with software vulnerabilities is the

fact that security is often taken into consideration in the final development phases.

Additionally, information systems are not simple and they are often connected to

other complex information systems (Lagus 2013, 31).

According to Bhat (2015, 23), software testing is highly complex, yet, an imperative

element of any software development life cycle. Software testing should be started

as early as possible (Bhat 2015, 23); however, the costs of testing are high and

Godefroid et al. (2008, 30) point out that usually testing accounts for about half of

the R&D budget of many software development organizations.

Myers, Sandler & Badgett (2011, 5) state that in an ideal world every possible permu-

tation of a program would be tested. However, in most cases that would not be pos-

sible or would need hundreds or thousands of possible input and output combina-

tions and creating test cases for all the combinations would be impractical (Myers et

al. 2011, 5). Positive testing is used to verify that the software works as it has been

advertised whereas there is an effort to break the software in negative testing (Bhat

2015, 24).

Fuzzing has only one goal, to make the system crash (Takanen et al. 2008, 25). With

fuzzing a large numbers of boundary cases are tested by either developers or quality

assurance teams (Oehlert 2005, 58). The prime targets for fuzzing are input files, con-

6

figuration or registry entries, APIs, user interfaces, network interfaces, database en-

tries or command line arguments (Oehlert 2005, 59).

Shapiro (2011, 58) points out that the fuzzing triggers race conditions, buffer over-

flows, failures to check return code and format or printf string problems. On the oth-

er hand, Takanen et al. (2008, 27) mention that fuzzing findings are at several levels

where the field level finds overflows and integer anomalies. At the structural level,

fuzzing finds underflows, repetition of elements and unexpected elements (Takanen

et al. 2008, 27). At the sequence level, fuzzing finds out of sequence or omitted un-

expected repetition or spamming of messages (Takanen et al. 2008, 27).

Fuzzing can also be a part of vulnerability analysis where fuzzing is used as a black

box technique without the need of source code (Takanen et al. 2008, 102). Also

whitebox fuzzing can be performed (Godefroid et al. 2012, 44). The trade-offs be-

tween whitebox and blackbox fuzzing are different, because blackbox fuzzing is sim-

ple, easy, lightweight and fast; however, may offer only limited code coverage

(Godefroid et al. 2012, 44). Whitebox fuzzing is more complex but smarter

(Godefroid et al. 2012, 44). For finding bugs, Godefroid et al. (2012, 44) point out

that efficiency of either whitebox or black box fuzzing varies. A simple blackbox fuzz-

ing is a good start if an application has never been fuzzed and after those bugs have

been found it is time to use whitebox fuzzing (Godefroid et al. 2012, 44). The effec-

tiveness of fuzzing bases on measuring how well fuzzing covers the input space of the

tested interfaces and how good the used inputs are (Takanen et al. 2008, 27–28).

Fuzzers that only generate random data based inputs are ineffective and find only

naive programming errors (Takanen et al. 2008, 28). Godefroid et al. (2008, 32) point

out that the ability of fuzzers to find bugs on low probability paths is limited. Above

all fuzzing is about test automation to its fullest extent (Takanen et al. 2008, 136).

JyvSectec or Jyväskylä Security Technology at JAMK University of Applied Sciences

was launched on September 2011 (JyvSectec). The purpose was to create one of the

leading cyber security research, development and education centers in Finland and

develop both national and international networking between various actors

(JyvSectec). JyvSectec provides services related to software testing in order to detect

functional weaknesses and deficiencies in their information security (JyvSectec). The

7

aim of the provided software testing is to avoid realization of damaging risks to the

information systems (JyvSectec).

1.2 Research Problem And Research Methods

The objective of this master’s thesis is to study how different crashes in fuzzy testing

can be uniquely detected even if there are a several crash files. The current method

requires a great deal of manual work, and many duplicate crash reasons are identi-

fied after the manual work. The objective is approached by studying what software

testing and fuzzy testing are. The main questions to be answered are: Can crash

uniqueness detection be improved compared to current Bash script based crash

dump process that uses GDB within the JyvSectec case and can the current process

that requires manual work be improved by the use of implemented Python program.

Thus, by using automation the purpose of this design research is to demise the

amount of manual work that JyvSectec has to use for analyzing the fuzzing results. As

the author has been building a career as a software testing engineer, the purpose of

this design research is to get familiar with the concept of fuzzing and thus increase

the competence in that area of software testing.

The theoretical basis is based on design research where different options are evalu-

ated in order to research how crashes can be uniquely detected in fuzzy testing and if

crash uniqueness detection can be improved. The purpose of the design research is

also to provide a simple Python program that can be used to automate the manually

performed steps. Design research aims to make a change and Kananen (2015, 9)

states that design research starts where the qualitative or quantitative research

stops. On the other hand, Kananen (2015, 33) stresses that design research is not a

research method on its own but instead design research consists of a group of re-

search methods applied based on research case and methods. Thus, design research

can be characterized as a blended methodology where qualitative and quantitative

methodologies are blended (Kananen 2015, 33–34).

Because design research is quite often specific for certain organizations or compa-

nies, the issues are not unambiguous (Kananen 2015, 9). The research issue can be

approached from various aspects, such as economic, legal or personnel points of

8

view, which leads to the diversity of aspects (Kananen 2015, 13). Different branches

of science have different aspects, which again leads to different viewpoints of the

research issue (Kananen 2015, 13).

Design research attempts to fix the problem that qualitative or quantitative research

depicted (Kananen 2015, 9). Design research is characterized to be more than tradi-

tional quantitative or qualitative research that analyze the research issue, find out

the causes and propose solutions (Kananen 2015, 40). Writing a report on what the

research problem was, what the goals were, what was done and what the results

were does not fulfill the definition of design research (Kananen 2015, 52). Instead,

design research can be depicted as a phased process that consists of research and

change phases that repeat each other (Kananen 2015, 42). The phases of research

phase consist of understanding the current status, spotting the issues, defining the

issues, searching for alternative solutions and evaluating solutions as well as choos-

ing the correct solution (Kananen 2015, 42). The phases of change phase consist of

implementation, evaluation and follow up phases (Kananen 2015, 42).

Providing a solution to the issue with design research will not ensure that the issue is

no longer present (Kananen 2015, 13). The purpose of design research is to remove

the issue instead of stating the reasons and ways how to tackle the issue (Kananen

2015, 13). Because design research is not a design methodology on its own, the

evaluation of reliability and validity is challenging (Kananen 2015, 111). Thus, the

evaluation of reliability and validity must be done based on the used methodology

(Kananen 2015, 111).

Intervention data was gathered by semi-structured questionnaires before and after

the intervention. The questionnaires were sent by email with approximately a two

week responding time. The choice of using questionnaires was affected mostly by

multiform teaching methods. The questions in the questionnaires were both open-

ended, fixed and used Likert’s attitude scale. Scales are used as scientific measuring

instruments where questionnaires might simply gather information (Coolican 2009,

204). Research validity and reliability are evaluated in the discussion chapter.

Because design research is mostly performed for organizations and companies and

the same phenomena can be approach from multiple aspects, the issues are not un-

9

ambiguous (Kananen 2015, 13). Similar design research about fuzzing and improving

crash uniqueness detection was not found as a part of information research done in

ZZRZV120 Asiantuntijan tiedonhankinta course. However, research about fuzzing has

been conducted, and the essential references are Copeland (2003), Mili et al. (2015)

and Takanen et al. (2008).

The Python program is meant to provide a solution to replace the current Bash script

based process. GDB or GNU Project debugger is used by JyvSectec in debugging the

crashes. The follow up consists of questionnaires that are done before a solution is

tried and right after solution is tried.

1.3 Thesis Structure

The structure of design research follows the same structure as any other scientific

paper (Kananen 2015, 15). Chapter two presents the theoretical background of soft-

ware testing and the role of software testing with the information security. Chapter

three presents current issues and evaluates different solution options, with an inter-

vention implementation with Python. Chapter four includes intervention results and

conclusions and chapter five an evaluation. Finally, the references and appendixes

are mentioned.

2 Software Testing and Information Security

This chapter defines what is software testing, how it is performed, how software

testing can attribute to the information security and what is fuzzy testing.

2.1 What Is Software Testing?

Copeland (2003, 2) points out that software testing has been defined in various ways

and different people and organizations have various aspects concerning the purpose

of software testing. Software testing as a part of software engineering is quite a

young engineering discipline (Märijärvi et al. 1998, 11–12). The term software crisis

was used by NASA in the 1960s to point out the unique properties of software engi-

neering (Märijärvi et al. 1998, 12, 16). Mili et al. (2015, xiv) continue by pointing out

10

that the only engineering discipline, where product testing is a major technical and

organizational concern, is software engineering. That is because of the size and com-

plexity of software products, which also makes the design of software products more

error prone (Mili et al. 2015, xiv). Another factor is the lack of standardized develop-

ment processes for software products (Mili et al. 2015, xiv), which leads to using

product controls instead of process controls in product quality control (Mili et al.

2015, xiv). Mili et al. (2015, xiv) mention the lack of practical and scalable static

product analysis methods as a third factor, which leads to the use of dynamic meth-

ods. Other factors that affect software testing are changes during the software de-

velopment or maintenance processes (Mili et al. 2015, xiv). Copeland (2003, 4) sum-

marizes the many challenges that testing faces by listing those challenges. Those

challenges are the lack of time to test properly or test well, too many input combina-

tions to test, difficulties to determine the expected results of the tests or the lack of

test oracles, rapidly changing or non existing requirements, no training in the pro-

cesses related to testing, lack of tool support and management does not understand

testing or does not care about quality (Copeland 2003, 4).

Pressman (2000, 426) emphasizes the importance of software testing by stating that

it is a critical factor in software quality assurance activities. Haikala & Märijärvi (1998,

258) take another look at the software testing and define software testing as a

planned approach to finding errors while the program under test or a part of it is run.

Myers et al. (2011, 6) define testing as a “process of executing a program with the

intent of finding errors.” Kasurinen (2013, 10) states that software testing covers all

the work performed in order to ensure that the software product will fulfill all the set

requirements and that the completed work properties in the software product work

as planned. Marcel et al. (2014, 632) point out that gaining confidence about a pro-

gram’s correctness by sampling its input space is the aim of automated program test-

ing.

The terms verification and validation are often used to define software testing

(Kasurinen 2013, 10). In verification, there are checks that ensure that the work-

product will meet the requirements set out for it, and in validation, the focus is on

evaluating the work product against user needs (Samaroo 2010, 38). Both verification

and validation composes of several software quality assurance activities in addition

11

to performing software testing, such as reviews, quality and configuration audits,

documentation reviews and installation testing (Pressman 2000, 467).

Pressman (2000, 466) states that a number of different testing strategies exist in the

literature. Pressman (2000, 466) points out that all of those provide a template for

testing and share some generic characteristics. Starting from the component level

and working outwards towards integrating the whole computer-based system,

Pressmann (2000, 466) stresses that different testing techniques are applicable at

different points in time, testing is conducted by the developer of the software with

an independent test group, and testing and debugging are different activities; how-

ever, debugging has to be accommodated in any testing strategy (Pressman 2000,

466). A testing strategy has to provide guidance for the practitioner and, for a man-

ager, a set of milestones (Pressman 2000, 466). Also because of the deadline pres-

sure, the progress has to be measurable and problems should surface as early as

possible (Pressman 2000, 466). One of the testing models is the classic waterfall

model where testing is just one of the phases in the software development process

(Kasurinen 2014, 12). Testing checks that the developed software product has been

implemented as designed and it fulfills the needs of the customer (Kasurinen 2014,

13). Testing will end when there are no major defects or the expected functionality is

verified to work (Kasurinen 2014, 13). After testing is finished the software product is

taken into use by the customer (Kasurinen 2014, 13). Some of the deficiencies of the

waterfall model are the difficulty of gathering all the requirements and the role of

testing as a quality control checkpoint after most of the software development has

been completed (Kasurinen 2014, 14).

Mili et (2015, xiv) summarize software testing as an integral part of software quality

assurance processes alongside other quality assurance techniques. Software testing

complements static analysis techniques and software testing follows a formal goal-

oriented stepwise process (Mili et al. 2015, xiv–xv).

2.1.1 Software Quality Attributes

Mili et al. (2015, 14) define several software quality categories that are closely linked

to software testing. Also, inspections and reviews are critical to the development of

high quality software (Takanen et al. 2008, 80). Haikala et al. (1998, 6) provide their

12

listing of software quality attributes. The size of the software and the amount of data

processing can be illustrated by the lines of code or megabytes or the amount of

functions or the sizes of the databases the software uses (Haikala et al. 1998, 6). Re-

sponse time and real time requirements describe the software’s ability to react

(Haikala et al. 1998, 6). Response time measures the software’s speed to react to

inputs and real time requirements define the limits that the software must adhere to

and, for instance, in some real time software requirements state that the response

must not be too early or too late (Haikala et al. 1996, 6–7).

Reliability and decentralization are listed next, and Haikala et al. (1998, 7) stress the

importance of reliability. Reliability is defined as protection from both software fail-

ures and external interference (Haikala et al. 1998, 7). Both defensive programming

and redundant systems can be utilized (Haikala et al. 1998, 7). Haikala et al. (1998, 7)

mention that more and more decentralization is also used.

Productization or tailorization level is the last quality attribute that Haikala et al.

(1998, 7) mention. Tailored software is tailored for a certain specific purpose and the

role of the customer is significant (Haikala et al. 1998, 7). Commercial off the shelf

software product development develops software for the use of multiple customers

(Haikala et al. 1998, 7). Haikala et al. (1998, 7) state that many software development

projects align in the middle of those extremes (Haikala et al. 1998, 7).

Functional attributes depict how the software product under testing behaves based

on inputs and outputs (Mili et al. 2015, 15). Functional attributes have a dependency

to the specifications of the program and those depict what kind of situations the

program is planned to face and what is the correct behavior for each of those situa-

tions (Mili et al. 2015, 15). Bath et al. (2014, 153) state that functional testing is the

cornerstone of testing and if the software does not do what it is supposed to do, it

makes no difference if the software is really fast or stunningly reliable. Mili et al.

