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Abstract 

This thesis is part of my double degree studies on Energy and Environmental 

Engineering by Novia University of Applied Sciences, from Vaasa, Finland, and 

Mechanical Engineering by the University of Lleida, from Lleida, Spain. 

This study was requested by the company Baltic Yachts in order to determine the 

possibility to increase the efficiency of the process of heating carbon fiber pieces. This 

process referred to as curing, is part of the treatment of Carbon Fiber Reinforced 

Polymer (CFRP) structures to achieve the desired physical properties. CFRP is a 

composite material with superb properties. The manufacturing of CFRP has high needs 

of energy, and thus it becomes expensive. 

The company Baltic Yachts is a company in the sector of designing and building 

exclusive sailing yachts made of CFRP. This is cured and molded in the company with 

heat treatments up to 115°C. 

The objective of this project is to determine the suitability of heating the CFRP by 

means of conducting electricity through the carbon fibers. The report consists of a 

theoretical part, lying in a research of information, and a second part, lying in different 

experimental tests to study the behavior of carbon fiber while conducting electricity. 
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PART 1: INTRODUCTION AND OBJECTIVE 

1. Introduction 

Engineering materials may be classified into different types: metals and alloys, ceramics 

and glasses, polymers, semiconductors, and composite materials. The composite materials 

consist of two or more materials with dissimilar properties in order to form a new material 

with enhanced properties. 

Carbon fiber reinforced polymer (CFRP) is a composite material with superb properties. 

The use of CFRP is continuously increasing in a number of applications such as aircrafts, 

space shuttles and satellites, automobiles, marine sector, infrastructures, sport goods, and 

even biomedical applications. It is though among the most expensive to produce due to 

high needs for energy and time, thus it is mainly used in high-performance applications. 

CFRP has high tensile and compressive strength, high module outstanding fatigue life, no 

corrosion, and light weight. The manufacturing process includes the manufacturing of the 

carbon fibers and the curing and molding of the polymer. In both processes, heat treatments 

with large needs for energy are applied. 

Baltic Yachts is a company that designs and builds high-tech, high-performance sailing 

yachts made of CFRP. The process of manufacturing the carbon fibers do not take place at 

the company; however, the curing and molding of the CFRP is performed there. This 

process implies heat treatments to up to 115°C. At the moment the heat treatment is 

performed in two stages, one up to 80-90°C, and the other up to 115°C. The first step is 

performed in a wooden oven that looks like a sauna. The raw CFRP is mounted on molds 

and heated up. The second step is performed by applying electric blankets on the resulting 

CFRP from the first step. 
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2. Objective 

Increasing the efficiency of the manufacturing processes and the efficiency throughout the 

lifespan of the products has become a major issue in most companies. This fact may be 

approached both from an environmental point of view and from an economical point of 

view. To improve the efficiency of the processes means to reduce the amount of energy 

needed to perform a certain task. This decrease in the consumption of energy obviously 

brings a reduction of the costs but, in addition, it also implies lower environmental impact. 

The company Baltic Yachts has been using lightweight sandwich constructions since the 

1970s. Today, the company has a large trajectory in using CFRP since they have been using 

it for more than 25 years. Nowadays, the company intends to lower the consumption of 

time and energy especially during the curing and molding processes. Therefore, an option is 

to perform the heat treatments using another method. 

The objective of this project is to determine the suitability of heating the CFRP by means of 

conducting electricity through the carbon fibers. The development of this report consists of 

two main parts. The one part is theoretical and mainly lies in a research of information in 

order to have a broad knowledge on the CFRP, and more in detail on the manufacturing 

process and properties. The other part is experimental and includes different tests that have 

been carried out in the laboratory in order to study the behavior of carbon fibers while 

conducting electricity. In this part different samples provided by the company are to be 

used. 
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PART 2: THEORY 

3. Composite materials 

Composite materials are formed from the combination of two or more materials with 

dissimilar properties in order to form new materials with enhanced properties. This type of 

materials is distinguished by notably achieving better –useful or structural- properties than 

those of the components themselves. The microstructure of composite materials is non-

uniform, discontinuous and multiphase due to the combination of the different materials, 

giving those characteristics that cannot be found neither in metals, ceramics, nor polymeric 

materials. 

The classification of composites as a type of materials started in the second half of the 20
th

, 

and during the last four decades these have been the prevailing developing materials. 

Applications of composites can be found in the high-tech products of the aerospace, 

underwater, bioengineering, and transportation sector. Nowadays, composite materials are 

also referred simply as composites. 

 

3.1. History 

The oldest and most important composite materials are those that can be found in the 

nature, and so known as natural composites. The most common composite of this type is 

wood, which consists of a reinforcement of cellulose fibers and a lignin matrix. Cellulose is 

a strong and flexible material and lignin endows stiffness to the composite. 

Non-natural composites have been used since the prehistory. The first man-made composite 

to be used is bricks made of straw and mud. Concrete –and reinforced concrete- and asphalt 

are also examples of composite materials that have been widely used since the beginning of 

the 19
th

 century. In the present, the composite materials engineering tends to focus on the 

development of new artificially made composites. 
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3.2. Components of composite materials 

The constituent materials in the composites remain recognizable and keep their physical, 

chemical and mechanical characteristics, in opposition to what happens in metal alloys. The 

constituent materials must be insoluble in each other, physically dissimilar and chemically 

inhomogeneous. 

Composites can be made of two or more constituents; the simpler and most common 

composites are those that only consist of two different components. The two constituents 

are the matrix or continuous phase and the reinforcement or dispersed form. The matrix is a 

continuous phase in which the reinforcement is embedded; thus, the matrix surrounds the 

reinforcing phase, as shown in Figure 1. 

 

 

Figure 1. Schematic representation of the structure of a composite1 

 

Reinforced concrete is a composite material that is widely used in the building sector. As 

such, it consists of a matrix and a reinforcement. In this case, both components can be 

easily distinguished. The matrix or continuous phase is concrete and the reinforcement or 

dispersed phase is steel bars. The reason of using these two materials together is that 

                                                 

1
 http://www.essentialchemicalindustry.org/materials-and-applications/composites.html 

http://www.essentialchemicalindustry.org/materials-and-applications/composites.html
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concrete has a high strength to compression loads but does not resist well tension loads 

whereas steel withstands much better tension loads than compression loads otherwise. 

