VAMK

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Marek Krajewski

Cross-platform development of the Smart

Client application with Qt framework and

QtQuick

Information Technology
2016

ACKNOWLEDGMENTS

I would like to thank Dr. Smail Menani for givingenopportunity to participate in

this project, guidance during the thesis, his supgad extreme patience.

I would also like to thank Rafat Chomentowski fdways being willing to share

his expertise in the Qt Framework.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Programme of Information Technology

ABSTRACT

Author Marek Krajewski

Title Cross-platform development of the Smare@liapplication
with Qt framework and QtQuick

Year 2016

Language English

Pages 62 + 1 Appendix

Name of Supervisor Smail Menani

In this thesis the Qt Framework is evaluated asdbkthat can support the cross-
platform development of desktop, mobile and embddaigplications. Hence,
a hybrid client application is developed to asséssapabilities for creating a
product providing a good user experience on a wéahge of the target devices.
The application is required to demonstrate implesateon of the Graphical User
Interface, network communication with a server acdess to the native devel-
opment environment of the target device while zitilj tools bundled with the
framework. The application is successfully devebband tested on the following
devices: Windows notebook with the full size degktoonitor, Android devices
with 5-inch and 10-inch touchscreen displays, RagptPi with Raspbian Linux
and full size desktop monitor. The QML languageised to create a responsive
GUI, utilizing diverse collection of widgets proed by the QtQuick library. Qt
API itself is sufficient to create a WebSocket conmication with the server and
allowed for leveraging the native SDK of each tégpatform. A custom cross-
compile toolchain is built and used in the develeptrfor the Raspberry Pi.

The result of this work proves that the Qt Framéwiera feasible solution for the
cross-platform development for experienced tearfisriog powerful GUI crea-
tion tools and wide range of supported platforms.

Keywords Cross Platform Development, Qt, QML, Hydlient

CONTENTS

ABSTRACT
ACKNOWLEDGMENTS
1 INTRODUCTION ...ttt eeeme e e e e e e e et e e e e s s enneeeeenas 7
I Y 4 = T A] 1 o USRI 7
1.2 SMart HOME ... eaeees 8
1.3 SMArt ClENT ...ttt s e e e e e e e e e e e e 10
1.4 Statement of the problemeeii e 11
2.2 Evaluation must cover the following aspects:............ccccvvvvvivvvvnnnnnnn. 12
2 PROBLEM ANALYSIS oottt 16
2.1 WhY QUQML? ..ttt e e e e e s e e e e 61
2.2 Client arChetypes.....ccooee i e ettt e e e e e e e eeaaaaees 17
2.3 Cross-platform SUPPOIToeeeiiiiiiiiiei e 19
2.4 NALIVE GQCCESS...ceiiuuuunuiiiiaee e e e e e e e e s 11 e e e e e e e e e e e eeeaeeebabaaa e e e e e e eeaaans 21
2.5 Server-Client COMMUNICALIONceveviiiiiiieieeiiiiiiee e 22
2.6 Development enVirONMENt.............evvuviiimmmmmmieeeeeeeeeeeeeeeeeeeeeeer s 22
2.7 Alternative SOIULIONSouvuuiiiiiii e 23
2.8 SUMIMAIY ..ottt eaeeee e e e e e ee e e e e e e e et e e e e eeennnnaans 24
3 CLIENT PROTOTYPEi oottt e e e 27
3L DSIGN e ————————aaaa i ————————————————— 27
3.2 Remote QML LOAdiNgccoeiiiiiiiiiiiiieit ettt 29
3.3 Gateway-Client COmMmMUNICALIONcuuvuuumiuiiiiiaieee e ee e 31
3.3.1 SINQGIE rEOUESTeveeiiecice e sreereer e e e e 32
3.3.2 PeriodiC rEQUEST.......evveeriiriiiie s e e e e ceeeeeeries s e e e e e e e e e e e eeeeeenenannnes 33
3.3.3 Gateway reqUESTSuiieiiiiiiir e e e e e e eees 34
3.4 Graphical User INterfaceccooouviiiiieeeeeee e 35
3.4.1 VIEeWS NAVIQAtION......ccccceeeeeeeeeeeieeeeieeeeee e e e e e 36
3.4.2 SCreen OreNntatioN..........cuuiiiiiiee i 38
3.4.3 NAtIVE CONLIOIS ..ouveiiiiiiiiiee e 40
3.5 CroSs COMPIIALIONcooeiiiiiiiiiiiiiiiiiemmmmm e 42
3.5.1 TOOICh@IN. ... 42

3.5.2 Ot Kt eteeeiie et 44

3.5.3 Remote deploymeENtcccoeeeeeeeiieeiees oo e e e e e 45
3.6 AdAItioNal tOO0IS........uuiiiiiiiiii s 46
3.6.1 DEDUQGQET e 46
3.6.2 QML DESIGNEN ..cceeeeeieiiiiiiieie e e e e e e e e e eeeeesses e e e e e e e e e e e eeaeeeeeaennnnes a7
3.7 PUSh NOLIfICAtIONScooiiiiiiiet et 49
3.8 Camera CONIOL.........uuuuueiiiiei e 50
3.8.1 Native Java implementationcccovumreeeeeeeeieeeeeeiiiiiiiines 51
3.8.2 QUimplementation................eeeeieee s s e s e e e e e e e eeeeeeeeeeeeennnnn 52
SUMMARY oottt errnt e e e et e e e e e s e e e e e e e ees 55
CONCLUSIONS ...t eeeee nnns 58

REFERENCES ... 60

LIST OF FIGURES AND TABLES

Figure 1 Overview of the project developed at Tetutnia.oevvvveeennn. 9
Figure 2 Three-level architecture of Hybrid Cliapiplication with multiple views
IMPIEMENTAtION. 1O/ e et nenneeaeeee 18
Figure 3 Overview of the prototype desSign.oooeeeeiieiiieiiiiiiiieeee e 82
Figure 4 Folder structure for QML files on the Gedsovvvveeiieeennnnn. 30
Figure 5 Sequence diagram of executing the siraglaast................ccceevvvvennns 32
Figure 6 Sequence diagram of executing the peri@djaestccccoevveeee 33

Figure 7 Sequence diagram of handling the requesgtaied from the Gateway 34

Figure 8 VIews hierarChyouvivimmmmmm oo e ee e aneaaae s 35
Figure 9 Screenshot of the MainView - WiNAOWS ooaa........covvviiiiiiiiiiiiieeeeeeee, 37
Figure 10 Swipe menu - SMartphone......... o eeeeeaneee e eeeeeeeeeeeeiennnnnns 38
Figure 11 Portrait orientation - Smartphonevviiiiiiiiiinneeeeeee, 39
Figure 12 Landscape orientation - Smartphone...............vvviiiiiiiiiiiee e, 39
Figure 13 MenuBar, Toolbar and TabView control3/@imdows....................... 41
Figure 14 MenuBar, Toolbar and TabView controlsfemroid tablet............... 41
Figure 15 Using the Raspberry Pi cross compildéniitd gmake........................ 43
Figure 16 Building other optional Qt libraries.........c.coovvvvvviiiiiiiiiiiie e, 43

Figure 17 Configuration of the cross-compile RaspbRi kit in the Qt Creator 44
Figure 18 Configuration of Raspberry Pi as a rentest device in Qt Creator . 45

Figure 19 Panel allowing to quickly switch Kit usedhe current build. 46
Figure 20 Debugger in the Qt Creator............uueeiiiiieeiee e e 47
Figure 21 Screenshot of the DeVICeS VIEW ...cceevvvvevveiiiiiiciiieiee e 48
Figure 22 Sequence diagram of the Push Notificadansion 50
Figure 23 Sequence diagram of the ThumbnailSnapgension....................... 51

Table 1 Summary of the design choices for the pypwimplementation. 24

LIST OF ABBREVIATIONS

* PLC - power line communication

e HMI - human machine interface

* PC - personal computer

e GUI - graphical user interface

* Ul —user interface

* HAN — home area network

» WPAN - wireless personal area network

* IDE - integrated development envirnonment
e QML - Qt modeling language

* NFC - near field communication

* AJAX — asynchronous JavaScript and XML
* SSH - secure shell

e SSL - secure sockets layer

e ADB - Android debug bridge

* API — application programming interface

* RIA —rich internet application

* GPL — general public license

 LGPL - lesser general public license

LIST OF APPENDICES

APPENDI X 1. Source code

1 INTRODUCTION

This thesis started as a part of the larger progstarched and developed under
supervision of Smail Menani, D.Sc. at Technobothiiaasa; which is focused
mainly on the concept of the Smart Grid and Smaninel. The main goal of the
project is development of a prototype of the wogksolution able to provide a
two ways communication between the typical end-gores in the electrical net-

work and the rest of the grid’s components.