(2015, 15) divide functional attributes to those that are of a Boolean nature and of a

statistical nature. Those attributes that are of Boolean nature are something that the

software product either has or does not have (Mili et al. 2015, 15). Those attributes

of statistical nature are something that the “software product has them to a smaller

or larger extent” (Mili et al. 2015, 15).

13

Correctness and robustness are both attributes of a Boolean nature, and correctness

refers to the behavior according to its specifications for all possible situations accord-

ing to the domain defined in the specification (Mili et al. 2015, 15). Robustness refers

both to the behavior according to its specification according to correctness and to

the fact that the program behaves reasonably for situations outside the domain of

the specification (Mili et al. 2015, 15).

Because correctness and robustness are difficult to define for any software products

of realistic size, statistical attributes are used to measure how closely a software

product is to being correct or robust (Mili et al. 2015, 15). Mili et al. (2015, 16) define

dependability as a probability that for a period of operation time the system behaves

according to its specifications. Dependability is further divided into reliability and

safety (Mili et al. 2015, 16). Reliability refers to the probability that for a certain

amount of time software product operates without violating its specifications (Mili et

al. 2015, 16). Safety refers to the probability that for a certain amount of time the

software product operates without causing a catastrophic failure (Mili et al. 2015,

16). Both reliability and safety are used to depict the software products’ abilities to

operate according to specifications whereras safety focuses on high-stakes clauses

that might cause catastrophic losses such as losses of lives, mission criticalities or

financial stakes (Mili et al. 2015, 16). Reliable software may fail seldom but may

cause a catastrophic loss and a software system may be safe but totally unreliable

(Mili et al. 2015, 16).

In addition to dependability, security is another attribute of statistical nature (Mili et

al. 2015, 16). Security refers to voluntary actions committed by malicious sources

whereas dependability refers to system design flaws that may cause failures (Mili et

al. 2015, 16). Mili et al. (2015, 16) divide security into four aspects such as, confiden-

tiality, integrity, authentication and availability. Confidentiality depicts a system’s

ability to prevent unauthorized access to confidential data (Mili et al. 2015, 16). In-

tegrity depicts a system’s ability to prevent losses or damages to critical data (Mili et

al. 2015, 16). Authentication depicts a system’s ability to identify users and grant

permissions (Mili et al. 2015, 16). Availability depicts a system’s ability to continue

serving its user communities and it is measured as a percentage (Mili et al. 2015, 16).

14

Operational attributes depict the operational conditions of the software (Mili et al.

2015, 15). Latency, throughput, efficiency, capacity and scalability are examples of

operational attributes (Mili et al. 2015, 16). Latency depicts the time between the

submissions of queries and the responses and varies based on system’s workload

(Mili et al. 2015, 16). Throughput depicts the volume of processing the system deliv-

ers per unit of operational time (Mili et al. 2015, 16). Efficiency depicts the software’s

ability to deliver its functions with as few computational resources as possible (Mili

et al. 2015, 16). Capacity depicts the number of simultaneous users the system can

serve with a certain amount of quality of service (Mili et al. 2015, 16). Scalability is

used to depict the ability of the system to continue delivering service even when the

workload is exceeding its original capacity (Mili et al. 2015, 16–17).

Usability attributes depict how the software product can be used and adapted to the

needs of the user (Mili et al. 2015, 15). Mili et al. (2015, 18) identify five attributes

that are ease of use, ease of learning, customizability, calibrability and interoperabil-

ity. Ease of use refers to qualities that support the ease of use such as simplicity of

system interactions, uniformity of interactions, availability of help menus and toler-

ance of misuse (Mili et al. 2015, 18). Ease of learning refers to qualities that support

ease of learning by intuitive system interactions, consistency of interaction protocols

and uniformity of system outputs (Mili et al. 2015, 18). Customizability refers to

software’s functional abilities to be tuned based on particular end user’s require-

ments and the more control the end user has, the better is the customizability of the

software (Mili et al. 2015, 18). Calibrability refers to the abilities to tune the software

to the specific operational requirements the end user has (Mili et al. 2015, 18). In-

teroperability refers to the abilities to work in conjunction with other applications in

collaboration (Mili et al. 2015, 18).

Business attributes depict the development costs, the costs of using and evolving the

software product (Mili et al. 2015, 15). Development costs, maintainability, portabil-

ity and reusability are business attributes (Mili et al. 2015, 19). Development costs

are an important attribute and, for instance, person-months invested into the devel-

opment of the software product can be calculated (Mili et al. 2015, 19). Maintainabil-

ity refers to the amount of effort that is invested in the maintenance of the product

after the delivery of the product (Mili et al. 2015, 19). Portability refers to the aver-

15

age costs of porting the product from hardware or software platforms to other plat-

forms (Mili et al. 2015, 19). Reusability refers to potential benefits and means the

ability of the software product to be reused either as a part or in whole (Mili et al.

2015, 19).

Structural attributes depict the internal structure of the software product (Mili et al.

201, 15). Structural attributes are of interest of technical personnel such as engineers

and designers (Mili et al. 2015, 20). Mili et al. (2015, 20) list four structural attributes,

design integrity, modularity, testability and adaptability. Qualities of good design

integrity include simplicity, orthogonality, economy of concept, cohesivess of the

design, consistency of design rules and adherence to simple design disciplines (Mili et

al. 2015, 20).

Modularity refers to information hiding and the main principles of modular design

are separation between the module specification and its implementation (Mili et al.

2015, 20). Cohesion and coupling are two attributes related to modularity (Mili et al.

2015, 20). Bath et al. (2014, 421) point out that strongly coupled modules usually

require more development and testing effort. Strong cohesion, on the other hand, is

a desirable design attribute because then a module implements one specific part of

functionality (Bath et al. 2014, 421).

Testability refers to the extent of testing the system or components to an arbitrary

level of thoroughness (Mili et al. 2015, 20). Controllability and observability are two

attributes of testability and controllability is the bandwidth of input values that can

be submitted as test data to the component by controlling system inputs (Mili et al.

2015, 20). Observability refers to the extent that the component’s output can be in-

ferred by observing the system output (Mili et al. 2015, 20).

Adaptability refers to the ease how software can be modified to changing require-

ments (Mili et al. 2015, 21). Mili et al. (2015, 21) point out that adaptability differs

from customizability by referring to changes to the system requirements. Another

difference is that whereas customizability refers to changes that are carried out by

the end user, adaptability refers to changes made by software engineers (Mili et al.

2015, 21).

16

2.1.2 Software Testing Models

Software testing is a part of phases in software development life cycle model (Haikala

et al. 1998, 23). Software development life cycle is a structure with the aim of devel-

opment of a software product (Khan, M. E & Khan, F. 2014). Same methods and tools

are used in all software development including agile and spiral software develop-

ment models (Takanen et al. 2008, 78). Also Takanen et al. (2008, 78) point out that

software development rarely follows straightforward processes.

According to Haikala et al. (1998, 25), the most common software life cycle model at

that time was waterfall model, where software development is split into phases. Af-

ter the development of each component has been finished, the software compo-

nents have been integrated into a system, and the software testing phase is started

(Kasurinen 2013, 13). The software testing phase ends, and the software product is

ready to be used when there are no significant errors present or, at least, the soft-

ware product fulfills the requirements set by the customer (Kasurinen 2013, 13).

Cripsin & Gregory (2009, 15) describe the waterfall model as gated and the gate-

keepers may block the progress of project if set milestones are not met. The major

weaknesses of waterfall model are the unrealistic approach because rarely exact re-

quirements are known, many adjustments are quite often needed, and the waterfall

model with few checkpoints leads to unpredictability and makes managing the soft-

ware development difficult (Kasurinen 2013, 22–23).

V model is developed to put more emphasis on software testing (Kasurinen 2013,

14). Black (2007, 24) defines V model as a refinement of waterfall model that puts

more focus on testing. Testing is no longer a separate phase in software develop-

ment life cycle, instead, testing is performed for each phase (Kasurinen 2013, 14).

Unit testing is performed against software code, integration testing is performed

against technical specifications, system testing is performed against functional speci-

fication and acceptance testing is performed against requirements specifications

(Samaroo 2010, 38). The weakness of V model is the fact that it is quite often both

schedule and budget-driven (Black 2007, 24). When either time or money starts to

run out, mostly testing is cut back because most of the testing occurs at the end

(Black 2007, 24). Kasurinen (2013, 14–15) points out that even in V model testing is

17

started too late, for instance, the requirements are created way before testing is

started.

Evolutionary and incremental models have been developed to cope with the chal-

lenges of the V model (Black 2007, 25). Clearly defined increments are used where a

system is analyzed, designed, developed and tested (Black 2007, 25). The project

team can deliver at least some portion of the planned functionality at any point after

the first increment is tested (Black 2007, 25). The incremental model is followed

when the set of features are defined up front where as the evolutionary model is

followed when over time the set of features is evolving (Black 2007, 25). The level of

formality varies from lightweight Extreme Programming models to Rapid Application

Development models (Black 2007, 25).

The spiral model is most useful when there is no way of specifying the system that is

to be built, however, it must deliver the right set of features at the end (Black 2007,

28). Haikala et al. (1998, 32) uses term prototyping and points out that prototyping is

quite useful when the user interface is defined. The weakness of using spiral model

or prototyping is the fact that the software may look like it is finished even though

the most of the work is still not done (Haikala et al. 1998, 33).

Lastly, Black (2007, 28) points out a sarcastic code and fix model where the develop-

ment of the system is performed without the real idea of what is being built. A final

product is set to be built without using the prototype, and the process may consist of

writing and debugging the code without any unit testing (Black 2007, 28). Code is

sent to people without professional skills for testing where many bugs are found

(Black 2007, 29). These bugs are fixed live on the test environment by programmers

without checking the code in version controlling systems (Black 2007, 29). The same

bug is found again and the bug is again fixed on the test environment and process is

repeated again and again with little coordination until money, time or patience of

the project team are exhausted and the system is either released or cancelled (Black

2007, 29).

18

2.1.3 Software Testing Methods

Software testing can be based on static analysis or dynamic analysis (Takanen et al.

2008, 79). Static analysis does not involve the execution of the code and can be per-

formed in addition to source code also on procedures or on architectural designs

(Bath et al. 2014, 265). One of the major benefits of static analysis is the possibility to

perform testing early (Bath et al. 2014, 266). Static analysis also makes code more

maintainable and more portable and is essentially a cost-effective activity (Bath et al.

2014, 266). Kasurinen (2013, 65) points out that any defects found during static anal-

ysis are a lot cheaper to fix than failures found in dynamic testing. Static analysis also

supports reviews of the same items because the results from static analysis may indi-

cate parts to focus attention in reviews (Bath et al. 2014, 266). The limitations of

static analysis are its ability to find actual defects because static analysis lists areas of

code that need further investigation to check whether a defect is present (Bath et al.

2014, 267). Also, a tool support is needed because static analysis may become com-

plex if software is anything more complex than Hello World (Bath et al. 2014, 267).

Dynamic analysis is the opposite of static analysis (Kasurinen 2013, 65) and it is per-

formed while the software is executing (Takanen et al. 2008, 79). Takanen et al.

2008, 79) point out that combining both of these approaches is a sign of good test

process.

The methods of testing can also be partitioned differently (Takanen et al. 2008, 79).

Takanen et al. (2008, 79) quote Sommerville’s thoughts of dividing testing into vali-

dation and defect testing. Validation testing shows that the software functions ac-

cording to user requirements (Takanen et al. 2008, 79–80). Defect testing uncovers

flaws in the software instead of simulating its operational use and tries to find incon-

sistencies between the system and its specifications (Takanen et al. 2008, 80).

Another division of testing is based on access to the source codes and black box test-

ing and white box testing terms are used (Takanen et al. 2008, 80). Black box testing

bases testing on the requirements and specifications and requires no knowledge of

the internal structure of the code under test (Copeland 2003, 8). White box testing

on the other hand is based on the internal structures, paths and implementation of

the software under test and requires detailed programming skills (Copeland 2003, 8).

19

Kasurinen (2013, 65) points out that black box testing is the most traditional form of

testing. The inputs are provided and software’s or system’s outputs are checked

without checking what occurs inside the software’s logic (Kasurinen 2015, 65).

Copeland (2003, 20) states that no knowledge of system under test’s internal paths,

structures or implementation is needed. The role of testing is to check that outputs

are what they were supposed to be (Kasurinen 2014, 66). Copeland (2003, 23) de-

scribes several black box testing techniques such as equivalence class testing, bound-

ary value testing, decision table testing, pairwise testing, state-transition testing,

domain analysis testing and use case testing. Bath et al. (2014, 68) add cause-effect

graphing, user story testing and combinatorial testing as specification based tech-

niques.

Equivalence class testing is used to reduce the number of test cases while reasonable

level of test coverage is maintained (Copeland 2003, 24). Test conditions are grouped

into partitions that will be treated the same way (Bath et al. 2014, 68). Boundary

value testing focuses on the boundaries where many defects hide (Copeland 2003,

40). Data structures, such as tables, memory and disk capacity are usually of a fixed

size and boundary value testing tests what would happen on the border and when

the border is increased (Bath et al. 2014, 78). Decision tables are used to document

multifaceted business rules that the system implements and decision tables support

creation of test cases (Copeland 2003, 59).

Pairwise testing may be used when the number of test combinations is very large

(Copeland 2003, 90). Instead of testing all combinations for all the values for all the

variables, pairwise testing tests all pairs of variables, thus significantly reducing the

number of needed test cases (Copeland 2003, 90).

State-transition testing uses state-transition diagram to capture some types of sys-

tem requirements and to document the internal design of the system (Copeland

2003, 94). State-transition diagrams document both the incoming and processed

events and the responses by the system (Copeland 2003, 94). State-transition dia-

grams help to identify states, events, actions and transitions that should be tested

(Copeland 2003, 110).

20

Domain analysis testing is a testing technique where efficient and effective test cases

are identified when several variables are or should be tested together (Copeland

2003, 116). Domain analysis testing builds on and generalizes equivalence class and

boundary value testing and is useful because multiple variables are tested simulta-

neously (Copeland 2003, 123).

