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Abstract 
 
Autonomous vehicles promise large benefits for humanity, such as a significant reduction of 
injuries and deaths in traffic accidents, and more efficient utilization of transportation leading 
to reduced air pollution and vastly reduced costs. However, at the present moment the 
technology is still in development.  
 
The objective of the thesis was to build a simple and reliable testbed for the evaluation of 
algorithms for autonomous vehicles and to implement a baseline car control algorithm. For 
this purpose a system that allows a remote controlled car autonomously follow a track on the 
floor was developed. This work used the Parrot Jumping Sumo car with a built-in camera as 
the experimental vehicle. A control system that allows to receive and record the images from 
the car and send back the control commands was implemented. The baseline car control 
algorithm chosen in this work was a convolutional neural network (CNN) predicting control 
commands from the images received in real time from the car’s camera.  
 
CNNs are machine learning models achieving state of the art results in a variety of computer 
vision tasks, and have previously been applied to autonomous driving. Several simple 
machine learning models were introduced in this thesis, followed by construction of a CNN 
from these models. Afterwards, the algorithms used to train CNNs were reviewed. The CNN 
used in this work was trained on one hour of recorded driving data and was able to 
successfully control the car for over a minute without requiring an intervention by a human 
driver. 
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autonomous driving, robot operating system, machine learning, deep learning, supervised 
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SYMBOLS AND ABBREVIATIONS

Symbols

a A scalar

a A vector or a random variable

A A matrix

A A set

p(·) A probability distribution

θ The model parameters

σ(·) The sigmoid function

1(·) The indicator function

Indexing

x(i) The i-th example from a dataset

h(i) The i-th hidden layer of a neural network

W (i) The weight matrix of the i-th hidden layer of a neural network

ai The i-th element of a vector a

Ai, j The i-th element of the j-th column of a matrix A

Abbreviations

RC Remote-controlled

ML Machine learning

NN Neural network

FC Fully-connected

CNN Convolutional neural network

ROS Robot operating system

CPS Command prediction system
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1 INTRODUCTION

In the modern world, machine learning (ML) plays a role more significant than

ever in many seemingly very different areas such as genetics, pharmacologi-

cal research, image classification and segmentation, video captioning, speech

recognition, natural language processing, robotics and stock market predictions.

ML powers the Netflix movie recommendation system and the Google search

engine; most of the weather forecasting labs use ML algorithms to make pre-

dictions.

This thesis focuses on the application of ML to autonomous driving, a tech-

nology expected to redefine the automotive world. The Curious AI Company

develops powerful ML algorithms that might operate the self-driving cars of the

future. A simple and reliable testbed is needed for evaluating the algorithms in

the physical world. For this purpose a system that allows a remote controlled

car autonomously follow a color-marked track on the floor using the imagery

from the car’s built-in camera is developed. As a baseline algorithm a convo-

lutional neural network is used to predict the control commands from the video

frames. The theoretical part of this thesis addresses the following questions:

• What is machine learning?

• Which kinds of machine learning algorithms exist?

• What are convolutional neural networks?

• How are neural networks trained?

This thesis is organized as follows. Chapter 2 provides an overview of the basic

concepts and assumptions in ML. Chapter 3 delves into parametric models and

introduces convolutional neural networks. In Chapter 4 algorithms and tech-

niques used to train parametric models are explored. Chapter 5 briefly reviews

applications of ML in autonomous driving, reports the detailed implementation

of the car control system and analyzes the results. Chapter 6 is dedicated to

conclusions.
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2 MACHINE LEARNING

This chapter provides an overview of the basic concepts in ML. First, the def-

inition of ML is introduced, followed by a description of the main paradigms of

learning. The chapter closes with a discussion of assumptions about the data

generating process that are often embedded into ML models.

2.1 Definition

As opposed to classical computer programs, in which the task is formalized as a

predefined sequence of precise instructions, ML algorithms base their decisions

on the information extracted from the data. This is especially important in cases

where it is not feasible to specify the task explicitly, or the static specifications

are not robust enough.

One of the classic definitions of machine learning is provided by Mitchell (1997):

DEFINITION 1. “A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P if its performance

at tasks in T, as measured by P, improves with experience E”.

Consider an image classification task: a dataset of images with either a cat or a

dog on each image is given. For some of the images the labels are given, that

is, it is known if there is a cat or a dog in the image, and for another set of images

the labels are unknown. The task T is to infer the labels for images without them;

experience E consists of the set of images paired with their known labels, also

commonly referred to as training set. The set of images with unknown labels

is usually called test set. The performance measure P measures how well the

knowledge extracted from the training set is generalized to make predictions

about the labels of the images in the test set.

It is easy to see that solving the task with a classical computer program is not

practical and likely infeasible. Suppose the images are grayscale with the reso-

lution of 64×64 and have the standard 8 bit color depth. The number of all such

images is extremely large: 28×64×64 = 232768 ≈ 109860, and all images of cats
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and dogs are a tiny subset of them. Still, it would take an enormous amount of

if−then statements to disentangle the messy pixel input into binary output. On

the other hand, a machine learning algorithm will automatically learn the most

relevant and informative features of the images, collapsing the input space into

a low-dimensional manifold where it is easy to perform classification.

2.2 Paradigms of Learning

Based on the type of signal received with the input data, ML algorithms can be

roughly divided into several classes: supervised, unsupervised, semi-supervised

and reinforcement learning. These paradigms of learning are described below.

2.2.1 Supervised Learning

Supervised learning is the most mainstream form of ML, and by far the most

successful in practical applications (LeCun et al. 2015). In the supervised set-

ting the algorithm learns a mapping between given input-output pairs, as in the

cats and dogs image classification example above.

More formally, the dataset is usually provided in a form of pairs (x(i),y(i)) where

x(i) ∈ Rn is an input item and y(i) is the item’s corresponding correct output.

When all samples x(i) have the same dimensions, the input is commonly ex-

pressed as a design matrix X = [x(0),x(1), ...,x(k)]T . Similarly, outputs are often

represented as a matrix Y = [y(0),y(1), ...,y(k)]T or a vector y if outputs y(i) are

one-dimensional. Each of the elements of an item x(i) is referred to as a fea-

ture. Additionally, sometimes feature can refer to a whole column of the design

matrix X .

In supervised learning the goal is to approximate function f such that f (X) =Y .

Learning f here corresponds to learning the conditional probability distribution

p(y|x).