One of the required elements in the project waslieat application for the end-
consumer, allowing for managing the power consuomptviewing the current

status and, to a certain degree, also controllingbanected home appliances.

Chapters throughout this document are organizedrae main sections. The first
section introduces reader to the background cosocefpthe Smart Grid, Smart
House and the actual focus of the thesis: the S@iamt. The second section dis-
cusses findings of the research of challengeselat the cross-platform devel-
opment and how Qt framework can help to overcormeethrhe third section goes
through the design decisions made based on combuesearch, documents the
development of the application prototype and ewekia)t framework as the
cross-platform development tool.

1.1 Smart Grid

“In short, the digital technology that allows favd-way communication between
the utility and its customers, and the sensing@lire transmission lines is what

makes the grid smart.” /1/

Quote above shows the key point of the smart gtine electrical grid that is self-
aware and provides ability to exchange informabetween all actors it consists
of: a power plant, substation or even the end aoesypaying the electricity bill.

Some of the practical implementations of the SiGaid are /1/

* Reduced peak demand of the electricity by a bett@nagement of the
power consumption. For example, scheduling of weribome appliances
or loading electrical cars during the time of they dvhen electricity de-
mand is the lowest.

» Prioritizing electricity to the mission critical ssumers like hospitals.

* Smart Home - concept with already existing solwgiatilizing the Power
Line Communication (PLC) and Home Area Network (HAid connect
and manage appliances allowing for lowering endsiflg by scheduling
them according the energy prices throughout the day

* Smart Metering - solution already being adoptedrtany energy compa-
nies allowing for the remote, real time consumpto@asurements, elimi-

nating costs of the labor related to collecting seaments manually.

At the moment, the Smart Grid has still a very figtic sound to it; however,
with the growing demand and the aging infrastrieiitis already a serious topic
attracting interest of organizations like InstitateElectrical and Electronics En-
gineers /3/ and International Energy Agency /4/ttikermore, the Smart Grid
concepts are already being deployed around thedwmy] for instance, Italian

electricity manufacturer Enel /5/
1.2 Smart Home

The Smart Home is a concept of introducing thedestial customer of electrical
network to the Smart Grid by utilizing technologlé® Power Line Communica-
tion (PLC) and Wireless Personal Area Network (WBABUch infrastructure can

be also used further to implement the home autemancepts. /2/

The following diagram shows a design of the sysfmoiotype, developed in
Technobothnia; which tries to combine featuresathbthe home automation and

The Smart Home.

|
|
— PC |
Electricity Web I
Provider Access ,
Mobile :
Database |
©
© - | ’
©
o w | 1
O @ !
@ £ ! i
© S | 1
172}
= o ol
(@] | [0) O,
R | S NN U U U U U - n »n
o ot
1
|
]
1
1
1
1
4

POWER POWER| R
METER METER POWER
POWER POWER METER
METER METER :
'POWER 'POWER] :
METER METER .
1 1 1 POWER
Phase 1 Phase2 Phase3 METER

r
I

|

I

I

I

I

| = taaietivioteiuteiuiataininiel SRS ZigBee . [power
| —i| PLC Interfaces ’MET'ER ‘
| :

! :

I

I

I

I

I

|

|

I

I

Figure 1 Overview of the project developed at Tetlutnia.

Each of the home appliances is equipped in the poveter and the module ca-
pable of providing communication through PLC or VW§PAolution (e.g. ZigBee)
to the Gateway. The Gateway device has multiplpgaes. First of all, it is con-
nected through PLC modules to all phases of thetredal grid available in the
domestic property. Together with the wireless comication module like
ZigBee, the Gateway gathers the power consumptida and controls all appli-

ances connected to the power grid.

Customer can view collected data and control th@iapces through the Human

Machine Interface (HMI) located in a convenientgglavithin home area, or using

other devices connected via the Internet netwogtsgnal computer, PDA or
Smartphone.

The Gateway can also exchange data with the eliégtgrovider using the com-
munication over the power grid or the Internet ragtw It allows the customer to

see information about the current electricity prio#ling status and notifications

of the potential issues occurring in the grid. A¢ same time, the electricity pro

vider can gather collected data remotely and mogitd for malfunctions.

1.3 Smart Client

Having established the background of the thessnibw possible to bring into

the picture its actual subject: The Smart Client.

In the context of The Smart Home solution presemdtie previous chapter, The
Smart Client is an application running on HMI, Stphone or PC capable of
providing the customer an interface to the homeraation, the data gathered on

the Gateway and the communication with the elatgrprovider.

As for this moment, the exact specification of seevices offered by the Gateway
are not yet defined which makes the complete imptgation of the client appli-

cation impossible. However, the key requiremengsadready known and can be
used to assess which technology should be usedviglap the Smart Client ap-

plication.

11

1.4 Statement of the problem

Problem: Evaluate whether Qt framework can be ssfaly used for develop-
ment of the Smart Client application. Base yourl@atzon on the Smart Client

requirements by:

1) Investigating the challenges related to eachirement.

2) Finding and choosing the best solution offere@bthat can fulfill the re-
guirement. Base the research mainly on the off@iadlocumentation.

3) Implementing a simple application that provest the chosen solution satisfies

the requirement.

After implementation is finished, summarize whiaaty could and could not be

accomplished and why. Compare them with the idelatisns found during the
investigation phase.

Requirements:

1. Cross-platform support

Research goals:

1.1 Evaluate the possible approaches to the clatfeqm
development. Find the best one, considering alkrotie-

qguirements of the Smart Client application.

1.2 Find if Qt framework, according to the officd@bcumen-
tation, can be used for the application developnameted

on the following platforms:

» Desktop : Windows, Linux, Mac OS X
* Mobile: Android, iOS
* Other: custom embedded device using Linux and

ternal display

Implementation
goals:

1.3 Deploy application on: Windows, Android and plaey-
ry Pl device.

1.4 Application must contain the implementationlga&peci-

fied by all other requirements (unless stated otlser or re-

ex-

qguirement is not applicable for the particular faan).

2. Graphical User Interface

Research goals:

2.1 Evaluate solutions offered by Qt framework ttah be
used to develop the Graphical User Interface.

2.2 Evaluation must cover thefollowing aspects:

* Available controls.

* Look and feel of the controls. How difficult it t®
achieve the native look and feel of the target
form?

» Different screen types and screen sizes. How diffi
is it to provide GUI usable on all screen types

sizes?

Implementation
goals:

2.3 Implement GUI that demonstrates usage of:
* Charts.
* Lists

e Buttons.

bla-

and

* Multiple views — must consist of at least two views

and navigation between them.
2.4 Demonstrate that GUI can be tailored to accodatgg

for the following screen types:

* Full size desktop monitor (17-25"), using mouse and

keyboard as input.

» Typical Smartphone display (5") with touchscreen

and both: landscape and portrait orientation.
2.5 GUI does not have to be esthetic; however, esisa-
ble:

» Size of the controls adjusted to the screen size

e Support for the common gestures when using

touchscreen (e.g. swipe)

13

Responsiveness

3. Client-server communication

Research goals:

3.1 Research what technologies and solutions caunsbkd
with Qt framework to provide the communication beén
the Smart Client and Gateway. Chose most apprepoaé
for the Smart Client and use it when developingqigpe.

Justify the choice.