 

 

Figure 2. Photograph of the building of a structure made of reinforced concrete2 

 

 

3.3. Reinforcement 

The reinforcement or dispersed phase usually provides the strength and stiffness. There are 

different types of reinforcements: whiskers, particles, and fibers, being the most common 

fibers and particles. 

Particulates have dimensions that are approximately equal in all the directions. Particulate 

composites are much weaker and less stiff than fiber composites; nonetheless, their main 

advantage is the reduced cost. They are more brittle and difficult to process. The orientation 

of the particles is not significant and they are regularly used as fillers to reduce the cost of 

the materials. 

                                                 

2
 http://www.ulmaconstruction.com.ar/ 
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Whiskers are single crystals which are very small in both length and diameter with regard 

to the size of the fibers. These have an exceptional strength but are hard to spread in the 

matrix. 

Fibers are distinguished by having a small section compared to their length; that is to say, 

their length is much larger than their diameter. These are usually produced by drawing or 

pulling and, therefore, they have a higher strength in the long direction. The ratio between 

the length and the diameter is defined as aspect ratio. Dependent on this ration, fibers can 

be sorted into continuous fibers and discontinuous fibers. Continuous fibers have a large 

aspect ratio; on the contrary, discontinuous fibers have a small aspect ratio. Continuous 

fibers usually have a particular orientation while discontinuous fibers normally have a 

random orientation. Continuous-fiber composites are manufactured in laminates by piling 

sheets of continuous fibers in different orientations. The different types of reinforcements 

can be observed in Figure 3. 

 

 

Figure 3. Schematic representation of the different types of reinforcements in composites3 

 

                                                 

3
 http://kansu.tripod.com/me451/2.html 
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The most common type of composites is the fiber-reinforced. These offer higher strength 

and stiffness due to the small diameter of the fibers. The reducing of the diameter implies 

fewer defects, and thus higher strength; however, it also implies a higher cost. In addition, a 

small diameter also brings more flexibility. 

The most common fibers are glass, aramid, and carbon. The maximum volume of the fibers 

in the composite is around 70%; with larger rates there is too little matrix to bind the fibers 

effectively. 

Theoretically, the strength of discontinuous-fibers composites can be as high as that of 

continuous-fiber composites, if the fibers were aligned and had a high aspect ratio. 

Nonetheless, this is an assumption that is very difficult to achieve. Therefore, discontinuous 

fibers are usually non-aligned, and thus the strength and modulus of discontinuous-fiber 

composites is substantially reduced. Hence, continuous-fiber composites are used where 

high stiffness and strength are required, implying a larger cost; while discontinuous-fiber 

composites are used where the cost is the principal factor taken into account. 

 

3.4. Matrix 

The main functions of the matrix phase are to maintain the fibers together and in the proper 

orientation and to protect them from mechanical abrasion, chemical reactions, and effects 

from the environment. This can be a metal, polymer, or ceramic. The choice of the material 

is usually based on the desired ductility and the range of temperatures that it will have to 

face during its use. 

In metal-matrix composites and polymer-matrix composites a strong bond is formed 

between the fibers and the matrix. In this case, the matrix provides a medium through 

which externally applied loads are transmitted and distributed to the fibers, and it stops 

crack propagation among them by keeping them separated. Furthermore, the matrix also 

provides certain ductility. In ceramic-matrix composites, the goal is to improve the 

brittleness since ceramics are already stiff and strong. 
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The metal-matrix and ceramic-matrix composites have been less developed than polymer-

matrix composites since the production processes are more complex. These require higher 

temperatures and pressures than the polymer-matrix composites, and thus have higher 

costs. 

The materials that are the most widely used as matrix are polymers, which can be 

thermoplastics and thermosets. Thermoplastics are produced from a resin with high 

viscosity that is processed by heating it above its melting point. Thermosets are produced 

from a resin with low viscosity that reacts and cures during the processing, and forms an 

intractable resin. 

Thermosets are more used than thermoplastic because they usually have a better heat 

resistance. Among this, epoxy is the most common. The most commonly used polymer-

matrix composites are Glass Fiber-Reinforced Polymer composite (GFRP), Carbon Fiber-

Reinforced Polymer composite (CFRP), and Aramid Fiber-Reinforced Polymer composite 

(AFRP). 

 

3.5. Unidirectional and quasi-isotropic composites 

Materials can be grouped into either isotropic or anisotropic. Isotropic materials are those 

that have the same properties in all the directions; therefore, normal loads only produce 

strains in the same direction. On the other side, anisotropic materials are those that have 

different properties in all the directions; there are no planes of symmetry and normal loads 

do not only produce strains in the normal strains but also shear strains. 

Metals and polymers are usually classified as isotropic materials while composite materials 

are classified as anisotropic materials. Composites are also classed as orthotropic materials. 

These are a subtype of anisotropic materials whose properties differ in the three orthogonal 

directions. 

The manufacturing structure of composite materials is based on the desired isotropy. 

Notwithstanding, composites are manufactured into layers or plies. These layers can be 
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piled in the same orientation forming a single ply or lay-up known as lamina or 

unidirectional lay-up. If these layers are piled in different orientations, they form a single 

ply or lay-up known as laminate or quasi-isotropic lay-up. 

Continuous-fiber composites are usually laminated materials where the layers are made up 

in different orientations so as to improve the strength in the primary loads direction. 

Unidirectional lay-ups are obviously very strong and stiff in only one direction while very 

weak in the others. 

 

 

Figure 4. Image of an individual layer and a quasi-tropic lay-up or laminate. It is shown how individual layers are stacked in different 

orientations in order to enhance the strength and stiffness of continuous-fiber composites in different directions4 

 

The fibers generally support the longitudinal tension and compression loads. These loads 

are disposed between the fibers by means of the matrix, which also avoids that the material 

may crush in compression. Inasmuch as the orientation of the fibers affects the mechanical 

properties of the composites, the most fibers in the direction of the main loads the better. 

Nonetheless, this would result in a highly anisotropic material. 

                                                 

4
 http://www.composites.ugent.be/home_made_composites/what_are_composites.html 
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In many applications, there are loads in different directions. In these cases an anisotropic 

material is not suitable. In order to guarantee good properties in different directions the 

layers are stacked up in different orientations; the most common distribution is 0°, +45°, -

45°, and 90°, which can be seen in Figure 4. If the number of layers is the same in every 

direction, the properties are also the same in those directions. Thus, this type of composites 

is known as quasi-isotropic laminates. 
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4. Fiber-reinforced polymer composites 

The most commonly used type of reinforcement is fibers owing to the characteristics they 

provide, which have already been presented in the section 3.3 Reinforcement. In regard to 

the materials used as matrix, the most common are polymers, and among these the 

thermosets. Consequently, the most common type of composites is the Fiber-Reinforced 

Polymer (FRP) composites, which are sometimes also known as advanced polymer 

composites. 

