
THE DEVELOPMENT OF ROBOT WORK CELL OPERATIONS
AND THE CREATION OF STUDENT EXERCISES

Thesis

Jarno Auvinen
Miia Jalkanen

Degree Programme in Automation Technology
Automation Technology

Accepted ___.___._____ __________________________________

SAVONIA-AMMATTIKORKEAKOULU, VARKAUDEN YKSIKKÖ
Koulutusohjelma

Automaatiotekniikan koulutusohjelma
Tekijä

Jarno Auvinen, Miia Jalkanen
Työn nimi

The Development of the Robot Work Cell and the Creation of Student Exercises
Työn laji Päiväys Sivumäärä

Insinöörityö 12.4.2010 121 + 91
Työn valvoja Yrityksen yhdyshenkilö Yritys

Risto Niemi Risto Niemi Savonia-amk
Tiivistelmä

Savonia-ammattikorkeakoulun Varkauden yksikköön hankittiin konenäöllä varustettu robottisolu
vuonna 2006. Päättötöitä lukuunottamatta sitä ei juurikaan ole käytetty opetuksessa, koska
oppilaskäyttöön soveltuvia harjoituksia on ollut hyvin vähän. Lisäksi robotin nivelten paikoitustiedot
olivat kadonneet varmistusparistojen loputtua.

Tällä työllä oli kolme tavoitetta. Työn pääasiallisena tavoitteena oli kehittää lisää oppilasharjoituksia
robotiikan kursseja varten. Ennen robotin käyttöönottoa sen paristot täytyi vaihtaa ja koordinaatisto
uudelleenkalibroida. Kolmantena tavoitteena oli kehittää robottisolun toimintoja monipuolisemmiksi
ja ottaa solussa olevat kaksi web-kameraa käyttöön.

Työn aikana asetettiin myös kolme lisätavoitetta. Ensimmäinen oli TicTacToe, perinteisen
ristinollapelin robottia vastaan pelattava verkkopeliversio. Ideana oli, että Savonia-
ammattikorkeakoulun Varkauden yksikkö voisi käyttää peliä esittelytarkoituksessa. Toinen tavoite oli
robottisolun rakenteellinen muutos, joka sisälsi harmaasävykameran siirron hyödyllisempään
paikkaan ja lisäakselilla varustetun pöydän korvaamisen uudella työtasolla. Kolmantena tavoitteena
oli kehittää robottisolun toimintoja havainnollistava esitys, jota voitaisiin esitellä vierailijoille.

Kaikki asetetut tavoitteet saavutettiin. Paristojen vaihto onnistui. Koordinaatiston
uudelleenkalibrointi suoritettiin käyttäen menetelmää, jossa akselit käännettiin mekaanisesti
rajoitettuihin ääripisteisiinsä. Oppilasharjoituksia kehitettiin kaikkiaan 20 ja niistä koottiin
harjoitusmoniste yhdessä niihin liittyvien ohjeiden kanssa. Robottisolun toimintojen kehittäminen
sisälsi rakenteellisen muutoksen ja uutta ohjelmistoa PC:n liittämiseksi robottisoluun paikallisesti tai
etäohjatusti. Uusi kiinteästi asennettu työtaso rakennettiin lisäakselilla ohjatun kääntyvän pöydän
yläpuolelle ja harmaasävykamera siirrettiin kattoon uuden työtason yläpuolelle. Web-kameroille
kirjoitettiin uusi katseluohjelma. TicTacToe-peliä kokeiltiin lähiverkossa ja se todettiin toimivaksi,
joskin lisätestaamista vaativaksi. Robottisolulle ohjelmoitiin helppokäyttöinen demonstraatio-
ohjelma, joka esittelee robottisolun toimintoja käänneltävään telineeseen sijoitetulta näytöltä.

Avainsanat

Robotiikka, Teollisuusrobotti, Robottisolu, Konenäkö, Ohjelmointi
Luottamuksellisuus

Julkinen

SAVONIA UNIVERSITY OF APPLIED SCIENCES, BUSINESS AND ENGINEERING, VARKAUS
Degree Programme

Automation Technology
Author

Jarno Auvinen, Miia Jalkanen
Title of Project

The Development of the Robot Work Cell and the Creation of Student Exercises
Type of Project Date Pages

Final Project 12.4.2010 121 + 91
Academic Supervisor Company Supervisor Company

Risto Niemi Risto Niemi Savonia UAS
Abstract

Savonia University of Applied Sciences acquired a robot work cell for educational use in 2006. The
work cell is equipped with a small articulated arm robot and a machine vision system. Excluding
some final projects, the work cell has not been used very much by students because there has been
only few suitable exercises. Also, the absolute position encoder data had been lost so the robot has
been completely out of use.

This thesis had three distinct goals. First, the robot's position encoder batteries had to be replaced and
the coordinate system recalibrated in order to get the robot working. The main object of this project
was to create student exercises about the work cell to be used in robotics courses. Additional
development of the more versatile operations of the work cell was also desired. It was also aimed at
utilizing the web cameras in a better way.

During the study, three additional goals were set. The first new subproject was TicTacToe, the
traditional pencil-and-paper game played against the robot on the Internet. The idea was that Savonia
UAS could use the game for exhibit purposes. The second project was the structural modification of
the work cell. It included relocating of the grayscale camera and replacing of the additional axis with
a new worktop. The third additional goal was to create a demonstration to be shown to the visitors.

All the goals were achieved. The batteries were changed successfully. The robot origin data was
recorded using the mechanical stopper method. Total of 20 exercises and the necessary instructions
were gathered into a handout. The development of the robot cell included both structural
modifications and new software for connecting the PC to the work cell in local or remote control
purposes. A new, solid worktop was built above the additional axis operated turntable and the
grayscale machine vision camera was relocated to the ceiling above the table. A viewing software
was written for the web cameras in the work cell. The TicTacToe game was tested in the local
network and verified operational. A user-friendly demonstration was programmed to show the
features of the robot work cell using a display installed to the display stand.

Keywords

Robotics, Industrial Robot, Robot Work Cell, Machine Vision, Programming
Confidentiality

Public

Foreword

This thesis has been a diverse process with all the programming and structural changes.

The planning of the student exercises gave us a profound understanding about robotics

and machine vision which we think will be very valuable in the future.

We would like to express our gratitude to the organizations and individuals who have

supported and assisted in this study.

First, we would like to thank Savonia University of Applied Sciences for giving us the

opportunity to work on the robot work cell. We are most grateful to the supervisor of

this work, M. Sc. Risto Niemi, who offered this interesting project to us.

We would also like to thank the laboratory technician Pauli Tuovinen for supplying all

the materials when the modifications of the work cell were planned. Also the help of

Savo Vocational College is greatly appreciated.

We also appreciate the support of student colleagues, teachers and other personnel of

Varkaus Campus.

In Varkaus 12.4.2010

Jarno Auvinen Miia Jalkanen

Terminology

Accuracy

The difference between the point the robot is trying to achieve and the actual result
point. See repeatability.

CCD

Charge-couple device. An analog shift register commonly used for serializing parallel
analog signals in photoelectric light sensors (in digital cameras).

CMOS

Complementary metal-oxide-semiconductor. A constructing technology of integrated
circuits used in microprocessors, microcontrollers, image sensors etc.

DOF

Degree of freedom. The number of independent position variables needed to be
specified in order to locate all parts of the mechanism. The number of different ways in
which a robot arm can move. Typical industrial robot is an open kinematic chain and
thus, the number of joints equals the number of degrees of freedom.

Dot Matrix

A 2-dimensional array of dots used to represent characters, symbols and images.

DSP

Digital Signal Processor. A specialized microprocessor optimized for needs of digital
signal processing.

Ethernet

Family of frame-based computer network technologies for local area networks.

Flash (memory)

Non-volatile memory that can be electronically erased and reprogrammed.

Forward kinematics

Computation of the position and orientation of robot's end effector from the known joint
angles.

Inverse kinematics

The process of determining the parameters of a jointed flexible object (a kinematic
chain) in order to achieve a desired pose.

Kinematics

The description of the motion of objects without consideration of the causes leading to
the motion.

MDI

Multiple Document Interface. A software engineering term that describes an application
which has the ability to work on multiple documents simultaneously.

OCR

Optical Character Recognition. Electronic translation of images into machine-editable
text.

Payload

Maximum payload is the weight the robot is able to carry at a reduced speed while
maintaining the rated precision. The nominal payload is the amount of weight that can
be carried at a maximum speed while maintaining the rated precision. Both ratings
depend on the size and shape of the payload.

PLC

Programmable Logic Controller. A computer designed for handling multiple inputs and
outputs. Used in automation applications.

RAM

Random Access Memory. Computer data storage that allows the data to be accessed in
any order (at random).

Reachability

The maximum horizontal distance between the center of the robot base to the end of the
wrist.

Repeatability

The system's or mechanism's ability to, when receiving the same control signals, repeat
the same motion or to achieve the same points. Unlike (absolute) accuracy,
repeatability is the cycle-to-cycle variation of the manipulators position compared to the
target point.

Resolution

a. image resolution. The number of picture elements (pixels) in an image.

b. resolution in motion. The smallest increment of motion or distance that can be
detected or controlled by the control system of a mechanism.

RISC

Reduced Instruction Set Computer. Microprocessor architecture that utilizes a small,
highly-optimized set of instructions, rather than a more specialized set of instructions
often found in other types of architectures.

SCARA

Selective Compliant Articulated Robot Arm. A robot type with two horizontal joints.
Due to its structure, it is slightly compliant in x-y direction but rigid in z direction.

TB

Teaching Pendant. Hand controller used for moving, programming and changing the
parameters of a robot.

TCP/IP

Transmission Control Protocol / Internet Protocol. A set of communication protocols
used for Internet and other similar networks.

Work envelope

The three-dimensional shape defined by the boundaries the robot is able to reach. Also
referred to as reach envelope.

Table of Contents
Foreword..I
Terminology..II

1 Introduction...1

2 Industrial Robotics...3
 2.1 The History of Robots...3
 2.2 The Development of Robots...5
 2.3 Industrial Robot Markets..7
 2.4 Industrial Robot Types..8

 2.4.1 Articulated Robot Arm...8
 2.4.2 Linear Robot (Cartesian Robot)...9
 2.4.3 Cylindrical Robot...10
 2.4.4 Parallel Robot...10
 2.4.5 SCARA Robot..12
 2.4.6 Polar Coordinate Robot..13

 2.5 Robot Grippers..14
 2.6 Robot Sensors...16

 2.6.1 Range Sensors..17
 2.6.2 Proximity Sensors..21
 2.6.3 Touch..25
 2.6.4 Force and Torque..29
 2.6.5 Machine Vision..30

 2.7 Robot Control...38
 2.7.1 Robot Arm Kinematics...38
 2.7.2 Robot Arm Dynamics...40
 2.7.3 Robot Manipulator Control Techniques...43
 2.7.4 Problems in Robot Control..45
 2.7.5 The Work Environment of a Robot..46

 2.8 The Robot Work Cell..50
 2.8.1 The Equipment...51
 2.8.2 The Software..54

3 The Modification and the Exercises..56
 3.1 Battery Change and Calibration..56
 3.2 Robot Work Cell Exercises...57

 3.2.1 The Pedagogical Goals of the Exercises..57
 3.2.2 The Exercises...58

 3.3 Accessories...63
 3.3.1 RobotCamera...63
 3.3.2 Tool Change Program..72
 3.3.3 Server Console...73

 3.4 TicTacToe..77
 3.4.1 Description of the System..78
 3.4.2 TicTacToe Data Transfer Protocol...79
 3.4.3 TicTacToe Server...80
 3.4.4 TicTacToe Client..87

 3.5 Modification of the Robot Work Cell...93
 3.6 Demo of the Robot Work Cell..95

 3.6.1 Planning and Problems...95

 3.6.2 Explanation of the Operation...97
 3.6.3 Slide Show...97
 3.6.4 Graphics...100
 3.6.5 Networking ..101
 3.6.6 Robot Program ..101
 3.6.7 Hardware Configuration..102

4 Results...103
 4.1 Results of the Main Objectives...103

 4.1.1 Battery Change and Calibration...103
 4.1.2 Exercises..103
 4.1.3 The Web Cameras..104

 4.2 Results of the Additional Goals..105
 4.2.1 TicTacToe...105
 4.2.2 Modification of the Robot Work Cell..106
 4.2.3 Demo of the Robot Work Cell..107

 4.3 Development ideas..108

5 Conclusions...110

6 References..111

7 Appendixes..115

1

1 Introduction

Savonia University of Applied Sciences acquired a robot work cell for educational use

in 2006. Several theses have been completed with the robot work cell. In two of them,

the basic use of the robot work cell is introduced [1], [2]. The projects can be seen as an

excellent starting point for the learning of the use of the work cell. However, the work

cell has not been used by students in the robotics courses. Using the robot work cell in

robotics courses has been complicated because of the lack of student exercises. The

studying of the use of all the equipment in the work cell has been seen as too large a

challenge.

The study of Mika Korhonen teaches how to start and shut down the work cell, program

the robot and how to control the conveyor. The study of Anssi Kauppinen extends the

previous by explaining the use of the machine vision system. Together with the things

learned from Korhonen's programming exercise, the student gets the needed knowledge

to create fully functional applications for the work cell.

After completing these exercises, the student has learned the basics of the robot work

cell functions, like moving the arm around the robot work cell and picking items. Real

solutions used in industry are not only about moving the robot from a point to another,

programs have to optimize the work cycle time, communicate with other devices,

handle multiple products with different methods and send statistics to be archived. Thus

more exercises needed to be designed.

While familiarizing with the work cell, there were several problematic situations with

the devices. When it was searched for the manuals, instructions or notes of the devices,

it was noticed that pieces of useful information were scattered all over the laptop

computer. The instructions were partly insufficient and vague. There had been some

problems in previous project, when the robot accidentally lost its calibration during the

installation of the other web camera to the ceiling, and the robot has been out of order

since then. [2]

2

This thesis project had three distinct goals. The main objective was to create more

student exercises and instructions about the robot work cell to be used in robotics

courses. In order to get the robot working, the dead absolute position data encoder

batteries had to be replaced and the lost position data had to be re-recorded by

calibrating the robot. This was the second objective. The third objective was to develop

the operations of the robot work cell. This included the deployment of the two web

cameras. For this, the work cell's PC had to be replaced due to stability problems and

lack of computing power required by the live video processing.

During the study, also three additional goals were set. The first started project was

TicTacToe, a traditional pencil-and-paper game played against the robot over the

Internet. The second additional goal was the structural modification of the robot work

cell. Because it was possible to modify the equipment of the robot work cell, a

renovation was planned to improve the usability of the work cell. The modification

included designing and manufacturing of a larger, solid worktop to replace the

additional axis and the mounting of the grey scale machine vision camera to the ceiling

above the new worktop. The third additional goal was to develop a demonstration that

could be shown to the visitors. The demonstration was thought to be interactive so that

anyone passing by could view it without assistance. For this, a slide show explaining the

actions was designed.

3

2 Industrial Robotics

 2.1 The History of Robots

The idea of an autonomous human-like robot has existed for thousands of years. As

early as in 750 BC, the Iliad of Homer portrays golden mechanical handmaidens,

female slaves, made by master craftsman Hephaestus [3]. Probably the first actual

mechanical human automaton (a self-operating machine) was designed by Leonardo da

Vinci in the 15th century. It is unclear, whether it was actually built during his lifetime.

The sketches were discovered in the 1950s and in 2002 the complete physical model

was built [4]. The cable-and-pulley-driven ”mechanical knight” was able to move its

arms and head, to sit down and to open and close its mouth [5]. The word ”robot” was

introduced by a Czech author Karel Capek in 1921 in his play R.U.R. (Rossum's

Universal Robots). The term is derived from the Czech word “robota”, which means

serf labour [6].

The development of modern robot mechanisms began in the mid-1940s at the Oak

Ridge and Argonne National Laboratories, where mechanical master-slave manipulators

were designed for handling radioactive material. These systems reproduced the

movements of the hand and arm of a human operator. The mechanical coupling was

later replaced by electric and hydraulic manipulators. [7]

In the mid-1950s more sophisticated systems quickly replaced master-slave

manipulators. These systems were capable of autonomous, repetitive operations.

Inspired by Isaac Asimov’s science fiction writings, George C. Devol developed a

manipulator which was able to follow the instructions of a program and, what's most

important, which could be reprogrammed by changing only the software. The further

development of this device, “programmable articulated transfer device” as Devol called

it, led to the creation of the first industrial robot, Unimate, shown in Figure 1. Devol and

Joseph F. Engelberger founded the Unimation, Inc., the first robot manufacturing

company. [7], [8]

4

Figure 1: Unimate, the first industrial robot [9]

Unimate was a electronically controlled, programmable lifting arm powered with

hydraulics [10]. The program sequence was stored to a magnetic drum which was a

ferromagnetically coated cylinder rotating with a constant speed. The drum had

magnetic tracks around its circumference and each track had its read and write heads.

[11] The robot arm had six programmable axes and it could lift loads as heavy as 200

kilograms [12]. Unimate was first used in 1961 to do die casting and welding duties on

a General Motors assembly line [13].

The first successful computer controlled and electrically powered robot arm was

Stanford robot arm which was designed by the mechanical engineer Victor Scheinman

who was working in the Stanford Artificial Intelligence Lab [14],[15]. The Stanford arm

had 6 degrees of freedom. The robot’s predecessor, Stanford hydraulic arm, was

dangerous and difficult to control and the new Stanford arm was a great improvement

providing the compatibility with the existing computer systems and easier controlling.

[16] All joints were powered by DC motors. Potentiometers provided feedback of the

positions and analog tachometers measured the velocity and electromagnetic brakes

locked the joints. To prevent damage in collisions there were slip clutches. Wrist had

also a torque sensor to prevent overloading. Because of the low calculation speeds of

the first computers, brakes held the joints still while the next trajectory was being

calculated. [15] Stanford arm was used for over 20 years in teaching purposes and

various projects. These consisted of fairly complicated tasks such as assembling a Ford

Model A waterpump, partial assembly work of a chainsaw and solving the Instant

Insanity color puzzle. [16]

5

 2.2 The Development of Robots

The early robotic mechanisms were powered either pneumatically or hydraulically.

Today, most robots are equipped with electrical motors. [17] These are either servo or

stepper motors powered with either AC or DC current. Servo motors are proportionally

controlled DC motors in a closed loop - feedback of the servo position is provided back

to the servo controller with a potentiometer [18]. Stepper motors are brushless, pulse

powered motors which move in discrete steps and do not provide feedback, but they are

a cheaper solution compared to servo motors and in slow speeds stepper motors have a

higher torque. [19]

From the beginning of the industrial robot revolution in the 1970s, the research of

robotics was mainly concentrated on industrial robots until 1990. While the assigned

tasks became more complicated, robots had to be more adaptive and flexible. This

change brought robots also to the new industries such as food and pharmacy industries.

[20] The rapid development of computer systems in the 1980s made it possible to

calculate more complex movements. As the semiconductor technology developed

further and lowered the prices of microprocessors, it was realized that robot markets

could be profitable also in other sectors than industry. [21],[22]

Today, industrial robot controllers are small and smart real time process computers

capable of controlling the workcell equipment thousands of times per second and

reacting in milliseconds. Multiple programs can also be executed in parallel. Industrial

robots can lift payloads from a few kilograms to several hundred kilograms. Also

precision has increased greatly, almost all robots can reach the precision of ±1 mm and

the industrial robots used in assembly tasks have to be able to reach a precision of ±

0.05 – 0.1 mm. [23]

As Unimate was the first robot used in a dangerous environment in 1961, industrial

robots are now commonly replacing workers in tasks that are either too dangerous, dull

or difficult for humans [10],[20]. They are used in a variety of tasks ranging from light

assembly work in the electronics industry to heavy-duty work in the metal industry. In

the past 30 years, automotive lines have been fully automated and taken over by robots

6

[20]. In laboratories, robots are identifying, measuring and preparing samples, only

requiring a little of staff attention [24]. A common thing for all robot applications is the

need to optimize the productivity, when human workers are not fast or accurate enough

[20].

As a result of increasing numbers of utilizations, different types of robots exist today

beside the stationary industrial robot. Mobile robots use mechanisms that allow them to

move freely around a real world terrain. Mobile robots are developed to increase the

range of the work area. Telerobots are mobile machines that follow instructions from a

human operator in a remote location. [20]

7

 2.3 Industrial Robot Markets [25]

Somewhat surprisingly, there are only a little over one million industrial robots in the

world. In 2008, the number of shipped industrial robots was about 113 300 units

worldwide. During the recent years, there have been dramatic differences between the

regions of the world. In Asia, the number of supplied units has increased, in Europe it

has stagnated and in America it has decreased. In China, where the robot investments

are booming, the number of units supplied increased by 20 % from the previous year

being 7 900 units. China is the third largest robot market in Asia after Japan (33 100

units) and the Republic of Korea (11 600 units). In the Republic of Korea, the rise was

28 % and in Taiwan 40 %. In other Asian markets, including Indonesia, Malaysia, the

Philippines, Singapore, Thailand and Vietnam, the sales rose by 10 %.

The global financing crisis has had a strong influence on the automotive industry in the

United States. The cutting and relocating of the production capabilities and the

restraining of foreign investments lead to a 12 % decrease in the supply of industrial

robots in the Americas.

In Europe, the total number of units supplied stagnated at about 35 100 units. In Italy,

France and United Kingdom, the supply decreased but on the other hand, the sales to

Central and Eastern Europe – remarkably to Hungary, Poland and Slovakia - went up by

22 %. In Germany, 4 % more robots were sold than in 2007. In the first half of 2008,

almost all industries invested in robots, but the start of the economic crisis dropped the

sales dramatically. The supplies increased in food and beverage, metal products and

machinery industries and decreased in automotive and electrical/electronics industries,

as well as in rubber and plastics industry.

At the end of 2008, the number of operational industrial robots in the world was

estimated to be in the range between 1 036 000 and 1 300 000 units. The lower number

is based on the assumption that the average service life of an industrial robot is 12

years. The latter number is based on the assumption that the average service life might

be as long as 15 years.

8

 2.4 Industrial Robot Types

Industrial robots are divided into six main types: articulated, linear, cylindrical, parallel,

SCARA and polar. These types are introduced in the following chapters. Different robot

types have been developed to fit more specific tasks. The maximum payloads,

reachabilities, numbers of axes and maximum movement speeds are varying depending

on the robot type and manufacturer. [26]

 2.4.1 Articulated Robot Arm

An articulated arm robot, also called a jointed-arm robot, uses rotary joints typically

arranged in a chain, where one joint supports the next in the chain. The arm of a

vertically articulated robot is connected to the base [26]. The arms typically have 6

degrees of freedom. They are the x, y and z axes and yaw, pitch and roll. Pitch means

the wrist's movement up and down. Yaw is the hand's movement left and right and roll

is the rotation of the whole fore arm. [17] The work envelope of an articulated robot

arm is a partial sphere as shown in Figure 2.

Figure 2: Articulated robot arm and its work envelope

The parts of a robot arm are named base, shoulder, upper arm, forearm and wrist just as

in a human arm. In a 6-axis type robot, there is also an elbow block between the upper

arm and the forearm. The end effector of a robot arm is often referred to as a hand or

tool. The end effector's installation surface is referred to as mechanical interface. [7]

9

 2.4.2 Linear Robot (Cartesian Robot)

The movements of a linear robot are limited to x, y and z axes. Typically the robot is

mounted on a linear track supported by pillars over the work area. The track is the

robot's axis 1, while axis 2 is another linear drive perpendicular to the axis 1. See figure

3. The up and down motion is provided by the axis 3.

Linear robots are ideally suited for handling and palletizing applications, since they

provide a more costefficient solution than articulated robots when only simple

manipulation is required. Another advantage is that linear robots can work over a large

area. Linear robots can also be combined with articulated robots to produce combined

kinematics. [27]

Figure 3: Linear robot

10

 2.4.3 Cylindrical Robot

As the linear robot, also the cylindrical arm (Figure 4) has three degrees of freedom, but

only two of them, the Y and the Z axes, are linear. The third is the rotation at the base.

The work envelope of a cylindrical robot is cylinder-shaped. [17]

Figure 4: Cylindrical robot and its work envelope

 2.4.4 Parallel Robot

Parallel robot, known also as parallel manipulator, consists of a fixed base, an end

effector and multiple “legs” as shown in Figure 5. The term parallel means that there

are more than one kinematic chain from the base to the end effector. A parallel robot has

four degrees of freedom, three of them translational and one rotational. The use of

parallelograms forces the end platform's movements to the x, y and z axes. The fourth

degree of freedom is the end effector's rotational movement. The parallel robot is

mounted above the workspace.

11

Figure 5: Parallel robot

The design of a delta robot makes it possible to use extremely high accelerations. The

moving arms can be made of lightweight composite materials because the actuators are

located in the base of the robot. The actuators can be either linear or rotational. Parallel

robots are stronger than serial robots (e.g. articulated arm) because the end effector is

connected to multiple links. This also makes the accuracy of a parallel robot better when

compared to serial robots. In a serial robot, the total error of position is the sum of the

errors. In parallel robot the error is averaged and thus smaller. [28],[29]

Of course, there are also some weaknesses in the design. The workspace of a parallel

robot is more limited because its legs can collide. This makes them somewhat unable to

reach around obstacles. The calculations needed for the forward kinematics used in

parallel robots are usually more complex. [29]

12

 2.4.5 SCARA Robot

The acronym SCARA stands for Selective Compliant Articulated Robot Arm. It is also

called a horizontal articulated arm robot or horizontal multi-joint robot. The concept of

the SCARA robot was introduced in 1981 by Sankyo Senki, Pentel and NEC. As the

name implies, the robot has compliance only in some directions (x and y directions) and

high rigidity in some (z) direction.There are two types of SCARA designs. One type

rotates round all three axes, the other has a sliding motion along one axis. The SCARA

design enables very high speeds in horizontal movement. SCARA robots are mainly

used in assembly and pick & place solutions. The work envelope of a SCARA robot is

in the shape of a cylinder similar to a cylindrical robot's but with round ends as shown

in Figure 6.

Figure 6: SCARA robot and its work envelope

13

 2.4.6 Polar Coordinate Robot

The polar coordinate robot, also known as a spherical robot, has one sliding and two

rotational motions as shown in Figure 7. The first rotation is around the vertical post

and the other around the shoulder joint. The work envelope of a polar robot is a partial

sphere with varying radius. [17]

Figure 7: Polar coordinate robot and its work envelope

14

 2.5 Robot Grippers

The main idea of the robots was to develop a multipurpose, adaptive machine that can

be applied to different tasks in industry. This was hard, mostly because of the fact that

robot grippers did not have the same versatile and flexible abilities as human hands. To

make the industrial robots more effective in the tasks which were normally carried out

by humans, a more effective handling equipment had to be planned. The grippers have

always been designed for individual cases. Most of the grippers have only specific uses

such as loading of manufacturing lines, packaging in storages and and object handling

in laboratory test and inspection systems. [31] This is because the multipurpose hand

with multiple fingers and joints would just be too complicated to be used with the

limited sensing abilities [22]. Grippers have been mimicking different postures of

human hand depending on the needed functions and today, there is a great amount of

different kinds of grippers [31].

Almost all grippers operate in the contact with the object’s surface and the solid grip is

the most important subject to be considered while designing a robot gripper. This can be

achieved by maximizing the contact area and by applying effective gripping force. By

matching gripper and object profiles, the best retention stability can be achieved, but

this is not always the most practical solution. The most common geometric shapes are

commonly utilized in gripper designs to create simple and working grippers with the

most effective contact points. Contact points are the areas where the gripping force is

centered. There are several types of contacting methods depending on the object’s

material and shape characteristics. Impactive, ingressive, contigutive and astrictive are

the classified gripping methods. [31]

Impactive contact is using the grasping force and object’s friction to get the grip. The

servo powered and pneumatic jaws are impactive, and one of the most used gripper

types. These grippers have usually two gripper fingers to grab the workpiece, but there

are also grippers with three fingers to get a tighter hold. Jaw grippers can be designed to

grab multiple kinds of items by a creative planning of the fingers and contact points.

They can also center the workpiece when prehensing. This can greatly reduce the time

of work cycle, when there is no need to center the object mechanically. [31]

15

Ingressive grippers are operating by deformatting or even penetrating the object's

surface. These grippers can be brush elements, hooks or needles. Ingressive grippers can

be used in food processing plants or other facilities, where products can be handled

more roughly. [31]

Contigutive contact is based on chemical adhesion, surface tension forces or thermal

adhesion. Object is grabbed by attaching it to gripper surface and removed

mechanically. These grippers are especially useful when objects are irregularly shaped

and have different contact points. [31]

Astrictive grippers use the electrostatic adhesion, magnetic forces or vacuum suction to

achieve the robust grip. Magnetic grippers can only be used with magnetic materials

and their lifting force depends on the object’s material, shape and surface topography.