Implementation
goals:

3.2 Implement a simple Gateway emulator using thesen
technology to implement the communication betwelea
Gateway and the Smart Client.
3.3 Data provided by the Gateway should change twer
to demonstrate the continuous values update.
3.4 Implement the same communication technologyha
Smart Client application.
3.5 Demonstrate that communication between the vizats
and Client works by showing:

» Single request

» Continuous request

» Bi-directional requests (that can originate alsanfi
the Gateway)

D

4. Native access of the client device

Research goals:

4.1 Research the possibilities of accessing theenaevel-
opment environment of the client device using fwiltg sys-

tems: Windows, Linux, Android

Implementation
goals:

4.2 Demonstrate the native access on Android byement-

ing any functionality using the Android SDK API.

15

5. Development tools

Research goals:

5.1 List and shortly describe tools offered by €iniework

that can help in:

Writing code

Debugging

Designing user interface
Cross compilation

Deploying application on the target device

Implementation
goals:

5.2 Use the Qt Creator and other offered toolsndutthe pro-

totype development, and assess their usabilitydmyparing

it to other tools used throughout the universityj@cts.

5.3 Build a Qt cross compiler on the Linux machibee it

to build the Qt framework binaries and Smart Cligpplica-

tion for the RaspberryPi2 device.

2 PROBLEM ANALYSIS

In order to assess and choose the right techndtogyeet defined requirements
it's necessary to first discuss concepts relatati¢alevelopment of a client appli-
cation. This chapter tries to identify challendgesttwill have to be addressed dur-
ing the implementation phase using Qt platform, eimolse the best tools and de-

sign that can help to successfully build a workifignt prototype.

2.1 Why Qt/QML?

Qt is a cross-platform framework allowing for thgpcation development using
the C++ language, and deployment on the most odmphatforms and operating
system like: Windows, Linux, Android and i0S. Itnges with the Commercial
and Open Source licensing options. The Open Sowersaon is available under
GNU Lesser General Public License (LGPL) /6/ whigespecially important in
low-budget, educational project like this one. tldiéion, even if runtime libraries
for the target platform are not directly supporéed available on Qt website, it is
possible to compile a custom toolchain from thersewode. Qt wiki page con-
tains a comprehensive guide explaining the prooessoss compiling Qt applica-

tions for Raspberry Pl device. /7/

Qt framework isn’t the only available technologgtitould potentially be used in
the Smart Client project. We have to admit thatrtfeeive behind choosing Qt for
evaluation in this thesis was partially our pre@@xperience with it. Most of the
Smart Grid project members are students of theelrek focused on the embed-
ded software development. Hence, it's understamediialt most of them will pre-
fer working with a framework utilizing the familiaC++ language; rather than
more web-oriented technologies used by the altemablutions.

17

2.2 Client archetypes

An important aspect that has to be considered befiient implementation is its
archetype. Microsoft's Application Architecture @aidiscusses this topic in de-

tail presenting advantages and disadvantages bfsedation /8/

« Rich client application — typically, a stand-aloagplication that can uti-
lize the network connection for accessing the data, contains most the
actual business logic. Requires the installatiorthenclient, dedicated for
each supported platform, which increases difficafyproviding regular
updates. In return, gives access to the clienssuees and allows for
writing a responsive and rich GUI.

« Web application - the whole application is fetcliean the server and ex-
ecuted in the web browser. This eliminates the lprakof the application
versioning and makes it accessible for all plat®mequipped with a web
browser. Downside is a slow, restricted user iatef dependence on the
network access and the very limited access tolibetcesources.

+ Rich Internet application (RIA) - similarly to tiveeb application, the RIA
is loaded from the server but executed in a deelicaandbox. Middle
ground between the Rich Client application and \@pplication. Simpli-
fies application updating, and allows for buildingh user interfaces and
better access to the client resources. Howevergliet must contain the
required version of the sandbox which forces usdyet aware of the ver-

sions compatibility.

In addition, Sten Anderson, in his critique of degk(rich client) and web appli-
cations /9/ presents yet another type of the chgpiication: Hybrid. On the first
glance, the Hybrid application resembles RIA, natvdes support for the differ-

ent view implementations:

Figure 2 Three-level architecture of Hybrid Cliapplication with multiple views

implementation. /9/

The multiple view implementations give the hybridhetype a strong advantage
when application has to be supported on both: dpsahd mobile clients. Con-

sidering the differences in the screen sizes betlee typical desktop and mobile
device, and the way the user interface is accedsadh screen vs mouse point-
er/keyboard), it's virtually impossible to provideusable user interface with just a

single view.

According to the Qt documentation, it offers thddwing means to implement

the presented client application archetypes:

« WebApplication - Although Qt itself is able to haadlisplaying the con-
tent like HTML and JavaScript via QtWebEngine dgeld on the client, it

does not offer any tool to work directly with stand web browsers.

19

« Rich Internet application — The QtQuick offers pb#iy to display the
remote QML files using QtWebEngine together withestweb content. In
addition, any C++ class extending QObject can hmosad, either by us-
ing QWebChannel or gmlRegisterType function (for Qignly), giving
the access to the client resources and additidmalies written in C++.

+ Hybrid — Similar to RIA, uses the QtWebEngine. Hoee different
views are served by the server depending on tbatdlievice type.

« Rich Client application - Similar to RIA, QtWebEngi can be used with
QML files, bundled with the client application. Afnatively, the Qt
Widgets module offers a set of common desktop w&lgeat can be used
to build the GUI directly from the C++ code.

2.3 Cross-platform support

Developing an application targeted to more than jplagform presents a set of
challenges. Each operating system offers own enwiemt that allows for deploy-
ing applications, accessing system resources, regdeser interface, etc. It
might impose using certain programming languageoonpiler, depending on ar-
chitecture of the processor on the host devices Thapter will outline two basic
approaches to the cross-platform development aed #xplore how Qt frame-

work deals with it on the supported platforms.

Applications can be developed separately for eaeted platform using its spe-
cific development environment. For example, Windagplication will be writ-
ten in C/C++ utilizing Win32 API and MFC librarieend compiled with Mi-

crosoft C++ Compiler. Same application, when pottedndroid, will use Java
language and Android SDK. Just the fact that twiedgnt languages are used
will force developers to maintain two, completeBparate code bases for each
platform. On the other hand, utilizing the SDK bé&toperating system gives ac-
cess to all of its resources and preserves theenktok and feel of the graphical
user interface. This approach is commonly refetceds the native development
/10/.

To decrease the overhead related to the mainter@nowiltiple codebases the
platform specific functionalities can be abstracteducing code that is shared
between all supported platforms while using differenplementations of those
functionalities. For example, the application wagtio display a graphical user
interface could leverage toolkits like GTK+ offagim single interface, in wide
range of popular programming languages, and sepawatime environments for
Windows, Linux and Mac OS X. /11/

Qt framework works in a similar fashion providingwtlopers a set of modules
like QtGUI - for graphical user interface developrher QtNetwork - for network
programming. Officially supported languages are+C®ML and JavaScript;
however, additional language bindings are available projects QtSharp /12/ or
PyQt /13/ Once deployed, application uses Qt mmtenvironment, installed on

the client, to get the actual implementation ofcLfganctionalities.

The full list of platforms supported by Qt can loeihid on official website, which
includes: i0S, OS X, Android, Windows, WindowsRTddnnux. Depending on
the operating system, it's also possible to usalteeznative solutions for handling
input and display management like: EGLFS, linuxB&B. This is especially
useful when application is deployed on the custombexided device with limited
processing power that uses more lightweight sahstitnan X11 windowing sys-

tem.

21

2.4 Native access

Occasionally, client applications may want to use ¢lient’s resources and func-
tionalities other that just accessing the usertigma rendering the user interface.
As mentioned in chapter 2.2, those resources aatlgrlimited by the web

browser for the Web Applications, mainly for thesgty reasons. Rich applica-
tions, quite contrary, can access the featurestéikeng pictures with camera or
reading measurements of the gyroscope by directtgssing API offered on op-
erating system or using a third party library tosdo Rich Internet and Hybrid ap-

plications are restricted only to the features fuled by the sandbox they run on.