The fibers that are usually used are glass, carbon, or aramid fibers, yet paper or wood or 

asbestos fibers have been used in some cases. The reinforcement materials that are 

generally used are epoxy, vinyl-ester or polyester thermosetting plastic, though phenol 

formaldehyde resins might also be used. 

 

4.1. Properties of fiber reinforced polymers composites 

The properties of composites obviously depend on their components and the way these are 

manufactured. However, there are some characteristic properties than may be found in the 

majority of the actual FRP composites. These most important properties are the following 

ones: 

- Low weight 

- High strength and stiffness 

- Good fatigue life 

- Corrosion resistance 

- Good design practice 

- High raw material costs 

- High fabrication and assembly costs 

- Anisotropic character 

- Adverse effect of temperature and moisture 
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- Difficulty to repair 

- Susceptibility to impact damage and delamination 

The high strength and stiffness combined with the low weight mean that the specific 

strength and specific stiffness are higher than that of most metal alloys. The specific 

strength –also known as strength-to-weight ratio- and the specific stiffness –also known as 

the specific modulus or stiffness-to-weight ratio- are the strength per unit of density and 

modulus per unit of density, respectively. 

The capacity of composites to resist cyclic loads is much higher than that of metals. Unlike 

metals, the fatigue strength of these materials is a high percentage of their static strength. 

Hence, fatigue is not a critical design factor to consider in the design of composites. The 

variation of the fatigue strength of different metals and that of a carbon fiber reinforced 

polymer are compared in Figure 5. It can be noticed, that after a large number of cycles, the 

strength of the metal alloys is drastically reduced, while the strength of the composite 

remains approximately the same. 

 

 

Figure 5. Fatigue properties of different aerospace materials5 

                                                 

5
 http://www.globalspec.com/reference/30805/203279/html-head-chapter-7-polymer-matrix-composites 
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Composite materials can delaminate due to an improper fabrication, assembly, or use. 

Incorrect handling or impacts may damage the structure at only one point, but the damage 

is highly probable to propagate through the material, causing separation between the layers. 

Furthermore, most of the fibers being used as reinforcing materials are resistant to 

biodegradation. This fact might be an advantage during the lifetime of the corresponding 

application, but on the other hand can pose environmental problems. The use of natural 

fibers such as jute, bamboo, coir, sisal, and pineapple could be as substitute of these fibers 

in some cases. The natural fibers have a very high strength and are renewable and 

abundant. The disadvantage of using natural fibers is that they have high moisture content. 

 

4.2. Applications 

There is a huge variety of applications of composite materials. The most familiar sector of 

non-natural composites might be the construction using different types of concrete, as 

presented in the previous section. Still, the type of composites that are being the most 

developed at the present, are polymeric composites. The applications of these include 

infrastructure, transportation, automotive, aerospace… 

In the aerospace sector, the weight reduction is a crucial factor. The military aircraft 

industry is distinguished by focusing mainly on the weight reduction despite the higher 

costs. As a consequence, the use of polymer composites is much higher than that in the 

commercial aircraft industry, even though it is increasing. The rate of composites may 

account for 20 to 40 percent of the airframe weight. The use of composites may decrease 

the weight of the aircrafts by 15 to 25 percent and thus the fuel economy is also improved. 

The future aircrafts build by the two most important companies in the sector, Airbus and 

Boeing, are expected to have a high share of high-performance composites. 

Space shuttles and satellites also use relatively high amounts of high performance 

composites, since the price is not the main driving element. The major automakers are also 

increasing the use of composite materials. It is in high-performance cars and luxury cars 
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that these materials are being used; but still not in the common cars. Some elements that are 

found to be made of composites are body panels, leaf springs, drive shaft, bumpers, doors, 

racing car bodies. In the marine sector, composites are being used in boat bodies, canoes, 

kayaks, etc. 

 

 

Figure 6. High-performance car in which the whole exterior is made of carbon fiber6 

 

In the field of infrastructures, composites may be used in roads and bridges. The current 

roads continuously need maintenance and reparation since they corrode. The advantages of 

composites are that they do not corrode, have a longer lifetime, and need much less 

maintenance. In addition, it is possible to build lighter bridges and even with limited 

earthquake damage. 

Other applications include sports goods such as skis, golf clubs, tennis rackets, fishing 

roads; bulletproof vests and other armor parts; chemical storage tanks and other equipment; 

biomedical applications such as orthopedic devices; and electrical applications, for instance 

panels and insulators. 

  

                                                 

6
 http://www.carbonfibergear.com/excessive-carbon-fiber-cars-at-the-2013-geneva-motor-show/ 
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4.3. Terminology 

In the field of the manufacturing of fiber-reinforced polymer composites there is a specific 

terminology that is being used. This terminology is related to the different stages in the 

production of the fibers. It is thus important to consider it before going deeply into the 

field, in order to avoid misunderstandings. The most important definitions are introduced 

hereunder: 

- Filament: individual fiber. 

- Tow: bundles of untwisted filaments. 

- Roving: number of tows joined together into a parallel bundle without twisting. 

- Yarn: number of tows joined together into a parallel bundle with twisting. 

- Tape: large number of parallel filaments or tows held together with an organic 

matrix material. Usually known as prepeg. 

- Fabric: woven cloth made by weaving yarns or tows in various patters to provide 

reinforcement in two directions. 

 

 

Figure 7. Tape and fabric products7 

                                                 

7
 Federal Aviation Administration, U.S. Department of Transportation 
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4.4. Manufacturing of the fibers in fiber-reinforced polymer 

composites 

The manufacturing of fiber-reinforced polymer composites implies two different processes. 

These are the manufacturing process of the fibers, and the bonding process of the fibers 

with the matrix. 

The manufacturing process of the fibers not only depends on the type of fibers to be used 

but also on how they are obtained. The most widely used fibers are glass, carbon, and 

aramid. All of these can be produced from different precursors and thus different methods 

may be used for each of the fibers. 