In case the domain of y(i) is a discrete set (y(i) ∈ Zm), such as “spam” and “not

spam” categories of emails in a spam filter, the modeling task is referred to as

classification. In the case when y(i) takes continuous values (y(i) ∈ Rm), such

as in a task predicting the price of the house given its area, the task is called

regression. This thesis deals with a supervised regression problem.
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Even though at the first glance supervised ML algorithms can seem very dif-

ferent, and indeed rely on different paradigms of math, computer science and

physics, the function approximators narrative unifies them. The job of a ML al-

gorithm, be it logistic regression, a decision tree or a neural network, is to con-

struct an accurate mapping from inputs to their corresponding outputs (Ayodele

2010). For the example of image classification mentioned above, an arbitrary

ML algorithm is learning how to approximate the function from the domain of

provided images to the range of labels.

2.2.2 Unsupervised Learning

A task of inferring some kind of structure in the data without labels is usually

referred to as unsupervised learning. The dataset is typically provided in a form

of x(i), and the goal is to model the probability distribution of data p(x).

The kinds of tasks where unsupervised learning is used are:

• Cluster analysis;

• Dimensionality reduction for exploratory data mining;

• Generative modelling: the goal is to mimic the data generating process;

• Compression tasks: it is desired to keep as much structure of the data

distribution as possible while using a limited amount of memory.

In addition to the above, unsupervised learning can be used as a feature extrac-

tion part of a procedure for some other form of learning. For example, we can

learn a good representation of animals from a large number of unlabelled pic-

tures of animals, and hereafter use this representation with a small number of

labeled pictures of cats and dogs to train an accurate cat vs dog classifier. This

kind of approach is called semi-supervised learning. Leading machine learn-

ing researchers expect unsupervised learning to become significantly more im-

portant in the longer term (LeCun et al. 2015).
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2.2.3 Reinforcement Learning

Reinforcement learning is concerned with sequential decision making and re-

lies on a much weaker training signal than supervised learning. The system, re-

ferred to as the agent, interacts with the environment by making actions based

on the observed state of the environment and receiving rewards; the goal is to

maximize the overall accumulated and time-discounted reward. As there is no

clear feedback about which actions lead to the reward or punishment, the agent

has to figure out the correspondence by itself. Examples of tasks that fit the

reinforcement learning framework are playing games such as Atari (Mnih et al.

2015) and Go (Silver et al. 2016), control tasks in robotics and even optimization

of power usage effectiveness in a datacenter (Evans & Gao 2016).

2.3 Assumptions

A large part of a success of a ML algorithm is a correct set of beliefs about the

world incorporated into it. Domingos (2012) phrases this as “every learner must

embody some knowledge or assumptions beyond the data it’s given in order to

generalize beyond it”.

Formally this is known as the No Free Lunch Theorem, introduced by Wolpert

& Macready (1997):

THEOREM 1. Given a finite set V and a finite set S of real numbers, assume

that f : V→ S is chosen at random according to uniform distribution on the set

VS of all possible functions from V to S. For the problem of optimizing f over the

set V, then no algorithm performs better than blind search.

In other words, averaged across all possible function approximation tasks no

algorithm generalizes to the previously unseen data points better than a ran-

dom algorithm. This suggests that in practice good performance can only be

achieved by incorporating the knowledge of the distribution’s structure into the

ML model as a set of assumptions. From a Bayesian viewpoint these assump-

tions can be seen as priors. The assumptions used in the majority of machine

learning models are described below.
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The smoothness assumption for supervised regression states that if two in-

puts points x(0), x(1) are close, so should be their corresponding outputs y(0), y(1)

(Zhu & Goldberg 2009). For supervised classification this translates into similar

examples having similar classes. For semi-supervised and unsupervised learn-

ing algorithms the smoothness assumption usually holds only for high-density

regions of data.

The limited dependencies assumption states that most features do not affect

each other to a large extent. For example, the Naive Bayes model assumes that

the elements of x(i) are conditionally independent from each other given the out-

put y(i). In graphical models the limited dependencies assumption corresponds

to the graph not being densely connected (Sutherland 2015).

The limited complexity assumption states that the true data generating pro-

cess has a significant amount of structure and can be represented well with

a fixed number of parameters. This assumption is somewhat similar to incor-

porating Occam’s razor into the model. Regularization, which is described in

Section 4.4, usually also limits model complexity, adding a preference for sim-

pler models.

There is no single machine learning algorithm that works best across all the

tasks. Different algorithms add more assumptions about the data generating

process to the ones mentioned above, which results in superior performance in

tasks where the added assumption is correct. Additionally, when selecting a ML

algorithm one always deals with tradeoffs between speed, complexity, accuracy,

and interpretability across the algorithms.

3 PARAMETRIC MODELS

This chapter presents parametric models, the family of ML models to which

convolutional neural networks belong. First, linear regression and logistic re-

gression, two simple parametric models, are introduced. Next, a fully-connected

neural network is constructed from these two models. Finally, the fully-connected

neural network is extended to a convolutional neural network.
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3.1 Overview

One of the most important dichotomies in ML is between parametric and non-

parametric models. The main distinction between these families of models lies

in the different ways of approximating the data generating process: in para-

metric models the number of parameters specifying a model is fixed whereas

in nonparametric models the number of parameters grows with the amount of

training data.

Parametric models, which are the focus of this thesis, are usually faster to use

and easier to interpret, but they make stronger and sometimes unnecessary as-

sumptions about the nature of the data distributions. Nonparametric models are

more flexible, but often computationally intractable for large datasets. (Murphy

2012)

Formally, parametric models assume a finite set of parameters θ . Ghahra-

mani (2015) states that given the parameters, predictions ŷ, are independent

of the observed data, x:

p(ŷ|θ ,x) = p(ŷ|θ) (1)

Therefore θ capture everything there is to know about the data.

In order to evaluate how well a given model describes the observed data and

to estimate the model’s generalization to unobserved data some kind of perfor-

mance measure is needed. This performance measure is referred to as a cost

or loss function J(x,y,θ); in supervised learning the two most commonly used

cost functions are mean squared error and cross-entropy loss. Given a family

of the model and the cost function, the task of selecting model parameters θ is

reduced to finding θ that minimize the cost J:

θ = argminθ J(x,y,θ) (2)

The process of finding parameters satisfying the above is referred to as training

the model.

The next sections describe several parametric models and their workings start-

ing from the simplest model for regression, linear regression, followed by neural
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networks, their different architectures and the various tricks for training them.

3.2 Linear Regression

As mentioned in the section on paradigms of learning, in regression the goal is

to approximate a function y = f (x,θ) where (x,y) is a pair of random variables

x ∈ Rn and y ∈ R. A simple example of a problem where one might want to

use linear regression is predicting a child’s height y based on parents’ heights

[x(0),x(1)]T . As the algorithm’s name implies, linear regression assumes that

there is an approximately linear relationship between x and y parametrized by a

weight matrix and a bias term θ = [W,b]. The estimate of y is denoted as ŷ:

ŷ = f (x,θ) =WxT +b (3)

To simplify the notation Ng (2013) introduces the convention of letting x(i) →

[x(i),1] and W → [W,b], so that:

ŷ = f (x,θ) =WxT (4)

The mean squared error cost is typically used to evaluate the performance of

the model:

JMSE(y, ŷ) =
1
N

Σ
N
i=1(ŷi− yi)

2, (5)

where N is the number of labeled items in the dataset.