Use case testing uses use cases to define scenarios that depict how an actor uses the

system to accomplish certain goals (Copeland 2003, 128). Scenario is a sequence of

steps that depict the interactions the actor and the system has (Copeland 2003, 128).

The actor is generally humans but other system can also be actors (Copeland 2003,

128).

White box testing differs from black box testing by paying attention to the inputs and

outputs while paying attention to the inner logic of the system under test (Kasurinen

2014, 67). The inputs are selected to execute selected paths (Copeland 2003, 140).

Copeland (2003, 140) stresses that white box testing is more than code testing, it is

path testing that can be applied to test the paths between modules within subsys-

tems. Kasurinen (2014, 68) mentions that several metrics can be used, such as code

coverage or used paths. Disadvantages of white box testing are that it is unable to

detect bad requirements or missing properties (Kasurinen 2014, 68). Also number of

execution paths can get so large that it cannot be tested (Copeland 2003, 141). Data

sensitivity errors may not be detected, for instance, p=q/r; may not execute correctly

when r equals 0 (Copeland 2003, 141). Finally, the tester must possess programming

skills to understand and evaluate the system under test and Copeland (2003, 141)

mentions that many testers lack programming skills.

Copeland (2003, 144) mentions control flow and data flow testing techniques as

white box testing techniques. Control flow testing identifies the executions paths of a

module and executes test cases to cover those paths (Copeland 2003, 165).

Copeland (2003, 147) states several levels of coverage of control flow testing. Bath et

al. (2014, 298–299) use statement testing, decision testing, condition testing, deci-

sion condition testing and multiple condition testing instead of coverage levels.

Structured testing or basis path testing identifies test cases based on the analysis of

the topology of the control flow graph (Copeland 2003, 154). Control flow graph con-

21

sists of nodes and edges that have been derived from software module (Copeland

2003, 154). Cyclomatic complexity is calculated and cyclomatic complexity is the min-

imum number of independent, not looping paths that generate all possible program

paths of that module (Copeland 2003, 155). Pressman (2000, 436) define cyclomatic

complexity as a quantitative measure of the logical complexity of a program. Calcu-

lated cyclomatic complexity in basis path testing defines the number of independent

paths and presents the upper limit of the number of tests that has to conducted in

order ensure that all statements have been executed at least once (Pressman 2000,

436). Cyclomatic complexity of a graph is the number of edges minus the number of

nodes added two (Copeland 2003, 154). If all decisions of the control flow graph are

binary and there are p amount of binary decision, then cyclomatic complexity is the

value of p added one (Copeland 2003, 155). For the Appendix 1 program, the CCCC

(Littlefair) counts the cyclomatic complexity of 9 as shown in Appendix 2. After the

cyclomatic complexity has been calculated, a set of basis paths is done and test case

for each basis path is created and those test cases are executed (Copeland 2003,

154).

In statement testing every executable statement is executed at least once (Bath et al.

2014, 299). Decision testing is more intrusive and it requires that all true and false

decision outcomes are tested (Bath et al. 2014, 300). Condition testing tests that

every atomic condition results in true or false outcomes (Bath et al. 2014, 302). But

condition testing does not ensure that decision outcome is also reached, but decision

condition testing requires that both false and true decision conditions are tested so

that both true and false decision outcomes are reached (Bath et al. 2014, 304). Mul-

tiple condition testing consider all possible combinations of true and false decision

outcomes for all the individual atomic conditions within a decision point and theoret-

ically 2
n
 test cases are needed to cover “

n
” atomic conditions (Bath et al. 2014, 304).

Data flow testing technique shows the processing flow thorough the module and also

the definitions, uses and destructions of each of the variables (Copeland 2003, 171).

Copeland (2003, 177) states that while testing a module or system under test, paths

through the module should be enumerated. Then, for each variable at least one test

case should be created to cover every define-use pairs (Copeland 2003, 177). Call

graphs can be used to see the big picture of the program’s architecture (Bath et al.

22

2014, 278). Call graphs also show the internal module structure (Bath et al. 2014,

276).

Gray box testing is an approach where a peek is taken into the internal structure of

the system under test to understand how it has been implemented and that

knowledge is used to choose more effective black box tests (Copeland 2003, 8).

Kasurinen (2013, 68) states that gray box testing combines the best of both white

and black box testing. Khan et al. (2012, 14) mention as advantages of gray box test-

ing the benefits of combining both white box and black box testing techniques, in-

stead of relying on the source code, the tester relies on interface definitions and

functional specifications and can design excellent test scenarios. Lastly Khan et al.

(2012, 14) point out that unbiased testing is done from users’ point of view. The dis-

advantages of gray box testing are the limited test coverage and many program

paths will remain untested (Khan et al. 2012, 14).

Bath et al. (2014, 293) point out that by combining first black box test techniques and

the testing is then supplemented by white box techniques, it provides the optimal

level of coverage effectiveness in the fastest time. By using only black box techniques

relatively quickly a certain level of coverage can be reached whereas using only white

box techniques it takes more investment at first and after a while higher level of cov-

erage is reached (Bath et al. 2014, 293).

Third way of dividing testing is based on the test types (Samaroo 2010, 49). Samaroo

(2010, 49) presents four categories starting from functional testing, non-functional

testing, structural testing to testing after changes have been made to the code. Func-

tional testing focuses to determine whether the software does what it is supposed to

do (Bath et al. 2014, 153). Also the scope of functional testing changes based on the

level of the development cycle and when doing unit testing, the focus is on the func-

tionalities of the individual unit but when integration testing is being done, the focus

is on various interfaces (Bath et al. 2014, 153).

Non-functional testing mostly uses black box testing techniques and tests the behav-

ioral point of view of the system (Samaroo 2010, 50). Structural testing focuses on

the structural aspects of the system, such as the code or architectural definitions of

the system (Samaroo 2010, 50). Testing related to code after changes have been

23

made consists of retesting and regression testing (Samaroo 2010, 50). The focus of

retesting is to confirm that the existed problem has been removed and the focus of

regression testing is to ensure that no additional defects were introduced because of

the changes that were made (Samaroo 2010, 50).

Arcuri et al. (2012, 274) state that guidelines are needed about where and when a

particular testing should be used because it is unlikely that a certain testing method

is going to be the best option for all testing problems.

2.1.4 The Role of Software Testing to the Information Security

Software testing related to security and reliability was in its infancy state until the

late 1990s (Takanen et al. 2008, 22). Yet, Takanen et al. (2008, 71) point out that

software quality issues, bugs such as, programming flaws or design flaws, are the

main reasons behind many software vulnerabilities. Codefroid, Levin & Molnar

(2012, 40) point out that many security vulnerabilities occur in code for file and

packet parsing. Stephens et al. (2016, 1) state that even with new techniques for

memory corruption and execution redirection mitigations, those flaws still account

for over a third of all vulnerabilities found.

New automated vulnerability analysis systems have been designed that can be cate-

gorized to static, dynamic and concolic analysis systems (Stephens et al. 2016, 1).

Static analysis systems can show that a certain piece of code is secure but those are

imprecise causing a lot of false positives and cannot provide actionable input that

triggers the detected vulnerability (Stephens et al. 2016, 1). Fuzzers and other dy-

namic analysis systems identify application flaws by monitoring the execution and

can provide needed inputs to trigger the flaws (Stephens et al. 2016, 1). The disad-

vantage of dynamic analysis systems is the need for input test cases that may require

a lot of manual effort (Stephens et al. 2016, 1) Concolic execution engines utilize in-

terpretation of the program and generate inputs with the aim of constraint solving

techniques in order to explore the state spaces of the binary for triggering the vul-

nerabilities (Stephens et al. 2016, 1). The disadvantage of concolic execution engines

is path explosion that limits the scalability of concolic execution engines (Stephens et

al. 2016, 1–2).

24

Testing software does not present an easy task, and standard software testing tech-

niques focus on the correctness of software (DeMott 2006, 7). Fuzzing focuses on

finding exploitable software bugs (DeMott 2006, 7). Takanen et al. (2008, 102) point

out that fuzzing is not trying to verify or validate a system but rather tries to find de-

fects with the goal to uncover as many vulnerabilities as possible. DeMott (2006, 7)

stresses the importance of both types of testing by stating that there’s a problem if

the software doesn’t do what it is supposed to do and there is a different kind of

problem if the software has exploitable vulnerabilities. Chess et al. (2007, 9) point

out that in practice, most of the software quality efforts focus on testing program

functionality where the purpose is to find the bugs that affect most users in the

worst ways. However, for the purpose of finding security problems comparing the

implementation to the requirements is inadequate, and it is almost impossible to

improve software security by just improving quality assurance (Chess et al. 2007, 9).

The advantage of fuzzing is that it can take place earlier than traditional vulnerability

assurance practices, which take place in the late phases of the software development

life cycle (Takanen et al. 2008, 71–72). Traditional vulnerability assurance practices

focus on protecting from known attacks and identify known vulnerabilities from ex-

isting system (Takanen et al. 2008, 72). Fuzzing, symbolic execution and taint analysis

are three major vulnerability detection techniques (Cai et al. 2014, 231). The purpose

of fuzzing is to find new undetected flaws (Takanen et al. 2008, 72). Symbolic execu-

tion uses symbolic values as program inputs and illustrates the values of variables as

symbolic expressions of those inputs. While analyzing the program, symbolic execu-

tion can theoretically find all possible execution paths (Cai et al. 2014, 232). Software

testing can also get good code coverage by using symbolic execution (Cai et al. 2014,

232). The disadvantages of symbolic execution are path explosion, where there may

be an extreme number of paths, path-divergence where computing the precise path

constrains is challenging and complex-constraint where constraint solver fails to find

solutions to complex yet satiable path constraints (Cai et al. 2014, 232). The focus of

taint analysis is on variables that can be modified by users and those variables can

become security vulnerabilities when used to execute potentially dangerous com-

mands (Cai et al. 2014, 232). Taint analysis detects most of the input validation vul-

25

nerabilities but suffers from slow execution and false negatives with execution paths

(Cai et al. 2014, 232).

Fuzzers are not silver bullets, which find all security problems (Takanen et al. 2008,

135). At its best, fuzzing is a proactive technique for catching vulnerabilities before

others find and exploit those (Takanen et al. 2008, 135). Also DeMott et al. (2007, 2)

point out that formal engineering practices, solid quality assurance or full code audit

and penetration testing is not replaced by fuzzing.

2.2 Fuzzy Testing

Takanen et al. (2008, 1) point out that the purpose of fuzzing is to send malformed

data to the system under test in order to crash it to reveal reliability issues. Fuzzing is

defined as a highly automated testing technique that covers several boundary cases

by use of invalid data as inputs to ensure the absence of exploitable vulnerabilities in

the system under test (Takanen et al. 2008, 1). The term fuzzing originates from mo-

dem applications’ tendency to fail because of random inputs that were caused by

line noise on fuzzy telephone lines (Takanen et al. 2008, 1). Cai, Yang, Men & He

(2014, 231) categorize fuzzing as a traditional vulnerability detection technique that

was first proposed by Barton Miller in 1989.

Both black box and white box fuzzing can be performed (Godefroid, P., Kiezun, A. &

Levin, M). Black box fuzzing sends randomly modified well-formed inputs but can

utilize grammars to generate well formed inputs and add application-specific

knowledge to guide the generation of input variants (Godefroid et al.). White box

fuzzing executes the program under test with well formed inputs both concretely and

symbolically (Godefroid et al.) Constraints on program inputs are created during the

execution of conditional statements (Godefroid et al.). Those constraints show how

inputs are used by the program and different control paths are executed based on

inputs that are defined by satisfying assignments for the negation of each constraint

(Godefroid et al.). This process is repeated for the newly created inputs in order to

execute all feasible control paths of the system under test (Godefroid et al.). Also

grey box fuzzing exists (DeMott, J., Enbody, R. & Punch, WF. 2007, 1). DeMott et al.

(2007, 3) state that it is possible to monitor the running executable with as much

26

detail that a debugger will permit without access to source code directly. The ad-

vantage of grey box fuzzing is its effectiveness to find bugs that capture replay muta-

tion black box tools do not (DeMott et al. 2007, 1).

According to Takanen et al. (2008, 2) fuzzing is the most powerful test automation

tool for discovering software’s security critical problems because when fuzzing, a

software crash is a crash and therefore, there are no false positives (Takanen et al.

2008, 2). Also fuzzing works against any applications that process inputs regardless of

used programming languages (Takanen et al. 2008, 63). Instead of establishing com-

pleteness or correctness fuzzing complements traditional testing by combining the

power of randomness, protocol knowledge and attack heuristics to discovering un-

tested combinations of code and data (DeMott 2006, 1).

Vulnerabilities are easily found be software testers, developers and researches by

triggering malformed or malicious inputs via standard interfaces (Takanen et al.

2008, 7). Fuzzing is generally performed as black box testing (Takanen et al. 2008, 2)

and because it is essentially functional testing, it can be performed in several steps

during the software development and testing (Takanen et al. 2008, 17).

Fuzzing is one form of robustness testing and it complements both feature and per-

formance testing (Takanen et al. 2008, 18). Robustness testing is defined as an abil-

ity to tolerate exceptional inputs and stressful environmental conditions and it tries

to fulfill the negative testing requirements by using either random or semi-random

inputs (Takanen et al. 2008, 18–19). With fuzzing the security of any process, service,

device, system or network, can be tested regardless what specific interfaces are sup-

ported and no matter what exact interfaces are supported (Takanen et al. 2008, 26).

Fuzzing is more interested in how system under test behaves compared to which

components are used to build it (Takanen et al. 2008, 21).

Chess et al. (2007, 11) point out feeding fuzzing feeds randomly generated inputs to

the program under test and testing with purely random inputs tends to inefficiently

repeat the same conditions again and again. Without proper iteration refinement the

fuzzer spends most of time fuzzing only a small part of the program’s states (Chess et

al. 2007, 11).