[31] Vacuum grippers are widely used in industry. The advantages are that rubber or

plastic suction cups won’t scratch the surface and vacuum grippers can lift products by

using only one flat surface of the object. [23]

While developing a robot gripper, some issues must be considered with care. The most

important properties to be noticed are the robot's maximum payload, the used gripping

method, tolerance analysis, the space needed for the gripper while functioning, and

maintenance situations. The most desirable properties are usually a simple structure,

small size and weight, the reliability of the grip and the gripper's centering abilities. The

maximum lift capability of the robot is often limited and payload is calculated without

the used tool, therefor a gripper’s own weight must be considered while planning the

tool for the operation. The gripping method should also be chosen with care, vacuum

grippers are often better than jaws, as vacuum gripper needs to grasp only one side of

the workpiece. Safety aspects are also primary when planning a gripper system. In case

of malfunction, the gripper should fail safely. The wrist mechanism torques should be

actively monitored and the gripper should be secured with a mechanical safety pin in

case of malfunction or break caused by overload. Vacuum grippers have sudden

pressure leakage if one suction cup is detached. For this situation there are often safety

devices. [22]

16

 2.6 Robot Sensors

The early robots were simple manipulators without any sensing capabilities. In moving,

autonomous robots, such as service and surveillance robots, sensory feedback is crucial,

but more and more sensors are added to industrial robots too, because they greatly

improve the adaptivity of the robot's operation. When the robot is able to adapt to one's

surroundings it is easier to set up the production. Especially machine vision adds a great

deal of flexibility. In a typical robot and machine vision application, picking pieces from

a conveyor, work pieces can be inaccurately positioned and the robot can still pick

them. The sensors are classified to internal and external sensors.

Internal sensors are either analogical or digital and their function is to gather data from

the robot itself. Positioning and movement speeds are collected with internal sensors.

[7]

External sensors are used to gather information from the environment. External

sensors can be divided further into two classes: contact or non-contact sensors. The

former respond to different types of physical contact, such as touch, slip or force and

torque. The latter detect the variation in either acoustic or electromagnetic radiation.

They are used to measure range, proximity and visual properties of an object. Different

external sensor types are discussed in more detail in the following chapters. [7]

17

 2.6.1 Range Sensors

Range sensors are used to measure distances from reference points. Usually these

reference points are range sensors itself. There are two ways to measure distances. The

first one is based on optical measurements - the distances are calculated from acquired

images with a known unit scale. Usually machine vision cameras are inspecting planes

and calculating width and height, but also depth can be measured using stereo vision.

The other way to find out range is based on time-of-flight concept. [7]

 2.6.1.1 Stereo Vision

Stereo vision is a similar technique to the human eye. A specified point of interest is

viewed from two views and the distance estimation is based on the differences in the

two images. There are a few preconditions in correct stereo vision measuring: the

cameras must be similar, the distance between centers of the lenses, referred to as

baseline, must be known, and the cameras must be aligned side to side. Then images

can be compared to find corresponding points which to use in calculating the depth.

Stereo vision is not used to measure very long distances, because the images become

more identical when the object is moved further. [7] The camera setup of a stereo vision

system is illustrated in Figure 8 and the difference between the images in Figure 9.

Figure 8: Camera setup of a stereo vision system

18

Figure 9: The difference between the stereo vision images

 2.6.1.2 Triangulation

Triangulation is one of the simplest ways to measure range. The object being inspected

is illuminated with a narrow light beam which is swept over the surface. When the light

source is turned into a correct angle, light reflects to the detector, and the distance from

the object to the baseline can be calculated geometrically when the angle and distance

between the emitter and the sensor are known. The setup of a triangulation system is

illustrated in Figure 10 produces a point measurement. It is also possible to obtain three-

dimensional coordinates by moving the source and the detector together along a plane

as seen in Figure 11. This produces a set of points with a known distance to the detector.

[7]

19

Figure 10: Triangulation

Figure 11: 3D triangulation

 2.6.1.3 Time-of-Flight

Probably the most common way of measuring range in robotic applications is the time

of flight concept. There are three methods, of which two utilize laser and one

ultrasound. When either pulses of light rays or ultrasonic waves are emitted, obstacles

reflect some of them back and when the speed of light or sound is known, the distance

can be calculated.

20

In the first laser-utilizing method, the measured quantity is the time. A pulse of light is

emitted and reflected back to the same direction by a reflective surface. The time

between the outgoing and returning light is measured and as the speed of light is known,

the distance can be calculated. This method sets high demands for the instruments used,

because of the speed of light.

The another approach is to measure the phase shift between the outgoing and returning

beams. Instead of a laser pulse used in the previous method, this method utilizes a

continuous beam of light. In this scheme shown in Figure 12, a laser beam is split into

two beams. The reference beam travels to the phase measuring device straight after

splitting. The other beam travels to the reflecting surface and back. An increase in the

distance D increaces the phase shift. Because of the small wavelength of laser, the

method is not practical for robotic applications. If the laser light is amplitude modulated

with a sine signal with a much higher wavelength, the wavelength range is more

practical to work with.

Figure 12: Range measurement by phase shift

The basic idea of ultrasonic range measuring is the same as in the pulsed laser method.

A short chirp of ultrasonic sound is transmitted towards the range to be measured. The

time between the outgoing pulse and its echo is measured and the distance calculated

using the known speed of sound. [7]

21

 2.6.2 Proximity Sensors

Proximity sensors are used to detect the presence of nearby objects without physical

contact [32]. These sensors are widely used, when limit switches are repeatedly

exposed to mechanical wearing. There are inductive, capacitive and optical proximity

sensors. Inductive and capacitive proximity sensors have also an advantage compared to

optical proximity sensors – they are unaffected by dust or opaque containers. [33] The

different types of proximity sensors are discussed in the following chapters.

 2.6.2.1 Inductive

Inductive sensors are one of the most common proximity sensors used in industry.

Inductive proximity sensing is based on the change in inductance when a metallic object

is present.

Figure 13: The principle of an inductive proximity sensor

An inductive sensor used for ferromagnetic metals consists of a coil and a permanent

magnet as shown in Figure 13. When a ferromagnetic object is brought close to the

sensor, the flux lines in the permanent magnet change. This induces a current into the

coil. Under static conditions (i.e. the object stays still) there is no change in the flux

lines and no current. If the object enters or leaves the the field of the magnet, the flux

lines change and induce a current pulse. The amplitude and the shape of the current

pulse are proportional to the change in the flux. As the Figure 14 shows, the amplitude

of the voltage is proportional to the speed of the object and the polarity of the voltage

depends on whether the object enters or leaves the field. [7]

22

Figure 14: The amplitude of the induced voltage depends of the object speed

Inductive sensors can also be used to sense the proximity of non-ferromagnetic metals.

The sensor utilizes a LC oscillator circuit which consists of an inductor and a capacitor.

Current alternates between the inductor and the capacitor at the resonant frequency of

the circuit. The coil produces a high-frequency electromagnetic field directed towards

the measuring surface of the sensor. When a metallic object is brought to a close

proximity from the sensor, eddy currents appear in the object. They absorb energy from

the oscillator circuit and thus reduce the amplitude of the oscillation in the circuit. This

loss is converted into a signal. [34],[35]

 2.6.2.2 Capacitive

Capacitive proximity sensors react to the change in the capacitance that is induced by an

object brought near it. In principle, capacitive sensors detect all solid and liquid

materials. [36] A capacitive sensor consists of two electrodes separated by a dielectric

material [7].

There are different types if circuitry used to detect proximity from the change in

capacitance. In one approach, the capacitor is a part of an oscillator circuit. The

oscillation starts when the capacitance exceeds a threshold value. The start of the

oscillation indicates the presence of an object as binary value that depends on the

threshold value. [7]

23

In another approach, the capacitor is a part of a circuit which is driven by a sinusoidal

waveform. A change in the capacitance causes a phase shift which is proportional to the

change in the capacitance. Also these sensors are typically used in a binary mode. [7]

 2.6.2.3 The Hall-Effect

When a conductor carries a current in a magnetic field that is perpendicular with the

conductor, a potential difference is generated between the opposite edges of the

conductor. This is called the Hall-effect. On its own, a Hall-effect sensor can only sense

magnetized objects, but in combination with a permanent magnet, they can detect all

ferromagnetic objects. [34], [7]

Proximity sensors based on the Hall-effect consist of a Hall-effect sensor and a

permanent magnet as shown in Figure 15. When no ferromagnetic object is present, the

Hall-effect sensor senses a strong magnetic field. When an object made of

ferromagnetic material is brought close to the sensor, the magnetic field lines bend

through the material. This causes the magnetic field at the sensor to weaken. [7]

Figure 15: A Hall-effect sensor and a permanent magnet combination for sensing

proximity of a ferromagnetic metal

24

 2.6.2.4 Optical

A common type of optical proximity sensor is an infrared LED transmitter and a

photodiode receiver combination [37]. The source and detector are focused on the same

plane. The intersection of their light cones is the volume, in which the sensor detects an

object. [7]

Figure 16: The principle of an optical proximity sensor

As seen in Figure 16, the shape and size of the sensing volume vary depending on the

location and orientation of the transmitter and receiver. A reflective surface in anywhere

inside the sensing volume produces a reading. The intensity of these readings depends

on the distance, reflectivity and the orientation of the object. Usually optical sensors are

used to generate a binary signal when a preset threshold value is reached. [7]

25

 2.6.3 Touch

Touch sensors are used to obtain information about the contact of the manipulator and

objects in the robot's workspace. Touch sensors can be divided into two groups: binary

and analog. Binary sensors are switches that respond to the presence of an object. The

output signal of an analog touch sensor is proportional to the force. [7]

 2.6.3.1 Binary

As mentioned above, binary touch sensors are typically micro switches. As illustrated in

Figure 17, such switches can be located in the inner surface of a robot hand's fingers to

determine the presence of an object. Using an array of binary sensors on a surface

provides more tactile information. [7]

Figure 17: Binary touch sensors on the inner surfaces of a robot hand's fingers

 2.6.3.2 Analog

The output of an analog touch sensor is proportional to the force being applied to the

sensor. The simplest approach, shown in Figure 18, is built from a rotating shaft that is

turned by the movement of a spring-loaded rod pushed by the object. The rotation of the

shaft is measured using a potentiometer or a code wheel. The force can be calculated

from the displacement when the spring constant is known. [7]

26

Figure 18: Analog touch sensor [7]

 2.6.3.3 Artificial Skin [7]

Artificial skin can be classified as a type of an analog touch sensor, but because the

principle behind the device is different from a tactile sensing array formed from

multiple individual sensors, it is introduced in this separate chapter. The term “artificial

skin” refers to a device, in which a compression causes a deformation in the surface that

can be measured as a variation in resistance. There are many approaches to this, four of

them shown in Figure 19.

In the first method, shown in Figure 19 (a), conductive material is sandwiched between

common ground and an array of electrodes. One touch point is defined by a rectangular

area including an electrode. The current flowing from the common ground to the

electrodes is a function of compression of the conductive material.

In the second approach, shown in Figure 19 (b), pairs of narrow electrodes are placed

on a substrate with electronic circuits. The plane is covered with a conductive material

which is insulated from the substrate plain, but not the electrodes. Compression results a

resistance change that is measured by the circuits between the electrodes.

27

Figure 19: Types of artificial skin [7]

The third technique employs two perpendicular arrays of electrodes with a layer of

conductive material between them (See 19 (c)). Each intersection forms a sensing point.

The electrodes of one array are driven electronically one at a time and simultaneously

measuring the current flowing in the other array. The magnitude of the current is

proportional to the compression of the material between the electrodes.

28

The fourth method utilizes an anisotropic material. Anisotropic material is electronically

conductive only in one direction. The sensor (Figure 19 (d)) consists of a linear array of

thin, flat electrodes and a layer of conductive material on top of them with the

conduction axis perpendicular to the electrodes. The material and the electrodes are

separated from each other by a mesh. When a force is applied to the surface, the

material and the electrodes come in contact. The size of the contact area increases with

the force thus lowering the resistance. One array at a time is driven externally (as in the

previous method) and the current is measured in the other.

 2.6.3.4 Slipping

All the touch sensors described above measure forces that are perpendicular to the

surface of the sensor. However, measuring tangential motion is an essential part of

touch sensing. Slipping can be measured with a device illustrated in Figure 20. The

device consists of a dimpled ball deflecting a rod mounted on the axis of a conducting

disk. When the ball rotates, the disk comes in contact with the electrical contacts under

the disk. The contacts are evenly spaced around the circumference of the disk, therefore

the direction of the movement can be determined by which contact the disk touches.

The frequency of the vibration of the disk is proportional to the ball's speed. [7]

Figure 20: A sensor structure that is able to sense both the direction and the magnitude

of slip [7]

29

 2.6.4 Force and Torque

Force and torque sensing is used to measure the reacting forces between mechanical

structures while moving the robot. The sensors are critical in applications such as

assembly, product testing and material handling to get feedback from the robot's actions.

[38] The two approaches to sense force and torque are joint and wrist sensors. These

measurements are also necessary, when movements of the robot are actively monitored

to detect collisions. [7]

 2.6.4.1 Joint Sensors

It is a fault sensitive way to measure force from joints. When forces for each joints are

measured and converted to torques, force and torque at hand level must be calculated

[39]. Still, it is easy to measure the torque of DC motor driven robot joints, as sensing of

torque can be done by measuring the armature current [7].

 2.6.4.2 Wrist Sensors

Wrist sensors are mounted between the top of a robot arm and the end-effector. Wrist

sensors use eight pairs of semiconductor strain gauges mounted differentially in the

deflection bars as shown in Figure 21. Three components of force and moment can be

determined by adding and subtracting the strain gauge voltages. [7]

Figure 21: Wrist force sensor and the forces and moments of the strain gauge

30

 2.6.5 Machine Vision

 2.6.5.1 Vision, Computer Vision and Machine Vision

Visual perception means the ability to interpret information received from visible light.

Vision is the most important sense for humans, and thus the natural choice for creating

intelligence to machines, too. However, it has become clear, that the complexity of

biological vision developed during the millions of years of evolution is something that

cannot easily be imitated.

Computer vision is a subfield of artificial intelligence. It is a scientific discipline dealing

with a variety of fields, for example pattern recognition, statistical analysis, image

processing and projective geometry. Machine vision is an application of computer

vision aiming at the practical applications for industry. Machine vision systems are used

to control other equipment such as robotic arms using digital I/O devices and computer

networks. [40]

Machine vision systems are used in many fields, such as medical imaging, security and

surveillance, traffic monitoring and face, iris and fingerprint analysis and recognition,

while the emphasis is strongly in the manufacturing industry. There machine vision is

especially used for automated visual inspections and robot control in assembly

solutions. [41]

Visual inspections can be either quality control or identification tasks. The former may

include inspecting surface color, luminosity or texture, measuring the size or shape of

the object or verifying the existence of parts (e.g. screws). Reading barcodes, 2D codes

or text using OCR are examples of the latter. Vision based robot control is superior

compared to tradional applications. A robot following preprogrammed paths without

any sensory feedback isn't able to adapt to minor variations in its surroundings. A vision

controlled robot is able to grab the work pieces despite the inaccurate location or shape.

[41]

31

 2.6.5.2 Components of a Machine Vision System

A simple machine vision system could consist of the following equipment:

1. an optical sensor

2. a camera

3. lighting

4. camera interface for computer, “framegrabber”

5. computer software

6. digital signal hardware of a network connection to report results

The optical sensor triggers the camera when the part to be inspected is present. Lighting

is an important part of a machine vision system. Lighting is discussed in depth in its

own chapter later.

The camera takes the picture which is transferred to the computer by the framegrabber.

The framegrabber captures individual frames from an analog video signal or a digital

video stream. Historically they only had memory to acquire and store a single frame but

nowadays they typically are able to store and compress multiple frames. Machine vision

system computer software is used in multiple tasks from preprocessing of the acquired

image to the interpretation of the scene. The signal hardware or the network connection

is used to communicate with other hardware to take the intended actions. In modern

machine vision cameras all the listed equipment except the optical sensor are combined

together. Machine vision cameras are discussed in more depth in the next chapter. [42]

 2.6.5.2.1 Cameras

There are two different sensor technologies for capturing digital images, CCD (charge

coupled device) and CMOS (complementary metal oxide semiconductor). They are both

developed in the late 1960s, but CCD sensors have dominated the market with their

superior image quality until the development of litography techiniques in the 1990s

[43], [44]. The manufacturing of CMOS sensors sets much higher requirements for the

silicon wafers and fabricating methods than that of CCD sensors'. This is due to the

different operating principles of the sensors. [45]

32

In both sensors, there is an array of small, light-sensitive pixels that convert the photons

that hit them into electrons. In a CCD image sensor, there are only a few, or often only

one output node that converts the charges of the pixels into voltage. The voltages are

buffered and sent forward as an analog signal. The analog signal is amplified and

converted to a digital signal in the camera's supporting circuitry (See Figure 22). In a

CMOS sensor, each pixel has its own charge-to-voltage conversion. Each column of

pixels has an amplifier and a multiplexer (See Figure 23). When each pixel is making its

own conversion, the uniformity is lower. The output of the chip is a digital signal, thus

requiring less additional circuitry outside the chip. [45]

Figure 22: In a CCD image sensor, the charge-to-voltage conversion is done by one

output node

33

Figure 23: In a CMOS image sensor both the photon-to-electron and the charge-to-

voltage conversions are done separately for each pixel

The most common resolutions of machine vision cameras range between VGA (640 ×

480 pixels) and UXGA (1600 × 1200 pixels) [46], [47]. Usually the most significant

factor in a succeeding machine vision system is not the high resolution of the image.

The higher the resolution the more processing power is required. The same principle

applies to the color. If the application does not truly require the use of a color camera, a

monochrome camera should be used instead, because the larger amount of data

produced by the color camera requires more processing power. The sensitivity of the

camera is an important aspect. The higher the sensitivity, the less light is needed. This

means shorter exposure times, which allows the target to move during the inspection.

[48]

34

Today, cameras are much more than just their optics and sensor. They are full computers

with their own processors, memory and networking equipment. Cameras store the

machine vision software in their memory, process the image data according to it and

send the inspection results to other devices. The most common camera interface is

Ethernet. [48]

 2.6.5.2.2 Computer Software [7]

As human vision, artificial vision is a multi-layered process. Machine vision system

software is often divided into three layers: low-level, intermediate level and high-level

vision. The low level vision deals with the image acquisition, filtering, thresholding and

use of morphological operations. The image can be enhanced by reducing noise or a

gray scale image can be converted to a black and white image.

Intermediate level vision detects features from the image using line, circle and ellipse

detection and pattern matching. Depending on the application, the software can count,

measure or identify objects in the image. Common techiques found in commercial and

open source machine vision packages include also ready-made barcode and 2D code

reading and OCR tools. [49] The machine vision software typically uses a number of

different image processing techniques to identify the object.

High level vision interprets the data produced by the previous layers. For example, the

software might compare the inspected object to the programmed criteria and either pass

or fail the item. If the item fails, the software might signal the robot to remove the part

from a conveyor or otherwise warn about the failure.

 2.6.5.2.3 Lighting [7]

Lighting is possibly the most important factor in a successful use of machine vision. Or,

in other words, it is the easiest way to ruin an otherwise working machine vision

system.The effect is most notable in color identification applications, but affects all

inspections. The lighting circumstances should remain as static as possible. The

compensation of the changes is also possible, but demanding.

35

The 5 basic techniques for lighting the target are directional light, diffuse light, back

lighting, strobe light and structured lighting.

In directional lighting, shown in Figure 24, bright light sources are aimed directly at

the target surface. Directional light produces an intense, uneven light and strong

shadows. In addition to normal images, it can be used to detect flaws on the surface by

measuring the amount of scatter. A flat surface reflects the light into on direction, but if

the surface has pits or scraches, the amount of light scattered to the camera increases.

Diffuse light is reflected onto the target surface by another surface or surfaces. This

gives more even lighting and reduces shadows. Usually, this lighting scheme is used,

when the surface characteristics are important. Diffuse light is illustrated in Figure 25.

Back light is aimed to the camera while the object being inspected is between the light

source and the camera as shown in Figure 26. Back light is used, when the edges of the

object should be as distinctive as possible e.g. for measuring or when the object can be

reliably identified by its silhouette.

Strobe light is a very high intensity light that is applied only upon the exposure time.

Using a strobe light enables short exposure times that are vital when capturing images

of moving targets to avoid motion blur. Strobe light is illustrated in Figure 27.

Structured lighting means projecting stripes, points or other patterns onto the surface

being inspected. In the simple solution, the disturbance in the pattern indicates the

presence of the object. In more sophisticated applications the three-dimensional

characteristics of the object are examined. Figures 28 and 29 show an approach to

structured lighting. Figure 28 shows an example of the setting of a structured lighting

system. In this scheme, two light planes are projected from different directions. When

no object is present, the planes appear as a single stripe. If an object intercepts the

planes, the stripe does not appear as continuous, but as divided into two stripes on the

object's surface as shown in Figure 29.

36

Figure 24: Directional lighting Figure 25: Diffuse lighting

Figure 26: Back lighting Figure 27: Strobe light

37

Figure 28: An example of a structured lighting system

Figure 29: The light stripe split by the object

38

 2.7 Robot Control

 2.7.1 Robot Arm Kinematics

 2.7.1.1 Introduction

Robot arm kinematics studies the geometry of motion of a robot arm with respect to a

fixed reference coordinate system. It does not take into consideration the forces or

moments causing the motion. Kinematics analytically describe the spatial displacement

of the robot, especially the relations between the joint angles and the position and

orientation of the end effector. The two fundamendal problems in kinematics are the

direct (also referred to as forward) kinematics problem and the inverse kinematics

problem. [7]

The components of a robot arm form a kinematic chain. From the kinematics viewpoint,

there are two types of components, joints and links. The links are the fixed construction

between the joints in which the motion occurs. Joints can be divided into two types

depending on the type of the motion. Revolute joints rotate about an axis of rotation. A

prismatic joint allows telescopic motion. [50]

 2.7.1.2 The Direct Kinematics Problem

The direct kinematics problem can be represented by the question:

“For a given manipulator, given the joint angle vector q(t) = (q1(t), q2(t),...qn(t))T and

the geometric link parameters, where n is the number of the degrees of freedom, what is

the position and orientation of the end-effector of the manipulator with respect to a

reference coordinate system?” [7]

Systematic approaches for solving the problem include the use of trigonometry and

matrix algebra. The reference coordinate system is the global coordinate frame (denoted

with x,y and z). Another, local coordinate system (denoted with u, v and w) is

established along the joint axis of each link. The links are rotated and/or translated with

39

a respect to the reference coordinate system as shown in Figure 30. The solution for the

direct kinematics problem is the transformation matrix, which relates the two coordinate

systems to each other. [7]

Figure 30: The coordinate systems (xyz, uvw)

 2.7.1.3 The Inverse Kinematics Problem

The second fundamendal problem in robot kinematics is the inverse kinematics

problem. Inverse kinematics is in practice more important, because it provides the

answer to the following question:

“Given the desired position and orientation of the end-effector of the manipulator and

the geometric link parameters with respect to the reference coordinate system, can the

manipulator reach the desired prescribed manipulator hand position and orientation?

And if can, how many different manipulator configurations will satisfy the same

condition?”[7]

Robots usually operate in a joint-variable space because they are powered by servo

motors. The workpieces, on the other hand, are typically described using the world

coordinate system instead. The inverse kinematics problem can be solved using various

techniques. The methods include the use of inverse transformation or dual quaternians

and iterative and geometric approaches. [7]

40

 2.7.2 Robot Arm Dynamics

 2.7.2.1 Introduction

Robot arm dynamics deals with the robot arm motion. The dynamic behavior of the

manipulator is described as a set of dynamic equations. These equations are used in

robot control, simulation and design. [7]

 2.7.2.2 Equations of Motion [7]

The dynamic model of the robot arm can be formed using classical mechanics. The

dynamic equations of motion are created for each joint when the geometric and inertial

parameters of the links are known.

Different robot arm motion equations are derived from the Lagrange-Euler and Newton-

Euler formulations. The dynamic motion equations of a six-joint robot arm are highly

nonlinear and consist of various influencing forces, such as coupling reaction forces

between joints that depend on the manipulator's structure, joint velocity and acceleration

and the load being carried. The equations require a massive amount of arithmetic

operations.

Development of efficient algorithms for computing the forces and torques has resulted

in dynamic equations which are a set of forward and backward recursive equations that

can be applied to the links sequentially. The velocities and accelerations of each link

and joint are produced by the forward recursion and the forces and torques by the

backward recursion. Such algorithms can be used for creating a real-time control of a

robot.

41

 2.7.2.3 Manipulator Trajectories [7]

Controlling the manipulator motion to follow a predefined path can be divided to two

separate tasks, the trajectory planning and the motion control. The motion is typically

defined by the initial point and the endpoint. Both points consist of a position and

orientation and often there are more than one possible trajectories between them.

The trajectory is usually created by approximating the desired path as polynomial

functions. This operation is referred to as interpolation. After interpolating the path, a

sequence of time-based control points is generated. The manipulator's end effector

moves via this points from the initial point to the endpoint. Two basic types of

interpolation used in robot arm control are linear interpolation and joint interpolation.

In linear interpolation, the path is a straight line between the two endpoints (Figure 31).

In joint interpolation, the path is a smooth and polynomial line (Figure 32).

Figure 31: Linear interpolation Figure 32: Joint interpolation

When a linear path is not specifically required, it is beneficial to use joint interpolation.

In joint interpolation, the joints move only into one direction towards the desired

position, which makes the movements faster. In linear interpolation, some joints have to

change their movement direction during the operation.

42

 2.7.2.4 Robot Trajectory Planning [7]

The kinematics of a robot arm were discussed in the previous chapters. Before actually

moving the robot, it is necessary to take two things into consideration. The first is

whether there are any obstacles in the robot's planned path. The second is whether the

manipulator must traverse a specified path. The former is called obstacle constraint and

the latter path constraint. Together these two constraints result in four different control

modes shown in Table 1. The control problem can be divided into two subproblems,

motion (trajectory) planning and motion control. Various trajectory planning schemes

exist for obstacle-free motion.

Table 1: The control modes [7]

Obstacle constraint
Yes No

Path constraint

Yes

Off-line collision-
free path planning
plus
on-line path tracking

Off-line path
planning plus on-
line path tracking

No

Positional control
plus on-line obstacle
detection and
avoidance

Positional control

Trajectory planning schemes approximate (interpolate) the desired path, the space curve

between the manipulator initial and final locations, by a class of polynomial functions.

Also a sequence of time based control set points is generated for the manipulator control

between the initial location and destination. These path endpoints can be specified in

joint coordinates or cartesian coordinates. Usually they are, however, specified in the

latter, because the correct end-effector configurations are easier to visualize in cartesian

coordinates. Joint coordinates are not suitable as a working coordinate system because

the joint axes of the manipulators are not orthogonal and separate the position from

orientation. If the joint coordinates are for some reason needed, the inverse kinematics

can be used to make the conversion. Often there are many possible trajectories between

the two endpoints. The path can, for example, be a straight line or a smooth, polynomial

trajectory.

43

 2.7.3 Robot Manipulator Control Techniques [7]

Robot control systems include real-time computers capable of reacting to sensory data

and controlling the actuators of the robot thousands of times in a second [22]. Motion

control can be divided into three categories: joint motion control, resolved motion

control and adaptive control. The most simple robot arm control scheme is a design, in

which each joint of the arm is treated as a separate, simple servomechanism. This is the

joint motion control. A more efficient control method, the resolved motion control,

utilizes dynamic models of the robot arm with nonlinear compensation of the interaction

forces between the joints. Adaptive control is the scheme of choice when even the

resolved motion control schemes turn out to be inadequate. In adaptive control a

reference model is completed with an adaptation algorithm.

In early robots, such as the PUMA 560 robot arm, each of the joints was treated as a

separate servomechanism. The joint servomechanism control is basically a PID

controller (Proportional, Integral, Derivative). In the PUMA system, each of the joints

of the robot arm has its own microprocessor as an integral part of the joint controller.