Intuitively, one can see that the cost will be 0 when ŷ = y. In practice, this almost

never happens due to variance and noise in the data, even if the true underlying

relationship is linear. The best one can do is to find such parameters θ that the

cost is minimized.

Typically to minimize the cost an iterative numerical algorithm such as gradient

descent (described in Section 4.1) is used. However, for the linear least squares

problem there exists a closed form solution (Goodfellow et al. 2016):

W = argminW ||y−WXT ||2 = (XT X)−1XT y (6)
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3.2.1 Polynomial Regression

It is easy to make linear regression accurately approximate more complex rela-

tionships between x and y by adding polynomial features thus making the model

more expressive. For example, a one-dimensional input x may be extended to

include all polynomials of x up to degree D:

ŷ = f (xD,θ D) =WDxD +WD−1xD−1 + ...+W1x+b (7)

Polynomial regression is still linear in features, and the additional expressive

power comes from the newly added polynomial features being nonlinear.

3.2.2 Overfitting and Underfitting

In practice, a less expressive model is likely to be unable to accurately model

a complex data generating process, while a more expressive model has higher

chances of capturing the noise present in the data. These two failure modes are

referred to as underfitting and overfitting. Figure 1 illustrates overfitting and un-

derfitting with an example of approximating a noisy cosine function using poly-

nomial regression models of varying degrees.

When observing subpar performance on the test data, it is important to identify

whether underfitting or overfitting is taking place in order to optimally choose a

course of action that will address the problem. One of the best ways to diagnose

underfitting and overfitting is examining the loss L for the training data and the

test data.

• Overfitting is usually diagnosed if the loss computed on the test dataset is

significantly higher than the loss computed on the training dataset.

• Underfitting is usually suspected when both the training and the test losses

are high.

Overfitting is usually addressed by collecting more data and using regulariza-

tion techniques further discussed in Section 4.4. Underfitting can often be ad-

dressed by improving the machine learning model – incorporating the correct

assumptions about the data generating process and increasing the model com-

plexity.
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Figure 1. Underfitting (left), good performance (center) and overfitting (right)

3.3 Logistic Regression

Logistic regression generalizes the linear regression model to handle classifi-

cation, a range of supervised learning tasks where the output is discrete. The

logistic function, also referred to as sigmoid function, “squashes” the arbitrarily

real-valued input into an output with values in the range (0,1).

σ(x) =
1

1− e−x (8)

In the case of binary output y ∈ {0,1}, logistic regression models the estimate

of the probability that y = 1:

p̂(y = 1) = σ(WxT ) (9)

The binary cross-entropy cost is typically used to evaluate performance of lo-

gistic regression. In the equation below 1(·) is an indicator function, such that

1true statement = 1 and 1false statement = 0.

JCE(y, ŷ) =−
N

∑
i=1

[1y(i)=1log(p̂(y(i) = 1))+1y(i)=0log(1− p̂(y(i) = 1))] (10)

=−
N

∑
i=1

[y(i)log(p̂(y(i) = 1))+(1− y(i))log(1− p̂(y(i) = 1))] (11)

Unlike for the linear least squares problem, there is no closed-form solution for

finding the parameters that minimize the cross-entropy cost. Instead, iterative

numerical algorithms such as gradient descent are typically used.

Logistic regression can be extended to an output with multiple classes. Typically

the k classes are represented in the “one-hot” encoding – an input that belongs
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to the j-th class ( j ∈ 1, ...,k) is labeled with a k-dimensional vector where the j-th

element equals 1 and all the other elements are 0.

Analogously to the sigmoid function in the logistic regression, the softmax func-

tion is used to make the outputs of the multiclass logistic regression inter-

pretable as class probabilities. The softmax function is a generalization of the

sigmoid function that receives a k-dimensional vector as input and outputs a

k-dimensional vector whose elements are positive and sum up to 1. The j-th

element of the output vector ( j ∈ 1, ...,k) is given by:

so f tmax(z) j =
ez j

∑
k
i=1 ezi

, (12)

where the subscript j indicates the j-th element of the output vector.

The estimate of the probability that the output belongs to given class j is then:

p̂(y = j) = so f tmax(WxT ) j (13)

The binary cross-entropy cost can also be generalized to multiple labels. As-

suming y is represented using the one-hot encoding, the cross-entropy cost is:

JCE =
N

∑
i=1

yilog(so f tmax(WxT ))T (14)

3.4 Neural Networks

In many interesting cases, such as computer vision and natural language pro-

cessing, linear models often cannot satisfyingly approximate the function y =

f (x). To extend linear models to represent a richer family of nonlinear func-

tions of x, one can apply the linear model not to x itself but to a nonlinearly

transformed input g(x) (Goodfellow et al. 2016). Neural networks (NNs) are

parametric function approximators f (x) composed of several simpler functions:

fNN(x) = ( f(n)( f(n−1)(... f(0)(x))). A single layer NN can be defined as

ŷ = f (x,W (2),b(2),W (1),b(1)) =W (2)g(W (1)x+b(1))+b(2), (15)

where g(·), usually an element-wise function, is referred to as activation function

and the vector h(1) = g(W (1)x + b(1)) is called hidden layer. Elements of the

hidden layer are usually referred to as hidden units.
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The Universal Approximation Theorem by Hornik et al. (1989) states that a

single layer neural network with a finite number of neurons in a hidden layer and

loose assumptions on the activation function g(·) can approximate continuous

functions on compact subsets of Rn to any desired degree of accuracy.

To simplify the notation for the neural network layers one can use the same trick

Ng (2013) used for linear regression: h(l)→ [h(l),1] and W (l)→ [W (l),b(l)]. Using

this notation, Equation 15 can be rewritten as:

ŷ =W (2)g(W (1)x) (16)

A single layer neural network can be generalized to an arbitrary number of hid-

den layers h(l), l = 1 : L using the following recursive relation:

h(0) = x, (17)

h(l) = g(W (l)h(l−1)) (18)

The total number of layers in the network is called depth of the model. From

this terminology the name deep learning arises. Algorithm 1 demonstrates the

computation of an output and the loss of a neural network of depth l.