Most of the frameworks, used to develop the Hylaggblications, offer a variety
of features sufficient for most of the mobile apptions including: the camera
access, sensor measurements, push notificatiomtaerds. In case when applica-
tion has to use features specific to the particdé&ice, or access a third party li-
brary, some frameworks provide option to extendlasic API. For example, a
popular mobile framework PhoneGaps allow for regiag the custom plugins,
which can be then accessed from the client codienrin JavaScript/HTML. /14/

Qt framework is no different. Acting as sort of daox, the QtWebEngine is ca-
pable of displaying QML code having access to a kasge of functionalities of-
fered by QtQuick library in form of the QML typeSach QML type is essentially
a specially formatted C++ class, registered in@@/ebEngine. For example, to
use a proximity sensor, the QML file has to simphport a QtSensors type. Cus-
tom extensions can be provided in a similar watheo QtWebEngine, giving ac-
cess to the functionalities not supported in Qt®wc even possibility to reuse
existing C++ libraries. QtWebEngine also offers aption to display
HTML/JavaScript code together/instead of the QMLhilev offering a similar

mechanism of communication with C++ code usingQit/ebChannel. /15/

2.5 Server-Client communication

As one of the main requirements of the Smart Claglication is exchanging
data with the Gateway this chapter will exploregilole solutions for the client-

server communication supported in the Qt framework.

A very popular technique used in web applicatiean8JAX, which uses a JavaS-
cript XMLHTTPRequest (supported by most of the nradeeb browsers accord-
ing to the W3 specification /16/) to continuoustgiuest new data from the server
without having to refresh the whole website. As @®L JavaScript host envi-
ronment implements the XMLHTTPRequest /17/, the XJ@®mmunication can

be build using JavaScript directly from the QML edd a very similar fashion.

One of the AJAX alternatives that became populathm recent years are the
WebSockets which, contrary to the request/resptyyse of communication of-
fered by AJAX, provide a continuous, low-lateneydai-directional communica-
tion with the server. Qt supports WebSockets wittotiering a QML type of the

same name available in the QtQuick library /18/.

Of course a multitude of other solutions is avddabutside of the QtQuick by
using any of the C++ (and not only) libraries immpenting web service protocol
like SOAP or XML-RPC.

In theory, the Apache Thrift framework can be usedenerate interface of the
services provided by the server as JavaScript totée used directly from QML

without writing any C++ extension. /19/

2.6 Development environment

The Qt Company offers own Integrated Developmentifenment (IDE) along
with Qt framework under name Qt Creator which is ey a sophisticated code

23

editor for C++ and QML but also provides versiofingsversion control system

like GIT or Subversion and build management. /20/

Especially useful in cross-platform developmerals support for deploying ap-
plications on iOS mobile device, Android device vAadroid Debug Bridge
(ADB) or remotely on Linux device via SSH. It's alpossible to use iOS and

Android emulators directly from Qt Creator.

Although it's possible to successfully use Qt framek from other IDEs like
CLion or Visual Studio the Qt Creator is the onlgjor IDE at the moment that
provides support for editing QML code and desigoelQML/QWidgets.

Toolchain necessary for building applications conogether with Qt installer for
all officially supported architectures.

2.7 Alternative solutions

This thesis focuses primarily on exploring Qt as ttamework as a tool for the
cross-platform development; however, it's worth pamng it to the other alterna-
tive solutions currently being popular on the marke

PhoneGap - similarly as Qt provides own WebView loggd together with
HTML/JavaScript code on the client device and carektended by custom func-
tionalities. Support only mobile platforms.

Xamarin - uses C# language and Mono .NET framewarkng Microsoft behind
it. C# code is compiled to a native or intermedi#it¢ language depending on the
platform. Uses native user controls preservingi@tat look and feel and supports
both mobile and desktop platforms.

Haxe - a framework that offers own programming leage that can be source-to-
source compiled to other languages supported btatiget platforms. In addition,
Haxe toolkit comes with set of libraries like Haxelfor creating the user inter-

face. Supports all major desktop and mobile platfor

Java - using JavaFX to develop user interfacepiv'ssible to create applications
for all major desktop platforms. Mobile devices ace officially supported; how-

ever, it is possible to deploy application on iQfl &Android using JavaFXPorts
by Gluon. Downside of Java as cross-platform gmiuts that client requires Java

Runtime Environment which cannot be deployed tagretVith the application.

2.8 Summary

Information gathered in during this chapter haswshthat Qt framework should
be capable of satisfying all major Smart Meterguieements as the software de-

velopment tool.

The following table summarizes the design choicgset on this study that will
be used in the prototype implementation and thetoa assessment of the Qt

framework.

Table 1 Summary of the design choices for the pypimplementation.

Concept Choice and justification

Client archetype The Hybrid Application.

Both, Rich Client Application and Rich Internet Ajgation
archetypes can be built with Qt. However, the thetSmart

25

Client will operate on many devices, with differesdreen
sizes and screen types, makes The Hybrid Applicate
best choice.

GUI technology

QML with QtQuick

QML seems to be the only way to implement The Hyk
Application. This declarative language can be usetn-
plement different GUI version for each platform,famm of
QML files that could be fetched remotely from that@vay

device.

In addition, the documentation and online souragggsst
that QWidgets are meant to be used with desktojceey
Indeed, QtQuick offers more modern controls/widdgebsn
both: visual side and technical side with gesturé anima-

tion support.

Native access

QML C++ extensions

C++ extensions provide an easy way to expose tterrext

libraries, written using the native SDK, to the QMkews.

Development tools

Qt Creator

Qt Creator IDE should provide all tools necessarthe pro-
totype development without need to access any ety

software.

Dri

Client-server

communication

WebSocket

ach-

Both: XMLHTTPRequest and WebSocket are viable te

technology

nologies that meet all requirements amedsupported by Q
libraries. WebSocket has been chosen as the implatien
of the bi-directional communication between Clieand

Gateway will be easier.

—

27

3 CLIENT PROTOTYPE

The main goal of the implementation phase of thgggat is to provide a proof of

concept, showing that Qt framework can be succkgsfsed in the development
of a modern, cross-platform application. After gretsng the general design of the
prototype application, the consecutive chaptersudis in detail the implementa-

tion of the requirements’ goals, defined in théesteent of the problem.

The source code of the application can be fourappendices.

3.1 Design

Diagram below depicts the basic architecture oérit)i Gateway and interaction

between them:

Gateway Services

WebSocket Server |

HTTP Server

Data | WebSocket Client D

Application

Y { :

| Mobile View || Desktop View | | |

Mobile Client Desktop Client
QML Engine v QML Engine v
| MobileLoader.qml | | DesktopLoader.gml |
h h
[Notifications|[NFC]| ...]| [[Printer] [File access][...]

Figure 3 Overview of the prototype design

Client:

The client device requires a minimalistic sandbwat uses a different Qt runtime
environment depending on the host platform. Ther@k code itself is fairly triv-

ial: it has to start the QML engine, register thmianal C++ extensions like the
push notification or camera control, and provide @ML loader file. Depending
on the platform/device, it will load the differevitew from the Gateway. Once the
View is loaded, the application is controlled costply by the QML code that,

when needed, uses the C++ extensions providedeb@ltant.

Gateway:

The Gateway has two responsibilities regardingQhent: serving the QML files
over the network and providing various servicesoetiog to the business logic.

In the implemented prototype those services coosist

29

* Information about devices present in the power ¢fhéir ID, power con-

sumption).
* Information from the electricity provider like tloeirrent power price.

* Handling the requests to control those devicesnging their parameters:

turning ON/OFF, updating thumbnail and others)

QML files are available to the Client through th@ HP server; whereas the ser-
vices are available by communicating with the Wetk8b server implemented

using Tyrus library.

3.2 Remote QML Loading

All QML files used by the client application areostd on the Gateway device.
The only exception here is the Loader.gml, with diméy purpose to display ap-
propriate error to the user when the connectiom Waateway cannot be open. It
should be noted that this way of implementing aggpion is discouraged as it
might considerably hinder its performance. Nevde® the application proto-

type is simple enough to provide a responsive GUI.