Each of the microprocessors operates together with its own joint encoder, DA converter

and a current amplifier. A supervisory computer handles user interaction and subtask

planning for the microprocessors. In such a system, the feedback gains are constant and

prespecified, which makes this control scheme uncapable of updating the feedback

gains under varying payloads. An industrial robot is a highly nonlinear system. The

inertial loading, the coupling between joints and the gravity effects caused by the

motion and configuration of the arm are either position- or position- and velocity-

dependent terms.

This type of control system is not suitable for controlling a nonlinear system. An

improvement is a digital control with a dynamic model of the arm providing the torques

of the robot. This method is called the computed torque technique. In this control

scheme, the desired time-base trajectory is tracked as closely as possible by calculating

the forces/torques of all joints in real time using the Lagrange-Euler or Newton-Euler

equations of the motion of the manipulator.

44

Correction torques are calculated from the position and derivative feedback signals and

added to the torques calculated from the model. This compensates the modeling errors

and parameter variations of the model.

The two previous control methods and the other joint motion control schemes are used

to move the manipulator in the joint-variable space using a joint-interpolated trajectory.

Because users are normally better oriented with the cartesian-coordinate space, the

ability to control the manipulator hand to move in desired cartesian direction is often

preferable. In resolved motion control, various joints of the manipulator are rotated

simultaneously to move the manipulator hand along a desired world coordinate axis.

The resolved motion control can be done using either motion rate, acceleration or force

control.

The previous control methods are sometimes inadequate because of the inaccuracy of

the dynamic model and the changes in the payload of the controlled manipulator during

the work cycle. When the application requires high precision adaptive control is used.

The simplest of the various control schemes is the model-referenced adaptive control.

This computationally light method utilizes a suitable reference model and an adaptation

algorithm. The errors between the reference model and the actual system are used to

modify the feedback gains of the actuators of the system. The payload is taken into

consideration by adding it to the weight of the final link.

45

 2.7.4 Problems in Robot Control [22]

 2.7.4.1 Ambiguous Problem

Upon a moving command the robot control system calculates the joint angle of each

joint from the desired manipulator location and orientation using the inverse kinematics

solution. Because sometimes the joints can rotate more than 360 degrees, the motors

could be in multiple motor increments and the joints is multiple angles. This is called

ambiguous problem.

Usually the angles closest to the initial angle are selected. However, depending on the

previous robot position, the choice can turn out to be wrong and cause the external

process cables wired to the end-effector to break. The easiest way to avoid this is to use

reference positions with known joint angles during movement.

 2.7.4.2 Singularity

Another common problem occuring with 6-DOF robot arms is the singularity. In some

positions the robot loses one of its degrees of freedom, for example, when two of its

joint axes become parallel. Such a situation is illustrated in Figure 33. In this case, the

manipulator must be moved to the direction of the arrow with its orientation constant.

To accomplish this, the joint J1 should be rotated counterclockwise. This would cause

the manipulator angle to change, which cannot be compensated because of the singular

configuration of the joints in the wrist. Thus, the robot cannot execute the moving

command. Usually this stops the robot and triggers an error message.

Figure 33: The singular point of the joints of the wrist [22]

46

Making smooth movements near the singular points is often challenging. The problem

is not caused by the control algorithm but mechanical construction. The phenomenon

cannot be completely avoided, but some robots operate better even near the singular

points.

In the case of a typical 6-DOF robot arm, one way of dealing with the effects of

singularity is adding a seventh, additional degree of freedom. This, however, requires

more computing power because of special, optimizing algorithms for movement

control. Also mechanical dilemmas arise, for instance a decrease in payload and a

difficult transmission issue in the wrist. The advantages of the additional joint are the

robot's ability to avoid objects around it and to reach positions unreachable for a 6-DOF

robot.

 2.7.5 The Work Environment of a Robot [22]

The work environment of a robot differs from that of a human worker. The inflexibility

of an industrial robot sets high demands for the constancy of its surroundings. In most

cases, robots operate as a part of a work cell. Depending on the task, the robot itself

manipulates the products (e.g. welding or painting robot) or only moves them, possibly

serving some other machine (e.g. CNC machining station). Typical accessories are

discussed in the following chapter.

Simulation of the robot system plays a significant role in design and programming.

Simulation is an efficient way for work cell design. Different layouts can easily be

tested, the robot's work sequences defined and possible collisions detected safely.

Different simulation methods are introduced in their own chapter later.

Besides being able to work in conditions unpleasant or even dangerous for humans, the

robot itself can be a threat. Robots with powerful actuators and fast movements can

cause accidents. Safety aspects are discussed briefly at the end of this chapter.

47

 2.7.5.1 Accessories

A robot application consists of a robot, its software and accessories. The most common

accessories include conveyors and turntables used for work piece handling. Conveyors

can be controlled by the robot controller or a separate programmable logic controller.

The turntables are typically operated using a servo mechanism that is integrated to the

robot controller as an additional axis and that can be controlled similarly as the robot's

axes.

As a part of a work cell, the robot can also serve other machines, such as presses,

grinding and turning machines and assembly devices. A common feature for this

equipment is that they typically have an operating system and that they communicate

with the robot using I/O signals. These signals can be either analog or digital depending

on the application. Traditional serial transfer (e.g. RS-232, RS-485, Ethernet) and field

buses (e.g. Profibus-DP) are the most used interfaces. When needed, also standard

analog signals (e.g. 0-10 V, 0-20 mA) are used.

 2.7.5.2 Simulation

Simulation enables the verification of new robot programs before putting them into

production. In simulation, the syntax of the program, the I/O traffic and correct and safe

trajectories are confirmed. Simulation also makes it possible to try different layouts,

specify the work sequences and detect collisions. Simulation shortens the product

initialization time. In ideal cases, no test products are needed.

 2.7.5.2.1 Reachability Simulation

In reachability simulation, the robot's geometrical and kinematic characteristics are

modeled as realistically as possible. The geometry consists of a 3D CAD model of the

robot. Reachibility simulation is used for dimensioning the robot and its accessories, the

gripper testing and validation of the whole work cell.

48

The kinematic characteristics are the description of the joints, of how they move and

how much. The kinematics also includes the forward and inverse kinematic solutions of

the robot arm. Another important feature in reachability simulation is the automatic

geometry based collision detection. It makes it possible to discover the collisions

occuring outside of view.

 2.7.5.2.2 Process Simulation

As an addition to the geometrical and kinematical model used in reachability

simulation, the process simulation model of the robot work cell consists of the model of

the robot controller. In process simulation, normal robot programs performing

production-like tasks are created. These programs are run with the simulated robot in a

simulated environment. Thus, the controller model must be able to execute the same

code the robot uses and control the simulated robot according to it.

The operation can be analysed both visually and numerically. In the most advanced

simulators the whole production process can be simulated, meaning that in, for

example, machining the correct material removal occurs in the work piece. Process

simulation is used in off-line programming that is discussed later.

 2.7.5.2.3 Dynamic Simulation

In dynamic simulation, the forces relating to the robot and the process are taken into

account. The robot and the products move under the influence of the same forces as in

reality, which sets especially high standards for the model of the robot controller. Also

the masses of the equipment and the dynamic characteristics of the joints must be

modelled. Dynamic simulation is used when there are high requirements for the

accuracy of timing and placement.

Dynamic simulation requires a lot from the simulator. The simulation of the movements

caused by varying loads must be extremely precise. The kinematic characteristics are

not enough, also the control algorithms must correspond to the real robot controller.

Dynamic simulation is used for example in testing the movement syncronization of a

multi-robot work cell and in off-line programming of high speed work cells.

49

 2.7.5.3 Off-line Programming

With small product batches simulation and off-line programming minimize the time the

robot is out of the production during the change of the product. This has a direct effect

on the profitability of the robot system investment. Off-line programming is done

without the actual robot using only a 3D model of the robot and its accessories. Off-line

programming is used when the robot cannot be programmed in a potentially hazardous

production environment such as foundries, ammunition factories and nuclear plants. It

is especially suitable for applications, where a large quantity of positions must be taught

to the robot, as in welding, cutting, grinding or painting.

 2.7.5.4 Safety

The measures for removing the dangers of the system can be divided into three levels.

The first and most effective way is the design. This includes choosing a safe technology

and processes, following safety principles when designing the control systems and

eliminating manual tasks.

The second level is the use of technology, such as protecting barriers and safety devices.

They should be used to protect from dangers that cannot be avoided using design

methods. Barriers are used to prevent humans from reaching the dangerous area. Safety

devices, such as door switches, do not prohibit movement but stop the machines, if

someone enters the restricted area.

The remaining dangers, that cannot be eliminated even with the use of safety devices,

must be reported to the receiver of the device. Warnings about the dangers can be

attached to the device itself as well as in the instruction manual.

50

 2.8 The Robot Work Cell

The robot work cell (Figure 34) is equipped with a robot arm, a conveyor belt with

controlling PLC, two machine vision cameras, two operation panels and an additional

axis, which operates a small turntable. There are also two web cameras and a light

beacon with red, yellow and green lights. The equipment of the work cell is introduced

in depth in the following chapters.

Figure 34: The robot work cell

51

 2.8.1 The Equipment

RV-2AJ is a 5DOF (Degree of freedom) robot arm designed for light assembly work,

and it is used in research labs, medical facilities and CD pressing plants. [51] The

maximum reach distance is 410 mm. It is one of the smallest robots manufactured by

Mitsubishi. It weighs only 17 kg and its' maximum payload is 2 kg and the

recommended maximum payload for continuous operation is 1,5 kg. The robot can be

supplied with four different pneumatic tools and a motorized hand. The base section has

four outputs. The maximum resultant speed of its movements is 2100 mm/s and the

repeatability 0,02 mm. RJ-2AJ is a vertical type robot that can be installed on the floor

or suspended from the ceiling. The RV-2AJ robot is shown in Figure 35. [52]

Figure 35: Mitsubishi RV-2AJ robot arm

CR1 controller has a 64-bit RISC and DSP processor. Memory is reserved for up to 88

programs, of which each can have 5000 lines of code and 2500 position points. The

controller uses two programming languages, Melfa-BASIC and MoveMaster.

Communicating is possible with RS-232C port, RS422 port and RJ45 Ethernet cable.

The controller has three expansion slots and there is already an additional axis and

Ethernet interface installed to the controller. [53]

52

The most common use of the teaching pendant (TB) is the teaching of positions, but it

also enables much more versatile operations, such as creating and editing programs,

moving the robot and altering the robot's parameters. The R28TB teaching pendant

complies with the IEC IP65 protection rating while the protection rating of the

controller is only IP20, meaning that the controller is not protected against water. [53]

There are two machine vision cameras in the robot work cell, both manufactured by

DVT. The color camera, DVT 542C, is shown in Figure 36. It has a 640 × 480 pixels

CCD image sensor, Hitachi SH 4 processor, 64 MB of RAM and 16 MB of Flash

memory [54]. The DVT 530 is a grayscale CCD camera with the same VGA resolution

as the color camera. It has a Motorola Power PC processor, 32 MB of RAM and 16 MB

of Flash memory [55]. Both cameras operate on 24 VDC and have their own LED ring

lights to ensure the proper lighting of the target [54], [55]. In the vision system the

cameras operate as servers sending processed data to the robot controller.

Figure 36: DVT 542C machine vision sensor

The conveyor in the work cell is operated by a 24 VDC motor. The width of the

conveyor belt is 255 mm, the length of the working surface is 700 mm. The PCL

controlling the conveyor belt is Mitsubishi FX1N-14 MR-DS. Its operating voltage is

12-24 VDC and it has 14 I/O ports. The PLC gets a signal from the IR sensor, when an

object cuts its beam.

53

There are two Beijer Electronics’ operation panels in the work cell. The smaller, E410

(Figure 37) is a black and white touch screen with the resolution of 320 × 240 pixels. It

is connected to MELSEC FX1N PLC with RS-422 cable and together they are used to

operate the conveyor belt. E410 has also RS-232 port and Ethernet connection. With

various features, the operation panel can log and show data graphically and send it

using FTP or operate as a HTML server as well. E410 has support for multiple

languages. E1070 (Figure 38) is a 6,5” TFT display capable to show 65536 colors with

the resolution of 640 × 480 pixels. It is operated using the buttons positioned along the

edges of the screen. E1070 has 416 MHz RISC CPU and 64 MB of RAM. It has RS-

422 and RS-232 ports, Ethernet and USB connections and also a slot for a CF card.

Both of the panels use 24 VDC to operate. The panels are programmed with E-Designer

7 software. [56]

Figure 37: The E410 operation panel

with touch screen

Figure 38: The E1070 operation panel

There are 2 Microsoft LifeCam VX-6000 web cameras in the work cell. These cameras

have CMOS image sensors capable of capturing still images and video with a resolution

of 1280 × 1024 pixels. There are also built-in microphones for capturing audio.

Cameras are connected to PC with USB connectors.

54

 2.8.2 The Software

Melfa-BASIC is a programming language used for programming Mitsubishi robots.

Melfa-BASIC includes all usual programming structures such as flow control and

repetition statements, different variable types, subroutines etc. and also a wide range of

special functions and data types for robot applications. There is, for example, a distinct

variable type for robot position. Another application specific data type that is for is the

pallet. Pallets are arrays of positions declared by the four corner points and ideally

suitable for handling large amounts of identical workpieces.

COSIMIR Industrial is a industrial robot programming and simulation software.

Program has support for a wide range of robots from different manufacturers, different

manipulators and common work cell equipment. It is also possible to create completely

new models for simulation purposes. Programs can be simulated, debugged and

transferred to the robot controller before execution. Also the position lists can be edited

using COSIMIR. Other characteristics worth mentioning are RCI Explorer, which

makes it possible to examine and record almost any data of the robot, including error

reports, positions, speeds and servo voltages and currents. It is also easy to change the

robot's parameters using RCI explorer.

The machine vision systems for the DVT vision sensors are made using Intellect 1.5

software. Intellect has an camera emulator which consists of all the characteristics of a

real DVT vision sensor. The machine vision system is built from small modules, Tools,

each performing one specific task. There are tools for preprocessing the image,

identifying shapes, measuring distances etc. The tools can be chained to be applied in

specific order, for example, preprocessing filters before other tools. The final inspection

result is the combination of the results of the different tools.

55

E-designer 7 is a Human Interface Design software by Mitsubishi Electric Automation,

Inc. It is used for creating programs to monitor and control the other work cell devices

with the operation panels. E-designer has a support for dozens of manufacturers, and the

controllers for both robot and the DVT cameras could be found easily with

comprehensive instructions. Also great samples for the all operation panel models could

be found. The operation panel software is built as a hierarchy of blocks linked to each

other. There are some ready-made blocks for built-in operations such as the System

monitor block. User-made blocks can contain text, digital symbols, buttons and touch

keys (if the panel has a touch screen) and bitmap images.

56

3 The Modification and the Exercises

 3.1 Battery Change and Calibration

The robot position is detected by absolute encoders. While the toolpower is turned off,

the position must be saved with back up batteries. The batteries need to be replaced

regularly. There are in total six batteries to be replaced, five of them in the robot arm

and one in the additional axis unit. The batteries are 3,6 V lithium batteries. Normally,

the controller power should be turned on to avoid losing the encoder data when the

batteries are removed, but in this case, since we were going to reset the origin, the

controller was turned off.

The battery holder in the robot is located inside the robot arm's lowest part. The robot

must be turned to a specific position to make the removal of the cover possible. New

batteries were soldered directly to the cables. The new batteries were smaller than the

original ones. Thus, some filler was needed for the batteries to stay in the battery

holders.

There are three possible methods for setting the origin of the robot, the origin data

input method, the mechanical stopper method and the user origin method. The

calibration of the robot coordinates was carried out using the mechanical stopper

method. In this method, the servos are turned off and the breaks of each axis released

one at a time. The arm is then moved by hand to come in contact with the mechanical

stopper. This origin is recorded for the axis. After a successful calibration, the calculated

origin point was written inside of the plastic shoulder cover where the list of calibration

points was located.

57

 3.2 Robot Work Cell Exercises

 3.2.1 The Pedagogical Goals of the Exercises

The aim of the created exercises is to make it possible for the student to learn the use of

all the equipment in the robot work cell. The emphasis is in Melfa-BASIC programming

and machine vision. Also, there are instructions and some exercises for setting up the

operation panels and the conveyor logic. The practices are applying the previously

learned issues and the difficulty level is increasing smoothly.

After completing the exercises, the student should

1) be able to record position lists using the teaching pendant

2) know the syntax and the most common keywords in Melfa-BASIC

programming language

3) know the use of pallets in Melfa-BASIC

4) know, how to use robot outputs (M_OUT(X))

5) know the basic use of COSIMIR and to be able to transfer programs and

position lists between the robot and PC

6) be able to create and transfer machine vision systems using Intellect 1.5

7) know, how to send data from the machine vision sensor using DataLink

8) be able to input and output data using robot program and COM lines

9) have the necessary knowhow to create E410 operation panel software including

digital symbols, touch keys and graphics and being able to handle I/O

10) have general knowledge of the common problems occuring in the robot

programming and how to avoid and solve them

The tasks were divided to three difficulty levels: Beginner, Intermediate and Advanced.

The Beginner level tasks are practically tutorials of the use of the device or software in

question. The Intermediate level exercises give the student an opportunity to use the

new skills in different tasks. Advanced level exercises are more demanding, successful

completion of them requires independent learning and problem solving skills.

58

In addition to the exercises, also a set of exam questions was designed. Because these

exercises cover a very wide area of different devices in the work cell, the exam was

planned to include only the needed questions. There is a series of complete questions

with sample answers to give the instructor the possibility to choose the emphasis

according to the learned issues. The questions include explanation of terms introduced

in the exercise handout, essay type questions and error correcting of Melfa-BASIC

code.

The grading system of the course is figured in a spread sheet that calculates the point

limits for each grade. By default, 50 % of maximum points give the grade 1 and 95 %

give the grade 5. Also the number of points per exercise can be set, the defaults are 3, 6

and 10 points depending on the task difficulty. The exam tasks are designed to give 6

points, but also this can be changed.

 3.2.2 The Exercises

 3.2.2.1 Programming Exercises

Before starting the first exercise, there is a summarized speed guide to get started with

Melfa-BASIC. It presents how to write programs with the teaching pendant and

COSIMIR, goes through the common variables, condition statements and movement

jogs and teaches to set position points and to debug the programs in steps. There is also

an example of each topic. This guide was written, because it was thought to be

frustrating for the student to leaf through the 437 page controller instruction manual to

get started.

The first task is a simple moving and placing tutorial, which gives explicit guidelines to

get started with programming. A short program moves a mosaic tile from one position

to another. This task gives a base to the most common commands to move the robot, to

delay, turn outputs on and off and to end the program. The student is provided with a

complete code listing, illustrated list of needed positions and a guide on how to

download programs to the robot controller and to set the operating speed of the robot.

59

The second task deals with palletizing functions and it is still a very easy one, but this

time there is no ready solution to the task, only one brief example of the palletizing. In

the real world applications, palletizing is one of the most common tasks in simple

placing and packing work done by robots. In the task, two different kinds of pallets

must be created, a rectangular and an arc. The plastic pieces, placed in the rectangular

pallet, must be moved to the arc pallet by adding the pallet index. Next, the pieces are

moved back to the arc pallet in a reverse order. The program is repeated three times. The

purpose of this task is to guide the student to use pallets, variables and if- and for-

statements. Instructions of the palletizing commands and figures of the possible

assigment directions are described before the actual task.

In the third task the mosaic tiles are used to form alphanumeric characters from mosaic

tiles. The letters or numbers are created by using the Dot Matrix technique, in which

each character is formed by dots in a 2-dimensional array of dots. In this exercise the

student will learn more about programming. The palletizing functions in Melfa-BASIC

introduced in the previous task are taken into use. Because of the small size of the

mosaic tiles, the positions of the pallets must be recorded precisely or the robot will not

be able to pick them with the vacuum gripper. Conditional statements, integer variables

and loops are needed to create the work cycle. The biggest challenge will probably be to

figure out, how the robot handles the information about the two different colored

mosaics. In the example solution, each letter array is coded as a series of ones and zeros

denoting the foreground and background colors. The string is examined with the

substring function.

Tasks 4, 5 and 6 are additions to task 3. In task 4, the aim is to make the robot return the

mosaic tiles after assembling the character. This requires the robot to “remember” the

tile colors thus testing the system used for coding the colors. The operation can be

implemented in various ways. In task 5 the two previous programs are combined to

write full words. The word to be written must be examined letter by letter using the

substing function in Melfa-BASIC. Task 6 utilizes the Ethernet interface. The aim is to

establish a connection between the laptop PC and the robot controller and to send the

word to the robot from the PC. Also the robot sends data to the PC. This task teaches the

use of input and output functions in Melfa-BASIC.

60

Tasks 7 and 8 are intermediate exercises. Both tasks test the student's knowledge of the

previously learned programming techniques. As an aim to create a functioning digital

clock program, student has to know how to use pallets, variables, loops and subroutines.

The usage of substrings and the command to return the system time has to be found out

- independent learning from the Instructions Manual eases the completion of the

exercise. In these exercises the robot moves either mosaic pieces or green plastic blocks

to pallets, in order to show the current time. Time is constantly inspected, and when

needed, updated. To make the task 8 more challenging than task 7, removed segments

must be moved to the places which need a new segment while an update occurs.

 3.2.2.2 Advanced Programming Exercises

Task 9 deals with subroutines. In the task, two programs are written. First, the main

program moves the robot to the initial position and then calls the subroutine to calculate

the next point where to move the robot. The next position is calculated in relation to the

current position point. The subroutine is called four times, and the robot moves through

a square shaped path.

In the task 10, subroutines are used again to change the tool according to the inspected

object. The camera is sending a string consisting of the object type and position of the

object's pickpoint, then the program decides, if it needs to change the tool to move the

object to the right container. Relating to this task, the student learns the use of the tool

coordinates, corresponding parameters and commands to set and checking of the tool

number.

In the first multitasking exercise, task 11, there are two pallets in two separate

programs. Both of the programs move a nut in the program's own pallet to the next

pallet index. This happens in turns and an external variable is used as a signal between

the programs, when the nut is moved. When the nut is in the last pallet index, it is

moved back to the start in a reverse order. In this task, the student learns to load

programs to the multitasking slots, to start and end multitasking programs, to use

external variables as flags, to clear the multitasking slots and to pass the mechanism

control from one program to another. In industry, these kinds of multitasking

applications can be utilized when there are multiple processes using only one robot.

61

In the real industrial systems, multitasking can greatly optimize the processing time, if

next inspection can be done at the same time as the previous product is being processed.

In task 12 the robot moves the nuts located on the conveyor to the pallet in the worktop.

This is done by syncronizing the program moving the robot and the program inspecting

the camera. Two external variables work as flags to inform if the camera is inspecting or

ready or if the robot is moving or idle. The student learns to pass data with external

variables and to handle multiple input data flows from the camera.

The task 13 is a basic connection exercise which teaches the student to move data

between the robot controller and the other devices such as smart cameras, terminals or

computers and to use interrupts to start subprograms if a signal is set on or off. In the

real systems, data is commonly transferred to be monitored in control rooms or to be

archived in databases. This task gives a very practical base to get started with writing

the communication programs with Melfa-BASIC and C#. First before the actual task,

there are complete code listings for a simple PC server application. The robot

communication parameters are also explained and set to ensure correct functioning as a

client. There is a list of the Melfa-BASIC communication commands with useful

examples. In the task, communication settings are defined, the connection is opened and

data sent betweent the PC and the robot.

 3.2.2.3 E-designer Exercises

The first E-designer exercise, task 14, introduces the most common controls used in the

operation panel software. In the task, a rocker button on the touch screen is bound to the

digital I/O of the PLC controlling the conveyor. The conveyor can be started and

stopped using the operation panel. Also the testing and transfer of the program is

explained in this task. The aim of this exercise is to learn the basic use of E-designer

software.

In the next task, the previous software is developed further by adding a new block with

imported graphics and a touch key. A built-in function is set as the action of the touch

key and the properties of the touch key are modified thus introducing them to the

student.

62

In task 16, the student will learn to set security levels to the blocks of the operation

panel sofware. Also this task is done by developing the existing software. In the

exercise, three different security levels are set to control the access to the blocks of the

panel software. The panel's ready-made automatic login option is used as an example of

E-designer's features that ease the programmer's work significantly.

In the task 17 the ready panel software is translated to some other language than

English. The panel software can be localized easily with a built-in tool. Translating of

the texts, testing the localization within the E-designer and the use of language register

are explained.

 3.2.2.4 Machine Vision Exercises

In the first machine vision exercise, task 18, the student will learn the usage of DVT

Intellect software. This includes opening of the workspace, emulation of the camera,

opening the picture sequence, adding the products, tool layers and tools and saving the

system. The actual task is to use machine vision to locate and measure nuts. For this, the

student has to use multiple tools, such as Area Positioning, Line Fit, Circle Fit and

Script tools.

The next exercise widens the student's knowledge of the available tools. The creation of

object positioning and other things learned in the previous exercise are rehearsed with a

different object. This time the image is preprocessed before applying other tools. The

use of DataLink and the String Expression Editor are learned. In the exercise the

object's pick point is sent as a DataLink string. Also the Melfa-BASIC code needed for

receiving the position data into the robot's program is given.

The last exercise, Task 20, is the most demanding task in the handout. It can be used as

a final task in the robotics course because it makes use of all the previous techniques in

the handout. In the task, special products are inspected with machine vision. The

product has many inspection items thus making the machine vision system complicated.

The machine vision system created in this exercise is meant to be used to actually

control the robot to move the pieces off from the conveyor.

63

 3.3 Accessories

 3.3.1 RobotCamera

There have been a few attempts to send live video from the robot work cell in remote

control purposes [2]. Many free and commercial software have been tested, but with

poor results. This problem was also examined in this study. After testing some camera

software, writing of a new program was seen as the only possible option. The intention

in previous theses had been to develop monitoring and remote control features, and this

is why robot cell was equipped with two additional web cameras, both are Microsoft

LifeCam VX-6000 series.

 3.3.1.1 Background

There have been difficulties in sending the web camera images from the server PC to

other computers with tolerable framerate. This issue has been a major obstruction in

remote controlling the robot; in case of a faulty program, the robot may collide before

the operator notices the situation and has time to stop the program. In this project, a

couple of promising programs were tested and compared to find out if there was an

applicable one to be used in remote control purposes.

The first tested program was a commercial software, Active Webcam, which was

already installed in the PC. Active Webcam is a video capture and surveillance program,

which can stream ActiveX video from multiple cameras to a web server or optionally

upload images to the HTTP or FTP server. Program has a Watchdog feature, which

notices if program crashes and restarts it again. Active Webcam program was

configured to send pictures to the web server from both of the cameras in five second

intervals and also the web page was refreshed in every five seconds. ActiveX video

could be sent, but receiving was only possible with Internet Explorer web browser,

which was slow and unreliable with its many security breaches. As it was tried to speed

up the sending with FTP, the program became very unstable and crashed the operating

system. After careful examinations, the program turned out to be way too heavy to be

used in the old server PC and it was decided to seek for an alternative program.

64

The second tested program was Fwink, which is an open source web camera

application. The program was light and could send images faster than Active Webcam,

upload was done with the interval of two seconds. Unfortunately, Fwink was only able

to upload images through FTP and capable to capture image from one camera.

Therefore, other solutions had to be considered.

As the web camera programs were studied and the most common video formats and

data transfer protocols were familiarized with, the result was, that there are no

applications having all of the required features. Also, when there was already a basic

idea of the TicTacToe game and the game's internal way to receive video had to be

developed, this is why it was clear that there were no ready solutions and it was decided

to code a new application of our own.

Previously in the practical training period, it was considered to apply more of the

machine vision features to the robot by using the server PC. This was planned to be

done by using OpenCV computer vision library. OpenCV was originally commercially

developed by Intel, but in the year 2000 it was released as an open source application

programming interface. As the other PC based programs written in this study, Robot

Camera was written in C# using Visual Studio 2008 Express Edition. OpenCV is

created using C++, and EmguCV wrapper was needed to use the library with C#

language.

65

 3.3.1.2 Description of Operation

Video is sent using Robot Camera server software which uses TCP/IP protocol to

transfer the video. TCP/IP was chosen to be used instead of UDP, because there turned

out to be difficulties in sending the UDP packets through LAN. The communication

method is a direct data stream between the server and the clients. The RobotCamera can

accept up to 10 clients, but the number of clients affects the framerate, though. This is

caused by loops inspecting the client socket status and selected stream number.

It was decided to be pointless to send clients both video feeds at a time and Robot

Camera sends only one in order to save bandwidth. Clients still have the possibility to

choose which camera they want to monitor. The server captures images from both

cameras and converts them to byte streams even if there are no clients connected. It is

also possible to send a still picture when there is no connection to neither of the

cameras.