Algorithm 1. Neural Network Forward Propagation
Require: l, the network depth
Require: W (i), i ∈ {1, ..., l}, the weight matrices of the model
Require: b(i), i ∈ {1, ..., l}, the bias parameters of the model
Require: g(i)(·), i ∈ {1, ..., l}, the list of activation functions
Require: J(·), the cost function
Require: x, the input to process
Require: y, the target output

h(0)← x
for k← 1, ..., l do

a(k)← b(k)+W (k)h(k−1)

h(k)← g(k)(a(k))
end for
ŷ← h(l)

L← J(ŷ,y) . In practice, a regularization term is of-
ten added to the loss L. Regularization
is addressed in detail in section 4.4.

return L

It is common to represent neural networks as directed acyclic graphs. For ex-

ample, Figure 2 shows a neural network with input x ∈ R4, two hidden layers
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h(1) ∈ R5 and h(2) ∈ R3, and output y ∈ R. Nodes of the graph are elements of

the network’s layers, and each of the arrows connecting the nodes represents

an element of a weight matrix. A weight matrix W (i) “connects” the layers h(i)

and h(i+1). For example, the arrow connecting the first element of the input

layer to the first element of the layer h(1) corresponds to the element W (1)
1,1 of the

weight matrix W (1). If the layer h(i) has n hidden units and the layer h(i+1) has m

hidden units, the shape of the weight matrix W (i) is n×m. As each of the ele-

ments of a layer defined by Equation 18 is “connected” to each of the elements

of the subsequent layer (by an element of W ), such layers are often referred to

as fully-connected layers. Neural networks that consist only of fully-connected

layers are called fully-connected neural networks.

Loss L

Hidden
layer h(1)

Input
layer x

Hidden
layer h(2)

Output
layer y

Figure 2. A fully-connected neural network with two hidden layers

A fully-connected layer g(Wx+ b) performs the following transformations of the

input x:

1. A linear transformation by the weight matrix W .

2. A translation by the vector b.

3. Application of g(·), usually a pointwise nonlinear function.

Thus a neural network of an arbitrary depth can be viewed as a sequence of

linear and nonlinear transformations of the input x. In classification tasks these

transformations simplify the job of an output layer by making different classes lin-

early separable. For regression tasks the relationship between the transformed

input h(l−1) and y can be modeled much easier than the relationship between x

and y.
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The most common choice of the output activation function for networks perform-

ing regression is the identity function g(x) = x. The softmax function is typically

used in the output layer of a NN performing classification. This way the out-

put layer can be viewed as performing linear regression or multiclass logistic

regression with the last hidden layer h(l−1) as input and the output y.

The de-facto standard activation function g(·) for a neural network’s hidden lay-

ers is rectified linear unit (RELU).

RELU(x) = max(x,0) (19)

Before RELU was popularized by Glorot et al. (2011), the most common choices

for the activation function were sigmoid σ(x) and hyperbolic tangent 2σ(2x)−1

functions. RELU is superior to both of them in several ways, most notably in

the efficiency of computation as only comparison, addition and multiplication

operations are used. Additionally, RELUs are scale invariant as max(0,αx) =

αmax(0,x).

The cost functions used to train and evaluate the performance of NNs are

the same as those used for linear and logistic regression: common choices

are the mean squared error (Equation 5) for regression and the cross-entropy

cost (Equation 14) for classification. Similarly to logistic regression, there is no

closed-form solution for minimizing the cost, and numerical optimization algo-

rithms are used instead.

In the name “neural networks” the word neural is due to NNs’ functional simi-

larities with biological neural networks. Each of the elements of a hidden layer

resembles a neuron, in a sense that it receives inputs from many other units,

sums them up and uses the sum to produce its own activation, an output. Be-

cause of this the elements of the hidden layer are sometimes referred to as

neurons. Layers of neurons act in parallel, processing information and sending

their activations to the next layer of neurons. Thus, a neural network is com-

posed.
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3.5 Convolutional Neural Networks

For many machine learning tasks in computer vision, volumetric and time se-

ries data analysis one wants to incorporate more structure of the task into our

model in order to make it more accurate and easy to train. This can be viewed

as adding more assumptions about the data generating process to the assump-

tions mentioned in Section 2.3. Convolutional neural networks (CNNs) intro-

duced by LeCun et al. (1998) incorporate the translation invariance assumption,

which is useful for the data with established, grid-like topology. For computer vi-

sion tasks translation invariance means that an object would be recognized as

that object independent of its location in the picture. Figure 3 shows an exam-

ple of two images invariant under translation. When given as input to a CNN

performing classification these images would produce the same output.

Figure 3. Two images invariant under translation

This thesis focuses on convolutional networks for computer vision, as predicting

the car control commands from the images is essentially a computer vision task.

Each input image x(i) is typically provided in a form of a 3-dimensional tensor

x(i) ∈Rn×m×c, where (n, m) are the image’s width and height and c is the number

of color channels in the image. Usually the number of color channels is either 1

for grayscale images or 3 for RGB images.

3.5.1 Convolutional Layer

For a neural network to be convolutional one or more of the network’s hidden

layers has to use the convolution operation instead of the traditional linear trans-

formation by a weight matrix used in a fully-connected layer. This kind of layer

is referred to as convolutional layer. In the convolutional layer, similarly to a
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fully-connected layer, after the convolution operation the input is translated by

a bias b and then transformed with an activation function g(·). Usually con-

volutional networks are composed by multiple convolutional layers followed by

several fully-connected layers.

The 2D convolution operation in images is in essence multiplying the color in-

tensity of a small patch of the image by a small matrix, commonly referred to

as kernel or filter. Given the convolutional kernel K with dimensions k× k and a

k× k patch of the input image I, the 2D convolution operation is defined as:

Op,q = I×K =
k−1

∑
i=0

k−1

∑
j=0

Ip−i,q− jKi, j. (20)

In practice machine learning libraries often implement 2D convolution with the

kernel K flipped vertically and horizontally, as shown in Figure 4. Formally, this

operation is referred to as cross-correlation. Computation of cross-correlation

is shown in Figure 5.K0,0 K0,1 K0,2
K1,0 K1,1 K1,2
K2,0 K2,1 K2,2

⇒
K2,2 K2,1 K2,0

K1,2 K1,1 K1,0
K0,2 K0,1 K0,0


Figure 4. 2D kernel flipped vertically and horizontally

Neurons in a convolutional layer perform convolutions of their input with train-

able weights used as convolutional kernels. For example, one may have a con-

volutional kernel that detects salient features of the cat’s face. The CNN would

use this kernel to see whether there is a cat’s face in different parts of the input

image by convolving this kernel with different parts of the input. This process

would produce a feature map, a matrix with entries corresponding to the similar-

ity of the convolutional kernel to the patch of the original image in the matching

location. The hidden layer of a CNN consists of multiple feature maps generated

using different convolutional kernels.