QML files are stored on the Gateway in a simpléédolstructure:

= am QML

= common
=] DevicesModel.qml
jn; gateway.qml
E"] main.qml
j MainModel.qml
=] OverviewModel.qml
= desktop
j Devices.qml
=] DevicesForm.ui.qml

HenlenllenlG

j MainForm.ui.qml
_':«"] MainView.qml
= Overview.qml

r

=] OverviewForm.ui.qml
= mobile

= Devices.qml

=] DevicesForm.ui.qml
=] MainForm.ui.qml

j MainView.qml

=] Overview.qml

=] OverviewForm.ui.qml

Figure 4 Folder structure for QML files on the Gedy

The QML loading starts when Loader.gml requestsrtan.gml file from the
Gateway. This is done by using the QML type Loader

Loader {
source: "http://192.168.1.2:9000/common/main.qgml"

Once the main.gml is loaded it can refer to othBi Qiles as if they were on the
same, local folder. This makes all QML files lochten the Gateway unaware of
the fact they are loaded over the network.

During the development of the application prototytiee Gateway file sharing

was handled by using the Mongoose web server rgromra PC machine.

The main.gml file then passes control to the Maid®lagml which initializes all
views from desktop or mobile directory, dependimgtioe client device type. To

31

the each module is assigned an appropriate modedeld are shared between all

Views implementations, hence, are located in threraon directory.

3.3 Gateway-Client communication

Data requests made by the clients are implemersied WebSockets. During the
prototype development, the Java Tyrus WebSockeesavas used to emulate a
working Gateway. On the client side, the Gateway.igmiesponsible for main-
taining the connection using the WebSocket QML tyfigere are three types of
requests implemented in the prototype applicatiseduto implement the Gate-
way-Client communication:

* Single request — allows client to request a simigee of information or
change of certain parameter of the system.

e Periodic request — provides a continuous data @gehallowing the ap-
plication views to keep their values updated.

» Gateway request — a request initiated by the Gatewsad to display any

kind of notification or alarms to the user.

It should be noted that all request type descrilmethis chapter are executed
asynchronously, which keeps the user interfaceorespe even when waiting for

the Gateway response.

3.3.1 Singlerequest

The following diagram illustrates details of prosieg a single request from the

Client to Gateway that changes a device’s parameter

GUI Gateway.qml : Gateway (Tyrus) :
textFieldChanged()
H registerSingleRequest()
H sendTextMessage()

{ onTextMessageReceived()

H requestCallback()

updateValidedTextField()

Figure 5 Sequence diagram of executing the siragjaest

In this example, user modifies a particular par@mef the device by changing
value of a text field visible in the GUI. Once clyaris detected by the view mod-
el, it registers the request to the Gateway.gmk fdguest consists of two ele-

ments:

* ID of the request — example: a string “updateDeNaae”

» Additional request parameters — example: ID ofdbeice and new name

33

The Gateway.gml sends the registered request t@s#dieway device which is
processed and returned with appropriate data. Regadiback, provided by the
model, is then called allowing to print informatitmthe user that name has been

successfully changed or print a validation error.

3.3.2 Periodic request

By registering a periodic request, the view modstsh’'t have to maintain any
kind timer triggering data update. Instead, thispomsibility is passed to the
Gateway.gml. Once registered, the requests aredieaily repeated until model

unregisters them.

GUI DevicesModel : Gateway.gml : Gateway (Tyrus) :

registerPeriodicRequest()

sendTextMessage()

H onTextMessageReceived()

H requestCallback() sendTextMessage()

updateViewData H

onTextMessageReceived()

} requestCallback()

updateViewData
L B

Figure 6 Sequence diagram of executing the periadjuoest

3.3.3 Gateway requests

Since the WebSockets connection between Client Gatgway is maintained
throughout the whole application’s lifecycle, ip®ssible to support the bidirec-

tional communication:

GUI Gateway.qml : Gateway (Tyrus) :
H registerRequestListener()
H onTextMessageReceived()

e
H listenerCallback()

updateGUIComponent()

Figure 7 Sequence diagram of handling the requeasgtaied from the Gateway

The view model can subscribe itself to the incom@aeway requests by regis-
ters a request listener. Whenever Gateway.qml vesea matching request the

registered callback is invoked.

35

3.4 Graphical User Interface

The Smart client prototype contains a simple GregdhUser Interface that con-

sists of the following views:

MainView

OverviewView DevicesView

i

DeviceDetailView

Figure 8 Views hierarchy

MainView contains the top-most controls like MenuBBoolbar or SwipeMenu;

which allow for navigating between the rest of thews. OverviewView is the

default view, set on the start of the applicatitrcontains a few of the QtChart
controls visualizing statistics of the power netkéike power consumption and
the monthly electricity price. DevicesView listd dévices connected to the pow-
er network and allows for changing device’'s paramsethrough the DeviceDe-
tailView. Although relatively simple, this desiga sufficient to demonstrate ca-

pabilities of Qt framework in building a modern @hécal User Interface.

As described in the previous chapter, to provideable GUI on devices with dif-
ferent operating system and screen type, the preoapplication contains two

implementations of the View layer:

» Desktop — for personal computer using a desktopabipg system and
an external monitor or other large display withtmutchscreen.

* Mobile — for mobile device with touchscreen disptdysize 4-6 inches

All screenshots presented in this chapter come foo the following devices

used in the testing:

* PC, Windows 8.1

* PC, Linux Mint 17.3 Cinnamon

* Nexus 10 tablet, Android 5.0, 10-inch touchscreispldy

* OnePlus One Smartphone, Android (Cyanogen) 5.1.15-inBh

touchscreen display.

3.4.1 Viewsnavigation

The main responsibility of the MainView is to prdei navigation between other
views of the application. The desktop implemeptatof the view uses a Tab-
View control to do it, where each tab containset#ht view available to the user:

37

n] Smart Client - o IEN|
File Edit
Button1 Button2 Enabled

Overview Devices

= eaten ® not yet eaten @ SplineSeries
5.8

‘ 4.6

| 3.4

2.2

1.0
0.0 2.0 4.0 6.0 8.0

= Setl Set2 Set3 @ eaten O not yet eaten
8.0
6.0

4.0

2.0 I I I
0.0

Figure 9 Screenshot of the MainView - Windows

Implementation for mobile device uses animated ewi@nu. It acts as on over-
lay, invisible when not used. Once a swipe gessidetected it makes menu visi-
ble on the left side of the screen. Pressing theuneitton changes the view un-
derneath and hides the menu.

Settings i
Power distribution

Computer sLights mTV mFridge
De

Consumption -@:

Alarms

Power consumption

936.0 938.3 940.5 9428 945.0

Figure 10 Swipe menu - Smartphone

3.4.2 Screen orientation

Most of the Smartphones and tablets currently albglon the market allow user
to change screen orientation. Three ways were deresi to support this feature
in the prototype’s GUI:

» Allow only a single screen orientation — applicatwill maintain the same
orientation independently from the device’s screeentation. On An-
droid this can be done by modifying application ifest file.

* QML states — each orientation will have a QML stadsigned to it. Once
orientation changes, so will its state. Then, bypaating various layout
parameters, like anchors, state can adjust the agording to its orienta-
tion.

» Separate view implementation — For the most compéeses, where ma-
nipulating the layout parameters using statesasctomplicated to achieve
desired effect, each screen orientation can haeparate implementation

of the view.

39

The Smart Client prototype uses using states tp@tipoth screen orientations:

32094 @

Figure 12 Landscape orientation - Smartphone

3.4.3 Nativecontrols

The controls available through the QtQuickContradisd QtQuickControlls2
modules offer the look and feel that is similarthe one used by the operating
system on the target device. For example, the MangBntrol will look and be-
have differently depending whether it is run on @Wws or Android. Following
screenshots of the prototype application demorstréhe application window
with the MenuBar and Toolbar controls defined by same QML file:

41

m Smart Client - o IEN|
File | Edit
Buty| Cut [¥] Enabled
Ove ony
Paste
eaten ® not yet eaten @ Spl
5.8 -
» o
‘ gk — ~
3.4 . \7 _—
P -
22—
1.0
2

Setl = Set2 = Set3 ®eaten O not yet eaten
8.0
6.0
4.0
2.0 I
oo M 0

Figure 13 MenuBar, Toolbar and TabView controls/dimdows

omDes ¥ i 0206
Button1 Button2 Enabled }
oveRviEw oevices File
{
Edit
eaten mnot yet eaten
58
‘ 46
34
22
3
0 20 4.0 6.0 8.0

mSet] mSet2 mSet3

Figure 14 MenuBar, Toolbar and TabView controlsAomroid tablet

Screen shots above show that the same the QMLot@ain provide the user ex-

perience very similar to the one expected on tleaimg system it is run on.