To not to forget the FTP functions of Active Webcam software, also a simple FTP client

was implemented in this program. Images can be transferred to FTP server after a delay

of one second, but while it is useless to update images that often, a 5-second-delay is set

as a default. Other features consist of attaching the video colored text with date and

time as well as Savonia logo. The resolution of the video can be changed in Robot

Camera. The maximum resolution depends on the camera's capabilities. The functions

of the Robot Camera program can be coarsely divided in connecting, receiving, sending

and image capturing points. The structures of these parts are briefly explained in the

next listings.

66

Listing 1: Connecting the clients to the server
for (int i = 0; i < socketCount; i++)
{
 if (usedSockets[i] == false)//if socket is not used already,
connect
 {
 usedSockets[i] = true;
 clientSockets[i] = tempSocket;

 clientSockets[i].BeginReceive(rcv, 0, 1024,
SocketFlags.None, new AsyncCallback(Receiving), clientSockets[i]);
 clientIPs[i] =
clientSockets[i].RemoteEndPoint.ToString();
 connect_socket.BeginAccept(new AsyncCallback(Connecting),
connect_socket);
 AddToconsole(Color.LightGreen, "Client connected to
socket " + i + "\nClient IP (" + clientIPs[i] + ") index #" + i);
 break;
 }

 if (i == socketCount)//all sockets are full, disconnect
 {
 AddToconsole(errorColor, "No free sockets for client...
disconnecting");
 clientSockets[i].Shutdown(SocketShutdown.Both);
 clientSockets[i].Disconnect(false);
 connect_socket.BeginAccept(new AsyncCallback(Connecting),
connect_socket);
 }

}

In the listing 1 it can be seen that inside the connection phase, each array index is

checked. If usedSockets boolean is true, socket is already connected. When free socket

is found, connection is moved from connect_socket to the free clientSockets index.

Connection socket connect_socket starts to accept the clients and a new client socket

starts to receive images from the server. If there are no free sockets, the client socket is

disconnected from the server.

67

Listing 2: Asynchronous receiving of client messages
for (int i = 0; i < socketCount; i++)
{
 if (sendingIP == clientIPs[i])//find the sender of the message
 {
//if message is null, user has disconnected
 if (receivedMessage.Length == 0)
 {
 AddToconsole(Color.White, "Client " + i + "
disconnected!");
 clientSockets[i].Shutdown(SocketShutdown.Both);
 clientSockets[i].Disconnect(false);
 clientNames[i] = string.Empty;
 clientIPs[i] = null;
 usedSockets[i] = false;
 }
 else
 {
 if (receivedMessage.Contains("1") == true)
 {
//user changes camera source to #1
 selectedCam[i] = false;
 sendingClient.BeginReceive(rcv, 0, rcv.Length,
SocketFlags.None, new AsyncCallback(Receiving), sendingClient);
 }
 if (receivedMessage.Contains("2") == true)
 {
//user changes camera source to #2
 selectedCam[i] = true;
 sendingClient.BeginReceive(rcv, 0, rcv.Length,
SocketFlags.None, new AsyncCallback(Receiving), sendingClient);
 }

if (receivedMessage.Substring(0, 4) == "EXIT")//user disconnects
 {
 AddToconsole(Color.White, "Client " + i + "
disconnected!");
 clientSockets[i].Shutdown(SocketShutdown.Both);
 clientSockets[i].Disconnect(true);
 usedSockets[i] = false;
 }
 }
 }
}

Listing 2 shows that when a client message is received, it is inspected at first. When the

matching IP address is found from the IP array, corresponding action is done for the

client. The client has the possibility to change between the two camera sources and to

end the session. In the client side, these actions are done with buttons.

68

Listing 3: Capturing the camera images
picture1 = captureImage1.QueryFrame().ToBitmap();
picture2 = captureImage2.QueryFrame().ToBitmap();

Image is captured from a web camera with one simple line (see listing 3). This is done

in the SendTimer_Tick event. Capture is done every 40 ms by both web cameras.

Pictures are converted to bitmaps.

Listing 4: Attaching text and logo to the images
string textFormat = textTxt.Text;
//text to be added
//parameters are parsed of the string
if (textFormat.Contains("%D") == true)
{
 textFormat = textFormat.Replace("%D",
DateTime.Now.ToShortDateString());
}
if (textFormat.Contains("%T") == true)
{
 textFormat = textFormat.Replace("%T",
DateTime.Now.ToString("HH:mm:ss"));
}
if (textFormat.Contains("%CR") == true)
{
 textFormat = textFormat.Replace("%CR", "\n");
}

//image is converted to bitmap,
//and text is attached with graphic tools
picture1 = captureImage1.QueryFrame().ToBitmap();
picture2 = new Bitmap(errorImageTxt.Text);
drawText = Graphics.FromImage(picture1);
drawText.DrawString(textFormat, videoFont, brush, new PointF(0, 0));

//resolution is shown in the camera tab
resolution1.Text = "(" + picture1.Width + " x " + picture1.Height +
")";
resolution2.Text = "(" + picture2.Width + " x " + picture2.Height +
")";

//Savonia logo is added to image
if (logoBox.Checked == true)
{
 ImageAttributes attr = new ImageAttributes();
 attr.SetColorKey(Color.Fuchsia, Color.Fuchsia);
 Rectangle rectangle = new Rectangle(300, 5, logo.Width,
logo.Height);
 drawText.DrawImage(logo, rectangle, 0, 0, logo.Width, logo.Height,
GraphicsUnit.Pixel, attr);
}
//image is shown in the camera preview window
frameBox1.BackgroundImage = picture1;

69

The listing 4 is also part of the SendTimer_Tick event. If the server adds also text to the

image, it is parsed here (as seen in Figure 39). If the text has tags for time or date, they

are replaced with values. There is also a tag for a new line. Text is attached to the image

by using System.Graphics statement. Also the logo is attached to the image with the

same tools.

Listing 5: Converting the images to bytes
//create memory stream
MemoryStream mStream1 = new MemoryStream();
//flush stream just in case
mStream1.Flush();
//and save image to stream
picture1.Save(mStream1, ImageFormat.Jpeg);
//convert stream to byte array
snd1 = mStream1.GetBuffer();
//flush the stream
mStream1.Flush();

Listing 6: Sending the byte arrays
for (int allClients = 0; allClients < socketCount; allClients++)
{
 //send to all used sockets
 if (usedSockets[allClients] == true)
 {
 //if camera boolean is false, send #1
 if (selectedCam[allClients] == false)
 {
 clientSockets[allClients].BeginSend(snd1, 0, snd1.Length,
SocketFlags.None, new AsyncCallback(Sending),
clientSockets[allClients]);
 }
 //if camera boolean is true, send #2
 else if (selectedCam[allClients] == true)
 {
 clientSockets[allClients].BeginSend(snd2, 0, snd2.Length,
SocketFlags.None, new AsyncCallback(Sending),
clientSockets[allClients]);

 }
 }
}

Images are first saved in memory streams and then converted to byte arrays (listing 5).

While sending the images, the state of socket is checked at first. If the socket is

connected, the requested data stream is checked. The feed from camera 1 or camera 2 is

sent correspondingly as seen in the listing 6.

70

Listing 7: Sending the images using FTP
//paths for both images
Uri ftpTarget1 = new Uri(serverTxt.Text + "/cam1.jpg");
Uri ftpTarget2 = new Uri(serverTxt.Text + "/cam2.jpg");
//image is saved to .jpg
frameBox1.BackgroundImage.Save(System.Environment.CurrentDirectory +
"\\cam1.jpg", ImageFormat.Jpeg);
frameBox2.BackgroundImage.Save(System.Environment.CurrentDirectory +
"\\cam2.jpg", ImageFormat.Jpeg);
//creating webclient
WebClient wc = new WebClient();
wc.Proxy = null;
//set needed credentials
wc.Credentials = new NetworkCredential(userTxt.Text,
passwordTxt.Text);
//upload the images
wc.UploadFile(ftpTarget1, System.Environment.CurrentDirectory +
"\\cam1.jpg");
wc.UploadFile(ftpTarget2, System.Environment.CurrentDirectory +
"\\cam2.jpg");
//destroy the webclient
wc.Dispose();

In the listing 7 FTP client defines paths for both images. Then current images of the

video preview boxes are saved to JPEG format to the program folder. A new webclient

is created and credentials are passed for the webclient from the text boxes consisting of

user name and password. Files are uploaded to the server and a web client is disposed.

 3.3.1.3 Viewing software

Client computer must be provided with Camera View application and server IP address

and port have to be inserted to program in order to connect to the server. The client has

an option to choose either of the two datastreams to receive. Currently images can be

captured in a minimum of 40 ms and maximum of 60 second intervals. Camera View

program scales video automatically depending on the resolution.

71

Listing 8: Connecting Camera View to Robot Camera
public void connectToServer(IPAddress ip, int port)
{
 //if known IP is selected, proceed with it
 if (connect_select.SelectedIndex == 0)
 {
 iep = new IPEndPoint(ip, port);
 }
 //if IP is found out by DNS, connect with it
 else if (connect_select.SelectedIndex == 1)
 {
 string dnsString = ipBox.Text;
 IPAddress[] addresslist = Dns.GetHostAddresses(dnsString);
 MessageBox.Show(addresslist[0].ToString());
 iep = new IPEndPoint(addresslist[0], port);
 }
 //connect with selected settings
 connect_socket.BeginConnect(iep, new AsyncCallback(onConnected),
connect_socket);
}

As seen in listing 8 , the connection of the Camera View program can be done with a

known IP address or by requesting it from a DNS server. Connection type is selected by

a combobox in the left corner of the window. Depending on the connection type, there

is a textbox which contains either the IP address or the domain name.

In the receiving function, the frames per second counter is incremented by one each

time an image is received. The counter is shown and reseted every second. Image bytes

are written in a memory stream and then the stream is converted to an image. After this,

the image is shown in the picture box of the application.

The messages sent by the client are limited to disconnect from the server and to change

the video stream. To change the camera view, the client program simply sends number 1

or number 2 to the server. In practice, this happens by pressing the camera buttons. To

end the session, EXIT word is sent to the server with disconnect or exit buttons.

72

Figure 39: Robot Camera in use

 3.3.2 Tool Change Program

Changing the robot’s tool can be a repeating task in the continuous use of the robot.

This is why it is not a good idea to program it over and over again in each application.

Creating a subroutine that can either be included in the source code or called from other

programs, is a preferable solution. In the Melfa-BASIC language, there is a command to

run another program as a subroutine. With this command, the tool change program can

be called inside another program. The manual version of this program can be accessed

by using the Server Console.

In the first version of the program the user was allowed to remove or add both of the

tools or to change from one tool to another. In this version, the tool coordinates were not

changed and the robot had its tooltip in the center of the end-effector regardless of the

tool. Because of the length difference of the tools, the position points had to be separate

for both tools to not to crash to the table. This slowed down the programming and there

was also a risk to accidentally collide with the other tool in the tool rack if a wrong

input value was given to the program.

73

The next version had tool coordinates set to the robot parameters and this made it safer

and easier to change tools. With the parameters, it was possible to check which tool

robot had currently in use and allowed to create a program which only changes the tool

to another. Also the risk of colliding with a wrong tool was gone, because the tool's

length was compensated in the position points.

 3.3.3 Server Console

Server Console and Client Console are HMI applications developed to interact with the

robot cell either locally or remotely. Server Console is a server software which can

connect multiple clients. At the beginning of this project it was used for straight

communication to input and output data from the laptop, while the robot controller was

running as a client. In the previous studies, possibilities to remote control the robot had

been planned, and this is why this program was a good base to continue the

development.

These programs were created with C# as well as the other projects. Also the almost

same network source code was used as in the Robot Camera application. These

programs were designed to resemble console applications, because of the simplicity.

There was no need for a graphical user interface and this kind of application was fast to

write.

Server Console installed in the laptop is meant to be used only in local communication

with the robot cell. It connects only to one client at a time. The server PC below the

robot cell has a program with remote access functions. Up to ten clients can be

connected to Server Console and if everyone of the PC clients disconnect, the server

turns the robot program off. In order to use remote control features, also the robot has a

program which receives commands from the server and can start or stop programs.

In Server Console, the clients have a socket array, a boolean array for used sockets, and

an array for endpoints. The only differences compared to the Robot Camera

application's network code were made to ensure that the robot could not receive the

same messages it had sent. The messages of the clients are directed to the other clients

and to the robot.

74

Listing 9: Connecting the robot and clients to Server Console
//if the endpoint has robot's IP
if (tempSocket.LocalEndPoint.ToString().Contains("192.168.0.1") ==
true)
{
 //connect to robot socket
 robot_socket = tempSocket;
 robot_socket.BeginReceive(robot_rcv, 0, 1024, SocketFlags.None,
new AsyncCallback(Receiving), robot_socket);

 //send message to all connected clients
 for (int allClients = 0; allClients < socketCount; allClients++)
 {
 if (usedSockets[allClients] == true)
 {
 if
(clientSockets[allClients].LocalEndPoint.ToString().Contains("192.168
.0.1")==false)
 {
 snd = Encoding.ASCII.GetBytes("Robot connected (" +
tempSocket.LocalEndPoint.ToString() + ")");
 clientSockets[allClients].BeginSend(snd, 0,
snd.Length, SocketFlags.None, new AsyncCallback(Sending),
clientSockets[allClients]);
 robotConnected = true;
 }
 }
 }
}
else
{
 //if any other IP connects, find first free socket
 for (int i = 0; i < socketCount; i++)
 {
 if (usedSockets[i] == false)
 {
 usedSockets[i] = true;
 clientSockets[i] = tempSocket;

 clientSockets[i].BeginReceive(rcv, 0, 1024,
SocketFlags.None, new AsyncCallback(Receiving), clientSockets[i]);
 clientIPs[i] =
clientSockets[i].RemoteEndPoint.ToString();
 connect_socket.BeginAccept(new AsyncCallback(Connecting),
connect_socket);
 addToDisplay(Color.LightGreen, "Client connected to
socket " + i + "\nClient IP (" + clientIPs[i] + ") index #" + i);

 break;

 }

 }
}

75

Connection method is introduced in the listing 9. In order to connect the robot to the

correct socket, each connecting client's endpoint must be checked. If the IP matches the

robot's IP, the temporary connection is moved to the robot_socket and each of the

connected clients is informed of the connection to the robot by a message. If the client

with any other IP is connected, the first free socket is filled.

Listing 10: Sending commands to the robot
//if F1 is pressed
if (e.KeyCode == Keys.F1)
{
 Array.Clear(snd, 0, snd.Length);
 //check current state
 if (isStopped == false)
 {
 isStopped = true;
 addToDisplay(Color.Yellow, "Stopping program...");
 //send stopping string for robot and other clients
 snd = Encoding.ASCII.GetBytes("STP");

 try
 {
 for (int allClients = 0; allClients < socketCount;
allClients++)
 {
 if (usedSockets[allClients] == true)//to each used
socket
 {
 clientSockets[allClients].BeginSend(snd, 0,
snd.Length, SocketFlags.None, new AsyncCallback(Sending),
clientSockets[allClients]);
 }
 }
 }
 catch
 {

 }

 }
 else
 {
 Array.Clear(snd, 0, snd.Length);
 isStopped = false;
 //send run command for robot and other clients
 addToDisplay(Color.LightGreen, "Starting program...");
 snd = Encoding.ASCII.GetBytes("RUN");
 try
 {
 for (int allClients = 0; allClients < socketCount;
allClients++)
 {
 if (usedSockets[allClients] == true)//to each used
socket
 {
 clientSockets[allClients].BeginSend(snd, 0,

76

snd.Length, SocketFlags.None, new AsyncCallback(Sending),
clientSockets[allClients]);
 }
 }
 }
 catch
 {
 }
 }
}

In listing 10 one example of Server Console's various key shortcuts can be seen . The

status of the robot is checked and depending on it, the robot is either stopped or the

program is continued. The commands sent to the robot and responds coming from the

robot are also sent to the other clients to inform about the robot status.

The robot stops the current program if the connection to the server is lost. Client

Console is an application, which can be connected to the server through the local area

network and used to choose an executed program, pause and continue the program,

emergency stop the robot, send any other input data to the controller, or to get important

output data such as the current position, the program number, the code line, the speed or

the latest machine vision camera string.

77

 3.4 TicTacToe

The robot’s capability to receive input via Ethernet inspired us to make an application

using this feature. There has been previous research with the aim to remote control the

robot, but no actual applications [2]. Therefore, a slightly different approach was

chosen.

The idea was to create an online version of the traditional pencil-and-paper game Tic

Tac Toe. According to the original purpose of the game as a promoting trick for Savonia

to attract new students, the game was planned to be strongly bound to be under

Savonia’s name and logo. For example, the game could be a nice point of interest in the

fairs, or TicTacToe client application could even be shared in the Savonia’s homepages.

The two web cameras would provide real time images of the ongoing game that could

be viewed with the client software.

Making the robot to actually use a pencil to draw the moves on paper would have

required so extensive arrangements that an alternative setup had to be created. The

solution was to make the Xs and Os from pieces of plastic and move them onto the

game board using the vacuum gripper. In the Figure 40, the robot is moving one of the

pieces.

78

Figure 40: The robot playing TicTacToe

 3.4.1 Description of the System

The basic idea of TicTacToe is to play Tic Tac Toe game against the robot over the

Internet. The game is based on the client-server principle, where the game logic runs on

a server PC and the human players operate as clients (See Figure 41). The clients can

communicate with each other during the game and while queueing using the chat

integrated to the game. The robot receives commands from the server, and while it has a

special status co-operating with the server, technically, it is classified as a client, too.

The networking functions are implemented using Sockets. The networking is executed

asynchronously.

79

Figure 41: The connections between the game server, the web camera server, the robot

and the clients.

Security was a very important aspect to take into consideration while planning the

TicTacToe Data Transfer Protocol. The whole system is designed to be as fault immune

as possible. All input received from user is verified. The moving of the robot is

performed by sending the cell index of the game pallet to the robot, and the robot only

moves between predefined positions. The player never gains free control of the robot's

movements.

 3.4.2 TicTacToe Data Transfer Protocol

A specific protocol was designed for the data transfer between the server and clients and

the server and the robot. The protocol was designed to be as lightweight as possible yet

user-friendly. All messages sent between the server and the client begin with a keyword

followed by the actual data. The keywords are 4-digit-long real words such as “NICK”

for a nick request/response. The data is coded as numbers or letters as in the message

“GAME71147”, which means the robot moves to the cell no. 7, the robot (no. 1) wins,

the winning line is through cells 1, 3 and 7. The full TicTacToe Data Transfer Protocol

is described in Appendix 1. The most important thing in this application is obviously the

security of the robot. There must not be a change for the player to move the robot

directly.

80

 3.4.3 TicTacToe Server

The TicTacToe Server software runs on the server PC in the robot work cell. It handles

the client connections, the game AI and commands the robot to make the moves.

TicTacToeServer uses asyncronous networking for handling the multiple simultaneous

client connections.

 3.4.3.1 Client Class

The server handles the clients as Client objects. A Client has the following public

variables:

Socket clientsSocket, to which the established connection is moved from connectSocket
String nick, which stores the nick name the user wishes to use
Int index, which is the client’s index in the clientArray array
IPAddress IP, which stores the client’s IP address
String desiredChar, which stores the character the player wants to use

The Client class has two overloaded constructors. The first takes 3 parameters, a string

requestedNick, an int socketIndex and an IPAddress clientsIP. The second takes just one

parameter, the int socketIndex. The former is used when creating Clients normally for

use, the latter when the clientArray is full and the Client is created only for sending the

NICKFS message. In this case there is no need to give a nick name to the Client.

 3.4.3.2 Creating Clients and Receiving Data

The server listens incoming connections with one socket, the connectSocket. When a

new connection is established to the connectSocket with the NICK REQUEST message,

the server creates a new Client, moves the connection from the connectSocket to the

Client's socket and releases the connectSocket to listen new connections.

On startup, the server gets its own IP address using the GetHostName() function of the

Dns class. Then the server creates a connectSocket and binds it with the local endpoint

created using the server’s IP. The connectSocket listens incoming connections in port

10003 using the socket’s method BeginAccept().

81

The method takes two parameters, an AsyncCallback, which basically tells what to do

next and an object that is passed to the next method called by the AsyncCallback. The

code for this is shown in Listing 11.

Listing 11: Accepting a client in TicTacToe server
connectSocket.BeginAccept(new AsyncCallback(OnClientConnect),
connectSocket);

The callback refers to the method OnClientConnect, which handles new connections as

shown in Listing 12 below.

Listing 12: Moving the connection from connection socket
public void OnClientConnect(IAsyncResult iar)
 {
 receiveSocket = (Socket)connectSocket.EndAccept(iar);
 receiveSocket.BeginReceive(receive, 0, receiveSize, Socket-
Flags.None, new AsyncCallback(ReceiveData), receiveSocket);
 connectSocket.BeginAccept(new AsyncCallback(OnClientConnect), con-
nectSocket);
 }

As the first line in listing 12 shows, the method takes one parameter, the IAsyncResult.

The result is the object passed in the IAsyncCallback, the connectSocket. The

connection is moved to the receiveSocket, which starts to receive and then the

connectSocket is released to receive the next incoming connection.

In the receiveSocket’s method BeginReceive, a new AsyncCallback is introduced, the

ReceiveData() method. This method performs the actual receiving of the data sent by

the new client-to-be. First, the method gets the number of characters sent and if it is

more than zero, handles the assumed NICK REQUEST. The ignoring of the empty

messages is done because the server for some reason receives also totally empty

messages.

If the array is not full, the first four characters of the message are examined. If they are

not NICK, as they should be according to the protocol, the connection is closed. Also

other inspections are carried out. If they are all passed, a new Client object is created

into the clientArray array as Listing 13 shows.

82

Listing 13: Creating a new client object
clientArray[index] = new Client(
desiredNick, index, IsolateIP(sendingClientSocket.RemoteEndPoint.ToString()));
clientArray[index].clientsSocket = (Socket)sendingClientSocket;

The sendingClientSocket was passed to this method and now it is finally moved to the

Client's own socket. From this point on, the socket is handled only by referring to the

index number of the Client in the clientArray.

The IsolateIP() function takes an IPEndPoint as a parameter and returns the IP Address.

The function was written because it is not possible to get the IP address of the socket's

connection otherwise. The function simplifies the action of separating the IP address

and the port number.

After the creation of the new Client, the NICKS message is sent to the Client, a chat

message informing about the new player is sent to all clients and the turn array is

updated and the turn update sent to all clients before the clientSocket of the new Client

is allowed to start receiving as shown in the next listing 14.

Listing 14: Starting the receiving from a client
UpdateTurnArray(true, index);
SendTurnUpdate();
clientArray[index].clientsSocket.BeginReceive(
receive, 0, receiveSize, SocketFlags.None, new AsyncCall-
back(ReceiveDataClient), clientArray[index]);

In the BeginReceive method there is a AsyncCallback for method ReceiveDataClient.

The method handles te receiving of data from the Clients in the clientArray. To sum up:

ReceiveData is used to receive the data of the incoming new connections, once per

client (“client” referring to any connection, not the Client object)

ReceiveDataClient is used to receive all data coming from the actual Clients created in

the clientArray (ie. CHAT, GAME and EXIT messages)

83

The ReceiveDataClient() method receives the data similar to the ReceiveData()

method, but in addition, it determines which message it is and takes the corresponding

actions. If the incoming data is a chat message, the sender's nick is added to the message

and the new message is sent to all Clients. If the message is a request for exit, the

Client's socket is disconnected, the Client object deleted and the turn array updated and

other clients informed about the change in the queue.

If the message is a game move, the first thing to examine is, whether the player wants to

reset the game. If the next character (resetString) after the keyword GAME is “R”(for

“Reset”), the player wishes to reset the game grid, which is allowed only, if there are no

queueing players. This is checked using the bool type CheckQueue() function, which

takes the current player's index number in the clientArray (sendingClient.index) as

parameter and returns true, if there are others in the queue. If there are queuers and the

game is over, the player is moved to the end of the queue, otherwise the robot is ordered

to reset the board and to allow the next round for the current player.

If the player wishes to continue the game (resetString is “C” for “Continue”), the next

character is parsed into integer. If the parsing is succesfull and the number is on the

valid range, the player's symbol is inserted into the corresponding cell in the integer

array grid which stores the actual game information and the robot is asked to perform

the move on the board.

After the robot finishes performing the player's move, the RobotsMove() function is

called. This function is the place “where the magic happens” in TicTacToeServer. The

game's logic itself is the simplest possible, just a long set of if..else if statements

examining the state of the grid array. The strategy is as follows:

84

1. If there are two own marks and an empty cell in some row, fill the empty
cell to win the game.

2. Otherwise, if there are two opponent's marks and an empty cell in some
row, fill the empty cell to prevent the opponent from winning.

3. Otherwise, create a possibility to win in two ways (fork).

4. If the opponent is going to fork, block.

5. Play the center.

6. If there is the opponent's mark in the corner, play the opposite corner.

7. Play an empty corner.

8. Play an empty side.

After the decision is made, the grid is updated and the move sent to the robot. When the

robot sends the “READY” message, the robot's move is sent to the client.

 3.4.3.3 Sending Data

The sending of the data is done similarly to the receiving. The actual function used in

the code is a void type SendToClient(), which takes two parameters, an integer type

client and the string type message. The function converts the string to byte array and

calls the Client's socket.BeginSend() function as shown in the following example

(Listing 15):

Listing 15: Sending data to a client
byte[] messagebyte = new byte[1024];
messagebyte = Encoding.Unicode.GetBytes(message);

clientArray[client].clientsSocket.BeginSend(messagebyte, 0, messagebyte.Length,
SocketFlags.None, new AsyncCallback(Sending), clientArray[client]);

The AsyncCallback calls the Sending() function which gets the Client in question and

calls the BeginReceive() method.

85

 3.4.3.4 Turn Management

The server allows the Clients to play in the order they have connected to the server. At

first, the Clients are arranged in the clientArray in the same order that they are allowed

to play, but if the players decide to leave before playing, the empty cell of the

clientArray is given to a new connection. Therefore, the array cannot be used to

determine, who is in turn to play.

The information of the order of the players is stored in the int type array turn[]. It

contains the indexed of the clientArray in correct order. The array is rearranged using

the UpdateTurnArray () method. The void type method takes two arguments, the bool

type joining and the int type socketNumber. The first one tells whether the method is

called on the creation of a new Client or when a Client has left.

If the joining is true, the function searches the first empty cell from the turn array and

inserts the socketNumber into that cell. If the joining is false, the function searches the

socketNumber from the array and replaces it with a zero. Then the array is rearranged to

remove the zeros between used cells. This is done by searching for zeros and if they are

found, moving the next cell's contents into that cell.

Each time the turn array is updated, the information of the queue length is sent to all

Clients. This is done with the void type SendTurnUpdate() method. The method is a

straighforward for loop, which calculates the queue length for each Client using the

QueueLength() function and sends either TURNT or TURNF message to the Client.

 3.4.3.5 Chat

As mentioned, there is a chat functionality in the game. Most of the operations are

carried out in the client software, such as changing the text color. The server only

forwards the chat messages the players send to all clients. Before sending the message,

the sender's nick is added to the message as shown in Listing 16:

86

Listing 16: The sender's nick is added to the chat message
if (receivedString.Substring(0, 4).ToUpper() == "CHAT")
 {
 ConsoleWrite(informColor, receivedString);
 SendToAll("CHAT" + sendingClient.nick + " says: " +
receivedString.Substring(4, receivedString.Length - 4));
 ConsoleWrite(informColor, "CHAT message send");
 }

When a new player enters the server, two chat messages are sent: The notification about

the new player to all players and a welcome message to the new client only (Listing 17):

Listing 17: Sending the welcome message to the new player and notifying other is
done after the “NICKS” message
SendToClient(index, "NICKS");
SendToClient(index, welcomeText);
SendToAll(desiredNick + " joined the game");
UpdateTurnArray(true, index);

87

 3.4.4 TicTacToe Client

TicTacToe Client is the software the player uses to connect to the TicTacToeServer and

to play the game. While planning the network game, we listed some perks to be applied

in our client program, because it is most important to make the game experience as

trouble-free and seamless as possible. As a social feature, we decided to add a chat to

the game, because waiting for one's own turn in line may bore some users. The client

program was intended to be light, easy to use without unnecessary controls and

graphically neat and personable. At first it was planned to write the application with

Java to make the client program lighter and possible to play with the web browser, but

time limitations forced to use C# also in this project, because the language was known

quite well already.