Insofar as different types of fibers with different obtaining methods are being used, it is not 

possible to generalize. Even so the fibers undergo a common transformation process to 

enable the bonding with the matrix. To begin with, fibers are typically produced as single 

tows. Then, these tows undergo a textile processing technique to produce fabric types or 

fiber preforms. Fiber preforms are the resulting product before being bonded to the matrix. 

These can be sheets, continuous mats, continuous filaments, or any other shapes that suit 

the following processes. The most usual processing techniques of manufacturing the fiber 

preforms are: weaving, braiding, knitting, and stitching: 

- Weaving. It can be done to produce two-dimensional fiber preforms and three-

dimensional fiber preforms. These last are created by multilayer waving; however, it 

is difficult to have fibers oriented in other direction than 0° and 90° in this case. 

Figure 8 shows some of the most common two-dimensional fabric patterns. 

- Braiding. It is used for the production of narrow width flat or tubular fabrics. It 

cannot be applied for the manufacturing of wide fabrics. Nevertheless, it does make 

possible to orientate the fibers at 0°, 45°, -45°, and 90°. 

- Knitting. It is done with the traditional method of warp and weft. The most common 

is to obtain two-dimensional fabrics. However, new technics allow the production 

of three-dimensional fabrics. 
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- Stitching. It is the simples of the four techniques and the most inexpensive. It is 

performed by inserting a needle through a stack of fabric layers to obtain a three-

dimensional structure. 

 

 

Figure 8. Different patterns of fabrics that can be used as fiber preforms8 

 

 

4.5. Molding processes in fiber-reinforced polymer composites 

The polymers used as the matrix are often referred to as resins. Thermosetting resins are the 

most widely-used. The resin, its chemical composition, and the physical properties affect 

the processing, fabrication, and the properties of the final composite material. 

Thermosetting resins are easily poured or formed into any shape, are compatible with most 

other materials, and cure into an insoluble solid. In addition, they are very good adhesives 

                                                 

8
 Guidebook for manufacturing CFRP Parts, Kaila 
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and bonding agents. The thermosetting resins that are commonly used are: polyester resins, 

vinyl ester resin, phenolic resin, epoxies, polyimides, polybenzimidazoles (PBI), and 

bismaleimides (BMI). 

Thermoplastic materials can be softened and hardened repeatedly by increasing the 

temperature and then decreasing it again. Therefore, they can be recycled. The main 

advantage of these polymers is the processing speed. Chemical curing of the materials is 

not produced while processing, and the material can be easily shaped while it is soft. 

 

4.5.1. Curing process of the thermosetting resins 

The thermosetting polymers, also known as simply thermosets, are available in a liquid or 

semi-liquid form. Under the correct conditions, these undergo a chemical reaction, which is 

known as curing, to form a solid material. The resulting product is a solid material that will 

soften above a determined temperature, which is known as the glass transition temperature 

(Tg). Unlike thermoplastics, thermoset products do not melt but decompose with heat. 

The first step to be done to perform the curing is to mix the thermoset resin with a hardener. 

Throughout the curing process the resin will pass from a liquid state, through a gel state, to 

a solid state. The cure time is defined as the time needed to curry out all the curing process. 

 Liquid – open time. It is the time during which the resin remains a liquid after it has 

been mixed with the hardener. The assemblies and the clamping should be done 

during this time, since the mixture will become more viscous until it reaches a gel 

state and cannot flow any longer. 

 Gel – initial cure. The mixture becomes a gel and it is not workable any more. This 

is known as the gel point. It continues to harden until it reaches a solid state. 

 Solid – final cure. The mixture has cured to a solid state after the cure time and can 

be dry sanded and shaped. The resin has a 90% of the maximum strength, which 

will be reached after some more days. The clamps can already be removed. 
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The ideal temperature of the curing process depends on the hardener. The process of curing 

may be performed at different temperatures but this implies different cure times. The higher 

the temperature of the resin, the faster it cures, as seen in Figure 9. Moreover, the chemical 

reaction of curing produces exothermic heat that depends on the thickness of the surface. In 

thick structures more heat is retained and thus the cure time is reduced. Furthermore, the 

curing at high temperatures increases the end mechanical properties of the material. 

 

 

Figure 9. Example of the state of epoxy during the curing based on the temperature and the time. As epoxy cures it passes from liquid 

state, through a gel state, to a solid state9 

 

 

4.5.2. Molding 

There is a wide range of processes that may be used for the molding of FRP. These provide 

different rates of flexibility, properties, and production costs. The leading processes are the 

matched die molding, the contact molding, and other significant molding methods. 

 

                                                 

9
 http://www.westsystem.com/ss/epoxy-chemistry/ 
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Matched die molding 

This type of methods produces highly consistent, net-shape and near-net shape parts with 

two finished surfaces and low labor cost. The molding methods included in this category 

are: 

 Compression Molding. It is the most common molding process for high-volume 

FRP parts. It produces high-strength, complex parts in a wide variety of sizes. 

Matched metal molds are mounted in a molding press. The molds are heated and 

pressure is applied. 

 

 

Figure 10. Compression Molding10 

 

 Low Pressure – Low Temperature Compression Molding. This method uses 

composite molds instead of metal molds, which may or may not be heated. It is a 

more inexpensive molding method yet only suited for simple shapes. 

 Transfer Compression Molding. In this process the molding is done using a transfer 

cylinder. It is best suited for very thick parts, such as transformer bobbins. 

 Resin Transfer Molding. This is an intermediate process between the slow spray-up 

and the faster compression-molding. The fabric is placed in the mold, which is then 

                                                 

10
 http://www.intechopen.com/books/nanocomposites-with-unique-properties-and-applications-in-medicine-

and-industry/a-review-of-thermoplastic-composites-for-bipolar-plate-materials-in-pem-fuel-cells 
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closed and clamped. The resin is pumped in under pressure displacing the air until 

the mold is filled. It is appropriate for medium-volume production FRPs. 

 Injection Molding. This method is suitable for both thermosets and thermoplastics. 

The difference lies in the temperature kept in various areas of the system, especially 

in the injection screw and the chamber. 

 

 

Figure 11. Injection Molding11 

 

 Structural Reaction Injection Molding. This method is similar to injection molding 

but it uses a preform or reinforcing fabric instead. 