3.5 Crosscompilation
3.5.1 Toolchain

There are two approaches to develop an applicatiothe Raspberry Pi device:
directly on the device itself or on another machirseng the cross compilation

toolchain.

At the moment of writing this report, the latestsien of Qt available on Rasbian
software repository is 5.3.2. Hence, the Qt frantbwtad to be compiled from
the available source code to match the version aeeather platforms: 5.7. Tak-
ing into account the required disk space and tmepdation time, the Qt source
code was compiled on the x86 Linux machine. The sifect of this task is build-
ing a complete Qt toolchain allowing for cross cdmg Qt applications for

Raspberry PI.

Building Qt framework was done based on the offi& guide /7/. Following

components were used:

* Raspberry Pi Tools containing the arm-bcm2708-lignyeai GCC cross-
compiler allowing for compiling code for ARMv7/vedé€pending on
Raspberry Pl version) on a Linux-x86 host. /22/

* Raspbian Jessie /23/ — Debian-based operatingnsysteommended by
the RPI manufacturer.

» Sysroot — copy of all required libraries and headwdstained from the tar-
get device and used to configure and build Qt fraank.

e Qtsource code /24/

* Raspberry Pi v1. device

First step was to build the gmake and other tdws, together with GCC compil-

er, form a complete Qt cross compile toolchain:

gtbase
Sysroot N <
Linux x86
GCC compiler |—pp»

43

gmake

Figure 15 Using the Raspberry Pi cross compildmitd gmake.

Qt source code is divided into modules. The Qtlmasdule contains the most es-

sential features and tools like gmake allowing larlding the Qt applications.

Once Qtbase tools have been compiled all otherinejmnodules were built. For

example, Qtdeclarative module, which contains Qt®Qluibrary used to develop

most of the application’s code:

Sysroot

GCC compiler

gtdeclarative

Y

gmake

Linux x86

libQt5Quick.so

libQt5QML.so

Figure 16 Building other optional Qt libraries

Once copied back to the Raspberry Pi device, theedghlibraries can be loaded

and used by any Qt application during runtime.

352 QtKit

Qt Creator allows for organizing the available thalins in so called Kits. Fol-
lowing snapshot shows a Kit configuration dialoghagettings used to build the
Smart Client prototype for the Raspberry Pi.

General | Kits | QtVersions = Compilers = Debuggers = CMake

Name Add
v Auto-detected
Desktop Qt 5.5.1 GCC 32bit Clone
v Manual
pBemave
Name: Raspberry Pi Cross Compilation Kit & '

File system name:

Device type: Generic Linux Device v

Device: Generic Linux Device (default for Generic Linux) ¥ || Manage...
Sysroot: /home/crane/rpiworkspace/sysroot Browse...
Compiler: GCCRPI v || Manage...
Environment: No changes to apply. Change...
Debugger: RPI Debugger ¥ || Manage...
Qt version: Qt 5.7.0 (qt5) ¥ || Manage...
Qt mkspec: devices/linux-rasp-pi-g++

CMake Tool: Manage...

Figure 17 Configuration of the cross-compile RaspbRi kit in the Qt Creator

Each Kit consists of the following elements:

» Sysroot — root directory of the target device conitgg headers and librar-
ies used during the build.

» Debugger

» Compiler

* Qtversion — location gmake and other Qt configaratiles

* Qt mkspec — additional compiler settings for thrgea platform/device

45

3.5.3 Remote deployment

An additional feature of the Qt Creator is the awdtic deployment and execution

of the built application over SSH. Following piactushows settings used to define
the Raspberry Pi as a target device.

Devices

Device: | RaspberryPi (default for Generic Linux)

v Add...
General Remove
Name: RaspberryPi
Type: Generic Linux Test
Auto-detected: No .
Show Running Processes...
Current state: Unknown

Deploy Public Key...
Type Specific

Machine type: Physical Device

Authentication type: e Password Key

Host name: |192.168.1.7 SSH port: | 22 = Check host key
Free ports: 10000-10100 Timeout: 10s =

Username: pi

Password: 0000000000 Show password

Create New...

GDB server executable: | Leave

Figure 18 Configuration of Raspberry Pi as a rentest device in Qt Creator

With the Qt Kits fully defined, it's possible to gily switch between running
application of the host system or remote device:

Project: SmartClient
Deploy: Deploy to Remote Linux Host
Run: SmartClient (on Remote Device)

SmartClient| Kit Build

E, Desktop Qt 5.5.1 GCC 32bit Debug

Debug ‘RPI ﬁ:v“‘

>

">

Figure 19 Panel allowing to quickly switch Kit us@dhe current build.

When run remotely, Qt Creator will open SSH conioectvith specified device,
deploy the binaries to the remote directory spedifn the pro file, and start their
execution with standard input/output availableha Qt Creator’s console.

3.6 Additional tools
3.6.1 Debugger

As any modern Integrated Development Environmdm, @t Creator offers a

build-in debugger including features like:

» conditional breakpoint
» stack trace
* monitor of the scope variables

* Instruction-wise mode for debugging assembly code

47

File Edit Build Debug Analyze Tools Window Help

Value Type
o= |4 aray 00110021003 char 3]
QString string = "String": o 1 char
char array[] = { 0x01, 0x02, 0x03}; m 2 char
int number = 100; 2 3 char
FetiEn 0 number 100 int
} | P string "String" QString
4 int main(int argc, char *argv(])
{
function();

Line

Function File

Level Function File

1 function main.cpp 1 @9 function() C\Users\makra\... 11
2 gMain main.cpp 17

3 WinMain *16 qtmain_wincpp 113
main

4

Application Output

untted1 3

Debugging has finished ~

Debugging starts
QML debugging is enabled. Only use this in a safe environment.
Output test]|

| BI O- Type to locate (Ctrl -x-u-s 0'5-«:-&; 3 | Application .. 23 compie Ou... !QMU)SCQ.» nsmvim.. _l

Figure 20 Debugger in the Qt Creator.

The debugger has been used extensively duringrtitetppe development. Espe-
cially useful was the ability to debug the QML coaled remote debugging the

application running on Android or Raspberry Pi.

3.6.2 QML Designer

An alternative to develop the Graphical User Irsteef by manually editing QML
files is to use the QML Designer, which is bundhgth Qt Creator installation.

While editing any QML file it is possible to switdio the design mode which
opens the QML Designer view and allows for the gregl editing. Like most of
the popular Ul tools it offers drag and drop swthtor combined with settings of
the various properties: connecting signals, bindaing dynamic properties, and
properties of the QML controls/widgets themselves.

Although QML designer is capable of editing any Qmeg, the official guide (ci-
tation needed) recommends using the provided witetlsplits a view into two
QML files:

+ ${FileName}Form.ui.gml — which contains pure QMLdm without any
logic written in JavaScript

* ${FileName}.gml — which binds to the signals expodsy the Form.ui
file, sets its properties and implements simple3avipt logic

The SmartClient prototype uses a similar separatioen implementing its views.
For example, the Devices view, which containsdisthe devices detected in the
power network, consists of DevicesForm.ui.gml! ardiBes.qgml files.

Computer 151 W

Lights 326 W

TV 103 W

Fridge ow

-

Figure 21 Screenshot of the Devices view

The DevicesForm.ui.gml file describes the layouttled QML controls in the
view, for instance the ListView; whereas, the Desgigml file handles signals

triggered by the pressed buttons and fills theMiest with the model’s data.