 3.4.4.1 Description of the Operation

Client program is split into three forms; login form, game form and video form. In the

login form, the user inputs the required information – the user is prompted a nick name

and character (whether X or O), then the client program attempts to connect to the

server. The program checks if the nick name textbox is empty or nick has invalid

characters and returns a failure message according to cause before trying to connect.

On the server side, the cause to disconnect from the server is sent in NICKF message.

Connection is closed if the player’s name is already in use, the server is full or the

player is banned from the server. If the player is granted a pass to the server, the login

form closes and the game window opens up. The game form contains only chat when

there are other players on the line before, and when there is nobody else, game controls

appear on the right side of the window.

The game is played with a simple game board that has nine squares used for input and

to show game status, and a message box that informs whether it is the robot’s or

player’s turn or who has won the game. The client itself doesn’t contain any game

logics, it receives the robot moves and the game status from the server machine. If the

88

player is the only one in the server, it is possible to reset the game and try again until

somebody else connects to the server. The chat function sends a message to the server

and the server sends a copy to all players, thus players can interact with each other. The

game form contains also “View Robot” button, which opens a new form that shows the

robot through the two web cameras of the robot work cell. There are also a few different

themes to change the appearance of the game and make it personal as shown in Figure

42. The themes can be accessed by right clicking the form to open the context menu.

Figure 42: Client application’s login and game forms

 3.4.4.2 Networking

Data transfer over network is needed in four tasks, sending the player 's name and

character to the server, using chat, sending game moves and transferring video feed to

players. To achieve smooth and reliable data transfer, it was decided to use TCP/IP

protocol in the applications. With Visual Studio 2008 and .NET framework 3.5, it is

easy to create connections by using sockets with a little familiarizing with the

System.Net and System.Net.Sockets statements. In order to rapidly send messages to the

server, the socket should be streaming the data. At first, it was studied how to use

sockets with the synchronous method in the console application, but as it was tried to

communicate with a window based application, it was found out that the synchronous

method cannot handle acception of the sockets and receiving of data at the same time.

89

Also multiple sockets are not supported. The asynchronous method offered a

worthwhile approach to get used to socket programming and with this know-how,

almost any socket based network application can be programmed.

There are two server applications that the client needs to connect, the first is the game

server and the second one is the web camera server application. It was decided that

these should be separate programs, as the camera software was thought to be using

UDP protocol. UDP is a fast way in moving large data packets such as video stream, but

it is not as reliable as TCP/IP, as UDP is a connectionless protocol. Also, there were

similar connecting problems using UDP protocol, as there was with Robot Camera

application.

First, the client program connects to the server when the player has typed a nick and

presses the desired character. At the beginning of the project, the client program

connected to the server straight at startup, it was noticed that this was not a practical

way, because the connection socket of the server machine was reserved for one client at

a time and other players had to wait for the release of the connection socket. Also the

possibility of creating multiple connection sockets was examined, but it was not very

reasonable in a server consisting of sockets for only ten players.

The connection to the server is continuous and the clients only disconnect if the exit

button is pressed, the server is shutdown or the player is kicked from the server. Data is

transferred based on our own “protocol” consisting of keywords and parameters tied in

them. Simple command words make the data flow easy to understand and allow users

even plan their own client program interface which to play with. The data from the

client was originally meant to be sent numerically to minimize the amount of network

traffic, but to make it simple to understand the code, keywords were changed to four

character keycodes.

Client program sends only NICK, CHAT, GAME and EXIT words in order to

communicate with the server. With NICK marker, the player sends his character and

name to the server. CHAT works as a marker for a chat message, and the only data

moved with it is the message from the player. GAME means the player’s game move

and sends also information if the player is trying to reset the game. EXIT is sent to the

90

server to inform that the player is shutting down the client program. The commands

between the server and the client are encoded in Unicode character mapping to allow

the sending of Scandinavian letters.

The video server is connected, when the player chooses to open the stream by clicking

the View Robot button. This is good because the bandwidth is not used unnecessarily, if

the user doesn’t want or need to look at the robot video all the time. The video window

connects to the video server and begins to receive images in an interval that is set to the

server PC. There are multiple issues affecting the frame rate of the video stream, but

the resolution of the feed is the major cause of lag.

A client can receive video from two cameras, if the server is set to capture both

simultaneously. This may also cause some delay between the images. The camera is

selected with View Camera #1 and View Camera #2 buttons of the video form (Figure

43). These buttons send the server whether “1” or “2” to request another feed. It was

decided to send only one stream at a time to spare bandwidth. A single error picture is

streamed to the client, if the server can’t find the cameras, or it crashes to an exception.

Figure 43: Client video window

91

 3.4.4.3 The Structure of the Client Program

The game form and the login form are created in the startup. Initially, the game form is

hidden and the login form is shown. This had to be done with ShowDialog() and Hide()

commands, because forms could not be hidden with Show(). The load event of the login

forms uses System.IO statement’s StreamReader to read the last connection settings (IP

and port) and the player’s name from the settings file. This was added later to make it

easier to test the program in other computers, the earlier version had to be opened in the

Visual Studio if there was a need to change the settings. The login form is used also for

inserting the user name and character; it doesn’t connect to the server application, it just

calls parent’s getLoginInformation() function to pass the data to the game form with

public variables. If the name has special characters (i.e. @, /, \ or *), they are removed

in the login form’s code to prevent possible malfunction of the server. If the name is

correct, information is submitted with “X” or “O” button.

When GetLoginInformation() is called, the game form starts to connect in the

ConnectToServer() function. First, ConnectToServer() creates remote endpoint iep and

declares socket connect_socket. In TCP/IP transfer, SocketType.Stream is used.

Connect_socket’s options are also changed to not to linger after disconnect, to reuse the

address after disconnect, and to set lower time to live for IP. These are done to make

reconnection easy if the previous connection to the server has lost. Then connect_socket

is beginning an asynchronous connection to the server with BeginConnect(), which

refers to connect to iep and to move on to the OnConnected() function when the server

is found.

Then the client sends a NICK message provided with user data consisted of whether

“X” or “O” and player nickname. Message is sent as soon as the connection is

established. If the server is full or the player’s name is already in use, the server sends

NICKF and the client closes the connection to the server. As the server responds with

NICKS, the application’s login form is closed and the game form is shown. The

connection socket is now receiving data all the time and every action coming from the

server is parsed in the OnReceive() asynchronous function. The client bypasses

everything else than the words beginning with “TURN”, “INFO”, “GAME” and

“CHAT”.

92

To allow the Receiving() function to change the values of the form components without

causing cross thread exceptions, delegates had to be added and functions with invokes

had to be created to modify each property of elements. There are several functions to

handle game functions. For changing the Text and ForeColour properties of the login

form’s status box there is ChangeStatus(). AddNewMessage() is for adding the new chat

messages and for changing the chat colour in order to make the conversation easier to

understand. For adding a new player message and changing its colour there is

AddPlayerMessage(), and HideGameboard() is for hiding and showing game controls.

The state message of the login form can be changed using the game form, and this

function is used to inform the player of denied access and cause of it when the game

form receives a negative answer from the server. When the server grants an access to

the connecting client, the game form is shown and the login form is closed. When the

player’s turns are updated, the game’s queue status can be seen in the information box

right up ahead of the chat box. Because of the occurring cross thread exception in

Receiving() function, the game form has also delegates for some objects.

93

 3.5 Modification of the Robot Work Cell

During the study, the usability of the robot work cell was improved by building a larger

worktop to replace the turning aluminum table shown in Figure 44. The existing

additional axis was not very usable because it swinged freely several millimeters to both

directions of its set position. It was due to the servo motor's gear mechanism which was

loose. Another disadvantage was that the size of the plate was not as large as the robot's

movements would allow and the useful area was only one third of the plate. When the

utilization benefits of the machine vision camera and the solid worktop were realized, it

was decided to build a completely new worktop.

Figure 44: The side view of the work cell before modification.

The grayscale machine vision camera was moved above the new worktop. The camera's

original location (See figure 45) on the side of the conveyor didn't allow many practical

applications. When located in the ceiling above the worktop, the camera was intended to

be used in co-operation with the color camera in versatile assembly tasks and other

94

solutions. It was mounted on the ceiling with a similar rack as the color camera. The

aluminium parts of the original structure were used in the new rack and new wirings for

data transfer and power were drawn unobtrusively through the workcell's wall and

ceiling profiles. The rack can be moved into any location above the table, only the reach

of the robot arm is relevant.

Figure 45: The original position of the grey scale camera.

The chassis of the table was assembled from 30 × 30 mm aluminium profile. The rack

was anchored to the two threaded holes in the steel bottom of the workcell. Also the tool

racks were brought closer to the robot. The racks were attached to the legs of the new

worktop using the same 30 mm profile. No existing structures were disassembled

except the aluminium plate, which can be put back to its place easily with 4 screws. The

robot's additional axis settings were not altered to make it possible to take the original

equipment into use quickly. The top of the table was made of plywood, which was

painted white with semigloss paint. The plywood was inlayed into the aluminium

profile's recess that was milled to the correct width. The new worktop is show in Figure

46.

95

Figure 46: The new worktop installed.

 3.6 Demo of the Robot Work Cell

 3.6.1 Planning and Problems

While we were working on the robot in the lobby, many groups of visitors passed by

and each time the absence of even the simpliest demonstration was overwhelming. The

“Robot Work Cell Demo” was designed to illustrate the operations of the robot work

cell.

At first the demo was ment to be more complex, using all the equipment in the work

cell. It soon became obvious that the machine vision system was far too unstable to be

used in a system that should create a positive impression of Savonia UAS. Also the

available working area on the conveyor limited the possible applications tremendously.

A decision was made that the demo should most definitely be something that is less

stunning technically but that absolutely works every time rather than something that has

gorgeous details and that suffers from chronical malfunction.

96

In the original demo, a Savonia UAS logo was ment to be assembled from pieces

brought in random order and angles by the conveyor. The demo should have used all the

equipment in the work cell. Each piece would have been identified using machine

vision and placed in a correct position onto the side table. Along with the robot

operation, a slide show should have been presented to give the viewer a better idea of

the interoperation of the devices which is invisible to the audience. Another problem

with this type of actions would have been the returning of the pieces after the

assembling.

The pieces could have been lifted back to the conveyor either by the robot or the viewer.

If the robot lifted the pieces, the idea of randomness of their position would water

down. Explaining, how the positions are actually random and different every time

would not quite help. On the other hand, if the pieces were lifted into the waste chute

for the viewer to lift back to the conveyor, the randomness would be a problem. The

pieces could end up upside down or off the conveyor, if not totally lost.

Therefore, the operation had to be simplified. The use of machine vision had to be

forgotten. In addition to the changing lighting conditions, the cameras themselves

formed a problem. Their operation was so slow that the total length of the demo would

have been closer to half an hour which was considered to be too much. The major issue

was, however, the unreliability of the camera connection. At times, the camera lost its

firmware during operation.

Leaving the machine vision out meant that the conveyor could not be used either. The

small working area on the conveyor limited the possibilities tremendously. The only

thing remaining from the original concept was the tool change. The actual work

performed by the robot was planned to be simple moving of plastic pieces between two

pallets, one on the conveyor and the other on the table.

97

 3.6.2 Explanation of the Operation

When the demo program is started, the robot checks its tool and changes it if necessary.

Then it waits for the slide show to send the start signal. At the beginning of the demo

the robot introduces its hand gripper and the difference between linear and joint

interpolated movement. Then it moves the plastic pieces from the table onto the

conveyor.

The pieces are not lifted directly to the pallet but first into a special location outside the

pallet. From there, the first piece is lifted into the pallet's first cell. The second piece is

lifted to the additional position, the previous piece to the second pallet cell and then the

new piece into the pallet's first cell. This action was designed to make the operation last

longer to match the slide show. After lifting all the pieces to the conveyor, the robot

changes its tool to a vacuum gripper. With it, the robot lifts the pieces back to the table

via the rack used for correcting the mosaic tile angle.

 3.6.3 Slide Show

During the actions described above, the operations are explained with a slide show

displayed by a Windows application which communicates with the robot program. In

the beginning, and after a complete cycle, the software is stopped to a state, where a

“Welcome” slide is shown. The user can start the demonstration by selecting the desired

language.

The slide show displaying information about the operation was written in C# as a

Windows Forms application. The requirement of interaction between the robot program

and the slide show ruled out the possibility to use a presentation software (e.g.

PowerPoint). The slide show signals the robot to begin the demonstration when needed

and the robot asks the slides to be displayed in correct stages of its program.

The slide show is displayed in fullscreen mode for two reasons. Firstly, it of course

looks better without any window borders or the Windows' taskbar. Secondly, the user

has a mouse to signal the software to start the demonstration. If the taskbar was shown,

98

an evil-intentioned viewer would be able to close the slide show and use the computer

freely. The fullscreen mode can be exited only with a keypress. The keyboard is located

in the cabinet out of viewer's sight.

Creating fullscreen applications is not quite straight-forward. Maximizing the window

obviously is not enough, it leaves the titlebar and the taskbar visible. Actually, not even

the use of Win32 API service to find and hide the taskbar (which in fact is just a

window) makes the application truly fullscreen, because the window will not occupy

the area of the hidden taskbar. [57] The correct way of making a fullscreen application

is to use the whole primary monitor area. This is done by setting the window size

explicitly and thus automatically covering the taskbar as Listing 18 below shows. [58]

Listing 18: Setting the window size according to the primary monitor resolution
 [DllImport("user32.dll", EntryPoint = "GetSystemMetrics")]
 public static extern int GetSystemMetrics(int which);

 [DllImport("user32.dll")]
 public static extern void
 SetWindowPos(IntPtr hwnd, IntPtr hwndInsertAfter,
 int X, int Y, int width, int height, uint
flags);

 private const int SM_CXSCREEN = 0;
 private const int SM_CYSCREEN = 1;

 private static IntPtr HWND_TOP = IntPtr.Zero;
 private const int SWP_SHOWWINDOW = 64; // 0x0040

 public static int ScreenX = GetSystemMetrics(SM_CXSCREEN);
 public static int ScreenY = GetSystemMetrics(SM_CYSCREEN);

 public static void SetWinFullScreen(IntPtr hwnd)
 {
 SetWindowPos(hwnd, HWND_TOP, 0, 0, ScreenX, ScreenY,
SWP_SHOWWINDOW);
 }

The User32.dll DLL is used to fetch the monitor resolution with the

GetSystemMetrics() method. The x and y resolutions are referred to as 0 and 1

respectively. These values are stored to the private constants SM_CXSCREEN and

SM_CYSCREEN in the beginning, because the parameter for the GetSystemMetrics()

must be a constant.

99

The window is made fullscreen with the SetWindowPos() method. IntPtr parameter is a

“platform spesific type used to represent a pointer or a handle” [54]. The IntPtr is an

integer and its size depends on the hardware and operating system on which it is used

(i.e. 32 bits on a 32-bit platform and 64 bits on a 64-bit platform). [59]

The slide show window is maximized and restored with the Maximize() and Restore()

functions. The functions take the Form thisForm as a parameter. See the Maximize()

function in Listing 19. The content of the Restore() function is similar.

Listing 19: The function for maximizing the window
 public void Maximize(Form thisForm)
 {
 if (!IsMaximized)
 {
 IsMaximized = true;
 thisForm.WindowState = FormWindowState.Maximized;
 thisForm.FormBorderStyle = FormBorderStyle.None;
 thisForm.TopMost = true;
 WinApi.SetWinFullScreen(thisForm.Handle);
 }
 }

The restoring is done when the key combination CTRL+R is pressed. The maximizing

is done when loading the form and when the key combination CTRL+F is pressed. The

examination whether two keys are being pressed simultaneously is done with the

KeyDown event handler (Listing 20):

Listing 20: The event handler for keyboard input

 private void Demo_KeyDown(object sender, KeyEventArgs e)
 {
 if (
(e.KeyCode == Keys.F) &&
(e.Modifiers == Keys.Control))
 {
 Maximize(this);
 }
 if (
(e.KeyCode == Keys.R) &&
(e.Modifiers == Keys.Control))
 {
 Restore(this);
 }
 }

100

 3.6.4 Graphics

The slides are simply images that are displayed as the background image of the form.

The resolution of the images is optimized for the display used (i.e. 1280 × 1024). The

choice of using images was done because of the reliability and simplicity of updating

the slide content. Other possibilities were to use typical Windows Forms controls (such

as Labels and Buttons) or the WebBrowser control. The use of Windows Forms controls

would have meant that the slide show content could only be altered by changing the

source code of the application. The use of the WebBrowser control was thought to be a

solution, because of the use of standard HTML documents that anyone could create and

substitute easily since they are not inside the application itself. However, when the

WebBrowser was displayed in fullscreen, the application did not accept any keyboard

input.

The background image of the slide consists of a group of 3-dimensional Savonia UAS

logos as shown in Figure 47. The logo material resembles colored acrylic which is

semitransparent and glossy. The logos were modelled with Blender3D open source 3D-

modelling software.

Figure 47: The first slide of the robot work cell demonstration slide show.

101

 3.6.5 Networking

The networking between the robot program and the slide show is implemented in the

same manner as in other applications created for the robot work cell (e.g. TicTacToe).

The PC software operates as a server and the robot as a client. In this case, asyncronous

networking is not used because of the need to handle multiple client connections, but

only to be able to re-establish the connection to the robot if it is lost during the

operation.

 3.6.6 Robot Program

First, the program for the robot checks which tool is initially attached in the beginning

and changes it to hand if needed. This is done using the M_TOOL parameter, it returns

the currently used tool from the controller's memory. The value of the parameter is

changed to match the tool number after each tool change procedure. In the beginning,

the robot poses for the audience and shows the difference between joint interpolation

and linear interpolation.

Then the program gets each of the green plastic objects and moves them to the

conveyor. As an addition to increase the delay between slides, the robot arranges pieces

on the conveyor. Then the tool change subroutine is executed and the robot moves near

the tool racks through the help position located above the work top. The tool is changed

to the vacuum gripper. After this, the robot picks objects and lifts them to the

mechanical structure that is used to center the pieces. After this, objects are moved back

to the work top and the tool changed back to the hand gripper.

The program has INIT, SET, GET and CH subprograms. INIT subprogram initializes

the variables, defines the pallet coordinates and what is the most important, creates

connection between the robot controller and the server PC running the slide show. If

connection is lost, program is interrupted and halted. SET subprograms are used to

move the plastic objects to the conveyor using hand, CH subprogram calls the tool

change procedure and GET moves the pieces back to the worktop with vacuum gripper.

102

 3.6.7 Hardware Configuration

A TFT display was mounted outside of the robot work cell for the demonstration slide

show. A special rack was designed and manufactured for the display. The rack was built

from 40 × 80 mm aluminium strut profile, two swivel bearings and a supporting arm

joint. A small table is mounted below the display for the mouse. The length of the rack

is 500 mm. The display can be turned around the corner of the work cell to make

possible to view the slide show from different sides of the work cell as shown in Figure

48. The display can also be used when working with the work cell PC.

Figure 48: The display rack mounted to the corner pillar of the work cell

103

4 Results

This study had three distinct goals: replacement of the servo position data encoder

batteries and recalibration of the robot's coordinates, creation of student exercises about

the robot work cell and the development of the operations of the robot work cell. As an

additional task, there was a wish, that the robot work cell's web cameras would be put

into operation. All these goals were achieved.

During the work, also three additional objectives were set: a TicTacToe online game

played against the robot, structural modification of the work cell and the demonstration

of the operations of the work cell. Also these goals were achieved.

 4.1 Results of the Main Objectives

 4.1.1 Battery Change and Calibration

The battery change and the calibration were carried out succesfully. The robot origin

data was recorded using the mechanical stopper method. The origin data was written to

the table located inside the cover of the robot's base as it is meant to according to the

Mitsubishi's instructions.

 4.1.2 Exercises

A student exercise handout was written from the total of 20 student exercises developed

(Appendix 2). These exercises start from the same basics as the existing exercises, but

they go far further with their advanced programming and complex machine vision

exercises. Along with a large amount of documentation about the robot work cell, the

exercise handout can be used as the main study material about the robot work cell.

104

The most essential instructions were included into the exercise handout. Some

instructions that are not needed for completing the exercises were collected as

additional instructions to the end of the exercise handout. These include instructions for

advanced features of the programming software.

Example solutions of the exercises were developed. These include DVT Intellect

systems, Melfa-BASIC programs and E-designer projects. The exam created for the

course measures the student's knowhow about the handout's content (Appendix 3).

 4.1.3 The Web Cameras

No software was found capable to capture and send the video stream out of the work

cell. The tested software were either too unstable or too resource consuming. The

problem was solved by creating an image capturing software that is also able to send

images using FTP.

The web cameras were taken into use succesfully by writing two separate applications

for sending and receiving video. Robot Camera software sends real time video to the

Camera Viewer program and still pictures to the web server. Camera server sends both

camera feeds properly and it has been tested and stated to be fully functional in the local

area network, but the option to request IP address from DNS server has not been tested

yet.

105

 4.2 Results of the Additional Goals

 4.2.1 TicTacToe

The first additional goal was the TicTacToe game, a network version of the traditional

pencil-and-paper game played against the robot. In the project, a game server and client

software were created using C# and .NET 3.5 framework. The game was tested in the

local network and verified to be operational. While playing, the player can also view

the robot make the moves in the work cell using a built-in web cam viewer.

A lot of planned features had to be removed due to problems that were left unsolved

because of the shortage of time. These include the server's logging, IP address based

banning and settings functionality.

Logging would have been a helpful feature in possible troubleshooting. The log files

were designed to be written using the StreamWriter class. Five different log files

(system, game, chat, connections and error logs) and corresponding functions for

writing them were designed. All the log files were planned to be opened at startup and

kept open while the server is running. This is less resource consuming than opening

them every time something needs to be written. The logging was designed to be done by

writing the actions into a file as plain text and converted into a viewable format (e.g.

HTML) using an external software. A single event written into file as a line of text

would have consisted a timestamp and other information varying depending on the log

file.

The IP address based banning was ment to be a way to minimize the effects of possible

vandalism. In the original concept, the IP addresses were stored into a text file using

Ban() and Unban() functions that add and remove the IP addresses into or from the file

and keep the file organised. The file containing the banned IP addresses could have been

viewed and modified in the settings window of the server.

A wide range of settings were designed for customizing the appearance and operation of

the server. Controls for things such as the server's name, chat's welcome text, log file

106

locations and the colors used in the GUI were collected into the settings form. The

usage of these properties would require only the creation of a settings file and

appropriate read and save functions for its use.

The log file writing, IP banning functions and the settings form were left to the source

code of the game. Thus, these features would be relatively easy to take into use in an

updated version of the server. These are all additional features that would have

improved the usability of the server. The actual game-related features are functional.

The intended use via Internet would require a way to reach the robot work cell's PC

from outside the school's network. Before deploying the application it would require

more testing and further development.

 4.2.2 Modification of the Robot Work Cell

The robot work cell itself was modified to allow more complex applications to be

developed. In the modification a new work top was built into the work cell and the grey

scale machine vision sensor mounted to the ceiling above it. The toolracks were moved

to make space for the work top.

The turning round plate that was operated by the robot's additional axis interface was

replaced by a larger, solid worktop. The additional axis unit was left onto its original

place under the new table. It was also left connected to the robot controller. This way it

can easily be taken into use if needed in the future. The new solid worktop has already

shown its superiority over the old labile turntable with its larger working area.

The gray scale machine vision camera was moved from its original position at the side

of the conveyor and mounted into the ceiling above the new worktop. When the camera

was tested with the Intellect software, it was noticed that some dark smudges can be

detected in the images. These smudges were disrupting the calibrating operation, and it

was impossible to set the coordinates and the real world scale for the camera.

107

The original plan was to build the whole table from aluminium. However, the surface of

the table had to be made of plywood. When starting to make applications that utilize the

new work top, it was discovered that the plywood plate was crooked. Therefore, the

table had to be left to the current state. The height difference between the edges and the

center of the table is close to 1 cm and it makes the teaching of positions difficult. The

problem is currently handled with an additional piece of particle board on top of the

plywood surface but it is obvious that the plywood should be replaced.

 4.2.3 Demo of the Robot Work Cell

Robot Work Cell Demo has already been shown to two groups of visiting upper

secondary school students. The demo program has been tested extensively and there has

not been major imperfections in neither the robot's program or the PC application. The

instructions for starting the robot work cell and the demo program were written to allow

anyone to start the demo program without actual know-how of the work cell's devices.

108

 4.3 Development ideas

During the study, many possibilities for improvement were noticed in the robot work

cell. However, the scope of this project did not allow all the changes to be carried out.

This chapter points out the things that should be considered if the robot work cell is

developed further in the future.

It is suggested that the conveyor in the work cell is moved closer to the robot to

maximize the area the robot is able to reach. Currently, the robot can only use about one

third of the total width of the conveyor belt.

When working with the machine vision exercises, the acceleration of the conveyor

formed a problem because objects rolled on the conveyor. A way for controlling the

speed of the conveyor would remove this problem and allow versatile objects to be

used.

Setting the forbidden areas for the robot would improve the security of the robot. Total

of 8 forbidden planes can be defined. Together with the tool parameters set in this work,

the planes would prevent collisions between the robot and the other equipment in the

work cell.

The surface of the new work top could be replaced with a plate made of semi-

transparent material. With a light source installed below the work top, a back-lit

machine vision system could be created using the grey scale machine vision camera.

To make it possible to use the machine vision system more reliably in the challenging

lighting conditions of the corridor, curtains around the work cell would reduce the

amount of ambient light significantly. Also two powerful light sources on both sides of

the conveyor would reduce the amount of disturbing shadows. Sharper images would

improve the results.

109

Currently the doors of the work cell have switches that stop the robot and turn off the

controller if the doors are opened during operation. This of course makes the work cell

safe for human users but can cause problems in robot operation. For example if the

doors are opened during tool change, the new length of the tool may not have been

changed to the tool parameters. This may cause the robot to collide with the

environment. Also, if the robot is stopped to a precise position and the program must be

restarted, the controller tries to move the robot to the initial position regardless of

possible obstacles around the current position. This could be prevented by changing the

whole point of view in the safety setup. Instead of stopping the robot when a human

moves to its reach area, the whole approach could be made impossible. In other words,

the robot would be protected from humans rather than humans from the robot. This

could be done by changing the door's safety switches into solenoid locks. With them,

the robot could keep the doors locked during its operation.

OpenCV was decided to be used only in capturing the web camera images without

analyzing or processing them, but this interface still offers a good base for further

development of the program. OpenCV offers various interesting attributes to be used in

the robot work cell. For instance, there are some human-computer interface elements

(HCI), object identification, optical character recognition, stereo vision and motion

tracking functions. They would allow augmented reality features to be added to the

outgoing video.

Also the TicTacToe game could be enhanced with augmented reality elements with

minor changes in the work space. The piece the robot moves from the stock pallet and

its destination area could be located and marked in the video. Also the winning line

could be highlighted.

A network version of the robot work cell demonstration could be made with the

possibility for the viewer to affect the actions performed by the robot. There was also a

plan to gather data of the work cell to be shown in the web pages. Information could be

downloaded from the integrated FTP server of the E1070 operation terminal. Sending it

to the web page could be integrated in the Robot Camera program.

110

5 Conclusions

The project was carried out successfully. All the main objectives were achieved. The

exercises designed in this project are versatile and their degree of difficulty ranges from

very easy to demanding, thus making them suitable for students with varying skills and

motivation.

The additional goals were achieved. The programs were tested to be mostly functional.

Still, this project leaves opportunities for the additional development of the software,

because some of the features were left disabled due to inadequate testing.

The search of information was eased by gathering basic instructions into the exercises

handout. Some additional documentation was also collected into a separate document.

Together they should make the use of the work cell a lot easier.

We hope that the robot work cell will now be a more interesting project for the courses

in the future and the exercises and the related instructions will offer an easy approach to

industrial robotics. We also hope that in the future, our ideas for further development

will be noted and the work cell will be made even more efficient.

This work has been extremely interesting and educational. It has taught us a lot about

robotics, both theory and practice. Working with the devices of the work cell and the

related software has given an insight to the planning and programming of the working

robot system. The study has been independent, which has given both freedom for

experimentation and responsibility for the results.

6 References

[1] Korhonen, Mika, Robotisoidun ja konenäöllä varustetun tuotantosolun harjoitusten
kehittäminen, Thesis, Savonia University of Applied Sciences, 2008, 44 pages.

[2] Kauppinen, Anssi, Robotilla ja konenäöllä varustetun tuotantosolun harjoitusten ja Internet-
käyttöliittymän kehittäminen, Thesis, Savonia University of Applied Sciences, 2008, 39 pages.