 

Contact molding methods 

This type of methods is also known as open mold methods. This type of methods is simpler 

and allows for manufacturing FRP with only one finished surface at a lower cost. The 

molding methods included in this category are: 

                                                 

11 http://www.intechopen.com/books/nanocomposites-with-unique-properties-and-applications-in-medicine-and-industry/a-review-of-

thermoplastic-composites-for-bipolar-plate-materials-in-pem-fuel-cells 
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 Hand Lay-Up. This is the simplest and oldest molding method. It is used for low-

volume production of large pieces such as boat hulls. This method has three stages: 

firstly, a gel coat is sprayed onto the mold for a high-quality surface; then, the fabric 

is placed onto the mold; and, finally, a resin is poured or sprayed on. Additional 

layers are used to thicken the structure. The cure during the molding process can 

occur without external heat. 

 

 

Figure 12. Hand Lay-Up Molding Method12 

 

 Spray-Up. This process is similar to hand lay-up. The difference is that the resin is 

deposited in the mold from a spray gun. 

 

 

Figure 13. Spray-Up Molding Method13 

                                                 

12
 http://www.nuplex.com/composites/processes/hand-lay-up 
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 Vacuum Bag Molding. In this method a film is placed over the lay-up forming a 

bag. Next, the vacuum is drawn in it to eliminate the entrapped air and the excess 

resin. The cure can also occur without external heat. The advantage of this method 

is higher reinforcement concentration and better adhesion between layers. 

 Vacuum Infusion Molding. This process is similar to vacuum bag molding. The 

difference is that the fabric is placed on the mold and the resin is introduced when 

drawing the vacuum. It allows for the production of very large parts. 

 Autoclave Molding. This process is a further modification of the vacuum bag 

molding. In this case, heat and pressure are used in the cure. 

 

  

                                                                                                                                                     

13
 http://www.nuplex.com/composites/processes/spray-up 



  24 

 

 

5. Carbon fiber reinforced polymer 

Carbon Fiber Reinforced Polymer (CFRP) has become one of the most important fiber-

reinforced polymer composites in recent years. The CFRP industry has been growing 

steadily to meet the demands in an increasing number of applications like aerospace, 

military, turbine blades, automobile, and sporting goods, among others. The CFRPs consist 

of a reinforcement of carbon fibers and a matrix that is usually of epoxy. 

The use of CFRPs is predominant in high-performance structures where the cost is not the 

main factor to consider. The most used fibers in FRP are glass, aramid, and carbon; other 

fibers that are also used are S-2 glass and E-glass fibers. The cost of the fibers in 

descending order is: carbon, graphite, aramid, S-2 glass, and E-glass. Consequently, carbon 

and graphite fibers are used in the case where high performance is to be achieved. 

 

5.1. Carbon and graphite fibers 

Carbon and graphite fibers may be manufactured with different properties; however, the 

most noticeable are those that are typical for fibers, such as high tensile and compressive 

strength, high module, outstanding fatigue life, and no corrosion. The names of carbon 

fibers and graphite fibers are sometimes misused. The difference between them falls on the 

manufacturing techniques. 

The temperature at which graphite and carbon fibers are treated are different; graphite 

fibers at exposed at temperatures above 1650°C while carbon fibers are exposed at lower 

temperatures. The content of carbon in the fibers is also a distinguishing factor; carbon 

content in graphite fibers is higher than 99 percent whereas in carbon fibers it varies 

between 93 and 95 percent. 

The graphite structure consists of layers of carbon atoms. Each of the carbon atoms in one 

layer is bonded with three other carbon atoms on the same layer by means of a covalent 

bond forming hexagonal structures. The layers or planes of the graphite structure are hold 
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together by weak van der Waals bonds. The superior strength and moduli of graphite and 

carbon fibers is given by the very strong covalent bonds along the structures. Carbon fibers 

consist of both graphite and non-graphitic carbonaceous material. 

Carbon and graphite fibers are remarkably anisotropic. This is consequence of the structure 

of graphite. The strength in the longitudinal direction, that is to say in the direction of the 

layers, is much higher than the strength in the transversal direction. In the longitudinal 

direction the strong covalent bonds support the loads whereas in the transversal direction it 

is the weak van der Waals bonds. The longitudinal strength can be more than 28 times 

higher than the transversal strength. 

 

5.2. Classification of carbon fibers 

Carbon and graphite fibers can be produced from different precursor fiber materials: 

polyacrylonitrile (PAN) fibers, rayon fibers, and petroleum-based pitch fibers, among 

others. Based on this, carbon fibers may be classified into PAN-based carbon fibers, rayon-

based carbon fibers, and pitch-based carbon fibers. The most common for structural 

applications despite being the most expensive are the PAN-based carbon fibers since the 

carbon yield is almost double that of rayon fibers. Actually, PAN-based carbon fiber 

account for almost 90 percent of the total manufactured carbon fibers. All the precursors 

used are organic polymers that consist of long strings of molecules bound together by 

carbon atoms. 

Carbon fibers may also be classified based on their properties. This leads to the following 

groups: ultra-high modulus (UHM), high-modulus (HM), intermediate-modulus (IM), low 

modulus and high-tensile (HT), and super high-tensile (SHT). UHM fibers have a modulus 

higher than 450 GPa, HM fibers have a modulus between 350 and 450 GPa, IM fibers have 

a modulus between 200 and 350 GPa, HT fibers have a modulus lower than 100 GPa and a 

tensile strength higher than 3.0 GPa, and SHT fibers have a tensile strength higher than 4.5 

GPa. 
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Another classification of carbon fibers is based on the final heat treatment. This has a direct 

impact on the properties of the fibers. The following groups may be found: type-I, high-

heat-treatment carbon fibers (HTT); type-II, intermediate-heat-treatment carbon fibers 

(IHT), and type-III, low-heat-treatment carbon fibers (LHT). HTT fibers are treated at a 

temperature higher than 2000°C; these usually have a high modulus. IHT fibers are treated 

at a temperature around 1500°C; these have a high strength. LHT fibers are treated at a 

temperature lower than 1000°C; these have a low modulus and low strength. 

 

5.3. Manufacturing of carbon and graphite fibers 

The process of manufacturing carbon and graphite fibers depends on the type of precursors 

that are being used and the properties to be achieved. The specific composition of the fibers 

depends on the manufacturer, and is usually a professional secret. There are some steps of 

the manufacturing process that are common for the different type of precursors, even if they 

are not exactly performed the same way. These are stabilization of the precursor, 

carbonization, graphitization, and post-treatments. The processes are partly chemical and 

partly mechanical and different gases and liquids are utilized. These might be utilized to 

react with the fibers or to prevent certain reactions, depending on the desired effect. 