49

The QML Designer has been successfully used thimutgine project, especially
for the initial design of the views. However, sowfethe more complex views
containing controls like Layouts and Charts coubd lne processed in the design
mode. In those cases, the design mode was noabkgibnd files had to be edited
manually. It should be noted, that at least pathefencountered issues could be
caused by using the latest Qt 5.7 beta releasdaandhat it is the first version
that introduced controls like Charts.

3.7 Push notifications

The push notification is a technique of displayangotification to the user even if
application is running in the background. It is eoanly used on the mobile de-
vices. It was implemented in the prototype by indigg example available in the

Qt documentation /21/ and demonstrates two impbrethanisms:

* Creating a C++ extension that can be registereitienQML engine and
used as a QML type.

* Using the Android’s native APl with Java code witlh¢he direct JNI calls
(the JNI calls are covered in the camera contrplémentation).

As demonstrated on the sequence diagram below, @pfilication calls athe
function of the PushNotification C++ class whenenetification should be dis-
played. PushNotification object is registered ie fDML context as a singleton,
l.e. only a single its instance is available. Thits@, Java Android activity is run,
which uses directly the Android API to display thatification.

QML Application : PushNotification.cpp : Android AP :

setNotification(text)

1

W create/start activity

>PushNotification.java :

Native notification

Figure 22 Sequence diagram of the Push Notificatidansion

The main benefit of this solution is that complexiaties can be written entirely
in Java and included as additional files in thggmb*.pro file. Qt Creator is then

able to bundle them together with other C++ filed deploy on android device.

3.8 Cameracontrol

Implementation of the camera control is done thioting Android SDK library to

demonstrate how QtQuick application can accesq#tiwe environment of the
client. Otherwise, this task could be accomplisttedugh the available Camera
QML type with much less effort. Camera control Gaxtension is exposed to the
QML as ThumbnailSnapper type. Invoking its functisnapThumbnail(), opens
the default Android camera application and allowssruto take a single picture

that is then set as the device’s thumbnail.

Contrary to the push notifications feature, the eamncontrol is implemented
without any Java code, purely through the JNI meisma offered by Qt.

51

The sequence diagram of the ThumbnailSnapperlmafvig:

Application : Android SDK :

ThumbnailSnapper :

snap Thumbnail()

_‘ Create and configure activity

k 4
—
1]

—— = {ThumbnailSnapperReceiver : |

startActivityWithResult(...)

resultCallback(...) -‘

emit thumbnailReady(...) [

X

emit thumbnailStreamChanged

Figure 23 Sequence diagram of the ThumbnailSnapgension.

3.8.1 Native Java implementation

Implementation started with writing camera conttotle in Java using Android
Studio and Android SDK. It turned out to be a quticient way of writing fur-
ther JNI code in Qt. Since the QAndroidJniObjeetssl requires providing a sig-
nature of the method (as QString) being invokésl pitone to typos which are de-
tected only during the application execution ondbeice or emulator.

Intent intent = new Intent () ;

intent.setAction ("android.media.action.IMAGE CAPTURE") ;

File photoFile = new File (Environment.getExternalStorageDirectory ()
"Photo.png") ;

imageUri = Uri.parse(photoFile.toURI () .toString())

intent.putExtra (MediaStore.EXTRA OUTPUT, imageUri) ;

alinlc CAPTURE IMAGE ID = 15203148
startActivityForResult (intent, CAPTURE IMAGE 1ID) ;

This code, assigned to a button press event, sremtaew Intent with IM-
AGE_CAPTURE action. Once started, it opens a defandiroid camera applica-
tion and allows user to take a single picture. WezliaStore. EXTRA_ OUTPUT
parameter controls the output file to which theafipicture should be saved to.

Once Intent object is fully set the activity isrstal.
3.8.2 Qtimplementation

After the activity written in Java has been suctiglystested on Smartphone de-
vice, the code was ported to the Qt application.

The equivalent C++ code is following:

QAndroidJniObject mediaDir = QAndroidJniObject::callStaticObjectMethod(" android/os/Environment",
"getExternalStorageDirectory", " ()Ljava/io/File;");

QAndroidJniObject mediaPath = mediaDir.callObjectMethod("getAbsolutePath",
"()Ljava/lang/String;");

QString picturePath = "file: //" + mediaPath.toString() + " /smartClientImage.png";

QAndroidJniObject uri = QAndroidJniObject::callStaticObjectMethod("android/net/Uri", "parse",
"(Ljava/lang/String;)Landroid/net/Uri;", QAndroidJniObject::fromString(picturePath).object<jstring>());
QAndroidJniObject action = QAndroidJniObject::fromString("android.media.action.IMAGE CAPTURE");
QAndroidJniObject intent("android/content/Intent");

QAndroidJniObject extraOutput =
QAndroidJniObject::getStaticObjectField ("android.provider .MediaStore", "EXTRA OUTPUT",
"Ljava/lang/String;");
intent.callObjectMethod("setAction", " (Ljava/lang/String;) Landroid/content/Intent;",
action.object<jstring>());
intent.callObjectMethod("putExtra",

" (Ljava/lang/String;Landroid/os/Parcelable;)Landroid/content/Intent;",
extraOutput.object<jstring>(), uri.object<jobject>());

connect(receiver, & ThumbnailSnapperReceiver::thumbnailReady, this, & ThumbnailSnapper::handleReadyThumbnail);

QtAndroid::startActivity(intent, actionCode, (ThumbnailSnapperReceiver *)receiver);

53

Qt allows for calling the native Java API leveragisNl — Java Native Interface

called through helper class QAndroidJniObject.

The QAndroidJniObject itself is representation oflava class instance: from
primitive types like int or float to complex classkke java.io.File. It offers num-
ber of methods allowing for instantiating a newsslabject and execute its meth-

ods.

For example, the line:

QAndroidJniObject intent("android/content/Intent");

initializes the class Intent under package andcoitent with constructor taking
no arguments. Such initialized variable intent, rwlds the Intent class instance

and is further used to call the Java object methatExtra™

intent.callObjectMethod("putExtra",
" (Ljava/lang/String;Landroid/os/Parcelable;)Landroid/content/Intent;",
extraOutput.object<jstring>(), uri.object<jobject>());

The second argument of the callObjectMethod functiescribes the exact signa-
ture of putExtra method. This mechanism allowscfating the overloaded meth-
ods using the same name. The signature must benvrising following syntax:
(argumentTypel, argument2Type, ...)returnType. Hertloe, signature shown
above represents the following Java method pro#&typ

android.content.Intent putExtra(java.lang.String, android.os.Parcelable);

QAbstractJniObject offers similar mechanisms faroking static methods of the

class and also accessing static/non-static fielhadbject.

The last line of the code starts the activity amdvjgles a callback function
(through the interface QAndroidActivityResultReasiywhich should be invoked
once activity execution is finished. The definitioh the callback function is

following:

void ThumbnailSnapperReceiver::handleActivityResult(int receiverRequestCode, int resultCode, const
QAndroidJniObject &data) {
jint RESULT OK = QAndroidJniObject::getStaticField<jint>("android/app/Activity",
"RESULT_OK");
if (receiverRequestCode == actionCode && resultCode == RESULT OK) {
QFile file(" /storage/emulated/0/smartClientImage.png");
file.open(QIODevice::ReadOnly);
QByteArray byteArray = file.read All();

emit thumbnailReady(byteArray.toBase64());
}
}

Prototype of this function is very similar to thative activity onActvitiyResult

callback:

void onActivityResult (int requestCode, int resultCode, Intent data)

It performs a simple check validating the result @opies the content of the pic-
ture file into the QString, using Base64 encodiagcoded picture is then emitted
as a signal and eventually set as the propertiieoThumbnailSnapper QML ob-

ject.

55

4 SUMMARY

Cross-platform support:

e According to the research, the hybrid applicati@s been chosen as the
most feasible application type for the given reguients.

* According to the documentation Qt framework canpsupdevelopment
for all required platforms: Windows, Linux, Andrgilflac OS X and iOS

* Prototype application has been successfully deplaye required plat-

forms: Windows, Android and Raspberry Pi runningptaan Linux.

Graphical User Interface:

e According to the documentation, Qt framework isugable framework
for GUI development, offering a wide variety of \gets and controls via
QtQuick module.