[3] Gera, D. L., Ancient Greek ideas on speech, language, and civilization (2003). [www-
document]. Available: http://books.google.com/books?
id=h5tKJvApybsC&pg=PA114&lpg=PA114&dq=hephaestus+handmaidens&source=web&ots=Am
E4CYagER&sig=qoE-R-FGa3CRe9fKPjBKCdk24C4#v=onepage&q=hephaestus
%20handmaidens&f=false (Searched 10.11.2009)

[4] Leonardo3 Official Website 2010, Leonardo Da Vinci's Robots. [www-document]. Available:
http://www.leonardo3.net/leonardo/books%20I%20robot%20di%20Leonardo%20-%20Taddei
%20Mario%20-%20english%20Leonardo%20robots%201.html (Searched 10.11.2009)

[5] Wired Magazine, The Real Da Vinci Code (2004). [www-document]. Available:
http://www.wired.com/wired/archive/12.11/davinci.html (Searched 10.11.2009)

[6] Suomen automaatioseura ry, Robotit. [www-document]. Available:
http://www.automaatioseura.fi/index/tiedostot/Robotit.pdf (Searched 10.11.2009)

[7] Fu, K.S., Gonzalez, R. C., Lee, C. S. G., Robotics. Singapore: McGraw-Hill Co., 1987, 580
pages

[8] University of Texas at Austin, Robotic Research Group, History. [www-document]. Available:
http://www.robotics.utexas.edu/rrg/learn_more/history/ (Searched 03.11.2009)

[9] Wikimedia Commons, Unimate. [Image]. Available:
http://upload.wikimedia.org/wikipedia/commons/7/7f/Unimate.jpg (Searched 22.2.2010)

[10] Britannica Encyclopedia, Robot (2010). [www-document]. Available:
http://www.britannica.com/EBchecked/topic/505818/robot/248208/Industrial-robots#ref=ref849962
(Searched 03.11.2009)

[11] Webopedia, Magnetic drum (2001). [www-document]. Available:
http://www.webopedia.com/TERM/m/magnetic_drum.html (Searched 03.11.2009)

[12] Carnegie Mellon University, The Robot Hall of Fame. [www-document]. Available:
http://www.robothalloffame.org/unimate.html (Searched 07.11.2009)

[13] Matthias Rauterberg, Unimate (1961). [www-document]. Available:
http://www.idemployee.id.tue.nl/g.w.m.rauterberg/presentations/hci-history/sld090.htm (Searched
07.11.2009)

[14] Computer History Museum, Timeline of Computer History (2006). [www-document].
Available: http://www.computerhistory.org/timeline/?category=rai (Searched 08.11.2009)

[15] Kurfess, T. R., Robotics and automation handbook (2005). [www-document]. Available:
http://books.google.fi/books?
id=stIWUpWvI94C&pg=PT21&lpg=PT21&dq=stanford+arm&source=bl&ots=sjsd7aBopW&sig=
Uo5rp2u9TKNatKkp--B1jHWowVg&hl=fi&ei=gOr7SrjQE5DS-
QalvOWUAg&sa=X&oi=book_result&ct=result&resnum=10&ved=0CC8Q6AEwCTgU#v=onepa
ge&q=stanford%20arm&f=false (Searched 12.11.2009)

[16] Stanford University, Robot. [www-document]. Available:
http://infolab.stanford.edu/pub/voy/museum/pictures/display/1-Robot.htm (Searched 12.11.2009)

[17] Robot-Welding, Robot Types (2001). [www-document]. Available: http://www.
robot-welding.com/robots.htm (Searched 9.11.2009)

[18] National Instruments, Motor Fundamentals (2010). [www-document]. Available:
http://zone.ni.com/devzone/cda/tut/p/id/3656 (Searched 13.01.2010)

[19] Omega Engineering Inc, Stepper Motors. [www-document]. Available:
http://www.omega.com/prodinfo/stepper_motors.html (Searched 13.01.2010)

[20] Putatunda, R., Types of Robots (2008). [www-document]. Available:
http://www.buzzle.com/articles/types-of-robots.html (Searched 02.12.2009)

[21] RobotWorx, Robot Timeline – Robotic History. [www-document]. Available: http://www.used-
robots.com/robot-education.php?page=robot+timeline (Searched 02.12.2009)

[22] Kuivanen, R., Robotiikka. Vantaa: Talentum Oyj, 1999, 188 pages

[23] Lahden ammattikorkeakoulu, Robotiikka (2008). [www-document]. Available: http://
tl-automaatio.lpt.fi/automaatio/opetus/luennot/pdf_tiedostot/Robotiikka_yleinen.pdf (Searched
15.11.2009)

[24] Argon Lab Systems, Laboratory Robots and Automation – Benefits & Advantages (2007).
[www-document]. Available: http://www.argonlabsystems.com/content/view/10/18/ (Searched
22.01.2010)

[25] VDMA Robotics, Executive Summary of World Robotics 2009 Industrial Robots (2009).
[www-document]. Available:
http://www.worldrobotics.org/downloads/2009_executive_summary.pdf (Searched 30.10.2009)

[26] RobotWorx, Industrial Robot Basics. [www-document]. Available:
http://www.robots.com/faq.php?question=robot+basics (Searched 8.11.2009)

[27] Olympus Technologies, Linear Robots. [www-document]. Available:
http://www.olympustechnologies.co.uk/about/types-linear.php (Searched 8.11.2009)

[28] Bonev, I., Delta Parallel Robot – the Story of Success (2001). [www-document]. Available:
http://www.parallemic.org/Reviews/Review002.html (Searched 24.02.2010)

[29] Wikipedia, Parallel Manipulator (2009). [www-document]. Available:
http://en.wikipedia.org/wiki/Parallel_manipulator (Searched 24.02.2010)

[30] Yamaha Motor, What's the Scara Robot. [www-document]. Available: http://www.yamaha-
motor.co.jp/global/industrial/robot/ykx/what/index.html (Searched 9.11.2009)

[31] Monkman, G. J., Hesse, S., Steinmann, R., Schunk, H., Robot Grippers (2007). [www-
document]. Available: http://books.google.fi/books?
(id=prZ1MiKjdhgC&dq=robot+grippers&printsec=frontcover&source=bl&ots=YYplEMbCdG&sig
=gzyOgwOXIeb-W0UIhuTyQf9YxB4&hl=fi&ei=KVdUS9yZJ8nb-
Qa22tzMCA&sa=X&oi=book_result&ct=result&resnum=10&ved=0CC0Q6AEwCQ#v=onepage&
q=&f=false (Searched 16.11.2009)

[32] Fargo Controls Inc, Proximity Sensors: Inductive, Capacitive, Photoelectric & Magnetic
(2005). [www-document]. Available: http://sensorsproximity.com/ (Searched 10.12.2009)

[33] Penton Media Inc & Machine Design Magazine, Proximity Sensor Information (2010). [www-
document]. Available: http://www.sensors-transducers.machinedesign.com/
guiedits/content/bdeee4/bdeee4_7.aspx (Searched 10.12.2009)

[34] Ohanian, H. C., Physics. Canada: Penguin Books Canada Ltd, 1985, 1012 pages

[35] SICK Oy, Induktiiviset lähestymisanturit. [www-document]. Available:
http://www.sick.fi/fi/products/tuoteryhmat/teollisuusanturit/induktiivisetlahestymisanturit/fi.html
(Searched 16.02.2010)

[36] Fargo Controls Inc, Capacitive Operating Principles (2005). [www-document]. Available:
http://sensorsproximity.com/op/capacitive_op.html (Searched 22.02.2010)

[37] Fargo Controls Inc, Photoelectric Operating Principles (2005). [www-document]. Available:
http://sensorsproximity.com/op/photo_op.html (Searched 22.02.2010)

[38] Dwayne, P., Force/Torque Sensor Systems: Optimizing Robot Performance (2010). [www-
document]. Available: http://findarticles.com/p/articles/mi_qa3957/is_200308/ai_n9247065/
(Searched 20.02.2010)

[39] University of Ottawa, Sensor-Based Robot Control. [www-document]. Available:
http://www.site.uottawa.ca/~petriu/CEG4392-IntroRobotics-Sensors.pdf (Searched 30.01.2010)

[40] Wikipedia, Machine Vision. [www-document]. Available:
http://en.wikipedia.org/wiki/Machine_vision (Searched 07.12.2009)

[41] Oulun yliopisto - sähkötekniikan osasto, Konenäkö. [www-document]. Available:
http://www.ee.oulu.fi/mvg/about/konenako.pdf (Searched 07.12.2009)

[42] Wikia, Machine Vision. [www-document]. Available:
http://computervision.wikia.com/wiki/Machine_vision (07.12.2009)

[43] Wikipedia, CMOS. [www-document]. Available: http://en.wikipedia.org/wiki/Cmos (Searched
02.02.2010)

[44] Wikipedia, Charge-coupled device. [www-document]. Available:
http://en.wikipedia.org/wiki/Charge-coupled_device (Searched 02.02.2010)

[45] DALSA, CCD vs. CMOS. [www-document]. Available:
http://www.dalsa.com/corp/markets/CCD_vs_CMOS.aspx (Searched 02.02.2010)

[46] National Instruments, NI Smart Cameras. [www-document]. Available:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/204077. (Searched 02.02.2010)

[47] Toshiba Teli, Color Cameras. [www-document]. Available: http://www.toshiba-
teli.com/index.cfm?com=tplGen_products&cid=2&mid=1 (Searched 2.2.2010)
[48] Prosilica, Choosing a Machine Vision Camera. [www-document]. Available:
http://www.prosilica.com/support/choose_camera.html (Searched 02.02.2010)

[49] OpenCV 2.0 C++ Reference [www-document]. Available:
http://opencv.willowgarage.com/documentation/cpp/index.html (Searched 02.02.2010)

[50] Lewis, F. L.., Abdallah, C. T., Dawson, D. M., Control of Robot Manipulators. [www-
document]. Available: http://robotics.cucei.udg.mx/Index_files/notes/Extra3HT.pdf (Searched
15.01.2010)

[51] RobotWorx, Mitsubishi RV-2AJ Five-Axis Robots (2006). [www-document]. Available:
http://www.used-robots.com/articles.php?tag=1695 (Searched 28.10.2009)

[52] Mitsubishi, Industrial Robots Specifications Manual, RV-1A/RV-2AJ Series. [Instruction
manual]

[53] Mitsubishi, Standard Specifications Manual, CR1-571 Controller. [Instruction manual]

[54] DVT Sensors, DVT 542C. [www-document]. Available:
http://www.dvtsensors.com/products/LegendManager.php?action=Spec&Type=542C (Searched
13.10.2009)

[55] McNaughton-McKay Electric Company. Cognex Vision Sensors, Low-Cost, High-Powered .
[www-document]. Available: http://www.mc-mc.com/portals/1/Product
%20Content/articles/0407_Cognex.htm (Searched 13.10.2009)

[56] Mitsubishi, HMI Visualisation Tools. [www-document]. Available: http://download.mitsubishi-
automation.com/resources/technical/207075.pdf (Searched 15.10.2009)

[57] Vesic, D. D., How to make Windows Form app truly Full Screen (and to hide Taskbar) in C#?
(2006). [www-document]. Available: http://www.vesic.org/english/blog/winforms/
full-screen-maximize/ (Searched 25.11.2009)

[58] Microsoft, How to cover the Task bar with a window. [www-document]. Available:
http://support.microsoft.com/kb/q179363/ (Searched 25.11.2009)

[59] MSDN, IntPtr Structure. [www-document]. Available: http://msdn.microsoft.com/
en-us/library/system.intptr(VS.71).aspx (Searched 25.11.2009)

7 Appendixes

1. TicTacToe Data Transfer Protocol

2. Robot Work Cell Exercises handout

3. Exam

TicTacToeServer data transfer protocol

The Messages the Client Sends

Nick request
Syntax
NICK : Nick : Symbol (String [4] : String [16] : String [1])

Symbol is “X” or “O”

Example
NICKJarnoX

Game move

Syntax

GAME: Socket number : Reset : Move (String [4] : Int [3] : String [1] : Int
[1])

Socket number is 001…100
Reset is “R” for Reset or “C” for Continue
Move is 1…9

Example
GAME023C7

Chat message

Syntax
CHAT : Socket number: Message (String [4] : Int [3] : String [256])

Example
CHAT023OMG stfu n00b! lol

Exit request

Syntax
EXIT

The Messages the Server sends

Nick response

Syntax
NICK: Success: Socket number (String [1] : Int[3])
or
NICK: Failure: Reason (String [1] : String [1])

Failure/success:
Failure = “F”
Success = “S”

Reason:
Server full = “S”
Nick used = “N”
IP Address banned = “B”

Socket number:
001…100

Example
NICKFN (Refuse)
NICKS023 (Accept)

Game update

Syntax
GAME : Move : Who won (Int [1] : Int [1])

GAME: Move : Who won : Cell 1 : Cell 2 : Cell 3
(Int [1] : Int [1] : Int [1] : Int [1] : Int [1]))

Move is 1…9 or 0, if someone has won

Who won:
0 = nobody, game continues
1 = player
2 = robot
3 = nobody, game over

Example
GAME80 (move to 8, game continues)
GAME71147 (move to 7, player wins, line through cells 1, 3 and 7)

Chat update

Syntax
CHAT : Nick : Message (String [max 20] : String [256])

Example
CHATDefaultNickOMG stfu n00b! lol

Turn update

Syntax
TURN : True/false : Queue length (String [1] : String [2]

True/false:
“T” = Client’s turn to play
“F” = Not yet client’s turn to play

Queue length = 0…99

Example
TURNF08

Info message

Syntax
INFO : Total connections : Players before own turn : Message (String [4] :
String [4] : String [256])

Example
INFO00230002Study in Savonia University of Applied Sciences! It’s jätte
fun!

Robot commands

Game Moves

Syntax

GAME : Turn: Move : Game status (String [4] : String [1] : Int [1] : Int [1])

RESET

Turn = “X” or “O”

Move: 1 - 9

Game status:
0 = nobody, game continues
1 = player won
2 = robot won
3 = nobody, game over

Example

GAME033
RESET

Robot sends

BUSY
READY + last move
ERROR

Robot Work Cell Exercises

2010
Auvinen, Jarno
Jalkanen, Miia

Table of contents
General About the Robot Work Cell.......................................4
Exercises...6

Mitsubishi RV-2AJ...6
Programming with the Teaching Box..6
Coding with Melfa-BASIC..7
Variables...7
Conditional Statements and Loops...9
Moving the Robot Arm..9
Connecting the Robot Controller and PC Using COSIMIR................................10
Teaching the Positions...12
Changing the Tools and Checking the Tool Parameters......................................12

Task 1: Pick and Place a Mosaic Tile...15
Using Palletizing Functions...17

Task 2: Defining Pallets...19
Task 3: Composing a Dot Matrix Character ...21
Task 4: Returning the Mosaic Tiles After Use...21
Task 5: Writing Complete Words..21
Task 6: Receiving the Text From The User via Ethernet.................................22
Task 7: Digital Clock Using Dot Matrix..22
Task 8: Seven-segment Digital Clock..23

Using Subroutines and Functions...24
Task 9: Multiple Items...25
Task 10: Changing the Tool During Operation..25

Creating Multitasking Programs..26
Task 11: The Moving Blocks...27
Task 12: Camera Inspection with Multitasking...29

Ethernet Interface...29
Enabling the Ethernet Connection from Controller...29
Creating a Server and Client Software...30
Network Functions of a Simple .NET Network Program (C#)........................31
Transferring Data Between the Robot and PC Software..................................34
Task 13: Connection Test...35

E-designer 7...36
Driver Update...36
E-designer Workspace..36
E-designer Project and Blocks...37
Connecting the Operation Panel and PC..38
Conveyor Operation...39

Task 14: Conveyor Operation Using Built-in Blocks......................................39
Task 15: The Savonia UAS Logo..41
Task 16: Security Levels..42
Task 17: Localization...44
The Language Register...44
Translating Texts..46
Testing the Localization...47

Intellect 1.5...48
Task 18: Going Nuts (with DVT)..48

Measuring the Hole Diameter..49
The Nut Location...49
Measuring...51
Hole Diameter Measure Script...53

Task 19: Bolt Action..54
Bolt Location..55
Preprocessing...55
Measuring the Bolt Length...56
Sending the Pick Point to the Robot...56

Task 20: Quality Control..58
Additional Instructions...61

The equipment needed for the exercises...61
Mitsubishi RV-2AJ...62

Melfa-Basic ...62
Changing the tool...64
Changing the batteries..64
About COSIMIR Industrial..65

RCI Explorer..65
GX IEC Developer..66

Conveyor operation..66
E-designer 7...70

Conveyor operation..70
Graphics...71

Intellect 1.5...74
About the workspace..74
Tool Referencing Diagram...74
About recording the sequence..76
The calibration of the coordinate system ..76

General About the Robot Work Cell

The robot work cell (Figure 1) is equipped with a robot arm, a conveyor belt with a

controlling PLC, two machine vision cameras, two operation panels and an additional

axis, with operates a small table. There are also two web cameras and a light beacon

with red, yellow and green lights.

RV-2AJ is a 5DOF (Degree of freedom) robot arm designed for light assembly work.

The maximum reach distance is 410 mm. It is one of the smallest robots manufactured

by Mitsubishi. It weighs only 17 kg and its maximum payload is 2 kg and the

recommended maximum payload for continuous operation is 1.5 kg. The maximum

speed of its movements is 2100 mm/s and the repeatability 0.02 mm.

There is a turning aluminium table in the workcell. It is installed as an additional axis.

The HC-KFS13 servo produces a continuous torque of 0.32 Nm and a maximum

torque of 0.95 Nm. The maximum speed is 4500 rpm.

The robot controller is Mitsubishi CR1 with a 64-bit RISC+DSP processor. It provides

functions for linear interpolation, circular interpolation, 3D-modeled circular

interpolation, pallet functions, interrupts and multitasking. It is programmed using the

Melfa-BASIC IV or MOVEMASTER COMMAND programming languages. It has 16

inputs and 16 outputs (the amount can be extended up to 240) and up to 88 programs

can be saved into controller. The controller has emergency stop and door switch

functions. The controller has a RS-232C port for connecting to PC and a RS-244 port

for the teaching pendant.

The teaching pendant of the cell is Mitsubishi R28TB (Teaching Box). Among many

other uses, the TB is used for teaching the positions to the robot. It is also possible to

write whole programs using the TB.

There are two Beijer Electronics’ operation panels in the work cell. The smaller, E410

with black and white touch screen, has the resolution of 320 x 240 pixels. It is

connected to MELSEC FX1N PLC and together they are used to operate the conveyor

belt. The panels are programmed with E-Designer 7 software. The another, E1070 is a

6,5” color TFT display and it is operated using the buttons positioned along the edges

of the screen.

The machine vision system of the work cell includes two cameras by Cognex. DVT

542C color camera is installed to the ceiling of the work cell above the conveyor and

DVT 530 grayscale camera is located at the side of the conveyor. DVT 542C has a 640

x 480 pixels CCD image sensor, Hitachi SH 4 processor, 64 MB of RAM and 16 MB

of Flash memory. DVT 530 is a grayscale CCD camera with the same VGA resolution

as the color camera. It has a Motorola Power PC processor, 32 MB of RAM and 16

MB of Flash memory.

The operation voltage for both cameras is 24 VDC and they have their own LED ring

lights to ensure the proper lighting of the target. They are connected to the DVT

Isolated Bob which provides digital I/O and power to the cameras. In the vision system

the cameras operate as servers by sending the processed data to the robot controller.

The vision system is configured with Intellect 1.5 software.

The PLC that controls the conveyor is Mitsubishi FX1N-14 MR-DS. It is a compact

and affordable PLC suitable for many applications. Its operating voltage is 12-24 VDC

and it has 14 I/O ports. It is programmed with GX IEC Developer 7 software.

Figure 1: Robot work cell

Exercises

This section contains the exercises for the different devices of the robot work cell.

The basic exercises are tutorials to guide student through the task, step by step. All of

the tasks are graded and example solutions are available for each of them.

Mitsubishi RV-2AJ

CAUTION!

DO NOT MODIFY, REPLACE OR DELETE THE PROGRAMS OR

POSITION LISTS IN SLOTS 84 – 88!

Programming with the Teaching Box

It is possible to write a whole new program without PC by using the robot’s teaching

pendant. Unfortunately, teaching pendant is very slow to use, but its still a great aid in

doing minor changes in programs.

Make sure that the controller is in TEACH position. Turn the TB's mode switch to

ENABLED. From the main menu, select TEACH. There you can select a new program

slot or edit existing programs by typing the slot number. PR shows the program slot

number, ST shows the command order and LN tells the current line number. Move to

code line by pressing RPL button twice. Now you can write by holding POS/CHAR

key and typing characters. Remember to add a line number to the beginning of each

line or the program will crash in syntax error.

Coding with Melfa-BASIC

Melfa-BASIC is a programming language used for the programming of Mitsubishi

robots. It includes all of the usual programming structures such as flow control and

repetition statements, different variable types, subroutines etc. The language also

contains a wide range of special functions for robot applications. In these exercises,

only the very basic commands are introduced. Huge amounts of interesting coding

stuff can be found in the “Detailed explanations of functions and operations”

Instruction Manual.

In Melfa-BASIC, each line in a program must start with the line number. In

Mitsubishi’s own documentation and examples the numbering starts from 10, growing

by 10 in every line. There is no obvious reason for this manner, because the programs

also work, if the numbers increase, for example, by 1. However, the modifying of the

code is much easier, if you can add a line or two here and there, so keep to that

custom. Code can also be written without the line numbers at all, if the numbers are

added in COSIMIR with Renumber (CTRL + R) command.

Variables

Melfa-BASIC has two kind of variables, internal and external. Internal variables are

used inside the programs and each time a program starts, the variables are created and

set to the initial value. Internal variables cannot be affected by the other programs

they are created in. Internal variable types are sorted in Table 1. Each variable's first

letter identifies the variable type, as seen in the example. Also, the last letters are

required in some cases.

Table 1: Internal variables and examples

Variable Letter Example
Integer M M1=31008
Single precision real
number

M (!) M1!=1.2E+5

Double precision real
number

M (#) M1#=3.14

Character string C ($) CSMPL$=”SAMPLE”
Position P P1=(12,3,3,0,0,0)(0,0)

External variables can be used between programs and the values remain in the

controller's memory even if a program is stopped and power is turned off. These

variables are especially useful in the multitasking programs. External variables are

preconfigured in the system memory. Table 2 shows the possible variables to be used.

 Table 2: External variables

Type Range
Double precision real number M_00 - M_18
Position data P_00 - P_19
Character string C_00 - C_19

Internal variables can be defined before use, but this is not required. Still, defining the

variables is a good programming manner and it also allows the naming of variables

without the identifying letters. Defining is introduced in the Table 3.

 Table 3: Defining the variables

Variable Example
Integer (INTE) DEF INTE INT1
Single precision real number (FLOAT) DEF FLOAT LILNUMBER (DOUBLE)
Double precision real number DEF DOUBLE BIGNUMBER
Character string (CHAR) DEF CHAR SAMPLESTRING
Position (POS) DEF POS INITPOS

Melfa BASIC also supports arrays up to three dimensions. The arrays are explained in

the Table 4, below.

Table 4: Arrays

Example Explanation
DIM MNUMB!(2,2,2) Three dimensional single precision real number array with

2 × 2 × 2 elements
DIM PLIST(4,2) Two dimensional position array with 4× 2 elements
DIM CSTR(8) String array with 8 elements

Conditional Statements and Loops

If-then-else statement is familiar from almost any programming language, and it

doesn't differ in Melfa-BASIC. The comparison operations in Melfa-BASIC are equal

(=), not equal (<>), smaller than (<), larger than (>), smaller or equal (<=) and larger

or equal (>=). The logical operations OR, AND, NOT and XOR can be used between

the comparisons. GOTO jump point can refer to a label or a linenumber (referring to

the linenumber is not recommended). Label is marked with asterisk (*). Subroutine

call GOSUB jumps program to execute the referred subroutine and then returns to

normal execution of the main program. The subroutine start points are also marked

with asterisk and the last line of subroutine is RETURN. Example is shown below in

Table 5.

Table 5: Example of conditional branching

Example Explanation
10 IF M1<M2 THEN
20 GOSUB *COUNT
30 BREAK
40 ELSE
50 GOTO *EP
60 ENDIF
70 GOTO 10
80 *COUNT
90 M1=M1+1
100 RETURN
110 *EP
120 END

If M1 is smaller than M2
Jumps to “COUNT” subprogram
Escapes from IF statement to line 70
If equal or larger than M2
Goto label *EP

Jump to line 10
Start of subprogram
Add one to M1
End suprogram
Label EP
End program

Moving the Robot Arm

In Melfa-BASIC, there are several operation command types for moving the robot.

The most used is the joint interpolation movement (MOV), which moves from current

position to the another position with smooth curves. The second movement command

used in these exercises is linear interpolation movement (MVS), which moves the

robot linearly from the current position to another. There is also circular movement

interpolation (MVR), but it is not used in these exercises. In addition to the actual

movement commands, there are a couple of commands affecting the movement.

Continuous movement (CNT) command can be set to prevent the robot to stop or to

slow down the movement between the position points. Speed override command

(OVRD) can slow down the movements related in the set maximum speed. Delay

command (DLY) is good to be used after movement to confirm that the robot has

already moved to the next position. Table 6 shows short examples of these

commands.

Table 6: Moving the robot

Example Explanation
10 OVRD 20
20 MOV P1

Force the speed to 20% of the set speed and move from the
current position to P1 position using the joint interpolation

10 CNT 1
20 MVS P1
30 CNT 0
40 DLY 1
50 MVS P2

Moves continuously through P1, then stops for a second and
moves to position P2. Linear interpolation is used.

Connecting the Robot Controller and PC Using COSIMIR

COSIMIR Industrial is a programming and simulation software for the industrial

robots. The robot program can be tested in a 3D-environment without the risk of the

faulty program causing the robot to damage itself or its surroundings. The basic

workspace is a very typical Windows MDI application (Figure 2).

Figure 2: Standard view with Robotti.MOD workcell open

To use COSIMIR, connect the COSIMIR licence connector (Figure 3) to an USB port

and open the program. License connector must be connected continuously while using

COSIMIR, because the software will crash if the connector is removed and

COSIMIR may not recover even if the connector is connected again.

Figure 3: The COSIMIR Industrial licence connector

COSIMIR arranges the solutions as work cells. In these examples, you can use the

ready work cell that can be found in the My Documents\Robot work cell\COSIMIR

folder of the user account. A work cell contains the 3D-model of the robot and the

other equipment of the work cell.

Save a copy of the .MOD file for your own use. All the exercises can be done in this

same instance of the work cell. Then select File > New > MRL Position list. Do the

same for a new MELFA-BASIC IV-Program. You can write the program without

linenumbers, it is possible to automatically add them by pressing CTRL + R. When

program is ready, it must be saved before sending it to the robot. The controller uses

numbers as a naming custom. Save the files like “2.POS” and “2.MB4” respectively.

Note that you may have multiple windows open with different programs and position

lists, and COSIMIR saves only the contents of the active window. Also, an active

element is downloaded or uploaded from the robot when transfer buttons in the

toolbar are clicked. When downloading the programs to robot, switch the pendant to

“disabled” and stop the running programs from the controller. If the robot is switched

to teach mode and the teaching pendent is enabled, an error occurs. If there occurs an

error while debugging your program, an error listing can be found with RCI Explorer

tool in the right corner of toolbar. It has proven to be much more pleasant to be

browsed than Mitsubishi's Troubleshooting Guide. Also much more data, like

positions, speeds, servo voltages and currents as well as the robot's parameters can be

collected and edited from RCI Explorer.

After the program has been downloaded to robot, positions must be taught by using

the teaching pendant (see chapter “Teaching the positions”)

Please see CONTROLLER SETUP, BASIC OPERATION, AND

MAINTENANCE INSTRUCTION MANUAL for further information about robot

programming.

Teaching the Positions

Every program saved in the controller has its own position list which has the same

name (number) as the program and a .POS file name extension. The positions can be

taught by moving the robot into the desired position with the Teaching Pendant (TB)

and then recording the position data. The position list can be uploaded from the

controller to PC using COSIMIR software.

With the pendant’s mode switch in ENABLED position and the deadman’s switch

held down, press the TEACH key. Select the program you want to use. Press POS and

ADD keys, the cursor moves to the X-line. Move the robot into the position you want

to register.

Before moving the robot arm, make sure that speed is set to slow enough to ensure

that the robot doesn’t collide in the environment. The speed can be set by holding

deadman’s switch and by pressing STEP/MOVE key. When you hear the servos click

on, press +/FORWD or -/BACKWD keys to change the speed.