The process of stabilization consists in a steady and continuous decrease of the diameter of 

the fibers and linear density. Throughout this process there may be a change in the color of 

the fibers. The process of carbonization consists in heating the long strands or fibers at a 

high temperature, without oxygen to avoid them to burn. During this process the atoms in 

the fibers vibrate strongly and the majority of the non-carbon atoms are ejected. The result 

of this process is long, interlocked chains of carbon atoms. These have scarcely any non-

carbon atom. At this stage, the carbon fibers can undergo a process known as graphitization 

during which they can be heated to temperatures of more than 2000°C in order to achieve a 

higher modulus. The crystalline orientation, the interlayer spacing, and the ordered 

structure depend on the heat treatment temperature. 
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Figure 14. Procedure of manufacturing carbon fibers14 

 

 

5.3.1. Rayon-Based Fibers 

Rayon-based fibers are produced from naturally occurring cellulose polymers from wood 

pulp. The main characteristics of rayon fibers are their availability, low cost, non-melting 

character, and ease of production. Nevertheless, the availability of suitable rayon precursor 

is decreasing and the carbon content in rayon fibers is quite low, around 44 percent. The 

process of converting rayon fibers to carbon fibers consists of three phases: stabilization, 

carbonization, and graphitization. 

                                                 

14
 https://www.mrc.co.jp/english/products/special/ 
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The stabilization process takes place in three steps. The rayon fibers are first subjected to a 

process of desorption at a temperature between 25°C and 150°C. Next, there is a 

dehydration of the cellulosic unit at a temperature between 150°C and 240°C. Finally, the 

fibers undergo a heat treatment that takes place at a temperature between 205°C and 410°C. 

The carbonization process takes place at a temperature between 400°C and 700°C. During 

this phase the carbonaceous residue is converted into a graphite-like layer. This process, 

unlike that of PAN-based carbon fibers and pitch-based carbon fiber, does require neither 

stretching nor melting before. 

The graphitization process is to carry out an ordering of the fibers through longitudinal 

orientation of the planes. It is usually performed at a temperature between 700°C and 

2700°C. However, the alignment is poorer than in PAN-based and pitch-based carbon 

fibers, and thus the fibers may be treated at temperatures up to 3000°C. 

 

5.3.2. PAN-Based Fibers 

PAN-based fibers are produced from polyacrylonitrile (PAN). PAN is a synthetic resin 

formed by the polymerization of acrylonitrile. It is a hard, rigid thermoplastic material that 

is resistant to most solvents and chemicals. This decomposes before melting and it is 

necessary to make a solution sing a solvent before the spinning. 

PAN-based carbon fibers have a better orientation in the raw precursor form and much 

higher yields of approximately 50%. The production of these fibers consists of five steps: 

- Spinning and stretching the PAN to form a fiber. 

- Stabilization and oxidation in air at 200 to 300°C under tension. 

- Carbonization in an inert atmosphere at 980 to 1595°C. 

- Graphitization in an inert atmosphere at 1980 to 3040°C 

- Surface treatment and sizing. 
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In the spinning process acrylonitrile plastic powder is mixed with another plastic to make a 

solution since PAN decomposes before melting. Then the spinning into fibers is done using 

different methods, which can be either dry or wet; currently the wet-spun process is more 

common. In some methods the plastic is mixed with some chemicals and pumped through 

tiny jets into a chemical bath or quench chamber where the plastic coagulates and solidifies 

into fibers. In other methods, the plastic mixture is heated and pumped through tiny jets 

into a chamber where the solvents evaporate leaving a solid fiber. Throughout the spinning 

process the internal atomic structure of the fiber is formed and the fibers are lengthened 

from 500 to 1300%. This is an indispensable process to achieve a high strength because it 

arranges the molecules within the fiber to prepare the bases for the following step. 

The stabilizing process is performed before carbonization to avoid the melting of the fibers 

during this last process. In the stabilization the fibers are chemically altered by a heat 

treatment at 200 to 300°C for 30 to 120 minutes. The thermoplastic PAN is converted into a 

non-plastic compound that is capable of withstanding high temperatures. 

The carbonization process is performed in a gas mixture atmosphere, which is usually 

mainly nitrogen, at a temperature of 980°C to 1595°C. During the heating process the fibers 

lose their non-carbon atoms, and they contract in diameter and lose around 50 percent of 

their weight. 

The carbonization process is performed in gas mixture atmosphere from a temperature of 

1000°C to 3000°C. This process is normally carried out in a nitrogen atmosphere at a 

temperature of 980°C to 1595°C. During the heating process the fibers lose their non-

carbon atoms, and they contract in diameter and lose around 50 percent of their weight. The 

graphitization process is also performed in a gas mixture atmosphere as a continuation of 

the carbonization process. This is carried out at a temperature than can be up to 3000°C for 

several minutes. 

Last but not least, surface treatments and sizing are performed. The fibers are coated to 

protect them from damage during winding or weaving. Furthermore, they are wounded onto 

bobbins. 
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The heat treatments that have to be undergone are responsible for the high costs of the 

carbon fibers. The higher the modulus of the fibers the higher the temperatures have to be. 

This way, greater amounts of aligned graphite are produced. 

 

5.3.3. Pitch-Based Fibers 

Pitch-based fibers are produced from pitches that are given a heat treatment. These are 

complex blends of polyaromatic molecules and heterocyclic compounds, which may have a 

content of carbon higher than 80 percent. There are different sources from which these 

pitches can be obtained: petroleum refining or asphalt; destructive distillation of coal; 

natural asphalt; and pyrolysis of PVC. The most common pitches used for the production of 

carbon and graphite fibers are petroleum pitch and coal tar pitch. 

Petroleum pitch can be obtained from different sources such as heavy residue. The 

chemical and physical properties of this pitch are determined on the process and conditions 

employed. The most important factors affecting the properties are the heat process’ 

temperature and time. 

Coal tar is a by-product of the cocking of bituminous coals to produce cokes. Coal tar pitch 

is obtained from this using distillation and heat treatment processes. The resulting pitches 

are complex mixtures containing a large variety of organic compounds. The compositions 

and characteristics depend on the source of the tar and the method of obtaining. 