27

2.2.1 Fuzzer Categories and Fuzzing Process

Takanen et al. (2008, 26) categories fuzzers based on several criteria. One of those

categories includes fuzzers based on the application area where they are used and

what attack vectors they support (Takanen et al. 2008, 26). Different injection vec-

tors are used but some fuzzers provide a general-purpose framework (Takanen et al.

2008, 26). Some fuzzers can be used to test both servers and clients (Takanen et al.

2008, 26).

Another categorization is based on test case complexity (Takanen et al. 2008, 26).

Various layers of the target software can be targeted and different test cases pene-

trate different layers in the application’s logic (Takanen et al. 2008, 26). Static and

random template based fuzzers test only simple request-response protocols or file

format fuzzers without dynamic functionality (Takanen et al. 2008, 27). Takanen et

al. (2008, 29) state that if fuzzer supplies totally random characters, those are in gen-

eral very inefficient and will not find many bugs. Dynamic generation or evolution

based fuzzers may not understand the protocol or file format that is fuzzed, but will

learn based on the feedback from the target system (Takanen et al. 2008, 27). Mod-

el-based or simulation-based fuzzers implement the tested interface and in addition

to message structures also unexpected messages in sequences are generated

(Takanen et al. 2008, 27). Model-based fuzzers can emulate protocols or file format

interfaces almost completely and this allows them to penetrate deeper and exercise

the parsing and input handling routines thoroughly reaching even the state machines

and output generation routines and thus uncover more vulnerabilities (Takanen et al.

2008, 28–29).

Fuzzers typically have protocol modeler, anomaly library, attack simulation engine,

runtime analysis engine, reporting and documentation functionalities (Takanen et al.

2008, 29–30). Protocol modeler contains functionality related to data formats and

message sequences (Takanen et al. 2008, 29). The simplest protocol modeler’s use

message templates (Takanen et al. 2008, 29). Takanen et al. (2008, 29) state that

some fuzzers might include a sample of known inputs to trigger vulnerabilities but

some fuzzers use random data. Attack simulation engine utilizes a library of attacks

or anomalies to generate the actual fuzz test cases (Takanen et al. 2008, 29).

28

Runtime analysis engine monitors the performance of the system under test and

reporting functionalities may provide detailed reports or some may not provide re-

ports at all (Takanen et al. 2008, 29). Documentation functionalities make the use of

fuzzing tools easier (Takanen et al. 2008, 30).

A simplified view of fuzz testing is sending sequences of messages to the system un-

der tests (Takanen et al. 2008, 30). After those changes in the system under test and

received messages are analyzed but fuzzing is more than just sending and receiving

messages (Takanen et al. 2008, 30). First tests are generated, then sent to the system

under tests and the target is continuously monitored in order to catch and record

failures (Takanen et al. 2008, 30–31). Lastly, the pass fail criteria are defined with the

goal to perceive errors as they happen (Takanen et al. 2008, 31).

2.2.2 Types of Fuzzers and Sources of Data Used for Fuzzing

Takanen et al. (2008, 145) state that there are endless ways and tools to perform

fuzzing. Most of the time the used test cases to fuzz utilize a library of known heuris-

tics or mutate a sample input (Takanen et al. 2008, 137). A generation based fuzzer

generates its own semi-valid sessions where mutation fuzzer takes a known good

sample and mutates the sample to create semi-valid sessions (Takanen et al. 2008,

137). Usually mutation fuzzers are either generic fuzzers or general purpose fuzzers

(Takanen et al. 2008, 137). But mutation fuzzers understand nothing about the un-

derlying format (Takanen et al. 2008, 138). Terms intelligent or dumb fuzzers are

used to indicate the level of interface knowledge a fuzzer has (Takanen et al. 2008,

144). Fully dumb fuzzer randomly flips bits in a file and that fuzzing results to lower

code coverage (Takanen et al. 2008, 144). Intelligent fuzzer may understand what

each field in the file represents and changes those according to specifications and no

invalid data or options will be used (Takanen et al. 2008, 144). Takanen et al. (2008,

144) point out that most fuzzers are somewhere in-between.

Both generation based fuzzers or general purpose fuzzers may use randomized ap-

proach or deterministic approach and some tools attempt to include both approach-

es (Takanen et al. 2008, 139). In randomized approach one fuzzer randomly picks

either valid or invalid commands, adds them randomly to a test case and chooses

random data for the arguments of those commands (Takanen et al. 2008, 138). An-

29

other fuzzer might use more deterministic approach and fuzzer might have a sample

of invalid data in the library with a series of command sequences (Takanen et al.

2008, 138–139). That invalid data is supplied in some repeatable manner with each

command (Takanen et al. 2008, 139). Takanen et al. (2008, 139) stress that generally

the more deterministic approach to fuzzing will outperform the randomized ap-

proach. Stephens et al. (2016, 2) point out that multiple analysis techniques can be

combined in order to leverage their strengths while mitigating their weaknesses. A

fuzzer could be used to explore initial compartments of the application and concolic

execution engine could be used to guide the fuzzer to the next compartment (Ste-

phens et al. 2016, 2).

In addition to generation based fuzzers or mutation fuzzers, single-use fuzzers are

fuzzers quickly created for a certain task (Takanen et al. 2008, 145). Single-use

fuzzers can be used if one size fits all generic fuzzers cannot be tuned to fulfill the

requirements of a specific application (Takanen et al. 2008, 146). Fuzzing frameworks

have a set of routines that can be used to write a fuzzer with the fundamental idea of

code reuse (Takanen et al. 2008, 146). For instance, Fuzzled has helper functions that

allow fuzzing tools to be developed (Takanen et al. 2008, 148). Protocol specific

fuzzers are developed for a certain protocol (Takanen et al. 2008, 148). For instance,

ftp-fuzz is designed to fuzz FTP servers (Takanen et al. 2008, 149).

Generic fuzzers can be used to test several interfaces or applications (Takanen et al.

2008, 149). File fuzzer flipping bits in any file types is an example of generic fuzzer

(Takanen et al. 2008, 149). Capture-replay fuzzers operate by obtaining a known

good communication file or typical argument and then modify it and repeatedly de-

liver it to the system under test (Takanen et al. 2008, 150). The goal of capture-replay

fuzzers is to quickly fuzz either new or unknown protocol and capturing provides par-

tial interface definition (Takanen et al. 2008, 150). In in-memory fuzzing the argu-

ments are modified in memory before they are used in the programs’ functions

(Takanen et al. 2008, 161). In-memory fuzzing is more suited to closed source appli-

cations (Takanen et al. 2008, 161). Because the targeted functions may not be avail-

able from users input, a reverse engineer is needed to identify the start and stop lo-

cations of parsing routines that are to be fuzzed (Takanen et al. 2008, 161). The ad-

vantage of in-memory fuzzing is that the chosen functions can be fuzzed without un-

30

derstanding how they function even when those functions would not be reached by

generic fuzzers because they would not be available from users’ input (Takanen et al.

2008, 162).

Takanen et al. (2008, 162) provide another classification of fuzzers based on the in-

terfaces they test. Local program fuzzers fuzz command line arguments, environ-

ment variables and other interfaces exposed (Takanen et al. 2008, 162). File fuzzing is

also another example of local program fuzzing (Takanen et al. 2008, 162). Network

interfaces fuzzer sends semi-valid application packets either to server or client

(Takanen et al. 2008, 162). File fuzzing sends semi-valid audio files, video files or any

file types to the application under test for parsing (Takanen et al. 2008, 163). API

fuzzing focuses supplying unexpected parameters to the called function either with

or without access to the source code (Takanen et al. 2008, 164). Web fuzzing is often

used to refer to fuzzing of form fields of web applications and finding all valid pages,

URL pages and inputs (Takanen et al. 2008, 164). Client-side fuzzers focus on fuzzing

the client side instead of server side (Takanen et al. 2008, 164). Takanen et al. (2008,

164) point out that in the past client-side testing has not been done much. Finally,

Takanen et al. (2008, 165) present OSI layer 2 through 7 fuzzing where any of the

layers are fuzzed.

Takanen et al. (2008) state that SCADA and industrial platforms have received little

testing from security community. Shapiro, Bratus, Rogers & Smith (2011, 57) state

that applying current fuzz-testing techniques are difficult to apply to SCADA systems

because of the use of proprietary protocols. Another factor that makes fuzzing of

SCADA systems difficult are time-sensitiveness and session oriented nature of many

SCADA systems (Shapiro et al. 2011, 58). Also attaching fuzzer and debugger to the

target systems may not be possible with SCADA systems (Shapiro et al. 2011, 58).

Data used for fuzzing can be created from test cases by cycling through a protocol,

randomly inserting data or from a library of known attacks (Takanen et al. 2008, 140–

141). A fuzzer that uses test cases has some amount of test cases that are run against

supported target protocol (Takanen et al. 2008, 140). The same tests are sent every

time the fuzzer is run and a fuzzer of this kind is closely related to automated test

tools or stress testing tools (Takanen et al. 2008, 140). Typically, a fuzzer that uses

test cases is a generation fuzzer (Takanen et al. 2008, 140).

31

Fuzzer that cycles through a protocol by inserting some type of data to send semi-

valid input in another way to generate used data for fuzzing (Katanen et al. 2008,

140). Cycling through results to a deterministic number of runs (Katanen et al. 2008,

140). Another way to create data for fuzzing is when fuzzer randomly keeps inserting

data for a certain time period (Takanen et al. 2008, 140). If seeded by the user, these

random fuzzers can be repeatable (Takanen et al. 2008, 141).

If a library of known and useful attacks are used, each variable to be tested is fuzzed

with each type of attack by using random, weighted or deterministic order, priority

and pairing of this search (Takanen et al. 2008, 141).

2.2.3 Fuzzy Testing with American Fuzzy Lop Fuzzer

American Fuzzy Lop Fuzzer or AFL Fuzzer is a security focused brute-force fuzzer that

can be used either in compile time instrumentation mode or in traditional blind

fuzzer mode (Zalewski 2016). Instrumentation can be either done either while com-

piling or by the use of QEMU hypervisor (Stephens et al. 2016, 5).

American Fuzzy Lop uses a modified form of edge coverage in order to pick up small,

local-scale changes to program control flow (Zalewski 2016). Input generation is done

by a genetic algorithm, mutating inputs based on the genetics inspired rules and

ranking them by a fitness function (Stephens et al. 2016, 5). Fitness functions base on

unique code coverage where an execution path is triggered, which is different from

the paths triggered by other inputs (Stephens et al. 2016, 5). Union of control flow

transitions, which American Fuzzy Lop has seen from its inputs, such as tuples of the

source and destination basic blocks are tracked by American Fuzzy Lop (Stephens et

al. 2016, 5). The inputs that make an application execute in a different way get priori-

tized in the generation of future inputs (Stephens et al. 2016, 5). In order to reduce

the size of the path spaces for loops, American Fuzzy Lop uses a heuristic approach

where only log(N) paths are considered for each loop instead of N paths (Stephens et

al. 2016, 5). Randomization of the programs interferes with the genetic fuzzer’s eval-

uation of inputs because an input, which produces interesting paths under a certain

random seed may not do so under another random seed (Stephens et al. 2016, 5). If

randomization is not removed, the fuzzing component is likely to explore only few

paths, but if constant randomness is used, then the program accepts the same input

32

each time and that allows the fuzzer to find this value and subsequently explore fur-

ther (Stephens et al. 2016, 5).

The process of American Fuzzy Lop is to load user-supplied initial test cases into the

queue, then take next input file from the queue, attempt to trim the test case to the

smallest size, which will not change the measured behavior of the system under test,

mutate the file repeatedly by using a variety of traditional fuzzing strategies and if

any of the generated mutations caused new state transitions that were recorded by

the instrumentation, new entry of the mutated output is added to the queue and

then the algorithm takes next input file from the queue and repeats (Zalewski 2016).

Blind fuzzer mode is used with -n parameter pointing to the program to be fuzzed

after core dumps are instructed to be outputted as files. For the Lubuntu, the com-

mand sudo bash -c ‘echo core.%e.%p > /proc/sys/kernel/core_pattern’ has to be

typed every time a system is restarted. After that the user interface of American

Fuzzy Lop is shown and it can be seen in Figure 1 that non-instrumented mode is in

use.

Figure 1. The user interface of AFL.

33

If instrumentation is to be used, the fuzzed program has to be instrumented with afl-

gcc (Zalewski 2016). The instrumentation will print how many locations were instru-

mented, see in Figure 2.

Figure 2. Instrumenting software code for AFL Fuzzer.

During instrumentation assembly code is injected to the target program that is used

to trace executions paths as new inputs are entered (Margaritelli 2015). Injected as-

sembly code is also used to determine if known or unknown execution paths is trig-

gered by a new mutation input (Margaritelli 2015). When fuzzing with instrumented

code, last new path should show the time when last new path was found like in Fig-

ure 3 (Zalewski 2016).

Figure 3. Fuzzing with instrumented code.

The difference between instrumented and non-instrumented afl-fuzzing can be

demonstrated using the same afl-test.c program attached to Appendix 1. When fuzz-

ing is done without instrumentation total paths is 1 and total crashes is 0. When fuzz-

34

ing is done with instrumentation total paths is 5 and total crashes was 63 with 1

unique.

American Fuzzy Lop fuzzes until Ctrl-C is pressed but at least one queue cycle should

be completed before fuzzing is stopped (Zalewski 2016). Completing one queue cycle

may take from seconds to even a week (Zalewski 2016). The fuzzing is performed by

afl-fuzz utility that requires a read-only directory with initial test cases, a directory to

store results and path to the binary to be fuzzed (Zalewski 2016). For example, when

command ./afl-fuzz -i in2 -o out2 /home/virtual/Työpöytä/afl-1.92b/a.out is used,

the -i parameter points out to a directory with initial test cases and -o parameter

points out to a directory to store the fuzzing results (Zalewski 2016). American Fuzzy

Lop comes with sample test cases containing small standalone files that can be used

to seed afl-fuzz (Zalewski 2016). The archives directory has, among others, samples

of rar, tar and zip (Zalewski 2016). Images directory has, among others, samples of

bmp, jpeg and png (Zalewski 2016). Multimedia directory has a sample of h264 and

others directory has among others samples of js, pdf, rtf and text files (Zalewski

2016).