You can move robot by holding deadman’s switch and STEP/MOVE key and by

pressing the joint keys. Jog mode can be changed like before, by pressing TOOL,

JOINT or XYZ key. Joint mode moves only a single joint at a time. XYZ moves the

robot in a three-dimensional world coordinate system. In the TOOL jog mode, the

coordinate system is relative to the the tool coordinates.

To save your position, hold down the STEP key and press the ADD key. The buzzer

beeps. Confirm the operation by pressing the ADD key again. The buzzer beeps again

and the position is now registered. You can add another position by writing the

position number or by browsing positions with +/FORWD or -/BACKWD keys and

repeating the previous steps.

When every position is taught, you can debug your program by running it in steps.

Press COND to view your code. Move to the first line. Hold STEP/MOVE and

INP/EXE key (remember the deadman's switch!). Program is executed line by line and

it can be stopped by releasing INP/EXE

After registering all the needed positions, press the MENU key to save the changes

and to return to the main menu.

Changing the Tools and Checking the Tool Parameters

The tools can be changed easily with ready programs in slots 86 and 87. Program 86

is meant to be used as a subroutine, for further information, see page 24: Using

Subroutines. When the program is called, integer is passed to it as a parameter. Value

1 means that the vacuum gripper is changed to the hand gripper and value 2

means that the hand gripper is changed to the vacuum gripper.

Program 87 is “manual” tool change, for functioning, it needs Server Console

application to be started in the laptop PC. When the robot is connected to the laptop,

just press number to execute the desired action.

When the robot's tool is changed, also its tooltip coordinate (z-axis) is changed. That

is why it is extremely important to verify, that also the length parameter is correct to

avoid collisions. Already installed tool change programs change these parameters

automatically, but if there is some interrupt and a program has to be stopped and

reseted before parameter is changed, the tool height may be incorrect (see figure).

The robot controller has five parameters for the tool coordinates. These are MEXTL

and MEXTL1 – MEXTL4. Up to four tool coordinates can be pre-assigned to the

MEXTL1 – MEXTL4 parameters. Tool number 1 is assigned for the vacuum

gripper and tool number 2 for the hand gripper. Numbers 3 and 4 are currently

unassigned. The tool coordinate presets can be viewed or changed with the teaching

pendant by holding the TOOL button and pressing numbers 1 – 4 respectively.

In programs, these predefined tool parameters can be used with M_TOOL command.

This is better and easier way to change the tool coordinates inside a program. For

example, M_TOOL=1 will set the tool coordinates to match the vacuum gripper.

M_TOOL can also be used in conditional statements if the currently used tool needs to

be checked. TOOL command changes the coordinates with typed values and saves

them to MEXTL parameter. For example, TOOL (0,0,88.28,0,0,0) sets the tool length

to 88.28 millimeters, which is the length of hand gripper. TOOL (0,0,68.78,0,0,0)

sets the tool length to 68.78 millimeters, which is the length of vacuum gripper.

See Figure 4 for example.

Figure 4: Changing the tool coordinates

Task 1: Pick and Place a Mosaic Tile

Difficulty: Beginner
Tool: Vacuum gripper
Other equipment: Mosaic tile
Example program number: -

Insert a mosaic tile on the conveyor belt. Make the robot to perform the following

work cycle: (see Figure 5)

Move to P1, wait 0.5 s

Move 10 mm above the work piece

Move to P2

Pick up the work piece, wait 0.5 s (to get the maximum vacuum)

Move 10 mm above the work piece

Move to P3

Move 10 mm above the place where to set piece

Move to the release position

Release the work piece, wait 0.5 s (suction completely off)

Move 10 mm above the work piece

Move to P1

The Melfa-BASIC code for described operation is as follows:

10 MOV P1

20 MOV P2, -10

30 DLY 0.5

40 MOV P2

50 M_OUT(9) = 1

60 MOV P2, -10

70 DLY 0.5

80 MOV P3

90 MOV P4, -10

100 MOV P4

110 M_OUT(9) = 0

120 DLY 0.5

130 MOV P1

140 END

Now move the robot with the TB and joint / XYZ jog mode. Define the following

positions:

P1 Initial position
P2 Wait position 1
P3 Waypoint
P4 Wait position 2

Figure 5: Positions for the first exercise

If you have created a program with COSIMIR, save the program and teach the

positions with the teaching pendant.

Finally, when you think everything is ready and functioning, disable the teaching

pendant and switch the controller to AUTO (op) mode. Press CHNG DISP until you

see P letter in the controller's display. Select your program number with up and down

buttons. Press CHNG DISP once. Now you can see the current line of the selected

program. Press CHNG DISP again. With up and down buttons you can set the

maximum speed of the robot, set this to 10 at the first time, you can raise this if you

think you don't collide with the robot. Now press CHNG DISP again for two times to

see your current line. Switch servos on (SVO ON), press START, keep your finger in

the STOP button and hope for the best...

Using Palletizing Functions

Melfa-BASIC programming language contains ready-made functions for the use with

pallets. Pallets are pre-defined arrays of points and they can be either linear,

rectangular or circular. A pallet is defined with the command:

DEF PLT <Pallet no.> <Start point> <End point A> <End point B> <Diagonal point>

<Quantity A><Quantity B> <Assignment direction>

Pallet no. The number of the pallet.
Only constants from 1 to 8.

Start point Pallet's start point.

End point A The first ending point of the pallet.
Transit point of the arc in arc pallet.

End point B The second ending point of the pallet.
End point of the arc pallet.

Diagonal point The diagonal point from the start point.
Not used in arc pallet.

Quantity A The no. of workpieces between the start point and the
End point A.
In arc pallet, the no. of workpieces between start and
end points.

Quantity B The no. of workpieces between the start point and the
End point B.
Insignificant for an arc pallet, but must be designated.
(For example, as 1)

Assignment direction The direction of the number assignment (see Figure 6,
Figure 7)
1 = Zigzag
2 = Same direction
3 = Arc pallet

Figure 6: The assignment direction options 1 (Zigzag) and 2 (Same direction)

Figure 7: The assignment directions on the arc pallet

NOTES:

Quantity A and Quantity B must be non-zero positive numbers

The Quantity A × Quantity B must not exceed 32 767, so the maximum size for a

square pallet is 181 × 181 cells

To use linear pallet, set Endpoint B to equal Startpoint and Diagonal point to equal

Endpoint A!

Task 2: Defining Pallets

Difficulty: Beginner
Tool: Vacuum gripper
Other equipment: Cylindrical plastic pieces
Example program number: -

Teach the points for two pallets. The first is a 3 x 3 rectangular pallet and the second

an arc pallet with 9 cells. Use the pallet grid and 9 plastic pieces. Program the robot to

pick each piece from the first pallet and place them into the second and after

completing, back to the first pallet in reverse order. Repeat 3 times before returning to

the initial position and ending the program. A short example of setting and using

pallets is described below in Table 7.

Table 7: Example of palletizing

Example Function
10 DEF PLT 1, P1,P2,P3,P4,2,2,2
20 M1=1
30 *LOOP
40 P5=(PLT 1,M1)
50 MOV P5
60 DLY 1
70 M1=M1+1
80 IF M1=5 THEN
90 M1=1
100 ENDIF
110 GOTO *LOOP

Define 2x2 pallet with the same assignment
direction, Set M1 to initial value
Loop marker
Set P5 to the selected pallet index M1
Move to P5
Wait a sec
Add one to the pallet index
If the index is greater than pallet, then reset it

Loop ever and forever!

Task 3: Composing a Dot Matrix Character

Difficulty: Intermediate
Tool: Vacuum gripper
Other equipment: Mosaic tiles, mosaic platform
Example program number: -

Dot Matrix (see Figure 8) is a 2-dimensional array of dots used to generate characters

and symbols commonly used in LED displays and old printers. The typical resolutions

are 5 × 7 pixels or, if there is one line of blank space around each character, 6 × 8

pixels per character.

Figure 8: Example of Dot Matrix

Make the robot assemble one letter into 6 × 8 pixels pallet using two different

coloured mosaics.

Task 4: Returning the Mosaic Tiles After Use

Difficulty: Intermediate
Tool: Vacuum gripper
Other equipment: Mosaic tiles, mosaic platform
Example program number: -

Make the robot to return the mosaics into the stock pallets after assembling the letter.

Task 5: Writing Complete Words

Difficulty: Intermediate
Tool: Vacuum gripper
Other equipment: Mosaic tiles, mosaic platform
Example program number: -

Program the robot to write the full words by combining the previous programs.

Hint: MID$ function returns selected part of the string (MID$(“FUNCTION”,1,3)

would return “FUN”)

Task 6: Receiving the Text From The User via Ethernet

Difficulty: Advanced
Tool: Vacuum gripper
Other equipment: Laptop PC
Example program number: -

Use the Ethernet interface (See Chapter “Ethernet Interface”) and make the robot to

receive the phrase to write as input from the PC’s keyboard. Make the robot to send

notification back to the PC after assembling the each letter.

Task 7: Digital Clock Using Dot Matrix

Difficulty: Intermediate
Tool: Vacuum gripper
Other equipment: Mosaic tiles and mosaic platform
Example program number: -

Apply the source codes of the previous Dot Matrix exercises and create a program

which gets the current system time, and collates the mosaic pieces to form of a digital

clock. When the time is updated, the robot removes only the numbers that need to be

updated and arranges the removed pieces back to the stock pallet in reverse order.

Program is looped. You can use smaller Dot Matrix for numbers, 3 × 5 is good size to

fit all the four numbers to the same line, as can be seen in the Figure 9. A single pallet

for each of the numbers may be easier to program than one large for the all.

Hint: C_TIME command returns system time in HHMMSS format.

Figure 9: Dot Matrix clock

Task 8: Seven-segment Digital Clock

Difficulty: Intermediate
Tool: Hand
Other equipment: Rectangular plastic pieces
Example program number: -

There are small, green, rectangle shaped plastic blocks which can be used to display

time faster than by using the mosaic pieces. Create a program which shows four 7

segment digits and updates the time. To make this option more interesting, update the

time in three steps – first, move the segments needed to be removed to the places that

are going to be filled, then remove the rest of the useless segments to the storage

pallet or, if needed, add more segments to the digits.

Using Subroutines and Functions

As taught in the beginning of this handout, subroutines are very useful to clear the

code and to split the program to easily understandable parts. In Melfa-BASIC, there

can also be defined own functions to make calculations. A function has to consist FN

letters to identify that it is a function and M, C (with $ at the end) or P to identify the

type. There is an example in Table 8:

Table 8: Defining functions

10 DEF FNMCAL(MS,ME)=(MS*ME)
20 DEF FNCADD$(CS1$,CS2$)=(CS1$+CS2$)
30 DEF FNPPOS(PO,PC)=(PO-PC)

Function multiplies integers
Function adds strings
Function subtracts coordinates

If several programs have the same very complicated and long sequence repeated

regularly, it would be much easier to write a separate program, which is called inside

the main programs to ease the coding and to save the memory. To do this, CALLP

command can be used. This command can also pass variables or positions to the

called program. Order of the passed variables is defined with FPRM command in the

second program. The next example in Table 9 shows how the command is used.

Table 9: Calling other programs

10 ‘THIS IS THE MAIN PROGRAM
20 CALLP “1”, M1,M5
30 GOSUB *CHK

Program number 1 is called and integers
M1 and M5 are passed to the subroutine

10 ‘THIS IS THE SUBROUTINE (1.MB4)
20 FPRM M01,M02

Get the variables from the main
program (M1=M01 and M5=M02)

Note:

The following tasks utilize machine vision, which is covered in the Chapter “Intellect

1.5” and conveyor logic related Data Exchange, which is explained in Additional

Instructions.

Task 9: Square path with multitasking

Difficulty: Intermediate
Tool: Vacuum gripper or hand gripper
Other equipment: -
Example program number: -

In this exercise, the robot moves on a square shaped path using functions. Create two

programs. Define starting position in the main program. Pass the position to the

another program. The second program compares the starting position and the robot's

current position and calculates the trajectory to the next corner of the square. Call the

second program four times to complete the square.

Task 10: Changing the Tool During Operation

Difficulty: Intermediate
Tool: Vacuum gripper and Hand
Other equipment: Cylindrical plastic pieces, rectangular plastic pieces
Example program number: -

Use two kinds of objects, the cylinder shaped plastic pieces that are grabbed with the

vacuum gripper and the rectangular pieces that are grabbed with the hand tool. Use

the “First match” and “Best match” settings in Intellect's identification tool settings.

Identify the products one at the time and, if the current tool attached to the robot is not

the right one, change it using the tool change subroutine located in program slot 86.

The numerical value of 1 or 2 must be passed to the subroutine.

1: Change hand gripper to vacuum gripper

2: Change vacuum gripper to hand gripper

Creating Multitasking Programs

Multitasking programs will function simultaneously when two or more programs are

assigned to the multitasking slots and started. If more than one of the programs are

moving the robot, mechanism control must be released for the use of the operating

program. When a multitasking program is ended, it must be stopped and the

multitasking slot must be cleared. Programs can be loaded into multitasking slots

from the robot parameters (see Instruction Manual) or by using Melfa-BASIC

commands. Data can be passed between programs by using the external variables.

Multitasking related commands are explained below in Table 10.

Table 10: Multitasking commands

Command Example Function
XLOAD 10 XLOAD 2,”1” Command loads program to

selected slot. Example
loads program 1.MB4 to
slot 2

XRUN 10 XRUN 2,”1”,1 Starts multitasking
operation. As in the
XLOAD, program slot is
inserted first and it comes
the program name. Last
number is operation mode
(0=continuous, 1=cycle
stop) If XLOAD is not
executed before, XRUN
also loads program to slot.

XSTP 10 XSTP 2 Stops program. Only needs
a slot number

XRST 10 XRST 2 Resets a program. Program
must be stopped before
reset

XCLR 10 XCLR 2 Clears memory slot.
Program must be stopped
and reset before clear.

M_WAI 10 WAIT M_WAI(2)=1 Returns 1 when program
slot is stopped. Example
waits until program stops

M_RUN 10 WAIT M_RUN(2)=1 Returns 1 when program
slot is started. Example
waits until program starts

M_RUN 10 WAIT M_RUN(2)=1 Returns 1 when program
slot is started. Example
waits until program starts

RELM 10 RELM Releases mechanism to be
used by other programs

GETM 10 GETM 1 Gets mechanism. (1 is used
unless there are multiple
robots)

SERVO ON/SERVO OFF 10 SERVO ON Set the servo state

Task 11: The Moving Blocks

Difficulty: Intermediate
Tool: Vacuum gripper
Other equipment: Cylindrical plastic pieces
Example program number: -

Write two separate programs, which both move a cylinder shaped plastic block in a

pallet. The first program handles pallet 1, and the second moves pallet 2. The first

program moves block from pallet position 1 to position 2 (Figure 10, Step 1). After

this, the second program moves the block in the second position (Step 2) then the first

program acts again, and so on. When the last pallet index is reached, the blocks are

moved back in reversal order and the program is looped!

Figure 10: The moving blocks

Task 12: Camera Inspection with Multitasking

Difficulty: Intermediate
Tool: Hand
Other equipment: Mosaic tiles or M8 nuts
Example program number: -

Run two programs in parallel. The first program moves nuts from the conveyor belt to

the pallet. The second program is locating pieces with the machine vision camera and

moving the conveyor if there are no objects found (see E410 Data Exchange from

Additional Instructions). Locations are forwarded to the first program by external

variables. The second program also sends the state of program and the camera

inspection results to the laptop.

Ethernet Interface

In the following exercise a PC software is created using C# and Microsoft Visual

Studio. For those, who are unfamiliar with them, there are also complete tools that

allow the user to concentrate on the programming of the robot rather than learning the

C# and Visual Studio from the beginning. The programs are located in the laptop,

\Documents\Robot work cell\Accessories folder of the user account.

Server Console is TCP server application which is used as a simple HMI interface for

passing information between the robot programs and the computer. For debugging

your programs, this may be great aid. Client Console can be used in connecting to

DVT cameras (if cameras are set to work as servers), and also this program helps to

find out the sources of connection problems.

Enabling the Ethernet Connection from Controller

In order to use Ethernet in passing data to the laptop, COM port must be enabled from

the robot controller's parameters (COM #3 is used for connecting the laptop). This can

be done with COSIMIR or using the teaching pendant. With teaching pendant, this

can be done with following instructions described in Table 11:

Table 11: Enabling ethernet connection using teaching pendant

1 Press 5 to select MAINT

2 Press 1 to select PARAM

3 In the first field (Set param. name), type NETPORT

4 The parameters are in order of COM numbers, so line should look like
{10000, 10001, 10002, …} where third port 10002 refers to COM #3

5 Type NETMSK and make sure mask is 255.255.255.0

6 Type NETMODE. This is a setting to decide whether robot works as a
server or a client for different communication ports. Number 1 means
server and 0 means client. Line should be like this (1, 1, 0, 1, 1,…) , so
robot is acting as a client for COM #3.

7 Type NETIP. This is robot’s own IP. By default setting, this should be
192.168.0.1. It should not be changed.

8 Type NETHSTIP. This is parameter where server IPs are saved, in case that
robot is a client. The third IP for COM #3 should be set to 192.168.0.2 as a
default.

9 NETGW is gateway, default should be 192.168.0.254

To set parameters using COSIMIR, open RCI Explorer (Figure 11) from the right side

of the toolbar and select Parameter node from tree view. This is faster and easier way

to configure the network settings, just set parameters in the same way like before and

restart the controller.

Figure 11: RCI Explorer

Creating a Server and Client Software

There are several terms to be understood before starting the communication between

the robot and the external devices like machine vision cameras, PLC or computer.

- Protocol: Used set of standard communication rules to presentate the

transmitted data

- TCP/IP: Transmission Control Protocol and Internet Protocol, most

commonly used network protocol.

- Server: Host machine that connects all clients, receives data and also

forwards it between clients.

- Client: Client only connects to server and sends data to server or other

clients (through server).

- IP Address: Every device in TCP/IP network has own address that is used

as identification

- Port number: Port is a virtual or logical data connection used to exchange

data between computers

- Endpoint: Endpoint is the name for the one end of transport layer. It

consists of computers IP address and port number.

- Socket: Socket is a connection between two endpoints.

Network Functions of a Simple .NET Network Program (C#)

Server program can use synchronous or asynchronous communication. In the

synchronous communication, server can only handle one client at a time, for an

example, it cannot accept more clients and receive data from clients at the same time.

That is why synchronous server/client programs are not preferred to be used with

multiple clients. Asynchronous program can handle multiple clients, receive and

accept new clients at the same time. This is done by using threads. In this case, as the

robot is the only client, simple communication would not need asynchronous

program, but these example listings are written in asynchronous method, because it is

far more useful in other network applications as well.

These listings include all the basic functions needed to communicate with a TCP/IP

client. To include network functions in a program, System.Net, System.Net.Sockets

and System.IO namespaces must be added (Listing 1).

Listing 1: Added namespaces in the using directive section

using System.Net;
using System.Net.Sockets;
using System.IO;

Integer port is the opened communication port number. Byte arrays rec and snd are

buffers used to save messages while sending or receiving. Socket connect_socket is

the gateway between server and client (Listing 2).

Listing 2: Creating buffers and socket

 private int port = 10002;
private byte[] rec = new byte[128];

 private byte[] snd = new byte[128];
 private Socket connect_socket = new Socket(AddressFamily.InterNetwork,

SocketType.Stream, ProtocolType.Tcp);

Void function StartServer() initiates the connection by making local endpoint

own_iep. Bind function associates socket with local endpoint and with Listen server

starts listening for clients. BeginAccept is the first asynchronous network function,

with it server starts to accept client. AsyncCallback(Connecting) refers to connecting

function. (Listing 3)

Listing 3: Starting server

private void StartServer()
 {
 IPEndPoint own_iep = new IPEndPoint(IPAddress.Any, port);
 connect_socket.Bind(own_iep);
 connect_socket.Listen(1);
 connect_socket.BeginAccept(new AsyncCallback(Connected),
connect_socket);

 }

In first line of Connecting(), socket connect_socket is defined to handle the existing

connection when the accept procedure is being ended. Instead, there can be another

socket that receiving can be delegated for. In last line connect_socket begins to

receive from client using the rec byte buffer. (Listing 4)

Listing 4: Callback for connecting the client

private void Connected(IAsyncResult iar)
 {
 connect_socket = connect_socket.EndAccept(iar);
 connect_socket.BeginReceive(rec, 0, 1024, SocketFlags.None, new
AsyncCallback(Received), connect_socket);

 }

Next, there is the server receiving function. In first line, connect_socket continues to

handle receiving. Next, receiveLength integer gets the length of the incoming message

and message is converted from byte buffer to string. In the last line, connect_socket

begins to receive again. (Listing 5)

Listing 5: Callback for receiving from client

 private void Received(IAsyncResult iar)
 {
 connect_socket = (Socket)iar.AsyncState;
 int receiveLength = connect_socket.EndReceive(iar);

 string receivedMessage = Encoding.ASCII.GetString(rec, 0,
receiveLength);
 connect_socket.BeginReceive(rec, 0, rec.Length,
SocketFlags.None, new AsyncCallback(Received), connect_socket);

 }

In Listing 6, server will send message. Message string is converted to byte array in the

first line, and then it is sent referring to the last asynchronous function Sending().

Listing 6: Sending to client

private void SendMessage(string message)
 {
 snd = Encoding.ASCII.GetBytes(message);
 connect_socket.BeginSend(snd, 0, snd.Length, SocketFlags.None,
new AsyncCallback(Sent), connect_socket);

 }

In the last listing, Listing 7, connect_socket starts receiving after message from the

server has been sent:

Listing 7: Callback for sending

private void Sent(IAsyncResult iar)
 {
 connect_socket = (Socket)iar.AsyncState;
 connect_socket.BeginReceive(rec, 0, rec.Length,
SocketFlags.None, new AsyncCallback(Received), connect_socket);

 }

Transferring Data Between the Robot and PC Software

Melfa-BASIC program has a few connection related commands. Below is a list of the

commands with simple examples.

C_COM
C_COM defines the way to communicate within a single program. In these

exercises, only Ethernet connection is used. In the example, COM#3 communication

channel is configured to IP 192.168.0.2 and port 10002.
10 C_COM(3)=”ETH:192.168.0.2,10002”

OPEN
OPEN opens new connection to the communication channel. In the example, #1 is

the number of connection. Remember the semicolon!
10 OPEN (“COM3:”) AS #1

M_OPEN
Function returns 1 if communication line is open to the selected COM. Can be used

to halt program until connection is ready.
10 *LOOP

20 DLY 1.0

30 IF M_OPEN(1)<>1 THEN GOTO *LOOP

DEF ACT
Program interrupts can be defined with ACT. The example shows, how to halt

program if connection to the server is lost.
10 DEF ACT 1,M_OPEN=0 GOSUB *PHLT

20 ACT 1=1 ‘ENABLE INTERRUPT

…

200 *PHLT

210 IF M_OPEN(1)<>1 THEN GOTO *PHLT

220 RETURN

INPUT
Receiving of data is done with INPUT function. There must be connection number

after INPUT. Variables are separated with comma. In the example, program accepts

position data from the sender.
10 INPUT #1, P1

PRINT
Data can be sent with PRINT function. Variables must be converted to string with

STR$ function. Example sends string with converted integer.
10 PRINT #1, “THE NUMBER IS “+STR$(M1)

Server Console application can be used to connect to the robot. It is located in the

Documents\Robot work cell\Accessories\Server Console\ folder of the user account

and there is a shortcut to the program in the Windows Start Menu. By the default,

there should be the correct IP and port already configured and server starts just by

typing “CONNECT” to the input field. Server Console should be started before

robot’s program. When connection is created, messages can be sent by typing in the

input field.

Task 13: Connection Test

Difficulty: Beginner
Tool: -
Other equipment: Laptop PC
Example program number: -

Create a program that

1. Creates a connection to the laptop

2. Has timeout property, if server is not found

3. Uses ACT to monitor state of connection. Program halts if connection is lost.

4. Gets messages from PC for three times and sends back the number of

messages with latest message as a reply for sender.

Program should work like can be seen in Figure 12.

Figure 12: Connection test

Hint: M_TIMER is useful function which can be used in this task. M_TIMER(1)=0

initializes the timer 1 and starts counting in milliseconds.

E-designer 7

E-designer 7 is a Human Interface Design software by Mitsubishi Electric

Automation, Inc. It is used for creating programs for the operation panels. In this

section, only the very basic use of the software is described. The manufacturer’s

excellent documentation with comprehensive examples can be found from path

C:\Program Files\E-Designer\

Driver Update

After installing the software it is necessary to update the drivers for the operation

panels. The latest drivers can be found from the Internet using the E-designer’s own

update tool which can be found in the File menu (Update Drivers From > Internet).

E-designer Workspace

Open the E-designer 7 software and choose Next from the File menu. From the

Project Properties window which opens select the Operator Terminal as E410

Landscape 6.2x and the Controller 1 as FX CPU Protocol/FX Series 3.1.3. and

Controller 2 as Narc/P3 Ethernet. A blank project opens (Figure 13)

Figure 13: The E-designer workspace

E-designer Project and Blocks

In E-designer, the created software is arranged as a project. The Project Manager

displays the contained blocks. One block corresponds one screen on the panel's

software and they are linked to each other.

Open the Block Manager by double clicking the Blocks folder in Project Manager.

New blocks are added by clicking on the desired parent block and then dragging the

arrow to the right from the block. Create New Block window opens. Block name and

type can be selected here.

All user created blocks must also be linked back to the upper level so that the user is

able to return to the main screen. This can be done by drawing an arrow back from the

new block to the upper level block. Similar links can be created between blocks on the

same level (Figure 14). The buttons are automatically added to each screen.

Figure 14: Links between blocks

There is no need to link the software’s readymade blocks (System Monitor, Alarms

etc.) back to the upper level. They have already ESC button that takes the user back to

the previous screen.

Toolbar consists various elements to be added to your blocks. Digital symbol, digital

text and ASCII are the most useful. Before you add components, make sure you have

the right controller selected as a default by pressing the “1” or “2” buttons in the

toolbar. With Controller 1 you can control conveyor's logic and Controller 2 allows

access to some of the robot's features. To see a full list of possible signals to be

assigned for elements, open Help menu and select Controller Help. You can load a

sample program from E-Designer folder, there are programs for both terminals,

E1070 and E410.

Connecting the Operation Panel and PC

The IP address of E410 operation panel is set constantly to be 192.168.0.8. To not to

accidentally change the IP while transferring your own program, set TCP/IP

connection 1 to match the correct IP and drag it under Ethernet controller (see Figure

15).

Figure 15: Setting the peripherals in E-Designer

Conveyor Operation

Task 14: Conveyor Operation Using Built-in Blocks

Difficulty: Beginner
Tool: -
Other equipment: -
Example program number: -

Create a new project as described above and name it “Conveyor operation”. Add a

child block to the “Main” and name it “Conveyor operation” too. Remember to link

the block back to the “Main” block. Open the “Main” block by double clicking it on

the Project Manager. On the “Main” block there is now a link to the “Conveyor

operation” block.

Open the “Conveyor operation” block. Add a digital symbol by clicking the Digital

symbol icon on the Objects toolbar and then click on the “Conveyor operation”

screen. A Digital Symbol window will open (Figure 16).

Figure 16: Digital symbol window

Write “M1” to the Digital signal textbox. Click the I/O button and write the “M1” to

the Address field too. Make sure that Controller 1 is selected. Otherwise, select the

Controller systems option 1: FX CPU Protocol/FX1N 3.13 (Figure 17). Click OK to

return to the Digital Symbol window.

Figure 17: I/O Browser

Click the Select button next to the Symbol OFF field. Select a symbol named

“ROCKER0” from the list and click OK. Click on the Symbol ON textbox and then

the Select button. Now select the “ROCKER1” from the list.

On the Access tab check the Enable operator input checkbox and choose the Security

level 0. Click OK to close the window.

Test the validity of the project by selecting Test from the Project menu. If the project

is valid, save it and transfer it by choosing the Project from Transfer menu (Figure

18). Open the Communication Properties window by clicking the Settings button and

select TCP/IP transfer. Click OK to close the window and click the Send button to

transfer the project to the operation panel.

Figure 18: Project transfer

Task 15: The Savonia UAS Logo

Difficulty: Beginner
Tool: -
Other equipment: -
Example program number: -

Add a new child block for the “Main” screen and name it “Savonia”. Onto the new

block add Savonia UAS logo by adding a Symbol onto it as described above. On the

Select Symbol window, select the Show symbols option User-created. Find the picture

from the Documents\Robot work cell\E-Designer\Graphics\Savonia.jpg folder and

click the Import button.