Unlike in a traditional fully connected network, neurons in CNNs share parame-

ters. This has an intuitive explanation: when determining whether there is a cat

in the picture, one would not care if the cat is at the top or the bottom of the pic-

ture. In addition to incorporating the translation invariance assumption, weight

sharing results in a reduced number of trainable parameters in the model, cut-

ting down the training time and making the model more compact.



22

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input

Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

335

Figure 5. 2D cross-correlation operation (Goodfellow et al. 2016)

3.5.2 Pooling Layer

Pooling layers are commonly used after convolutional layers. The pooling oper-

ation outputs its nonlinearly downsampled input. The purpose of using a pooling

layer is to reduce the number of parameters in the network, hence speeding up

the training, preventing overfitting and forcing the network to learn useful repre-

sentations.

A typical pooling function reduces a n×m region of the input feature map to a

single value in the output feature map, where n and m are small integers such

as 2 or 3. The most widely used pooling function is max-pooling that returns the

maximal value of each n×m region of the input. Figure 6 shows an example of

max-pooling with a 2× 2 kernel. Sometimes functions other than max-pooling

are used, such as average pooling and L2-norm pooling.
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30 14 

44 36 44 

Figure 6. Example of max-pooling

4 TRAINING PARAMETRIC MODELS

This chapter presents the methodology used for training parametric models that

include CNNs. First, the gradient descent algorithm is introduced, followed by

the backpropagation algorithm that allows neural networks to be trained with

gradient descent. Finally, L2-norm regularization and dropout, two regulariza-

tion techniques often used when training CNNs, are discussed.

4.1 Gradient Descent

As stated in the introduction of the chapter on parametric models, given a para-

metric model and the cost function J(x,y,θ), the task of selecting model pa-

rameters θ is reduced to finding such parameters θ that minimize the cost J:

θ = argminθ J(x,y,θ) (21)

For the parametric models with nonlinearities such as logistic regression or neu-

ral networks there is no closed form solution to minimize J. Instead, various

iterative algorithms are usually used. A single step of an iterative optimization

algorithm, also referred to as update, can be viewed as

θt+1 = θt +ηtDt , (22)

where D is the direction of the update and η is the step size (also referred to

as the learning rate). The parameters are usually updated for a fixed number of

iterations or until the criteria for convergence are met. An example of the con-
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vergence criteria would be J getting close enough to zero or the improvement

dropping below a predefined threshold for several consecutive updates.

Gradient descent (GD) algorithm is an iterative algorithm most commonly used

for minimizing the objective function in machine learning tasks. Gradient de-

scent uses partial derivatives of the cost J with respect to parameters θ to

linearly approximate the cost function and determine the direction in which it

decreases fastest, thus determining the direction of an update:

θt+1 = θt−ηt∇J(θt). (23)

In practice, for large datasets that contain hundreds of thousands or more of

training samples the time to compute a single weight update from the whole

dataset becomes prohibitively long. A standard way to address this problem

lies in estimating the gradient from a small subset of samples, called a mini-

batch (Goodfellow et al. 2016). The training procedure of an arbitrary parametric

model using the minibatch GD is shown in Algorithm 2.

Algorithm 2. Minibatch Gradient Descent
Require: ηk, the learning rate
Require: θ , the initial parameters of the model
Require: J, the objective being minimized
Require: X , the training examples
Require: Y , the targets
Require: m, the minibatch size

while stopping criteria not met do
(x(1,...,m),y(1,...,m))← sampleMinibatch(X ,Y )

δ̂ ← 1
m

∇θ ∑
m
i=1 J( f (x(i),θ),y(i))

θ ← θ −ηδ̂

end while

There are multiple techniques that help to improve GD-based training, such as:

• Using an adaptive learning rate η : shrinking η over time, for example by

multiplying it with γ ∈ (0,1) after every few iterations. This usually leads to

convergence around better minima.

• Using momentum: adding a fraction of the gradient computed at the previ-

ous iteration to the weight update. This strategy smooths out the descent

trajectory and often leads to faster convergence.
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• Meta-learning: replacing a hand-crafted update rule, usually a combina-

tion of adaptive learning rate and momentum, by a learned update rule:

θt+1 = θt + ft(∇θ J(θt),φ). Here ft is a learned function approximator such

as a recurrent neural network parametrized by φ . (Andrychowicz et al.

2016)

Ruder (2016) provides an extensive overview of GD-based optimization algo-

rithms and concludes that Adam is likely the best overall choice. Adam was

introduced by Kingma & Ba (2014) and uses both the adaptive learning rate

and momentum learning.

4.2 Backpropagation

The backpropagation algorithm is a way to compute the gradients of the nodes

in composite functions such as neural networks, and is a standard technique for

training the neural network parameters. The algorithm was reinvented multiple

times across different fields, notably by Kelley (1960) and Dreyfus (1962) in

the context of control theory and Linnainmaa (1970) in the context of automatic

differentiation. The backpropagation algorithm for neural networks consists of

two stages:

1. Forward propagation: given parameters theta, input x and correct output

y, compute the loss L = J(x,y,θ) (Algorithm 1).

2. Backward propagation: compute the partial derivatives of the loss L with

respect to parameters b(i) and W (i) starting from the output layer using the

chain rule of calculus. As soon as the parameters’ gradients are com-

puted, update the parameters using the GD update rule (Algorithm 3).

The names “forward propagation” and “backward propagation” refer to the graph

representation of neural networks. As shown in Figure 7, the “forward” direction

corresponds to the left-to-right computation in the graph, and “backward” corre-

sponds to the right-to-left computation.
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Algorithm 3. Neural Network Backpropagation
Require: l, the network depth
Require: W (i), i ∈ {1, ..., l}, the weight matrices of the model
Require: b(i), i ∈ {1, ..., l}, the bias parameters of the model
Require: g(i)(·), i ∈ {1, ..., l}, the list of activation functions
Require: J(·), the cost function
Require: y, the target output
Require: ŷ, the estimate of the output computed in the forward propagation

. Compute the gradient of the loss w.r.t the output layer.

δ ← dL
dŷ =

dJ(ŷ,y)
dŷ

for k← l, l−1, ...,1 do
. Propagate the gradient through the nonlinearity – convert the gradient
w.r.t the layer’s output h(k) = g(k)(a(k)) into a gradient w.r.t the layer’s pre-
nonlinearity activation a(k) = W (k)h(k−1)+b(k). Element-wise multiplication
if g(k) is element-wise.