The directory to store results will have three subdirectories that are updated in real

time (Zalewski 2016). Queue directory has test cases for every distinctive execution

paths and the starting files given by the user (Zalewski 2016). Crashes directory has

unique test cases that caused the program to receive a fatal signal and the entries

are grouped by the received signal (Zalewski 2016). Hangs directory has unique test

cases that cause the tested program to time out (Zalewski 2016). American Fuzzy Lop

considers crashes and hangs unique if the associated execution paths involve any

state transitions that have not been seen in previously recorded faults (Zalewski

2016). Crash is considered unique if the crash trace includes not seen a tuple in any

of the previous crashes or if the crash trace is missing a tuple that was present every

time in earlier faults (Zalewski 2016).

An example of both how provided input is modified and the contents of hangs of

store directory is in Table 1 when a text based initial test case speed.txt with content

of 56 in ASCII or 0011 0101 0011 0110 in binary format was used. At that time the

non-instrumented fuzzed program used while loop until a valid input of driver’s

speed was provided with timeout set to 25 seconds in afl-fuzz. That causes several

35

timeouts to occur instead of crashes and the contents of timeout directory was over

500 files.

Table 1. An example of the content of store directory with a lot of timeouts.

File name in the hangs directory File contents in

Binary

File contents in

Hex

id:000000,src:000000,op:flip1,pos:0 1011 0101 0011

0110

0xb536

id:000001,src:000000,op:flip1,pos:0

0111 0101 0011

0110

0x7536

id:000002,src:000000,op:flip1,pos:0

0001 0101 0011

0110

0x1536

id:000003,src:000000,op:flip1,pos:0

0010 0101 0011

0110

0x2536

id:000004,src:000000,op:flip1,pos:0

0011 1101 0011

0110

0x3d36

id:000005,src:000000,op:flip1,pos:0

0011 0001 0011

0110

0x3136

id:000006,src:000000,op:flip1,pos:1

0011 0101 1011

0110

0x35b6

id:000007,src:000000,op:flip1,pos:1

0011 0101 0111

0110

0x3576

id:000008,src:000000,op:flip1,pos:1

0011 0101 0001

0110

0x3516

id:000009,src:000000,op:flip1,pos:1

0011 0101 0010

0110

0x3526

id:000010,src:000000,op:flip1,pos:1

0011 0101 0010

1110

0x352e

In order to ease crash analysis American Fuzzy Lop fuzzer has a crash exploration

mode where a crashed test case is provided as an input and American Fuzzy Lop uses

its uses its genetic algorithms to see how far can be reached within the instrumented

codebase while the program is kept in the crashing state (Zalewski 2016). Figure 4

36

shows an example where the crashes are used as inputs and the Appendix 1 program

keeps crashing, however, only one unique crash is identified.

Figure 4. AFL Fuzzing with failing test case as an input.

American Fuzzy Lop produces a coverage-based grouping of crashes that can be tri-

aged manually or use GDB scripts to analyze (Zalewski 2016). Also, every crash can be

traced to its parent non-crashing test case in the queue, which should make it easier

to detect faults (Zalewski 2016). Zalewski (2016) points out that some crashes caused

by fuzzing can be quite difficult to evaluate for exploitability without lots of work in

debugging and code analysis.

If Appendix 1 program is run under GDB or The GNU Project Debugger and the

unique crash output of crash exploration is input, a buffer overflow will occur when

breakpoint has been set to line 25 as seen in Figure 5.

37

Figure 5. GDB crash dump from one of the inputs by AFL.

2.3 Current Issues with Fuzzy Testing in JyvSectec

JyvSectec or Jyväskylä Security Technology at JAMK University of Applied Sciences

was launched in September 2011 (JyvSectec). JyvSectec provides services related to

software testing in order to detect functional weaknesses and deficiencies in their

information security (JyvSectec). There has been one occasion where the results of

American Fuzzy Lop indicated thousands of unique crashes; however, when results

were manually analyzed by the use of GDB the crashes were almost the same with

the same backtraces and occasionally with the same parameters. In order to diminish

the amount of manual work, a script based method is in used that saves backtraces,

crashing file and crash signals to a SQLite3 database where searches are made.

3 Thesis Implementation

The implementation part of this thesis focuses on answering the research questions.

The fuzzed program is coded with C language and program to replace the manual

analysis work is coded using Python.

38

3.1 Evaluation of Implementation Options

JyvSectec’s current process related to analysis of fuzzing requires a great deal of

manual work. The aim of this design research is set to implement a program to ease

that process, and the research objective of this master’s thesis is approached by im-

plementing the fuzzed program with enough nodes that the AFL fuzzer’s instrumen-

tation can be used instead of dump black box fuzzing. The C program is a simple

speeding program that has several branches depending on the answers. The C pro-

gram uses gets function that Chess et al. (2007, 155) depict as “the most widely

acknowledged buffer overflow pitfalls”. Chess et al. (2007, 155) state that the prob-

lems with gets function are so acknowledged that some compilers warn if gets is

used and GCC gives a warning when Appendix 1 C program is compiled.

Because fuzzing the speeding C program without instrumentation only found one

path and in order to provide more realistic approach, instrumentation is used.

Zalewski (2016) states that instrumentation can be injected by a tool that functions

as a replacement for GCC. Zalewski (2016) continues by stating that the GNU compil-

er collection includes front ends for C, C++, Objective-C, Fortran, Ada and Go. Out of

those languages the author is familiar with C so that is the choice of the program-

ming language for the fuzzed example program. Another reason for the choice of C

language is mentioned by Chess et al. (2007, 14) where a generic defect is defined as

a “problem that can occur in almost any program written in the given language”. A

buffer overflow is a security problem and also an excellent example of generic prob-

lems in C language (Chess et al. 2007, 14).

The automation part of the crash analysis is coded with Python as agreed with

JyvSectec. The Python program is a simple program and outputs both Excel’s xls and

CSV files that are used as a database. Comma separated values can be imported to

SQLite3 for further processing. The other options that were evaluated were real da-

tabase implementations such as ODBC based implementation. Those options were

rejected, and especially the ODBC based implementation would have taken a great

amount of resources compared to the current implementation without giving any

benefits. Python program uses xlsxwriter library provided by McNamara (2016) and

xlrd library provided by Python Software Foundation. The functionality of the Python

39

program is verified to reproduce the same issue that JyvSectec run into. Crash analy-

sis is done and even though AFL detects the crashes in Appendix 6 as unique manual

crash analysis points out that the primary reason might be the same.

Lubuntu 14.04 LTS is the choice of both testing and implementation environment

because AFL is not available for Windows. Lubuntu environment is used both for cod-

ing the C program and Python program.

3.2 Information Gathering for the Chosen Approach

As design research is conducted, the researcher can act also as an observer (Kananen

2015, 52). In order to answer the main research questions if crash uniqueness detec-

tion can be improved compared to the current status and if the current manual pro-

cess can be automated, an intervention is performed. The intervention is performed

by sending questionnaires (in Appendix 4) to measure current process satisfaction,

and the questionnaires (Appendix 5) are sent with Python program (in Appendix 3) to

measure satisfaction with proposed solution. Thus, the difference between previous

state T1 and state after intervention T2 is measured (Kananen 2015, 55).

Both questionnaires contain five multiple choice questions, and the last question is

semi-structured question. Likert’s attitude scale is used for four questions and both

questionnaires are attached as Appendices. Because the amount of persons involved

in intervention is only two, and both work for JyvSectec and possess fuzzing related

experience, background questions are not included in the questionnaires.

T1 questionnaire was sent during mid January 2017 and T2 questionnaire was sent

during early February 2017 with approximately two weeks reserved for answering.

The questionnaire was sent to all people in JyvSectec and n consists of two persons.

The response rate for T1 questionnaire is 100 percent and for T2 is 100 percent.

3.3 Crash Uniqueness Detection Challenges of the Chosen Approach

The Python program’s outputs are used to evaluate crash uniqueness detection by

SQLite3. Appendices 6 shows an example output after the C program (in Appendices

1) is fuzzed as AFL detected three unique crashes. If a quick search is done, those

40

crashes share many common features, such as SIGABRT, raise.c:55 or gets_chk.c:67.

However, #8 is different in every crash and in crash#1 afl_test3.c line 38 is where the

crash occurred. However, in every crash file gets_chk.c line 67 is present pointing out

that reading input may have been the cause of each crash. The main challenge is how

to automate a duplicated crash analysis when the crash dumps and their content

varies in different situations. However, the process of defining when a crash is

unique or not is done by JyvSectec and it is out of the scope of this design research.

In order to verify that coded Python program can be used to automate crash analysis

instead of Bash script Libjpeg 6b is also fuzzed as non-instrumented and instrument-

ed. Libjpeg fuzzing results in eleven unique crashes by AFL but manual crash analysis

might indicate that only two separate crashes exist.

4 Crash Uniqueness Detection Intervention Results of the

Chosen Approach and Conclusions

Intervention results before and after intervention with the Python program for crash

analysis are presented in this chapter with conclusions. Kananen (2015, 30) points

out that by combining research results and conclusions unnecessary repetition can

be avoided.

4.1 Crash Uniqueness Questionnaire Results before Intervention

Answers to the research questions about crash uniqueness detection improvement

in JyvSectec and if the current process requiring manual work can be improved by

the use of implemented Python program are provided. Quantitative research meth-

od is used to present the results of the questionnaires. The results of the question-

naires are converted into tables that represent the number of answers from all the

returned answers (Kananen 2015, 101). Likert’s scale is used to illustrate the answer

options except for the fifth answer where an analysis and synthesis are made from

the answer. The questionnaires are added as a part of Appendices.

The first question focuses on satisfaction with the current process of analyzing AFL

crash results before intervention. The first question asks how satisfied the respond-

41

ent is with the current process of analyzing AFL’s fuzzing results. Answer option one

means really satisfied, answer option two means somewhat satisfied, answer option

three means not satisfied nor dissatisfied, answer option four means somewhat dis-

satisfied and answer option five means really dissatisfied. Both find the current

process of analyzing AFL fuzzing results somewhat dissatisfied as shown in Table 2

below.

Table 2. How satisfied is the respondent with the current process before interven-

tion?

The second question focuses on evaluating the amount of manual work that is need-

ed to do as a part of result analysis before intervention. The second question asks

how the respondent sees the amount of manual work that has to be done as a part

of analyzing AFL’s fuzzing results. Answer option one means way too little, answer

option two means could be more, answer option three means not too little nor too

much, answer option four means could be less and answer option five means way

too much. Both answers indicate that the amount of manual work could be less or is

way too much as shown in Table 3 below.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

First Question about Satisfaction before

Intervention

42

Table 3. How does the respondent see the amount of manual work before interven-

tion?

The third question focuses on measuring how easy it is to separate different crashes

in the current process before intervention. The third question asks how easy it is in

the respondent’s opinion to separate different crashes. Answer option one means

really easy, answer option two means somewhat easy, answer option three means

not too easy nor too difficult, answer option four means somewhat difficult and an-

swer option five means too difficult. Both answers indicate that separating different

crashes is somewhat difficult as shown in Table 4 below.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Second Question about Amount of Manual

Work Needed before Intervention

43

Table 4. How easy it is to separate crashes before intervention?

The fourth question focuses on evaluating how much automated result processing

should be used before intervention. The purpose of question four is to find out

should people be involved in crash analysis process and how provided program could

be developed. The fourth question asks how much automated processing of results

should be used. Answer option one means all should be automated, answer option

two means automate as much as possible but let people check the results, answer

option three means find the correct balance even though that may vary case by case,

answer option four means automate some of the process but some of the work is left

to the people, like running several commands and combining the results and answer

option five means that the use of use of paper and pencil would be preferred. Both

answers indicate that correct balance should be found even though that may vary

case by case as shown in Table 5 below.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Third Question about How Easy It Is To

Separate Crashes before Intervention

44

Table 5. How much automated results processing should be used before interven-

tion?

The fifth question tries to find out two of the biggest issues currently in the result

analysis process before intervention. The fifth open-ended question asks to name

two biggest issues within the current analyzing process of AFL’s fuzzing results. The

themes are summarized in Table 6 and indicate difficulties in differentiating same or

similar crashes, or how to categorize crashes and too much manual work is needed.

However, one answer out of four was left unanswered so 25 percent of answers are

summarized as unanswered.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Fourth Question about How Much

Automated Results Processing Should Be

Used before Intervention

45

Table 6. The biggest issues in crash analysis before intervention.

4.2 Crash Uniqueness Questionnaire Results after Intervention

After intervention, the first question focuses on satisfaction with the Python pro-

gram. The first question asks how satisfied the respondent is after the intervention

about the current process of analyzing AFL’s fuzzing results when a new program is

used. Answer option one means really satisfied, answer option two means somewhat

satisfied, answer option three means not satisfied nor dissatisfied, answer option

four means somewhat dissatisfied and answer option five means really dissatisfied.

Both find the satisfaction after intervention to be somewhat satisfied or either not

satisfied nor dissatisfied as shown in Table 7 below.

0

1

2

3

4

5

how to differentiate

same or similar crashes

how to categorize

crashes

too much manual work unanswered

Fifth Question about the Biggest Issues

before Intervention

46

Table 7. How satisfied is the respondent with the current process after intervention?

The second question focuses on evaluating the amount of manual work that is need-

ed to do as a part of result analysis. The second question asks how the respondent

sees the amount of manual work after the intervention that has to be done as a part

of analyzing AFL’s fuzzing results. Answer option one means way too little, answer

option two means could be more, answer option three means not too little nor too

much, answer option four means could be less and answer option five means way

too much. Both answers indicate that the noticeable amount of manual work still

needed as shown in Table 8 below.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

First Question about Satisfaction after

Intervention

47

Table 8. How does the respondent see the amount of manual work after interven-

tion?