Add a Touch Key on the “Main” block. On the General tab in the Touch Key window,

select the Jump to block and the newly created Savonia block. On the Text tab set the

Text as “Savonia logo”. Click OK to close window.

Open the “Savonia” block and add a Touch Key onto it too. On the General tab, set

the action as Other function and select Returns to previous block. Set the block’s Text

as “Previous”, Alignment as Left and the Placement on the middle of the lowest row.

On the Symbol tab, set the Symbol as A_LEFT and it’s Placement on the middle of the

top row. Click the Apply button and the Touch Key should look like the one on the

Figure 19.

Figure 19: The “Previous” touch Key including text and a symbol

Task 16: Security Levels

Difficulty: Intermediate
Tool: -
Other equipment: -
Example program number: -

E-designer allows different security levels to be set for different objects. These

objects can be either full blocks or function/touch keys. The security levels range

from 0 to 8 and they are associated to passwords. In order to use the object the panel

user must login in to the security level in question, or higher.

The security level is set on the Access tab in the object’s Properties window. If the

security level 0 is selected, the object is available without user authentication.Create

security levels for the program created in the previous exercise. Use at least 3

different levels:

Level 0: Permission to access the Main menu and the Savonia graphic screen
Level 1: Permission to operate the conveyor
Level 2: Permission to access System monitor and Mail

Figure 20: The Password window

The passwords are set in the Password window found in the Functions menu. The

password and/or the security level can be commented and an automatic logout timeout

set along with other settings as seen in Figure 20.

The Confirm question is an additional question that is displayed when login is

required (e.g. “Start conveyor?”). The maximum length of the question is 20

characters.

If the Automatic login option is selected, a keyboard is displayed when the user tries

to access a password protected object. The automatic logout timeout is the time, after

which the user is logged out when the terminal is inactive. The user can be logged out

also using a Function key with its Other function selected as Logout or using the

Logout I/O signal. See E-Designer Help for more information.

Task 17: Localization

Difficulty: Advanced
Tool: -
Other equipment: -
Example program number: -

The applications for the operation terminal can support up to 10 different languages.

Additional languages are added from Setup > Multiple languages > New language

menu.

The steps to create a multi-language application are:

1 Select the number of the languages

2 Select the System language name and character set

3 Select other languages

4 Select the control register to be used for language control. Its value (0-9)

determines the application language (0-9) the terminal uses. Register content

of 0 shows the first language, 1 the second etc.

The Language Register

The language register must be a word type variable. To add an internal variable to be

used in language control, open the Internal Variable configuration window from

Functions > I/O Configuration > Internal Variables. Add a word device by clicking

the arrow up in the numeric updown control (Figure 21).

The language register value can be changed with a touch key. Create a new touch key

and on the General tab, select I/O, write the name of the language register into the

first field and select the Event as Sets Analog (Figure 22). Write the correct Value for

each language (i.e. 0 for the system language, 1 for the first additional language etc.).

On the Text tab, write the language's name to the Texts textbox and make the desired

changes in the other options as well. Make own touch keys for each language used in

the application.

Figure 21: The Internal Variables window

Figure 22: The Touch Key sets the register D4096 value as 1

Translating Texts

Choose Setup > Multiple languages > Edit to open the Application Languages

window (Figure 23). The translations can be written directly to the table. Texts can be

searched using the <Ctrl> + F command.

Languages can also be exported from E-designer into; for example, Excel to be

translated there and then imported back.

Figure 23: The Application Language window

Testing the Localization

E410 applications cannot be simulated in E-Designer, but the translations can be

tested by changing the application language from the toolbar (See Figure 24).

Figure 24: The language selection menu

Intellect 1.5

The machine vision systems for the DVT vision sensors are made using Intellect

software. Intellect has an camera emulator which consists of all the characteristics of

a real DVT vision sensor (e.g. crashing with no reason, randomly losing the

connection to emulated hardware...). The machine vision system is built from small

modules, Tools, each performing one specific task. There are tools for preprocessing

of the image, identifying of shapes, measuring of distances etc. The tools can be

chained and linked. The final inspection result is the combination of the results of the

different tools.

The software can be downloaded from the manufacturer website at

www.cognexsensors.com.

Task 18: Going Nuts (with DVT)

Difficulty: Beginner
Tool: -
Other equipment: -
Example program number: -

After completing this exercise, the student will know the basic operation of Intellect

1.5 software and is ready for the following exercises. This exercise includes the

opening of the workspace, emulation of the camera, opening the picture sequence,

adding the products, tool layers and tools and saving the system.

Open the Intellect 1.5 software and select “DVT 542C” as the camera to emulate. This

is the model of the color camera of the school’s robot work cell. If the Network

Explorer is not shown by default, open it from System > Network Explorer menu and

double click the Emulators window open (Figure 25)

Figure 25: The Emulators window in Network Explorer

Measuring the Hole Diameter

In this exercise a nut is located from the conveyor, it is measured using Line Fit and

Circle Fit tools and a script is used to calculate the hole diameter in millimeters. Use

the picture sequence from Documents\Robot work cell\Intellect\Training

images\nuts\. Open the images by selecting Image > Configure Sequence > Browse

for Images from the main menu.

The Nut Location

Select Product > New Product to create a new product. On the Properties window

and name the product as “Nut”.

Open Tool layer manager from the Product menu. Create a new layer by double-

clicking the empty space on the right and name the layer as “Location”.

Create a new Area Positioning tool from the Positioning section of the Toolbox (or

from the Tool menu) by dragging a rectangle over the nut. The Parameters window

opens. Make the following changes in the Area Based Positioning Parameters

window (Figure 26):

General: Name: Nut_location

Layers: Check the layer that was created earlier (Nut_location)

Shape: Entire Image on the Search region tabs

Options: Object locate, select a suitable Minimun Match Score

On the Model Object tab, set the Fine...Coarse setting to medium to decrease the

number of the details the tool seaches. Click the Relearn button and from the box

below, select one characteristic and then click the Display button to highlight that line

from the picture. Decide, which are the characteristics the system should use to make

the decision and delete the unnecessary ones.

Figure 26: The Model Object tab in the Area Based Positioning Parameters window.

Ensure that the tool finds the nut from all the pictures in all the positions (Draws the

green frame correctly, see Figure 27). Adjust the Pick Point (Blue cross and the line)

correctly on the center of the nut with the Horizontal and Vertical Offset values on the

Model Object tab. Use the Rotational Offset setting to turn the angle indicator towards

an edge.

Figure 27: The pick point placed in the center of the nut

Measuring

Intellect can be used to measure distances from the picture. In this exercise, the

diameter of the nut hole is measured. Because Intellect measures everything in pixels

instead of, for example, millimeters, a pixel/millimeter ratio must be calculated before

the diameter can be determined. The ratio is calculated from the outer diameter of the

nut, which is known to be 17 mm. The diameter is measured in pixels and the ratio is

calculad in a script.

Create a new tool layer named “Measure” and onto it a Line fit tool from the

Positioning menu. The tool is defined by drawing a line over the edge and then

expanding it parallel to the edge (Figure 28).

Figure 28: Defining the Line Fit tool

Name the tool as “Linefit 1” and carry out the following changes in the Line Fit

Parameters:

Position Reference: Nut_location

Layers: Measure

Options

Task: Line Fit

Threshold: Intensity: Auto Bimodal

Scan Line Edge to Consider: 1st Edge Found

Edge Type to Locate: Any Edge

Pass:

Minimum contrast: 15.00 %

Create a new similar tool (“Linefit 2”) to search the opposite edge. Adjust the settings

if needed. Add a new Measure with Points and Lines tool from the Measurement

menu. Make the following changes in the options:

Select an operation: Distance

Reference Line 1: Tool: Linefit 1

Reference Line 2: Tool: Linefit 2

The radius of a round object can be measured with a specific tool. It is named Circle

Fit and it is found in the Positioning menu. The tool is applied be selecting it, clicking

on the center area of the circle to be measured and then dragging outwards until the

actual inspection area’s inner edge is reached. There the mouse button is released and

the cursor moved to the inspection area’s outer edge. Clicking on that distance

finishes the area selection. See Figure 29. The location can be finetuned using the

tool's settings.

Figure 29: Defining the Circle Fit tool

Set the tool’s Position Reference as Nut_location and adjust the settings so that the

hole is found correctly from all the pictures in the sequence.

Hole Diameter Measure Script

In Intellect 1.5 also user-defined scripts can be used. They are added just like any tool

from the Tool > New Tool menu. Intellect has a built-in script editor (Figure 30). The

script editor is opened by clicking the Script Tool Parameter window’s Edit button.

The language is object oriented and the syntax is very similar to C++. The language

contains all common variable types, flow control structures and also an option for

user-defined functions.

1. Click in the center
of the area and drag
outwards

3. Click on the outer
edge

2. Release the mouse
button and drag to
inner edge

A script can have many outputs, which are shown in the Result Table. The outputs are

selected on the Outputs tab in the Script Tool Parameters window.

Create a new Script tool, name it “Measure” and on the Output tab, select output as

String. Click the Edit button on the General tab to open the editor.

Figure 30: The script editor interface

Available parameters, functions and key words can be found in the tree view boxes on

the right-hand side. They can be added to the code by double-clicking them. Use the

Measure tool's parameter Distance to calculate the pixel/mm ratio and then calculate

the diameter from the Circle tool's Radius. Compile the script by clicking the

Compile button from the toolbar or from the Script menu. The result string is

displayed in the Result Table and the calculated diameter can be used, for example, as

a parameter for other scripts.

Task 19: Bolt Action

Difficulty: Intermediate
Tool: Hand
Other equipment: M8 bolts
Example program number: -

In this exercise, the length of a bolt is measured. The pixel/mm ratio is calculated

using a calibration image instead of a known distance from the object, as was done in

the previous exercise. After measuring the bolt, the pick point and the bolt angle are

send to the robot and the bolt picked from the conveyor.

Use the image sequence from path Documents\Robot work cell\Intellect\Training

images\bolts\

Create a new product Bolt and three tool layers: Preprocessing, Location and

Measure. Open the image “short bolt 1”. Locate the bolt from the image using a Area

Positioning tool.

Bolt Location

Make the following changes in the Area Based Positioning Parameters window:

General: Name: Bolt_location

Layers: Check the layer that was created earlier (Location)

Shape: Entire Image on the Search region tabs

Options: Object locate, select a suitable Minimum Match Score

Model Object: Set the parameters on the Pick Point Offset From Centroid so that the

blue x-mark in the circle is on the center of the head of the bolt and that the line

starting from the mark aligned with the bolt.

Ensure that the tool finds the bolt from all the pictures in all the positions (Draws the

green frame correctly).

Preprocessing

Onto the preprocessing layer, add a Preprocessing tool Filter with the following

parameters:

General:

Name: Fill_light_holes

Position Reference: Bolt_location

Shape: Change the values so, that the bolt is inside the frame in every picture

Options: Preprocessing Operation: Morphology

Morphology type: Fill light holes

Figure 31: The bolt before and after applying the Fill Light Holes filter.

Measuring the Bolt Length

Create two Line Fit tools named Linefit_1 and Linefit_2 to search the ends of the bolt.

Set their Position Reference as Bolt_location. Set the Image Reference as

Fill_light_holes. This way, the tool uses the preprocessed image (see Figure 31).

Adjust other settings if needed.

Create a Measure with Points and Lines tool and make the following changes in the

options:

Select an operation: Distance

Reference Line 1: Tool: Linefit 1

Reference Line 2: Tool: Linefit 2

Sending the Pick Point to the Robot

The pick point data can be sent to the robot from the DVT Vision Sensor via Ethernet

connection using DataLink. Open the Communication Settings from the System menu.

Open the Ethernet Terminals and add an new item (“Terminal 1”). Open it's

properties by double-clicking the item and ensure the settings are as follows:

Enabled True
Start at Powerup True
Terminal Type SERVER
Port 3247

Open the DataLink Settings window from the Product menu. Add a new item

(“DataLink String 1”) and open the String Expression Editor by double-clicking the

item. See figure 32. The parameters from the tools are displayed in the box on the

right and can be added to the String Definition box by selecting the desired parameter

and clicking the Insert button.

Figure 32: The String Expression Editor

The pick point is sent to the robot as a position variable. A position variable consists

of 8 values, which are: x, y and z coordinates, the angle, the angle of the J5 joint, the

angle of the J4 joint (always 0), the angle of the additional axis, the angle of the

second additional axis (always 0). Position variable can be a following string:

10 P1 = (100, 30, 0, 180, 35, 0)(0,0)

However, this position is not usable in this form. The coordinates are relative to the

camera's origin and measured in pixels while the robot's origin is different and the

coordinates measured in millimeters. Thus, the actual coordinates must be converted

into a correct form before sending. This can be done by subtracting the camera

coordinate from the maximum value of each axis (480 or 640).

Note, that the camera's x-axis is inverse to the robot's y-axis and the robot's x-axis to

the camera's y-axis (see Chapter “The calibration of the coordinate system” in the

Additional Instructions). The pixel/mm ratio can be calculated in this conversion

script using a known distance. To do this, open image “calibration 1” from the

“Calibration” folder. Measure the length of the 10 mm bar using a Measure Along

Line tool and calculate the pixel/mm ratio.

The pick point data the camera sends can be read in a variable in the robot's program

with the following code (Table 12):

Table 12: Input position data from camera

10 C_COM(4)=”ETH:192.168.0.125,3247”

20 OPEN “COM4:” AS #1

30 INPUT #1, P1

40 CLOSE #1

Task 20: Quality Control
Difficulty: Advanced
Tool: Vacuum gripper
Program number: 41
Example program number: -

The aim of this task is to inspect the assembly of the product using machine vision

and remove the faulty products from the conveyor. The product (Figure 33) contains a

14 mm wide recess, two holes, a text label and a Datamatrix label. There are 10

objects, of which 3 are defect-free.

Figure 33: An example of a fault-free product

The inspection items are:

1 Diameters of the holes

2 Distance between the holes

3 Distance of the holes (from the edge)

4 Holes drilled all the way through

5 Number of the screws

6 The 2D code (part number)

7 OCR text

The characteristic of a proper piece are:

Diameter of the holes 8 mm

Distance of the holes 20 mm

Hole distance from the edge 7 mm

Datamatrix Number from 1 to 10

OCR 3 letters, 5 numbers

The faulty products are lifted from the conveyor into the waste chute. The passing

products are palleted onto the side table.

Create a Intellect system to inspect the products. Send the needed data to the robot via

DataLink. Program the robot to operate the conveyor and to move the pieces.

See Chapter “E-designer” in Additional Instructions for more information about Data

Exchange between the robot and the PLC.

Additional Instructions

The equipment needed in the exercises

Laptop PC

Laptop contains the required software, additional files and the example solutions to

the exercises. User account has path

C:\Users\user\My Documents\Robot work cell\

containing the folders for the accessories such as Server Console & Client Console

and the webcam software (Robot Camera and Camera Viewer). All the images used in

the exercises are located in their own folders. There are also folders for the user made

exercise solutions and manuals for different software.

Mosaic tiles and mosaic platform

There are dozens of different colored mosaic tiles available to be used with the robot.

Use the mosaic platform to keep the pallets organized. Mosaic tiles and platforms can

be found from the compressor room located next to the robot cell. The chipboard on

the top of robot cell contains also a platform attached, and because of the firm surface,

it is easier to use.

Plastic pieces

There are two sets of plastic pieces. Both of them, as well as the another chipboard

with the grids for the plastic pieces, can be located on the top of the workcell.

Set 1: Black, cylindrical plastic pieces

Set 2: Green, rectangular plastic pieces

Quality control products

Quality control products can be located under the worktop. The following products

should be passing the check:

BIA57222

CAN62768

CUB40933

OLM10339

And the following products should be failed:

CER91258 – Hole not drilled through

CRE10345 – Screw missing

FEL80045 – Hole too close to the side of the product

GIA75661 – Hole too large

KON32321 – Hole too far from the side of the product

TRE20023 – Hole too small

Nuts and bolts

Exercises also use regular M8 nuts and bolts. There is a ready set of them in the

compressor room. You can also use other sizes, if those are not available, but it means

that you have to make a new machine vision systems for them.

Figure 34: The equipment used in the exercises

Mitsubishi RV-2AJ

Melfa-Basic

The top-30 functions to get started with Melfa-BASIC

CLOSE

Closes a file or a communications line

CNT

Continuous movement. Designates continuous movement control for interpolation.

Shortens operation time.

DEF PLT

Define pallet

DEF POS

Define position

DEG

Degrees. Converts the unit of angle measurement from radians (rad) into degrees

(deg)

DIST

Distance. Calculates the distance between two points (position variables).

DLY

Delay

ERROR

User defined error

FOR…NEXT

Repeat

GOSUB (RETURN)

Subroutine jump

GOTO

Jump

HLT

Halt

HOPEN/HCLOSE

Hand open/ hand close

IF…THEN…ELSE…ENDIF

If-statement

INPUT

Input data

LEN

Returns the length of the string.

M_TIMER

Timer

MID$

Returns the string of the specified length from the specified position of the string.

MOV

Move

MVS

Move, linear interpolation (use with CNT)

ON…GOSUB

Subroutine jump according to the value

ON…GOTO

Jump according to the value

OPEN…AS

Open a file or communication line

PRINT

Outputs data

SELECT...CASE…BREAK…END SELECT

Select statement

SKIP

Skip while moving

SPD

Speed specification during joint interpolation movement

WAIT

Waits for conditions

WHILE…WEND

Conditional statement

WTH

With. Additional instruction of movement instruction

Changing the tool

As of spring 2009, Savonia UAS has two different tools for the robot arm. Both are

pneumatic, one is a vacuum gripper and the other is a two-fingered hand. The tool is

held in place by the magnetic valve M_OUT(10). The manual tool change procedure

is as follows:

1 Use the TB to position the tool carefully into the rack

2 Release the tool by setting magnetic valve M_OUT(10) as 0. The tool is dropped.

3 Move the robot above the another tool, and with care, position the arm so that the tool is

in it’s place. Make sure, that the tool is in correct angle etc.

4 Set M_OUT(10) as 1. The tool connects to the arm.

Alternatively, there are two complete tool change programs. The program number 87

is used to change tool manually. Server Console is used to select the executed

operation. The another tool change program (86) can be run as a subroutine if any

other program needs to change the current tool.

Changing the batteries

The robot’s servomotors save their absolute positions while the controller is turned

OFF. For this, there are total of 6 batteries, 5 of them in the base of the robot arm and

one in the additional axis unit. The batteries are 3,6 V lithium batteries. These

batteries must be replaced once a year or the servo position data is lost and the robot

must be recalibrated. The controller also has a battery life timer, which shows how

many hours the batteries have been in use.

To change the batteries, the cover of the lowest part of the robot arm must be

removed. Turn the J2 joint into a position, which allows removing the cover and using

a hex wrench to open the screws. Remove the battery cover. Detach the battery

bracket and the cables. Dismount the batteries from the bracket. The cables are

soldered directly onto the batteries. Replace the batteries and assemble parts in

inverse order.

CAUTION!

While replacing the batteries, the encoder position data is saved by the power

supplied from the robot controller. If the controller is turned OFF or the cable

disconnected, the position data will be lost.

Please refer to the ROBOT ARM SETUP & MAINTENANCE INSTRUCTION

MANUAL for more information.

About COSIMIR Industrial

RCI Explorer

The RCI Explorer (Figure 34) provides versatile information about the robot during

operation. Everything from the robot's position to motor currents is available to be

viewed and recorded to file (Figure 35). RCI Explorer can also be used to modify

some of the values, such as parameters.

The RCI Explorer can be opened by clicking the RCI Explorer icon on the toolbar. If

the values are not displayed when the window is opened, right-click the item on the

tree view on the left and select “Refresh”.

Figure 35: The Monitors window in RCI Explorer

Figure 36: The Robot position window displaying the Joint and World Coordinates.

The values can be recorded to a file by clicking the “ON” button on the right-hand

side.

GX IEC Developer

Connecting the PLC and the PC

Melsec FX1N PLC controls the conveyor. It can be programmed with Mitsubishi GX

IEC Developer software.

To start new project, manually create a new project folder somewhere, GX IEC

Developer can’t create new folders. Click Project > New. Select “FX series” and

“FX1N” type for PLC and proceed. Next, select Project Structure and click OK. As

Prefix for Main tasks type “Conveyor” and click Next. Cyclic Main tasks should be

set to 1 and we don’t want to modify task naming, so select “No, automatic naming is

just fine!”. Now select “FBD” (Function Block Diagram) and click Next. Type

“Conveyor” again to name the selected POU and proceed. Now, select “No, skip this

step” and click Finish. To add variables to program, double click on Global_Vars. In

Class row you can select whether to add a variable or constant. Identifier is name of

the variable and type can be any of common variables (Figure 36).

Figure 37: Inserting variables

To create a function block diagram, browse treeview to POU_Pool >

POU_01_01[PRG]. Double click on Body[FBD]. You can add function blocks with

Add Function Block that can be found in the toolbar. Blocks can be connected with

line tool and inputs and outputs can be inserted with variable buttons. All buttons are

surrounded with red in Figure 37.

Figure 38: Creating Function Block Diagram

The program is transferred by connecting the PC directly to PLC with cable which

can be seen in Figure 38. Download and Upload buttons are in the toolbar. In the

Online menu there is a useful Monitor Mode to debug program from PC as it is run on

PLC. GX Simulator is also great tool to test own programs. These are shown in the

Figure 39.

Figure 39: The cable and the USB-to-Serial adapter used to connect the PLC and

PC

Figure 40: Testing and transferring programs

E-designer 7

Namelists

To easily handle the signals of your programs, they can be listed in namelist. Namelist

can be opened from View – Namelist (namelist window in Figure 40). Signals can be

named and commented individually and data types and indexing numbers can be set.

Remember to choose right controller system to name correct signals!

Figure 41: Setting up namelists

Data exchange with E-Designer

Controller outputs can be linked to conveyor logic, for example, to use the conveyor

with warning light outputs. This can be done using E-Designer’s Data Exchange

property. To get to the data exchange screen, open Functions menu and click Data

Exchange. There you can set start signals for I/O #1 and I/O #2. Below, you can set

flow triggers. This means, that when you turn on the triggering signal, value of the

both start signals is changed to same, according if you are changing from #1 to #2 or

#2 to #1. Figure 41 shows example where robots M_OUT(6) signal (red light)

controls the conveyor. When M_OUT(6) value is changed, M1 is changed to same as

M_OUT(6).

Figure 42: Setting up triggering signals

Graphics

The E410 operation panel can also display user made graphics. The resolution of the

display is 320 x 240 pixels. The panel supports the most common picture formats, like

TGA, JPG, BMP and TIF. For the best result, the pictures should be black and white;

grayscale images tend to be left too pale. Lighter shades can be created with halftone

techniques as shown in Figure 42.

Figure 43: A magnified version of a 320 x 240 pixels image where the checkered

areas appear as different shades of gray when viewed in normal size.

User-created graphics can be added to projects by adding a Digital Symbol from the

tool bar in the bottom of the main window (Figure 43). From the Digital Symbol

window, click Select, then choose the User-created from the Select Symbol window

and click Import to select the image from file.

Figure 44: Adding user-created graphics

Intellect 1.5

About the workspace

Use the View menu to select the window you want to keep open. The windows can

either be kept floating in the main work area or docked, when they are arranged into a

set of tabs on the edge of the screen. Right-click the window’s titlebar to dock the

window. The windows can be docked on the right and left sides and on the bottom of

the screen, as in Figure 44, where there are total of 7 different windows arranged in

two groubs of tabs.

Figure 45: Docked windows in Intellect 1.5

The System Explorer and the Network Explorer are not found in the View menu, but in

the System menu. Also these windows behave as other windows (i.e. they are

dockable).

Tool Referencing Diagram

The Tool Referencing Diagram is an useful tool, which represents the DVT system

and the tools and their relations visually (Figure 45). The Tool Referencing Diagram

can be found in the Tool menu.

Figure 46: The Tool Referencing Diagram

About recording the sequence

The images are saved to file by opening the Record menu by clicking the arrow icon

next to the record button on the toolbar. Select the Set Up Recording to open the

settings window.

In the “Set Up Recording” window (Figure 47) you can choose the destination

directory, image type and the filename prefix. The image number settings allow to

record images with the same prefix into the same directory without overwriting

existing images in that directory.

Figure 47: The Set Up Recording window. The images can be recorded in different
image formats.

The calibration of the coordinate system

Calibration grids can be downloaded from the Cognex website

http://www.cognex.com. Also detailed instructions for the use of the grids are

available in the same address.

http://www.cognex.com/

Print the 10 mm calibration grid from DVT website and take a picture of it using the

camera to be calibrated.

Open the Coordinate Systems window from the System Explorer. Add a new item

(“Transform 1”) and right-click on it. Select Calibrate Coordinate System. Calibration

takes a few moments, after that a confirmation message appears. Information about

the coordinate system is shown in the Transform 1's Properties window.

To succesfully use the coordinates send by the camera to move the robot, the robot's

coordinates must somehow be linked to those of the camera's. The best way to do this

would be to station the robot's tool precisely above the upper right corner of the area

the camera sees (See Figure 36). That point will from now on be referred to as

“camera's origin”

Figure 48: DVT 100 mm calibration grid and the coordinate systems.

cY

cX

rY

rX

Camera's
origin

Robot's
origin

However, the robot is not able to reach that point, so the only option is to position it

above the lower left corner and then convert the coordinates before using them. This

point will from now on be referred to as “robot's origin”. As seen in Figure , the

robot's x-axis (“rX”) is reverse to the camera's y-axis (“cY”) and the robot's y-axis

(“rY”) is reverse to the camera's x-axis (“cX”).

Explanation of the conversion script

The robot coordinates (“rX” and “rY”) are calculated by subtracting the pick point

coordinates from the maximum values of the camera's coordinates (480 for the

camera's y-axis and 640 for the camera's x-axis) as show on lines 4 and 5 in listing.

After that, the robot coordinates are converted from pixels to millimeters using the

pixel/mm ratio 3.6169 to be used in the DataLink String that is sent to the robot.

Listing 8: Pick point conversion script

1 double cY = Nut_location.PickPoint.Y;

2 double cX = Nut_location.PickPoint.X;

3

4 double rX = 480 - cY;

5 double rY = 640 - cX;

6

7 this.Point.X = rX / 3.6169;

8 this.Point.Y = rY / 3.6169;

Savonia University of Applied Sciences Exam

Robotics dd.mm.yyyy

Name:___ Class:_____________

Points from the exam:________/ 30 Grade of the exam:________

Points from exercises:________/ 120 Grade of the course:________

1. Explain the following terms briefly

a) Tool Referencing Diagram
b) Tool Coordinates
c) RCI Explorer
d) DataLink
e) Data Exchange
f) OCR

2. What is singularity and when does it occur? Why should it be avoided? How
can it be avoided?

3. Explain the difference between linear and joint interpolation. In what
situation would you use linear interpolation for moving the robot? In what
situation would you use joint interpolation?

4. Explain the difference between Joint jog mode, Tool jog mode and XYZ jog
mode

5. Explain the following robot parameters, commands and status variables:

a) NETIP
b) MEXTL
c) C_MECHA
d) RELM
e) OVRD
f) XSTP

6. Explain the usage of the TOOL function. (4 p.) What is the alternative for
using the TOOL function? (1 p.) What is the system variable used in this
method? (1 p.)

7. Find and correct the errors in the following code samples.

1)
10 M1=1
20 *LOOP
30 IF M1<10 THEN
40 M1=M1+1
50 GOTO *LOOP
60 ENDIF

2)
10 GOSUB *MOVP
20 M1=10
30 *MOVP
40 IF M1<>10 THEN M1=10

3)
10 IF M1>10 THEN
20 MOV P1
30 ELSE
40 MOV P2

4)
10 IF P1.X>255.1 AND P2.Y< 180.6 THEN
20 M1 = (M1 * M2) / 2
30 ENDIF
40 GOTO SUBPRG

5)
10 'THIS IS NASTY EXAM PROGRAM
20 'ROBOT ONLY MOVES TO P1
30 AND STILL SOMETHING FAILS...
40 MOV P1

6)
10 INPUT #2, CSSTR$
20 IF CMES$=”START” THEN
30 INPUT #2, CSSTR$, CPER$, P1
40 PRINT #1, “MATCH PERCENT IS “ + CPER$
50 MOV P1

(#1 is laptop and #2 is machine vision camera. Camera sends string: START,67,
(134.45,156.14,0,90,0,0)(0,0)