δ ← dL
da(k)

= δ � dg(k)

da(k)
. Compute the gradients w.r.t the parameters. Hereafter the gradients can
be used to immediately update the parameters using the GD update rule.
It is common to store the values of a(i) and h(i) in memory after the forward
propagation, such there is no need to recompute them when computing
the gradient.
dL

db(k)
= δ

dJ
dW (k) = δh(k−1)T

. Propagate the gradient through the linear part of the layer – convert the
gradient w.r.t the layer’s pre-nonlinearity activation a(k) into the gradient
w.r.t the next lower-level layer’s output h(k−1).
δ ← dL

dh(k−1) =W (k)T δ

end for

Loss L

Hidden
layer h(1)

Input
layer x

Hidden
layer h(2)

Output
layer y

Propagating the input x “forward” to compute the loss

Propagating the gradient of the loss L w.r.t hidden layers “backward”

Figure 7. Forward and backward propagation
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4.3 Normalization

Normalization is a common technique used to improve GD-based training. The

core idea of normalization is to scale the values of the data to be in the same

fixed interval. In the machine learning context one usually normalizes the fea-

tures, making the range of values taken by the elements of columns of the

design matrix X be the same for each column.

There are multiple kinds of normalization in statistics. In machine learning min-

max normalization and standard score normalization are commonly used.

Min-max normalization adjusts the values of a vector x to be in a range [a,b].

In the vector form the adjustment is:

xnormalized = a+
(x− xmin)(b−a)

xmax− xmin
, (24)

where xmax and xmin are correspondingly the largest and the smallest ele-

ments of x. Often the desired interval [a,b] is the interval [0,1], in which case the

adjustment is simply:

xnormalized =
(x− xmin)

xmax− xmin
. (25)

Standard score normalization adjusts the values of a vector x to have mean

0 and standard deviation 1. The adjustment consists of subtracting the mean

µ of x from each of the elements of x, and dividing the result by the standard

deviation σ . In the vector form this can be written as:

xnormalized =
(x−µ)

σ
. (26)

The reason normalization is often used in machine learning is its stabilizing

effect on GD-based training. Figure 8 shows two hypothetical gradient descent

trajectories with and without data normalization prior to training. Updates after

each GD iteration are shown with black arrows. The length of a black arrow

corresponds to the learning rate η at that iteration. Normalizing the input’s

features usually indirectly leads to the parameters θ being roughly on the same

scale, which results in smoother descent trajectories and fewer iterations until

convergence. This can be seen on Figure 8 comparing the GD trajectory without

input normalization (left) with the GD trajectory on the normalized input (right).
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Figure 8. Effect of normalization on GD convergence

4.4 Regularization

Regularization is a common technique used to prevent overfitting and improve

generalization of machine learning models. The core idea behind regulariza-

tion is incorporating additional information about the desired solutions into the

model. The most common example of such information is a preference for sim-

pler models, which can be viewed as imposing Occam’s razor on the solution.

Another common example of the additional information is a preference for spar-

sity in some part of the model. From the Bayesian viewpoint regularization can

be seen as a prior on the model’s parameters θ .

Below two most common regularization methods, L2-norm penalty and Dropout

regularization, are introduced.

4.4.1 L2-norm Penalty

L2-norm penalty is one of the oldest and most well-known regularization meth-

ods in machine learning. L2-norm penalty consists of adding a regularization

term λ ||θ ||2 to the cost function J(x,y,θ):

L = J(x,y,θ)+λ ||θ ||2. (27)

Here λ is usually a small constant and ||θ ||2 is the squared L2 norm of the

parameters θ , which is simply a sum of squares of each of the elements of

θ . The newly added regularization term is differentiable, which allows using

GD-based methods for training the models using L2-norm penalty.
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This penalty can be seen as a preference for the values of θ obtained during

training to be closer to zero, which usually results in the model capturing less

noise in the data and therefore better generalization to the unseen data. How-

ever, very high values of λ can result in the regularization term dominating the

cost, which often leads to degradation of model’s performance.

4.4.2 Dropout Regularization

Dropout (Srivastava et al. 2014) is a technique widely used to regularize deep

neural networks. The core idea behind dropout is adding multiplicative noise to

the output of a hidden layer. Concretely, in the forward propagation stage each

of the elements of a hidden layer is set to zero with probability p. Analogously

to Equation 18, a hidden layer with dropout applied has the following form:

r(l) = Bernoulli(p) (28)

h̃(l) = h(l)� r(l) (29)

h(l+1) = g(W (l+1)h̃(l)+b(l+1)) (30)

When dropout is used each neuron is forced to work with a randomly chosen

sample of the neurons from the next layer, which results in a higher degree of

redundancy in the NN. Additionally, dropout drives the neurons to learn more

accurate features as other neurons that were correcting for their mistakes may

be switched off. This makes the network more robust, often increases the ac-

curacy and prevents overfitting.

5 AUTONOMOUS CONTROL OF A RC CAR WITH A CONVOLUTIONAL

NEURAL NETWORK

This chapter presents the methodology for solving the problem of autonomous

control of a remote controlled (RC) car. First the project setup and an overview

of the solution are introduced, followed by the details of the solution steps.

As stated in the introduction, a system that allows a remote controlled car au-

tonomously follow a track on the floor made of sticky notes using the imagery

from the car’s built-in camera is developed.

In order to do this we trained a convolutional neural network (CNN) to map pix-



30

els from processed images taken from the single front-facing camera directly to

steering and acceleration commands. This proved to be a powerful approach:

without any feature engineering the system automatically learned relevant fea-

tures, such as the borders of the track and the direction of movement in the

room.

5.1 Previous and Related Work

The discussion of autonomous driving began as early as the 1920s, but it

was not until the 1980s that the first self-sufficient autonomous vehicles ap-

peared. Notable pioneers were CMU’s Navlab 1 (Thorpe et al. 1988) and

ALVINN (Pomerleau 1989) projects, as well as the European PROMETEUS

project (Williams 1988).

The idea of using a neural network to predict the control commands is not new.

For example, Pomerleau (1989) used a fully-connected neural network (one

hidden layer with 29 hidden units) to predict steering commands for the vehicle

in the ALVINN project. This neural network is tiny by the modern standards,

and as time goes on the researchers of autonomous driving are able to use

significantly more computational power to run their systems.

More recently, DARPA seeded a project named DAVE, or DARPA Autonomous

Vehicle (Net-Scale Technologies 2004). The approach taken in this thesis is in

many ways similar to the one described in DAVE: both use sub-scale RC cars as

experimental vehicles and both use convolutional neural networks to predict the

car control commands. Inspired by the DAVE project, the NVIDIA team trained

a large CNN mapping images obtained from driving a real car to the steering

commands (Bojarski et al. 2016). This thesis takes inspiration from both the

approach taken by the Net-Scale Technologies team and the NVIDIA team.