The third question focuses on measuring how easy it is to separate different crashes

with the Python program. The third question asks after the intervention, how easy it

is in the respondent’s opinion to separate different crashes. Answer option one

means really easy, answer option two means somewhat easy, answer option three

means not too easy nor too difficult, answer option four means somewhat difficult

and answer option five means too difficult. Both answers are split on the other ends

of the scale as shown in Table 9 below. One finds that after intervention separation

of different crashes is somewhat easy but the other finds that separation of different

crashes is still somewhat difficult.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Second Question about the Amount of

Manual Work Needed after Intervention

48

Table 9. How easy it is to separate crashes after intervention?

The fourth question focuses on evaluating how much automated result processing

should still be used. The purpose of question four is to find out should people be in-

volved in crash analysis process and how provided program could be developed. The

fourth question asks after the intervention as a whole, how much automated pro-

cessing of results should be used. Answer option one means all should be automat-

ed, answer option two means automate as much as possible but let people check the

results, answer option three means find the correct balance even though that may

vary case by case, answer option four means automate some of the process but

some of the work is left to the people, like running several commands and combining

the results and answer option five means that the use of use of paper and pencil

would be preferred. Both answers indicate that correct balance should be found

even though that may vary case by case as shown in Table 10 below.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Third Question about How Easy It Is To

Separate Crashes after Intervention

49

Table 10. How much automated results processing should be used after interven-

tion?

The fifth question tries to find out two of the biggest issues still lingering in the anal-

ysis process after intervention. The fifth open-ended question asks to name two big-

gest issues within the analyzing AFL’s fuzzing results. Themes are summarized in Ta-

ble 11 and indicate difficulties in differentiating same or similar crashes, or how to

categorize crashes and too much manual work is needed. However, two answers out

of four were left unanswered so 50 percent of answers are summarized as unan-

swered.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Fourth Question about How Much

Automated Results Processing Should Be

Used after Intervention

50

Table 11. The biggest issues in crash analysis after intervention.

4.3 Crash Uniqueness Intervention Impact

Did the intervention change anything? Kananen (2015, 58) asks that is it enough that

at least something was changed? Table 12 shows that satisfaction results are moved

from answer option four that means somewhat dissatisfied towards answer options

two and three that mean somewhat satisfied and not satisfied nor dissatisfied. Based

on Table 12, satisfaction has been improved after the Python program is provided to

JyvSectec.

0

1

2

3

4

5

how to differentiate same or

similar crashes

how to categorize crashes unanswered

Fifth Question about Biggest Issues after

Intervention

51

Table 12. Satisfaction results before and after intervention.

Table 13 shows that the amount of manual work that is needed to do as a part of

result analysis is moved from answer options four and five one step to the left to-

wards answer options three and four. Answer option four means that the amount of

manual work could be less and answer option five indicates that amount of manual

work is way too much. Answer option three indicates that the amount of manual

work is not too little nor too much. Based on Table 13, amount of manual work

needed to do as a part of result analysis is demised after Python program is provided

to JyvSectec but there is still a noticeable amount of manual work needed.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

First Question about Satisfaction - Overall

Change Results

Before Intervention

After Intervention

52

Table 13. Amount of Manual work results before and after intervention.

Table 14 shows mixed results on how easy it is to separate different crashes. Before

intervention, the answer option four prevailed and answer option four indicates that

separating different crashes is somewhat difficult. One of the answers after interven-

tion shows that separating different crashes is somewhat easy but the other answer

indicates that separating different crashes is still somewhat difficult. Based on Table

14, separating different crashes still needs plenty of work but crash analysis that

JyvSectec does with SQLite3 is out of the scope of this thesis.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Second Question about Manual Work -

Overall Change Results

Before Intervention

After Intervention

53

Table 14. Results of how easy it is to separate different crashes before and after in-

tervention.

Table 15 shows no change when it comes to automated result processing that should

be used. Answer option two means as much as possible should be automated but

people should check results. The question points out the need for humans in the

crash analysis process but also provides an option to develop the provided Python

program to provide, for instance, some user interface for SQLite3. Based on Table 15,

the crash analysis cannot be wholly automated.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Third Question about How Easy It Is To

Separate Crashes - Overall Change Results

Before Intervention

After Intervention

54

Table 15. Results of how much automated results processing should be done before

and after intervention.

Table 16 shows that the biggest issues with crash result analysis still are the same

before and after the intervention. Also the category unanswered is high. Based on

Table 16 there is still a lot of work to do to make differentiating same or similar

crashes easier and how to categorize crashes.

Table 16. Results of theme categories about the biggest issues before and after inter-

vention.

0

1

2

3

4

5

Answer Option 1 Answer Option 2 Answer Option 3 Answer Option 4 Answer Option 5

Fourth Question about How Much

Automated Results Processing Should Be

Used - Overall Change Results

Before Intervention

After Intervention

0

1

2

3

4

5

how to differentiate

same or similar crashes

how to categorize

crashes

too much manual work unanswered

Fifth Question about Biggest Issues in

Result Analysis - Overall Change Results

Before Intervention

After Intervention

55

Answers to the main research questions are mixed. Based on the results of the ques-

tions one, two and three in Tables 12 to 14, the satisfaction is improved after the

intervention, the amount of manual work is demised and separating different crash-

es has slightly changed. However, question three results show that separating differ-

ent crashes still needs a great amount of work and one of the answers indicate that

there is no change after intervention. Based on the intervention results, the current

process that requires a great amount of manual work has been improved. However,

the results of questions five in Table 16 confirms the difficulties in result analysis and

highlights that differentiating same or similar crashes and crash categorization is not

changed by intervention. One possible reason might be the fact that only a part of

the crash analyzing process is targeted, and the crash analysis done by SQLite3 in

JyvSectec is omitted from this design research. The results of question four in Table

15 point out that as much as possible should be automated, howver, humans should

still check the results.

5 Discussion

This chapter examines the results of this design research from overall theoretical

basis. Possible follow-up research areas are also pointed out in addition of evaluating

reliability and validity.

Design research framework depicted by Kananen (2015) is followed. Because design

research is not a research method on its own a blended methodology is used

(Kananen 2015, 33–34). Qualitative research focuses on single research subject and

applies only to the cases that have been investigated (Kananen 2015, 35). Therefore,

reflection on the theory basis is weak because not a single research paper concerning

both fuzzing and crash uniqueness improving was found. Also due to qualitative ap-

proach with crash uniqueness and research questions focusing on JyvSectec’s case,

the generalization is weak. Hirsjärvi et al. (2013, 182) stress that generalizations

should not be done in qualitative researches. Also Kananen (2015, 58) points out that

both change and intervention generalization is quite often weak.

Reliability assessment is approached by the use of both reliability and validity

(Kananen 2015, 112). Reliability refers to the fact that the results are stable and not

56

caused by randomness (Kananen 2015, 112). Validity refers to the fact that right var-

iables are under research (Kananen 2015, 112).

One of the major challenges to the reliability is the small size of JyvSectec. Only two

people make the target group for the questionnaires. Thus, the target group should

be described as a biased selection or sampling (Coolican 2009, 110). Nevertheless,

design research may use a blended approach and it became obvious really late that

the amount of persons in JyvSectec was only two. Another factor that affected why

questionnaires were chosen was the fact of scheduling challenges, distance studies

and non disclosure agreements that stated that none of the meetings were allowed

to be held inside JyvSectec’s premises. However, in retrospective the use of inter-

views would have been a better approach. The use of interviews might also have

been favored if the author’s role had been another.

When it comes to the questionnaires Coolican (2009, 204) points out that when

Likert’s attitude scale is used decisions must be made how the mid-point is interpret-

ed. Does the mid-point imply a neutral aspect or torn between both directions

(Coolican 2009, 204)? The questionnaires interpret the mid-point as neutral. Also

should the background questions still be asked even though the target group con-

sisted only of two ICT experts in JyvSectec? Kananen (2015, 55) also points out that

the research frame provides trustworthy information provided that correct meas-

urements and target group are used. In case of this design research, the target group

consisted only of two people, which had to be taken into account.

Kananen (2015, 52) states that the researcher may play the role of observer in design

research, yet, that role came with some disadvantages. The main disadvantage is the

lack of being involved in the action and not seeing the real use of crash analysis in

fuzzing. That also dictated the use of questionnaires. Not being an active participant

also meant that I could not see the whole process. The crash analysis continues with

SQLite3 after GDB, which is out of the scope of this design research; however, still an

integral part of crash analysis and optimizing only one part of the process may not be

sufficient as can be seen from results. Tables 14, 15and 16 indicate clearly that inter-

vention is not about solving issues with separating different, same or similar crashes

and how to categorize crashes.

57

Another factor that may impact reliability is the randomness in AFL’s fuzzing. When

the simple speeding program is fuzzed, the used values by AFL vary slightly between

different runs. As demonstrated in Chapter 2 if simple fuzzing is used without in-

strumentation, only a small part of program paths might be reached. But is that sim-

ple speeding program representative of real world programs or too simple to draw

conclusions? Because of this issue, lib-jpeg is also fuzzed and the crash dumps are

processed with the developed Python program. The results in Appendix 7 show that

the same issue that JyvSectec had is reproduced.

The intervention part brings its own challenges and Kananen (2015, 58) asks if it is

enough that something was changed in the intervention. Kananen (2015, 55) also

stresses that the research frame does not ensure the fact that change is caused fully

or partly by the intervention because third party factors may cause the change fully

or partly.

Some experiments were performed with Libjpeg 6b version to see if the developed

crash analysis program could be used with another program. AFL was used to fuzz

libjpeg 6b with and without instrumentation. Un-instrumented fuzzing resulted two

crashes in two hours but instrumented fuzzing revealed eleven crashes in nine

minutes. Results of libjpeg 6b fuzzing are attached in appendices and AFL reported

eleven unique crashes after fuzzing was stopped. A manual crash analysis after the

developed Python program was run might indicate that out of those eleven crashes

only two are unique showing that AFL reports several unique crashes that in manual

crash analysis are not unique. That could be one of the interests in the follow up re-

search. The use of SQLite3 after crash dumps have been produced would be another

area of interest in the follow up research and might also answer how the whole pro-

cess is affected by the use of the Python program. Now the crash analysis process is

only approached from what kind of crash dumps are created and the analysis of

crash dumps is left out of the scope of this research. But crash analysis is still a pro-

cess and the intervention results point out that there exist several challenges after

Python program is provided. The whole crash analysis could even be combined to the

same program so that could be a user interface present to allow crash analysis work

to be done with queries to the CSV database.

58

References

Arcuri, A., Zohaib, M., & Briand, L. 2012. Random Testing: Theoretical Results and

Practical Implications. Accessed on 28 December 2016. Retrieved from IEEE.

Bath, G., & McKay, J. 2014. The Software Test Engineer’s Handbook. A Study Guide

for the ISTQB Test Analyst and Technical Test Analyst Advanced Level Certificates

2012. Rocky Nook Inc.

Bhat, A. 2015. The Significance of Testing throughtout the Software Development

Life Cycle. Internal Journal of Advance Foundation and Research in Science & Engi-

neering. Volume 1, Issue 9, February 2015. Accessed on 28 July 2016. Retrieved from

http://www.ijafrse.org/Volume1/Vol_issue9/4.pdf

Black, R. 2007. Pragmatic Software Testing – Becoming an Effective and Efficient Test

Professional. Wiley Publishing.

Cai, J., Yang, S., Men, J., & He, J. 2014. Automatic Software Vulnerability Detection

Based on Guided Deep Fuzzing. IEEE. Software Engineering and Service Science

(ICSESS), 2014 5th IEEE International Conference. Accessed on 17.3.2016. Retrieved

from IEEE.

Chess, B., & West, J. 2007. Secure Programming with Static Analysis. Pearson Educa-

tion, Inc.

Copeland, L. 2003. A Practitioner’s Guide to Software Test Design. STQE Publishing.

Coolican, H. 2009. Research Methods and Statistics in Psychology. Hodder Education.

DeMott, J. 2006. The evolving art of fuzzing. Accessed on 28 March 2016. Retrieved

from http://vdalabs.com/tools/The_Evolving_Art_of_Fuzzing.pdf

DeMott, J., Enbody, R., & Punch, WF. 2007. Revolutionizing the Field of Grey-box At-

tack Surface Testing with Evolutionary Fuzzing. BlackHat and Defcon 2007. Accessed

on 28 March 2016. Retrieved from

https://intelligentexploit.com/articles/Evolutionary-Fuzzing.pdf

Haikala, I., & Märijärvi, J. 1998. Ohjelmistotuotanto. Gummerus Kirjapaino Oy,

Jyväskylä

Hirsjärvi, S., Remes, P., & Sajavaara, P. 2013. Tutki ja kirjoita. Bookwell Oy, Porvoo.

GCC, the GNU Compiler Collection. Accessed on 28 December 2016. Retrieved from

https://gcc.gnu.org/

Godefroid, P., Kiezun, A., & Levin, M. Grammar-based Whitebox Fuzzing. Accessed on

3 April 2016. Retrieved from Citiseerx.

Godefroid, P., de Halleux, P., Nori, A V, Rajamani, S.K., & Schulte, W. 2008. Automat-

ing Software Testing Using Program Analysis. IEEE Software 25.5 (Sep/Oct 2008): 30-

37. Accessed on 28.3.2016. Retrieved from ABI.

Godefroid, P., Levin, M., & Molnar, D. 2012. SAGE: Whitebox Fuzzing for Security

Testing. ACM Vol. 55, no.3. Accessed on 28 March 2016. Retrieved from ABI.

59

Kananen, J. 2015. Kehittämistutkimuksen kirjoittamisen käytännön opas – miten

kirjoitan kehittämistutkimuksen vaihe vaiheelta. Tähtijulkaisut.