In order to manufacture carbon fibers from pitch-based precursor, it is necessary to prepare 

these precursors. The preparation process of petroleum pitch and coal tar pitch are different, 

but both are based on heat treatments. The advantages of using pitch as a precursor for the 

manufacture of carbon fiber is that they have a lower material cost, a higher char yield, and 

a higher degree of orientation compared to those of PAN. In addition, the graphitic 

structure of the pitch-based fibers gives them a higher elastic modulus, and higher thermal 

and electrical conductivity. Nevertheless, the cost to obtain high-performance carbon fibers 

is higher. 
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The process to manufacture carbon fibers consists of the typical steps: production, 

stabilization, carbonization, and graphitization of the precursor fibers, and then post-

treatments. The most influential process is stabilization since only correctly stabilized fibers 

can assure the adequate performance of the resulting carbon fibers. 

 

Table 1. Properties of some commercially important high-strength fibers15 

Type of fiber 

Tensile 

strength, 

GPa 

Tensile 

modulus, 

GPa 

Elongation 

at failure, 

% 

Density, 

g/cm
2
 

Coefficient of 

thermal 

expansion, 

10
-6

 °C 

Fiber 

diameter, 

µm 

PAN-BASED CARBON 

Standard 

modulus 
3.45-4.83 221-241 1.5-2.2 1.80 -0.4 6-8 

Intermediate 

modulus 
4.14-6.21 276-296 1.3-2.0 1.80 -0.6 5-6 

High 

modulus 
4.14-5.52 345-448 0.7-1.0 1.90 -0.75 5-8 

PITCHED-BASED CARBON 

Low modulus 1.38-3.10 172-241 0.9 1.9 - 11 

High 

modulus 
1.90-2.76 379-621 0.5 2.0 -0.9 11 

Ultra-high 

modulus 
2.41 690-965 0.3 2.2 -1.6 10 

 

  

                                                 

15
 Campbell (2010) 
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5.4. Mechanical properties of carbon fiber composites 

CFRP is light and extremely strong. Its specific tensile strength and specific elastic 

modulus are higher than that of glass fiber reinforced polymer or steel. Actually, CFRP 

have a relative stiffness five times that of steel. The modulus of CFRP is typically 138 GPa 

and the tensile strength 3.5 GPa. 

The fatigue resistance of CFRP is much higher than that of metals and other structural 

materials. In Figure 5 the fatigue resistance of CFRP is compared to that of some metals. 

CFRP have low heat expansion ration and high dimensional stability, and keeps its 

mechanical properties even at high temperatures. A typical CFRP consisting of epoxy with 

intermediate modulus carbon fibers cures at 175°C. This has an acceptable use up to 150°C, 

but it is often restricted to 120°C. 

Furthermore, CFRP has a high electric conductivity and magnificent X-ray permeability. 

 

Table 2. Comparison of the mechanical properties of CFRP and metallic materials16 

Material 
Density ρ 

[g/mm
3
] 

Tensile 

Modulus E 

[GPa] 

Tensile 

Strength σ 

[MPa] 

Specific 

Modulus (E/ρ) 

Specific 

Strength (σ/ρ) 

Aluminum 

7075 T6 
0.0028 72 570 25.7 203.6 

Titanium 

6Al 4V 
0.0045 114 1000 25.3 222.2 

Steel 

Maraging 300 
0.0080 207 2000 25.9 250.0 

Carbon/Epoxy 

M46J UD 
0.0018 250 1415 138.9 786.1 

Carbon/Epoxy 

T800 UD 
0.0018 154 2570 85.6 1427.8 

                                                 

16
 https://www.highpowermedia.com/F1-Monitor/3648/not-composite-yet 
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6. Case: Baltic Yachts 

Baltic Yacths is a company that designs and builds some of the most hi-tech, high-

performance sailing yachts in the world. It was started up in 1973 by PG Johansson, Nils 

Luoma, Tor Hinders, Jan-Erik Nyfelt and Ingmar Sundelin. The initial shipyard site was 

situated in Bosund, in Ostrobothnia region, in Western Finland. The company has managed 

to go through financial crises and ownership changes throughout its history specially by 

investing in the development of new technology. 

In the beginning, the most focus was put into design and production. For this reason, no 

marketing strategy was implemented but yet contracts with important partners were 

established, being the most relevant with the Canadian company C&C Design. This 

company had experience in building racing boats and using lightweight sandwich 

construction, and Baltic Yatchs made a contract with for 10 boats. 

The first Baltic Yatchs’ boats were equipped with advanced technology that was not found 

in the competition, for instance they had epoxy-glued teak decks, and sandwich 

construction in both the hull and the deck. Actually, the boats build in the 1970s are still 

more advanced than many serial production boats of today. In 1979 Baltic Yatchs was 

already using carbon fiber parts in production; in 1995 the first boat completely made of 

carbon fiber was manufactured. 

The philosophy within the company is to be at the vanguard of the technological 

development since it is the way to produce the best boats. Brainstorm meetings were a 

regular basis in order to get new ideas. From an early stage, Baltic Yacths introduced 

computer technology into the design process. In fact, as soon as the 1970s, computers were 

being used for different tasks. Needless to say, today computer programs are a key 

component in the design process to provide robustness and quality. 

Baltic Yatchs continued to grow during the 1970s and early 1980s, by means of product 

development and production, and investments in the subsidiary’s marketing. In addition, a 

sales office was opened in the U.S.A. Nevertheless, in the late 1980s the company was hit 

by a decrease in the demand. This brought a change in the ownership, from the owner at the 
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moment to workers that became co-owners. The company handled to overcome the 

difficulties by remaining true to its principles. 

In the 1990s there was a rise in the demand for bigger boats, especially from owners who 

had already had a boat from the company. Thus, Baltic Yatchs started to build boats that 

were more than 100 foot long. The first one set sail in 2002. In the early 2000s, new 

facilities in the port of Jakobstad were opened. These have been fundamental for the 

building of the biggest projects of Baltic Yachts. In 2010 and 2013 there were some 

changes in the ownership, and 80 percent stake of the company now belongs to Ottobock. 

At the moment, Baltic Yachts designs and builds high-performance sailing boats that are 

exclusive, unique, and with superb quality material, which can be up to 200 foot. The latest 

high-tech materials and methods are being used so as to build light and strong yachts. The 

use of ultra-light durable composite constructions, specially the use of carbon fiber, entails 

that the boats are more environmental friendly since they are lightweight and thus the needs 

for energy are reduced. The yachts are currently being built in the production plants in 

Jakobstad and Bosund. In addition, a Baltic Lifecycle Service center has been recently set 

up in Palma de Mallorca, Spain. 