5.2 Methodology

As the experimental vehicle we use the Parrot Jumping Sumo car with a built-

in camera, shown in Figure 9. The camera’s resolution is 480 × 640 pixels,

and the frame rate is 15 frames per second. The car creates its own Wi-Fi

hotspot which it uses to transmit the images and receive the control commands.

We connect our PC to this hotspot and control the vehicle remotely. The car
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runs Robot Operating System (ROS) locally, and communicates with the PC via

ARDroneSDK3, the official Parrot SDK. For training the CNN we use Python

with Theano (Theano Development Team 2016), a library that allows for ef-

ficient manipulation of expressions involving multidimensional arrays, features

symbolic differentiation and transparent use of a GPU. We also use Lasagne

(Dieleman et al. 2015), a high-level wrapper library for Theano to speed up the

coding. The CNN is trained using a NVIDIA Titan X 2015 GPU.

Figure 9. The Parrot Jumping Sumo car (Parrot Development Team 2016)

More formally, the overall structure of the project is as follows:

1. Implementing the car control system;

2. Collecting video frames with corresponding control commands by manu-

ally driving the car around various tracks;

3. Training a CNN to predict control commands from the obtained video

frames;

4. Evaluating the performance of the CNN controlling the car on the track.

The next sections describe each of the steps above in more detail.
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5.3 RC Car Control System

In order to receive and record the images from the car and send back the cor-

responding control commands a RC car control system is needed. The car

control system is implemented in Python, as it is then easy to use it together

with the image recognition system developed for controlling the car. The imple-

mented control system relies on Parrot’s ARDroneSDK3 and Rossumo, a low

level library for the Jumping Sumo car developed by Ramey (2016).

The tasks performed by the RC car control system include the following:

1. Receiving the video: receiving images from the car, optionally displaying

them and buffering the last n of them. To receive the images ARDroneSDK3

and Rossumo are used, which together create a ROS communication

channel for the images. The control system is subscribed to this channel

and gets the images as they arrive. Each time a new image is received it

is appended to a small buffer imageQueue, and is optionally displayed.

2. Car control: reading the joystick commands in real time and sending them

to the car at the same rate at which the frames are received. For the

simplicity of handling the joystick commands a second ROS channel is

created. The control system is subscribed to this channel and gets the

joystick commands as they arrive. In order to collect time-aligned pairs of

[image, joystick Command], the frequency of receiving joystick commands

is set to 15 Hz, same as the frequency at which the images are received.

Joystick commands are buffered at joystickQueue and by default are sent

to the car.

3. Data collection: recording an arbitrary sized array of images from image−

Queue and their corresponding joystick commands from joystickQueue.

Several such arrays are recorded and later used for training the CNN

which predicts the joystick commands from the images. To record a large

number of pairs of [image, joystick Command], the original 480 × 640 RGB

images from imageQueue are converted to grayscale and hereafter down-

sampled to 120 × 160 resolution. This way each of the processed images

takes 48 times less RAM than the original, allowing us to record arrays of
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up to 20 thousand images at once.

4. Autopilot: the control system is implemented such that it is possible to

seamlessly plug in an autonomous car control module. The autopilot im-

plemented in this thesis uses a CNN for predicting the control commands,

and there is a flexibility to use other autopilot modules too.

The data flow in the implemented system is shown in Figure 10. The next

section describes the workings of the autopilot in more detail.

Figure 10. Data flow in the implemented car control system

5.3.1 Autopilot

The central part of the autopilot is a CNN predicting the car control commands

from the real-time, 15 frames per second video stream. This implies that for

a simple single-threaded program the time required to process a single frame

must be on the order of 1/15s or 67ms in order to maintain small constant re-

sponse delay. The image preprocessing and the forward pass of the CNN cho-

sen as the central component of the command prediction system (CPS) fit into

this time window.

One of the buttons on the joystick acts as an autopilotFlag: once this button is

pressed the control system starts the CPS. The CPS reads the first image from

the imageQueue, processes it and uses it to predict the corresponding car control

command. If the autopilotFlag is on, the control system prioritizes sending

the commands from the CPS to the car over the “no action” commands received

from the joystick. However, if the command from the joystick is different from “no

action”, it is prioritized over the command predicted by CPS and the autopilot

is switched off. This way one can correct the car’s course without having to
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manually turn off the autopilot. Additionally, the autopilot can be disabled by

pressing the button that turned it on once more. Algorithm 4 demonstrates

the autopilot operation with image and joystick buffering routines omitted for

simplicity.

Algorithm 4. Autopilot
Require: CPS, the control prediction system object with a method predict

which outputs a control command given an image. In the CPS implemented
in this thesis predict is a feedforward computation of a CNN.

Require: imageCh, a ROS channel subscribed to the car’s camera. Event
imageCh.receivedNew() occurs as a new image is received to this channel.
The latest image can be read with the method imageCh.read().

Require: joystickCh a ROS channel subscribed to the joystick. The latest
joystick command can be read with the method joystickCh.read(). The de-
fault state of the joystick axes corresponding to car movement is referred to
as defaultState. Default state of a real car is then zero accelerator pedal
pressure and the central position of the steering wheel.

Require: imageQueue and joystickQueue, queues where the received images
and joystick commands are buffered.

autopilotFlag← False
while system is on do

upon event autopilotButtonPressed do
autopilotFlag← Not(autopilotFlag)

upon event imageCh.receivedNew() do
imageQueue.push(imageCh.read())
commandQueue.push(joystickCh.read())

if imageQueue is not empty then
image← imageQueue.pop()
command← joystickQueue.pop()
if command 6= defaultState then

autopilotFlag← False
if autopilotFlag is True then

command← CPS.predictCommand(image)

rcCar.sendCommand(command)
end while

5.4 Predicting the Control Commands from Images

This section describes the methodology for training the convolutional network,

which is later used as the main component of the CPS. However, before train-

ing the CNN we must decide how much and which kinds of data to collect, and

whether to use additional image preprocessing. After this we settle on the ar-

chitecture of the network and train it.
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5.4.1 Data Collection and Augmentation

The car’s task is to follow a track on the floor which suggests that most of the

training data, pairs of [image, joystick Command], has to be recorded from man-

ually driving the car on the track. Additionally, the car may lose the track from

its camera view – this would sometimes happen at sharp turns of the track. In

this case the reasonable courses of action could be:

• Stop the car, stop the autopilot and require human intervention to start

following the track again.

• Stop the car and slowly rotate in place until the track is in the field of

camera’s view, and continue following the track.

In this thesis we follow the latter approach. To achieve the desired behaviour,

in addition to the regular driving data we collect several sets of pairs of [image,

joystick Command] from situations where the car returns to the track after losing

sight of it for some period of time.