Khan, M. E., & Khan, F. 2014. Importance of Software Testing in Software Develop-

ment Life Cycle. IJCSI International Journal of Computer Science Issues, Vol. 11, Issue

2. March 2014. Accessed on 6 January 2016. Retrieved from

http://ijcsi.org/papers/IJCSI-11-2-2-120-123.pdf

Khan, ME., & Khan, F. 2012. A Comparative Study of White Box, Black Box and Grey

Box Testing Techniques. Int. J. Adv. Comput. Sci. Appl, 2012. Accessed on 28 March

2016. Retrieved from Citeseer

Libjpeg. 1998. libjpeg. Accessed on 26 February 2017. Retrieved from

http://libjpeg.sourceforge.net/

Littlefair, T. CCCC - C and C++ Code Counter. Accessed on 27 July 2016. Retrieved

from http://cccc.sourceforge.net/

Marcel, B., & Soumya, P. 2014. On the Efficiency of Automated Testing. FSE 2014

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering, Pages 632–642. Accessed on 29 December 2016. Retrieved

from ACM Digital Library.

Margaritelli, S. 2015. Fuzzing with AFL-Fuzz, a Practical Example (AFL vs Binutils).

Accessed on 25 June 2016. Retrieved from

https://www.evilsocket.net/2015/04/30/fuzzing-with-afl-fuzz-a-practical-example-

afl-vs-binutils/

Mili, A., & Tchier. F. 2015. Software Testing – Concepts and Operations. Wiley.

JyvSectec. Tietoa meistä. Accessed on 6 January 2016. Retrieved from

http://jyvsectec.fi/fi/tietoa-meista/

Kasurinen, J-P. 2013. Ohjelmistotestauksen käsikirja. Docendo.

Lagus, A. 2013. Ohjelmistohaavoittuvuus on kaikkien riesa. Tietosuoja 2013:1, 30–32.

Accessed on 06 March 2016. Retrieved from https://www.tietosuoja-

lehti.fi/index.php?mid=2&pid=32&aid=3047

McNamara, J. 2016. XlsxWriter. Accessed on 29 January 2017. Retrieved from

https://xlsxwriter.readthedocs.io/index.html

Myers, G. J., Sandler, C., & Badgett, T. 2011. Art of Software Testing (3rd Edition).

John Wiley & Sons, 2011.

Oehlert, P. 2005. Violating assumptions with fuzzing. IEEE Security & Privacy, 3, 2,

58–62. Accessed on 21 March 2016. doi: 10.1109/MSP.2005.55 Refrieved from

http://ieeexplore.ieee.org.ezproxy.jamk.fi:2048/stamp/stamp.jsp?tp=&arnumber=14

23963

Pressman, R. S. 2000. Software Engineering – A Practitioner’s Approach. European

Adaptation. McGraw-Hill International (UK) Limited.

Python Software Foundation. xlrd 1.0.0. Accessed on 4 February 2017. Retrieved

from https://pypi.python.org/pypi/xlrd

60

Samaroo, A. 2010. Life Cycles. In B. Hambling (Eds.), Software Testing. An ISTQB-ISEB

Foundation Guide. Second Edition. British Informatics Society Limited, 34–55.

Shapiro, R., Bratus, S., Rogers, E., & Smith, S. 2011. Identifying vulnerabilities in

SCADA systems via fuzz-testing. Critical Infrastructure Protection. Accessed on 2 April

2016. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-24864-

1_5

Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Yan, S., Kruegel.

C., & Vigna G. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execu-

tion. Accessed on 2 April 2016. Retrieved from

https://www.internetsociety.org/sites/default/files/blogs-media/driller-augmenting-

fuzzing-through-selective-symbolic-execution.pdf

Takanen, A., DeMott, J.D., & Miller, C. (2008). Fuzzing for Software Security Testing

and Quality Assurance. Artech House.

Zalewski, M. 2016. American Fuzzy Lop. Accessed on 25 July 2016. Retrieved from

http://lcamtuf.coredump.cx/afl/

Appendices

1

�

Appendix 1 First appendix

Simple C program fuzzed by AFL

The source code listing of simple C program that was developed to be fuzzed by AFL

is listed below.

#include <stdio.h>

#include <stdlib.h>

#include "afl_test3.h"

#define SPEED 30

int main()

{

 char drivers_speed[3];

 int converted_drivers_speed = 0;

 char toJail = 'n';

 int pointsToBeAddedToTheLicence = 0;

 printf("Now, the speed limit here is %i.\n",SPEED) ;

 printf("Now, be honest, how fast were you speeding ?");

 //gets(drivers_speed);

 converted_drivers_speed = LueKokonaisluku();

 if (converted_drivers_speed <SPEED) {

 printf("Do nothing, keep eating a jelly donut...") ;

 }

 else if (converted_drivers_speed <=SPEED+5) {

 printf("Issue a warning and slow down a bit!");

 readComments();

2

�

 return (0);

 }

 else {

 printf("Really? I clocked you doing' %i. That's wa y over

%i\n", converted_drivers_speed, SPEED);

 printf("In fact, it's %i over speed limit\n", conv ert-

ed_drivers_speed-SPEED);

 printf("Didn't you see that %i MPH sign?\n",SPEED) ;

 if ((converted_drivers_speed-SPEED)<=15) {

 //only add points to the drivers licence)

 pointsToBeAddedToTheLicence =

ReadAmountOfPointsToBeAddedToLicence();

 readComments();

 return (0);

 } else {

 printf("Should you be apprehended? Say N o r else

you go to the prison\n");

 toJail=lueKirjain();

 readComments();

 //pointsToBeAddedToTheLicence =

ReadAmountOfPointsToBeAddedToLicence();

 return (0);

 }

 }

}

int LueKokonaisluku(void) {

 int ok=0;

 int arvo=0;

 char unwanterCharacters[40];

3

�

 unwanterCharacters[0] = 0;

 while (ok!=1) {

 fflush(stdin);

 if (scanf("%i", &arvo)==0 || arvo<0 || arvo>99) {

 gets(unwanterCharacters);

 printf("\nInvalid speed!\n");

 fflush(stdin);

 ok=0;

 exit(0);

 continue;

 } else

 ok=1;

 fflush(stdin);

 }

 return (arvo);

}

int lueKirjain(void) {

 int ok=0;

 int arvo=0;

 char toJail;

 char unwanterCharacters[40];

 unwanterCharacters[0] = 0;

 //while (ok!=1) {

 gets(unwanterCharacters);

 fflush (stdin);

 toJail = getchar();

4

�

 printf("\ntoJail on: %c", toJail);

 gets(unwanterCharacters);

 fflush (stdin);

 if (toJail != 'N') {

 printf("\nSo, you chose to go to the prison for sp eeding!\n");

 fflush(stdin);

 ok=1;

} else {

 ok=0;

 printf("\nSo, you chose not to go to the prison fo r speeding!");

 printf("\nDrive slower!");

 readComments();

 exit(1);

}

//}

 fflush(stdin);

 return (toJail);

}

void readComments(void) {

 int ok=0;

 int arvo=0;

 char noComments;

 char unwanterCharacters[40];

 char policeComments[250];

 char clientComments[250];

 unwanterCharacters[0] = 0;

 //gets(unwanterCharacters);

5

�

 fflush (stdin);

 printf("\nAdd both client's and police comments. P ress N for no com-

ments or any other for adding of comments.\n");

 noComments = getchar();

 gets(unwanterCharacters);

 fflush (stdin);

 if (noComments == 'N') {

 printf("\nNo comments added.");

 fflush(stdin);

 ok=1;

} else {

 ok=0;

 printf("\nAdd client's comments, 250 characters is the limit!");

 gets(clientComments);

 //gets(unwanterCharacters);

 fflush (stdin);

 printf("\nAdd police's comments, 250 characters is the limit!");

 gets(policeComments);

// gets(unwanterCharacters);

 fflush (stdin);

 }

printf("\nAll needed information is gathered, filin g a report.\n");

 exit(1);

}

int ReadAmountOfPointsToBeAddedToLicence(void) {

 int ok=0;

 int arvo=0;

6

�

 //char amountOfPointsToBeAddedToLicence;

 char amountOfPointsToBeAddedToLicence[3]; //gets

 int convertedAmountOfPointsToBeAddedToLicence = 0;

 char unwantedCharacters[40];

 unwantedCharacters[0] = 0;

 //gets(unwantedCharacters);

 //fflush(stdin);

 printf("\nAdd number of points to be added!\n");

 //amountOfPointsToBeAddedToLicence = getchar();

 gets(amountOfPointsToBeAddedToLicence);

 printf("\namountOfPointsToBeAddedToLicence on: %c",

amountOfPointsToBeAddedToLicence);

 //gets(unwantedCharacters);

 //fflush(stdin);

 printf("\namountOfPointsToBeAddedToLicence on: %c" ,

amountOfPointsToBeAddedToLicence);

 //convertedAmountOfPointsToBeAddedToLicence =

amountOfPointsToBeAddedToLicence;

 convertedAmountOfPointsToBeAddedToLicence =

atoi(amountOfPointsToBeAddedToLicence);

 printf("\nAdded %d of points to the client's drive r's li-

cence!\n", convertedAmountOfPointsToBeAddedToLicenc e);

 fflush(stdin);

 return (arvo);

}

7

�

The header file listing of simple C program that was fuzzed by AFL is listed below.

int lueKokonaisluku(void);
int lueKirjain(void);
void readComments(void);
int ReadAmountOfPointsToBeAddedToLicence(void);

1

�

Appendix 2 Second appendix

Cyclomatic Complexity of the Appendice 1 program.

Cyclomatic complexity and some other statistics of the fuzzed program of Appendix 1

by CCCC. Following results are from CCCC.

This table shows measures over the project as a whole.

• NOM = Number of modules

Number of non-trivial modules identified by the analyser. Non-trivial modules

include all classes, and any other module for which member functions are

identified.

• LOC = Lines of Code

Number of non-blank, non-comment lines of source code counted by the ana-

lyser.

• COM = Lines of Comments

Number of lines of comment identified by the analyser

• MVG = McCabe's Cyclomatic Complexity

A measure of the decision complexity of the functions which make up the

program.The strict definition of this measure is that it is the number of linear-

ly independent routes through a directed acyclic graph which maps the flow

of control of a subprogram. The analyser counts this by recording the number

of distinct decision outcomes contained within each function, which yields a

good approximation to the formally defined version of the measure.

• L_C = Lines of code per line of comment

Indicates density of comments with respect to textual size of program

• M_C = Cyclomatic Complexity per line of comment

Indicates density of comments with respect to logical complexity of program

• IF4 = Information Flow measure

Measure of information flow between modules suggested by Henry and

Kafura. The analyser makes an approximate count of this by counting inter-

module couplings identified in the module interfaces.

Two variants on the information flow measure IF4 are also presented, one (IF4v) cal-

culated using only relationships in the visible part of the module interface, and the

other (IF4c) calculated using only those relationships which imply that changes to the

client must be recompiled of the supplier's definition changes.

Metric Tag Overall
Per

Module

2

�

Number of modules NOM 1

Lines of Code LOC 55 55.000

McCabe's Cyclomatic Number MVG 9 9.000

Lines of Comment COM 8 8.000

LOC/COM L_C 6.875

MVG/COM M_C 1.125

Information Flow measure (inclusive) IF4 0 0.000

Information Flow measure (visible) IF4v 0 0.000

Information Flow measure (concrete) IF4c 0 0.000

Lines of Code rejected by parser REJ 0

This report was generated by the program CCCC, which is FREELY REDISTRIBUTABLE

but carries NO WARRANTY.

CCCC was developed by Tim Littlefair as part of a PhD research project. This project is

now completed and descriptions of the findings can be accessed at

http://www.chs.ecu.edu.au/~tlittlef.

User support for CCCC can be obtained by mailing the list cccc-

users@lists.sourceforge.net.

1

�

Appendix 3 Third appendice

Simple Python program for GDB log conversion

The source code for the Python program that converts AFL’s crashes into GDB and

outputs both xlsx and csv files with gdb crash dumps.

import argparse

import subprocess

import csv

import os

import sys

import shutil

import xlsxwriter

import codecs

import re

reload(sys)

sys.setdefaultencoding('utf8')

global_keep_separate_output_files = False

global_input_is_directory = False

import xlrd

import csv

"""

 Simple function to convert xlsx to csv used by this program

internally.

"""

def csv_from_excel():

 wb = xlrd.open_workbook('Crashes.xlsx')

2

 sh = wb.sheet_by_name('Sheet1')

 your_csv_file = open('Crashes.csv', 'wb')

 wr = csv.writer(your_csv_file, quoting=csv.QUOTE_A LL)

 for rownum in xrange(sh.nrows):

 wr.writerow(sh.row_values(rownum))

 your_csv_file.close()

"""

 Simple function to verify args.

 - Checks that fuzzed program, input directory

and output directories exists.

"""

def Validate_args(args):

 print ('\n')

 print ('Checking args')

parser = argparse.ArgumentParser(description='Proce sses American

Fuzzy Lop logs with GDB and creates a database of the results.')

parser.add_argument('fuzzed', metavar='program',

 help='the fuzzed program')

parser.add_argument('input', metavar='input',

 help='input directory of crashes ')

parser.add_argument('output', metavar='output',

 help='output directory to store analyzed crashes')

parser.add_argument('keep', metavar='keep',

 help='if set to True keeps separ ate output files

instead of deleting them on exit.')

args = parser.parse_args()

3

#print(args)

if (os.path.lexists(args.fuzzed) == False):

 print('The fuzzed program could not be found')

 sys.exit()

if (os.path.lexists(args.input) == False):

 print('The input directory could not be found')

 sys.exit()

if (os.path.isdir(args.input) == True):

 print(os.listdir(args.input))

 list = os.listdir(args.input)

 number_files = len(list)

 print number_files

 global_input_is_directory = True

if (os.path.lexists(args.output) == False):

 print('The AFL\'s output file or directory could n ot be

found')

 sys.exit()

if (os.path.isdir(args.output) == False):

 print('The AFL\'s output is not directory')

 sys.exit()

if(len(os.listdir(args.output)) >0):

 print('The AFL\'s output directory still has some files!

Remove those.')