* Proven that QML language allows for developing ghhi customizable,
responsive and animated user interface.

* Prototype application successfully implemented Gultable for both
Smartphone and Desktop devices which:

o0 Uses QML controls to represent: charts, lists, miears, toolbars
and others.

o Demonstrates how animation and gestures usage fgnmenting
swipe menu

o With limited set of controls provides the nativekoand feel of the
operating system it is run on.

o Is responsive.

0 Supports portrait and landscape screen orientatioen used on

the Android device.

Client-Server Communication:

WebSocket chosen as the technology most suitablenjolementing the
client-server communication in the Smart Client.
Implemented a Gateway emulator able to provide tathe client with
WebSocket.
Implemented the WebSocket communication in theiegibn prototype
demonstrating usage of all request types:

o Single client request

o Periodic client request

0 Server request

Native access of the client device:

Implemented the QML C++ extension plugin that iteab send the push
notifications on the Android device and demonsgate Android API ac-
cess using Java code.

Implemented the QML C++ extension plugin that iteab take a picture
using camera available on the Android device andatestrates the An-
droid API access using JNI API provided by Qt fravoek.

57

Development tools:

* Built a Linux cross-compile toolchain able to cotep®t applications for
Raspberry Pi device.

» Built the Qt runtime for Raspberry Pi device.

» Qt Creator was used through the prototype developara assessed.

e Qt Creator debugger was used through the protatgwelopment and as-
sessed.

QML designer was used through the prototype devetoy and assessed.

5 CONCLUSIONS

The researched information have been successfypfieal in practice and

demonstrated that Qt framework can be successfisgd to develop cross-
platform applications on Android, Windows and Linogerating systems. Study
was limited to just those three platforms; howevine Qt Company declares
support also for a few others: Windows RT, Mac Oarnl iOS. This makes Qt
framework one of the very few solutions availabfetbe market which supports
such a wide number of operating systems and aotuirss.

Furthermore, the Qt sources were used to succhsbfild a cross-compile tool-
chain for the Raspberry Pi device. This is espbciaiportant for the Smart Cli-
ent project giving possibility to develop the HMient on virtually any device

using a Linux system.

Tools offered by The Qt Company are of high qualitize Qt creator can rival
with other major IDEs available for the C++ langeadf also offers assistance
when deploying and debugging application remotellgich turned about to be
invaluable during the development for Android andspberry Pi devices. The
only tool that did not quite meet the expectatienthe QML designer. Although
it looked very promising at the beginning, in didtnvork with all controls and

widgets used in the application, which limitedutage considerably.

Another Qt downside is the deployment time on tmelidid device, which com-
paring to the Android Studio, was roughly half anote longer. This might not
seem like much, but considering the rather typaierdNI API, it makes debug-

ging the Android application a tedious task.

QML was proven to be a powerful and flexible langeiallowing for developing
a highly customizable user interface using an esttenlibrary of QtQuick con-
trols. Style of the most controls can be furthestomized or, if set to default,

used to simulate look and feel of the target ojpagatystem.

59

QML can be further extended by custom QML typedtemiin C++. This let de-
velopers use other 3rd party libraries in theirjgebor, using JNI API, call An-
droid native libraries.

Finally, the quality of documentation offered byer@t Company is positively
surprising. It contains extensive examples and &ycriptive, up-to-date API

wiki pages available at any moment through the @&a@r help mode or web site.

In retrospective, the topics like client-server coumication and implementation
of the Gateway emulator were not exactly cruciath® outcome of this thesis.
Time spent on their research and implementatiordcbe used better to investi-
gate more important issues. This evaluation woeldefit greatly from better in-

sight into the Qt alternatives currently available the market. Even though Qt
seems to satisfy every crucial requirement of theu$ Client, it's impossible to

make a decisive verdict without putting it in tr@mparison with the other popu-
lar frameworks like PhoneGap or Xamarin. Other ingoat topic that should be
discussed is the capability of the Qt frameworketst the application that is being
developed. It does offer tools like QtTest modutx C++ code) and TestCase
QML type (for QML code) which should be assessegktioer with other frame-

works like the Squish GUI Tester.

6 REFERENCES

11/ U.S. Department of Energy. The Smart Grid. Aseel 18.5.2016.
https://www.smartgrid.gov/the_smart_grid/smart_dniohl

12/ U.S. Department of Energy. The Smart Home. eAsed 18.5.2016.
https://www.smartgrid.gov/the_smart_grid/smart_hdrtrel

13/ IEEE. Smart Grid. 2016. http://smartgrid.ieeg/

14/ International Energy Agency. 2016
https://www.iea.org/topics/electricity/subtopicsamgrids/

/5/ Alessio Montone, Network Digitalisation, Erdgbint of View, 24.11.2015.
http://www.smartgrids.eu/documents/eventsandwonBsiZ®15/7 ETP_SmartGri
ds_Workshop_24th_November_2015_Alessio_Montone.pdf

16/ The Qt Company. Qt Licensing. Documentationr f@t 5.6.
http://doc.Qt.io/Qt-5/licensing.html

17/ The Qt Company. RaspberryPi Beginners Guide. \@ki page.
https://wiki.Qt.io/RaspberryPi_Beginners_Guide

18/ Microsoft Application Architecture Guide, Cheog an Application Type.
2nd Edition2. October 2009. https://msdn.microsoft/en-
us/library/ee658104.aspx

19/ Sten Anderson. The Advantage of Hybrid Clieint€Enterprise Applica-
tions. 2010. http://www.citytechinc.com/content/danytechinc/pdf/Hybrid-
Clients-in-Enterprise-Apps2.pdf

/10/ Henning Heitkotter, Sebastian Hanschke, TimMRajchrzak. Evaluating

Cross-Platform Development

Approaches for Mobile Applications. Page 3. 2013.
http://www3.nd.edu/~cpoellab/teaching/cse40814Aptatform.pdf

61

/11/ The GTK+ Team. Features. Accessed on 10.6.201
http://www.gtk.org/features.php

/12/ QtSharp project. Readme. 30.11.2015.
https://github.com/ddobrev/QtSharp/blob/master/REMADMd

/13/ Riverbank. PyQt project Introduction. 2015.
https://riverbankcomputing.com/software/pyQt/intro

/14/ Apache Cordova project. Documentation. Acogsse

17.4.2016http://cordova.apache.org/docs/en/latgsiégpverview/#plugins

/15/ Qt Documentation. Writing QML Extensions with C++.
http://doc.Qt.io/Qt-5/Qtgml-tutorials-extending-cetample.html

/16/ W3C. XMLHttpRequest Level 1, 30.1.2014.
https://www.w3.org/TR/XMLHttpRequest/

/17/ The Qt Company. Qt 5.6 Documentation. QML Malo Object.
http://doc.Qt.io/Qt-5/Qtgml-javascript-gmliglobalelsi. html#xmlhttprequest

/18/ The Qt Company. Qt 5.6 Documentation. Qt WselkSts.
http://doc.Qt.io/Qt-5/Qtwebsockets-index.html

/19/ Apache Software Foundation. Javascript Tutoda&cessed 10.4.2016.
https://thrift.apache.org/tutorial/js

/20/ The Qt Company. The IDE, Qt Creator. httpssWwQt.io/ide/

[21/ The Qt Company. Qt 5.6 Documentation. Qt Amdixtras, Notification
example. http://doc.Qt.io/Qt-5/Qtandroidextras-ficdition-example.html

[22/ Raspberry Pi Foundation/ Raspberry Pi Toolsit @ommit:
2b2d2046e€6928da056207ad9b8a874209880d74d.
https://github.com/raspberrypi/tools

/23] Raspberry Pi Foundation, Raspbian Jessi¢ Riééease date: 18.03.2016.
https://www.raspberrypi.org/downloads/raspbian/

24/ The Qt Company. Qt 5 super module. Tag: VvEbeal.
http://code.Qt.io/cgit/Qt/Qt5.git/

APPENDIX 1 1(10)

SOURCE CODE

The source code of the prototype can be found uheeGithub repository:

https://github.com/WatchfulLikeACrane/SmartClient