As driving the car around the track is a fairly tedious process (and a rather

expensive one for a real car), we have a preference for being data-efficient: col-

lecting only as much data as is needed to perform the task well. To improve

the data-efficiency the collected data is augmented with images mirrored hor-

izontally. The corresponding steering command is also “mirrored” to encode

steering with the same magnitude, but in the opposite direction.

We collect 42K pairs of [image, joystick Command] of the car driving around the

track normally, and 8K pairs of the car returning back to track after losing it from

sight and driving on the track afterwards. In total this amounts to 50K examples

or roughly 1 hour of driving time. After the data augmentation the dataset size

doubles to 100K samples.

5.4.2 Image Preprocessing

To further improve data-efficiency, the images are preprocessed such that the

variance in the data distribution is reduced, making the data easier to model.

The requirement for preprocessing is that it must be possible to successfully
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control the car using the preprocessed images. The following preprocessing

steps are introduced:

1. Cropping the upper 60 percent of the stored 120 × 160 images such that

the new resolution becomes 48 × 160. This way most of the car’s visual

field is focused on the floor with the track, as opposed to less relevant

features of the indoor space such as desks and upper parts of the chairs.

2. Downsampling the image fourfold, from 48 × 160 to 12 × 40. Even at

such a small resolution it is easy to see the track and distinguish its finer

features.

3. Normalizing both the image pixels and the control commands to have val-

ues in the range between 0 and 1. As we know the minimum and the

maximum of possible values for both pixels and the control commands,

we perform the min-max normalization (Equation 25).

The cropping and downsampling steps of the preprocessing procedure applied

to one of the images are shown in Figure 11.
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Figure 11. Preprocessing a stored image

To summarize, the data used for training the CNN is of the following form:

preprocessed images x(i) ∈ R12×40 and their corresponding control commands

y(i) ∈ R2,where i ∈ (1, ...,100K).

For training the network the 100K examples are randomly split into the train-

ing set containing 80K samples and the test set containing 20K samples. The

training data is used to train the CNN while the test data is used to obtain an

accurate evaluation of the network’s performance.
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5.4.3 Training the Convolutional Neural Network

The CNN used for predicting the control commands from images has the fol-

lowing architecture, from input to output. Each layer’s output is the subsequent

layer’s input:

• input The input layer

• conv1 A convolutional layer: 32 kernels with 3 × 3 kernel size

• conv2 A convolutional layer: 32 kernels with 3 × 3 kernel size

• pool1 A max-pooling layer with 2 × 2 kernel

• conv3 A convolutional layer: 32 kernels with 3 × 3 kernel size

• conv4 A convolutional layer: 32 kernels with 3 × 3 kernel size

• conv5 A convolutional layer: 32 kernels with 3 × 3 kernel size

• pool2 A max-pooling layer with 2 × 2 kernel and dropout (p = 0.3)

• fc1 A fully-connected layer (128 units) and dropout (p = 0.3)

• output The output layer with 2 units

The schema of this architecture is shown in Figure 12.
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Figure 12. Architecture of the CNN used in the CPS

The RELU activation function is used for all the layers except the output layer.

The output layer is a linear layer as the network is performing regression.

Therefore, the output layer can be seen as performing multivariate linear re-

gression on the output of the fc1 layer.

The loss used to train the CNN is a sum of the mean squared error (Equation 5)
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and the L2-norm penalty (Equation 27). The value of λ used for the L2-norm

penalty is 3× 10−4. The L2-norm penalty and dropout (Equation 30) are used

to regularize the network and counter the likely overfitting problem, which has a

good chance of occurring given the relatively small dataset size.

The CNN is trained using the minibatch gradient descent algorithm with momen-

tum (Section 4.1). The gradients of the loss w.r.t. the parameters are computed

with the backpropagation algorithm (Section 4.2). The network is trained for 100

epochs, meaning that the weights are updated 100 times on each of the 80K

training examples.

5.5 Evaluating the Performance of the Autonomous RC Car

Measures commonly used to evaluate the performance of autonomous vehicles

are number of accidents per 1M kilometers and autonomy, the percentage of the

driving time the car could be on autopilot. The latter measure is more applicable

to evaluate the results of this thesis. Bojarski et al. (2016) measure the number

of human interventions required for safe driving – moments when the human

driver needs to take over the autopilot. They define autonomy as:

autonomy = (1− (number of interventions)× (time per intervention)
elapsed time

)×100 (31)

Unfortunately, due to time constraints we were not able to calculate the value

of autonomy precisely. During several tests the Jumping Sumo car was able to

autonomously follow the track for 30–120 seconds before requiring an interven-

tion by a human driver. Following Bojarski et al. (2016) we assume 6s required

per intervention. This suggests that the autonomy value of the RC car using the

CNN to predict the control commands is in the range of 80–95 percent.

6 CONCLUSIONS AND FUTURE WORK

The practical goal of this thesis was to build a simple and reliable testbed for the

evaluation of algorithms for autonomous vehicles and to implement a baseline

car control algorithm. This was accomplished by developing an autopilot system

on the Parrot Jumping Sumo RC car and implementing a convolutional neural

network (CNN) that predicts the car control commands from the imagery from

the car’s camera. The CNN was trained on one hour of driving data and was
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able to stay on the track for 30–120 seconds in the autopilot mode without re-

quiring an interruption by a human driver. To understand the workings of CNNs,

the theoretical part of this thesis explored the construction of CNNs from simple

components, methodology for training the CNNs and several practical methods

often used in CNNs, such as regularization and data normalization.

More work is needed to improve the robustness of the implemented system

as well as to attain a precise evaluation of the system’s robustness. These

areas can be improved significantly without introducing large changes to the

implemented system by collecting more driving data and dedicating additional

time to evaluating the car’s performance.

• Collecting more data from driving on a larger number of tracks and training

the CNN on this data would likely result in a CNN with better generaliza-

tion capabilities. This would entail the car’s ability to accurately navigate

a wider range of tracks in different light conditions. Minor changes in the

image preprocessing and in the CNN architecture may be required. Addi-

tionally, the system can be taught to perform new tasks, such as stopping

when encountering an obstacle on the track.

• Rigorous evaluation of the car’s autonomy (Equation 31) following the

methodology outlined in Section 5.5 would allow for clear communication

of the existing results and would serve as an important metric for measur-

ing the future progress. Another benefit of using such metric would be the

ability to compare the results of this work to the results obtained by other

research teams such as Bojarski et al. (2016).

The progress in these two areas is straightforward, with time being the main

bottleneck. Given the time and resource constraints of the project, the improve-

ments mentioned above are outside the scope of this Bachelor’s thesis.
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