4

 sys.exit()

keep_files = args.keep[0]

keep_files = keep_files.upper()

if (keep_files == 'Y'):

 print('Leaving separate output files')

 global_keep_separate_output_files = True

else:

 print('Not keeping separate output files')

print ('\n')

Validate_args(args)

print ('\n')

#Reads the number of files in the input directory

list = os.listdir(args.input)

number_files = len(list)

number_files = int(number_files)

path_to_input_files = os.getcwd() + '\\' + args.inp ut + '\\'

#Copies the given fuzzed program to the same direct ory as the input

files in order to enable GDB to process it in batch run.

shutil.copy(args.fuzzed, args.input + '/' + args.fu zzed)

#Limits the files to be processed by GDB to the fil es that start with

id_

inputFilesList = [x for x in list if x.startswith(' id:')]

5

#Processes every file in inputFilesList and runs GD B as a shell

command for every input files

amountOfFiles = len(inputFilesList)

prevdir = os.getcwd()

for i in range(amountOfFiles):

 ifile = open(args.input + '//run_gdb.bat', "wb+")

 os.chmod(args.input + '//run_gdb.bat', 0o77 7)

 filename=inputFilesList[i]

 #print(inputFilesList[i])

 parameters2 = "gdb --batch -ex 'r <"+filena me+"'

"+args.fuzzed+" -ex bt >output_"+filename+".txt"

 ifile.write(parameters2)

 ifile.close()

 print ('\nSending file: ' + filename + ' to GDB')

 os.chdir(args.input)

 subprocess.call('./run_gdb.bat', shell=True)

 os.chdir(prevdir)

#print parameters2

#Before writing to a database file every output fil e from GDB is

moved to output directory

source =os.getcwd() + '/' + args.input

destination = os.getcwd() + '/' + args.output

files = os.listdir(source)

prevdir = os.getcwd()

6

os.chdir(args.input)

for f in files:

 if (f.endswith("txt")):

 shutil.move(f, destination)

os.chdir(prevdir)

list = os.listdir(args.output)

number_files = len(list)

number_files = int(number_files)

path_to_output_files = os.getcwd() + '/' + args.out put + '/'

A workbook is created and a worksheet is added.

workbook = xlsxwriter.Workbook('Crashes.xlsx')

worksheet = workbook.add_worksheet()

Start from the first cell. Rows and columns are z ero indexed.

row = 0

col = 0

print ('\nStarting to write output files:')

for i in range(len(list)):

 #ifile = open(path_to_output_files + list[i], "rb")

 ifile = codecs.open(path_to_output_files + list[i] , "rb",

encoding='utf8', errors = 'ignore')

 print ("\tWriting output file: " + list[i])

 reader = ifile.readlines()

7

 #print reader

 x = i+1

 worksheet.write_string(row, col, 'crash dump #:' + str(x))

 row += 1

 for item in (reader):

 print item

 item = re.sub(r'\([^()]*\)', '', item)

 #worksheet.write_string(row, col, item)

 worksheet.write(row, col, item)

 row += 1

 worksheet.write_blank(row, col, item)

workbook.close()

numberOfInputFiles = str(len(inputFilesList))

numberOfOutputFiles = str(len(os.listdir(path_to_ou tput_files)))

print ('\nProducing output files, please wait...')

csv_from_excel()

print "\n" + numberOfInputFiles + " input files pr ocessed and " +

numberOfOutputFiles + " output files done!"

#clean up

if (keep_files == 'N'):

 print('\nRemoving separate output files')

 os.chdir(args.output)

 files = os.listdir(path_to_output_files)

 for f in files:

 if (f.endswith("txt") and len(f) >1):

8

 os.remove(f)

1

�

Appendix 4 Fourth appendix

Questionnaire about current issues with analyzing AFL’s fuzzing results in Jyvsectec.

This is a semi-structured questionnaire about current issues with analyzing fuzzing

results in Jyvsectec. The purpose of this questionnaire is to provide data for the au-

thor’s design research about fuzzing and evaluate the solution.

The current process was described in an email to be as following: After AFL fuzzing is

completed the crashes are analyzed manually with GDB debugger and the duplicate

entries are removed with bash3 script that uses GDB to get crash dumb. Those crash

dumps are stored on sqlite3 database where searches are manually done in order to

analyze the causes of crashes.

1. Overall, how satisfied are you with the current process of analyzing AFL’s fuzzing

results?

1 = really satis-

fied

2 = somewhat

satisfied

3 = not satis-

fied nor dissat-

isfied

4 = somewhat

dissatisfied
5 = really dis-

satisfied

� � � � �

2. Overall, how do you see the amount of manual work that has to be done as a part

of analyzing AFL’s fuzzing results?

1 = way too

little

2 = could be

more

3 = not too

little nor too

much

4 = could be

less
5 = way too

much

� � � � �

3. Overall, how easy it is in your opinion to separate different crashes?

1 = really easy
2 = somewhat

easy

3 = not too

easy nor too

difficult

4 = somewhat

difficult
5 = too diffi-

cult

� � � � �

4. Overall, how much automated processing of results should be used?

1 = automate

all

2 = automate

as much as

possible but

3 = find the

correct bal-

ance even

4 = automate

some of the

process but

5 = I’d prefer

the use of pa-

per and pencil

2

let people

check the re-

sults

though that

may vary case

by case

some of the

work is left to

the people,

like running

several com-

mands and

combining the

results

� � � � �

5. If you had to name two biggest issues within the analyzing AFL’s fuzzing results

which would those be?

 __

 __

1

�

Appendix 5 Fifth appendix

Questionnaire about current issues with analyzing AFL’s fuzzing results in Jyvsectec

after intervention.

This is a semi-structured questionnaire about current issues with analyzing fuzzing

results in Jyvsectec. The purpose of this questionnaire is to provide data for the au-

thor’s design research about fuzzing and evaluate the solution.

The current process was described in an email to be as following: After AFL fuzzing is

completed the crashes are analyzed manually with GDB debugger and the duplicate

entries are removed with bash3 script that uses GDB to get crash dumb. Those crash

dumps are stored on sqlite3 database where searches are manually done in order to

analyze the causes of crashes. An intervention to the analyzing process was attempt-

ed by providing a new program for that and this questionnaire is related to that.

1. How satisfied are you after the intervention with the current process of analyzing

AFL’s fuzzing results when a new program is used?

1 = really satis-

fied

2 = somewhat

satisfied

3 = not satis-

fied nor dissat-

isfied

4 = somewhat

dissatisfied
5 = really dis-

satisfied

� � � � �

2. How do you see the amount of manual work after the intervention that has to be

done as a part of analyzing AFL’s fuzzing results?

1 = way too

little

2 = could be

more

3 = not too

little nor too

much

4 = could be

less
5 = way too

much

� � � � �

3. After the intervention, how easy is it in your opinion to separate different crashes?

1 = really easy
2 = somewhat

easy

3 = not too

easy nor too

difficult

4 = somewhat

difficult
5 = too diffi-

cult

� � � � �

2

4. After the intervention as a whole, how much automated processing of results

should be used?

1 = automate

all

2 = automate

as much as

possible but

let people

check the re-

sults

3 = find the

correct bal-

ance even

though that

may vary case

by case

4 = automate

some of the

process but

some of the

work is left to

the people,

like running

several com-

mands and

combining the

results

5 = I’d prefer

the use of pa-

per and pencil

� � � � �

5. After the intervention, if you had to name two biggest issues within the analyzing

AFL’s fuzzing results which would those be?

 __

 __

1

�

Appendix 6 Sixth appendix

Sample crash results after Python program has been run.

Below is a sample of crash results after the Python program has been run. The crash

dump contains the data provided by GDB but Python program can be configured to

use different parameters. If crash analysis is performed for those crash dumps they

seem to be caused by the same issue that is called in different parts of the program.

However, AFL detects these as separate crashes.

crash dump #:1

 Now, the speed limit here is 30.

 Now, be honest, how fast were you speeding?Really? I clocked you doing' 77. That's way over 30

In fact, it's 47 over speed limit

 Didn't you see that 30 MPH sign?

 Should you be apprehended? Say N or else you go to the prison

 Program received signal SIGABRT, Aborted.

 0xb7fdbbe0 in __kernel_vsyscall

 #0 0xb7fdbbe0 in __kernel_vsyscall

 #1 0xb7e35057 in __GI_raise at ../sysdeps/unix/sysv/linux/raise.c:55

 #2 0xb7e36699 in __GI_abort at abort.c:89

 #3 0xb7e7319e in __libc_message at ../sysdeps/posix/libc_fatal.c:175

 #4 0xb7f03cb8 in __GI___fortify_fail at fortify_fail.c:38

 #5 0xb7f01e3a in __GI___chk_fail at chk_fail.c:28

 #6 0xb7f01dd1 in __gets_chk at gets_chk.c:67

 #7 0x08048de3 in gets at /usr/include/i386-linux-gnu/bits/stdio2.h:236

 #8 lueKirjain at afl_test3.c:76

 #9 0x0804884a in main at afl_test3.c:38

 crash dump #:2

 Now, the speed limit here is 30.

 Now, be honest, how fast were you speeding?

 Program received signal SIGABRT, Aborted.

 0xb7fdbbe0 in __kernel_vsyscall

 #0 0xb7fdbbe0 in __kernel_vsyscall

 #1 0xb7e35057 in __GI_raise at ../sysdeps/unix/sysv/linux/raise.c:55

 #2 0xb7e36699 in __GI_abort at abort.c:89

 #3 0xb7e7319e in __libc_message at ../sysdeps/posix/libc_fatal.c:175

 #4 0xb7f03cb8 in __GI___fortify_fail at fortify_fail.c:38

 #5 0xb7f01e3a in __GI___chk_fail at chk_fail.c:28

 #6 0xb7f01dd1 in __gets_chk at gets_chk.c:67

 #7 0x08048b5b in gets at /usr/include/i386-linux-gnu/bits/stdio2.h:236

 #8 LueKokonaisluku at afl_test3.c:55

 #9 0x08048713 in main at afl_test3.c:17

 crash dump #:3

 Now, the speed limit here is 30.

2

Now, be honest, how fast were you speeding?Really? I clocked you doing' 40. That's way over 30

In fact, it's 10 over speed limit

 Didn't you see that 30 MPH sign?

 Add number of points to be added!

 Program received signal SIGABRT, Aborted.

 0xb7fdbbe0 in __kernel_vsyscall

 #0 0xb7fdbbe0 in __kernel_vsyscall

 #1 0xb7e35057 in __GI_raise at ../sysdeps/unix/sysv/linux/raise.c:55

 #2 0xb7e36699 in __GI_abort at abort.c:89

 #3 0xb7e7319e in __libc_message at ../sysdeps/posix/libc_fatal.c:175

 #4 0xb7f03cb8 in __GI___fortify_fail at fortify_fail.c:38

 #5 0xb7f01e3a in __GI___chk_fail at chk_fail.c:28

 #6 0xb7f01dd1 in __gets_chk at gets_chk.c:67

 #7 0x08048fc8 in gets at /usr/include/i386-linux-gnu/bits/stdio2.h:236

 #8 ReadAmountOfPointsToBeAddedToLicence at afl_test3.c:146

 #9 0x08048801 in main at afl_test3.c:33

1

�

Appendix 7. Seventh appendix

Sample crash results after the developed Python program has been run against

Libjpeg-6b.

Below is a sample of crash results after the Python program has been run against

Libjpeg-6b released in 1998. The crash dump contains the data provided by GDB but

Python program can be configured to use different parameters. If crash analysis is

performed for those crash dumps they seem to be caused by two crashes that are

repeated. After a quick crash analysis is done, I would state that crash dumps one,

two, three, five, eight, nine and ten are caused by the same issue. Crash dumps six,

seven and eleven are also caused by the same issue but different from crashes men-

tioned above. However, AFL detects these as separate crashes. The total number of

crashes was over 400 after nine minutes of fuzzing when source code is instrument-

ed.

crash dump #:1

 Program received signal SIGSEGV, Segmentation fault.

0x0804e352 in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804e352 in get_text_gray_row at rdppm.c:152

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:2

 Program received signal SIGSEGV, Segmentation fault.

0x0804dfaa in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804dfaa in get_text_gray_row at rdppm.c:152

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:3

 Program received signal SIGSEGV, Segmentation fault.

0x0804e27d in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804e27d in get_text_gray_row at rdppm.c:152

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:4

 Program received signal SIGSEGV, Segmentation fault.

0x0804e352 in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804e352 in get_text_gray_row at rdppm.c:152

2

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:5

 Program received signal SIGSEGV, Segmentation fault.

0x0804e352 in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804e352 in get_text_gray_row at rdppm.c:152

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:6

 Program received signal SIGFPE, Arithmetic exception.

alloc_sarray at jmemmgr.c:406

406 ltemp = (MAX_ALLOC_CHUNK-SIZEOF) /

#0 alloc_sarray at jmemmgr.c:406

#1 0x08051000 in start_input_tga at rdtarga.c:437

#2 0x08049063 in main at cjpeg.c:568

crash dump #:7

 Program received signal SIGFPE, Arithmetic exception.

alloc_sarray at jmemmgr.c:406

406 ltemp = (MAX_ALLOC_CHUNK-SIZEOF) /

#0 alloc_sarray at jmemmgr.c:406

#1 0x08051000 in start_input_tga at rdtarga.c:437

#2 0x08049063 in main at cjpeg.c:568

crash dump #:8

 Program received signal SIGSEGV, Segmentation fault.

0x0804dfaa in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804dfaa in get_text_gray_row at rdppm.c:152

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:9

 Program received signal SIGSEGV, Segmentation fault.

0x0804e352 in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804e352 in get_text_gray_row at rdppm.c:152

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:10

 Program received signal SIGSEGV, Segmentation fault.

0x0804dfaa in get_text_gray_row at rdppm.c:152

152 *ptr++ = rescale[read_pbm_integer];

#0 0x0804dfaa in get_text_gray_row at rdppm.c:152

#1 0x080490e8 in main at cjpeg.c:584

crash dump #:11

 Program received signal SIGFPE, Arithmetic exception.

3

alloc_sarray at jmemmgr.c:406

406 ltemp = (MAX_ALLOC_CHUNK-SIZEOF) /

#0 alloc_sarray at jmemmgr.c:406

#1 0x08051000 in start_input_tga at rdtarga.c:437

#2 0x08049063 in main at cjpeg.c:568