 

 

Figure 15. Baltic 112 NILAYA built by Baltic Yacths 
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7. Introduction to the production process at Baltic Yachts 

The whole process of designing and building the CFRP yachts takes place in the facilities 

of Baltic Yachts in Jakobstad and Bosund. The design of a yacht may take as long as three 

years, and the building may take up to almost on year. The hull and the structure of the 

yachts are currently entirely made of CFRP. 

The carbon fibers are not produced within Baltic Yachts. The raw materials used are carbon 

fiber that is usually bought in the form of fabric and epoxy resin. The fabrics may have 

different patterns and tows in different orientations based on the loads that have to be 

supported. Thus, the type of fabric that is used depends on the part of the yacht that is being 

manufactured. 

In this company, epoxy resin is used as the matrix in this CFRP. The carbon fiber fabrics 

are poured with liquid or semi-liquid epoxy resin. The number of layers of carbon fiber 

fabrics and epoxy resin that are held together depends on the desired properties, which 

depend on the thickness. The carbon fiber fabrics together with the epoxy resin have to 

undergo a process of curing and molding, as explained hereinabove. 

The process of curing and molding of the hull and the structure is performed in different 

steps and dividing them into parts owing to the total dimensions. The carbon fiber fabrics 

are poured with the epoxy resin and then placed into a mold with the desired shape of the 

hull. The molding method is a modification of Hand Lay-Up, which is also known as Open 

Molding. In order to accelerate the process of curing a heat treatment is applied. 

The heat treatment is executed by placing the mold with the raw CFRP in an oven. 

Actually, a wooden structure is placed integrating the mold inside. This oven then looks 

like a sauna, and is heated by means of heating fans. The temperature to be reached is 

between 80°C and 90°C. This should be uniform throughout all the surface of the CFRP so 

as to ensure the same properties in all the structure and hull. 

The next step is to dismantle the oven and the mold. At this point the CFRP has enough 

strength and stiffness so as not to require the mold. Despite this fact, it does not have the 

final strength and stiffness because the curing process is not completed. At this point the 
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different parts of the hall are put together and joined. The curing process is continued by 

applying another heat treatment. This consists in putting electrical blankets on the CFRP to 

heat it up again. The temperature to be achieved is 115°C. After this last process the hall 

may be painted or applied any superficial treatment to get the requested finishes. 
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8. Theoretical introduction to the experimental part 

The main objective of the thesis is to study the heating of carbon fiber by means of 

electricity. This will be done by using the carbon fibers as conductors, so electricity would 

be conducted through them. Therefore some introduction to electricity is needed to follow 

the experimental part. 

 

8.1. Introduction to electricity 

Electrical current is defined as the flow of charged electrons. The most common types of 

currents are direct current (DC) and alternating current (AC). The difference between DC 

and AC is found in the direction of the flow. The DC is constant and moves in one direction 

whereas AC changes over time in a periodic repetition. The AC graph makes a sinusoidal 

pattern. 

Ohm’s establishes the relation between the current through a conductor, the voltage 

between the opposite ends, and its electrical resistance. The current is directly proportional 

to the voltage and inversely proportional to the resistance. The mathematical equation 

describing this law is: 

  
 

 
 

where I is the current or intensity in amperes (A), V is the voltage in volts (V), and R is the 

resistance in ohms (Ω). This law can be applied to any DC circuit. In AC, when there are 

inductors, capacitor, or transmission lines, this formula cannot directly be applied. In that 

case, the inductance or capacitance shall be taken into account. 
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8.2. Resistance variation depending on the temperature 

 The resistance of a conductor depends on the size of the conductor, but also depends on the 

temperature of the conductor. This fact is related to the expansion and contraction of the 

materials with the temperature. 

The materials are usually classified between conductors and insulators. Conductors are 

those that easily conduct electricity while insulators are those that hardly conduct 

electricity. Conductors tend to increase their resistance with an increase in temperature; 

insulators tend to decrease their resistance with an increase in temperature.¨ 

The electrical behavior of semiconductor materials depend upon if they are intrinsic or 

extrinsic, that is to say if they are pure or they contain impurities. However, all 

semiconductor materials are distinguished by decreasing their resistance with an increase in 

temperature. The difference between intrinsic and extrinsic is the rate their resistance is 

changed. 
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PART 3: EXPERIMENTAL PART 

9. Objective 

The objective of this part is to study by means of tests the heating of CFRP using 

electricity. In the company Baltic Yachts the CFRP is heated in two stages as part of the 

curing and molding process. The heat treatment is high time and energy consuming due to 

steps of the process, explained hereinabove in section 7.Introduction to the production 

process at Baltic . 

The heat treatment process includes the building and the dismantling of the oven for every 

use. The yachts are not mass-produced, and so the oven itself cannot be reused with the 

same dimensions, and obviously this requires time and energy. The elements of the oven, 

however, are evidently reused when building it again. Regarding the mold, this is hardly 

ever reused because every yacht is unique, and so the molds are destroyed. Moreover, the 

process of heating itself does require large amounts of energy as the whole oven is heated. 

This implies that not only the raw CFRP is heated, which is the actual goal, but also the 

inside air and the walls. 

In order to reduce the energy and the time used in this process, the company Baltic Yachts 

wanted to study the possibility of heating the CFRP by means of electricity. Thus, it is to 

study to conduct electricity through the carbon fiber so as to heat the whole CFRP structure. 

In this section different tests will be carried out so as to perform the study. 
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10. Method 

The development of this experimental part included some visits to the facilities of the 

company Baltic Yachts in Jakobstad. The aim of the first visit was to get to know the 

company and the production manager. This visit included a tour through the facilities with 

the corresponding explanation of the manufacturing process of the yachts and, more in 

detail, the treatment of the CFRP. In addition, a series of samples of carbon fiber were 

offered. These samples were raw carbon fiber fabrics with different orientations and 

distributions. The samples can be seen in the following pictures: 

 

Figure 16. Carbon fiber fabric with unidirectional tows 

 

 

Figure 17. Carbon fiber fabric with multidirectional tows 
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Figure 18. Carbon fiber fabric with multidirectional tows 

 

Figure 19. Carbon fiber tows held together in a resin 

 

Figure 20. Carbon fiber tows held together in a resin 
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Three different tests were conducted to study the feasibility of heating carbon fiber by 

means of electricity. The strategy throughout this part has been modified according to the 

progress. It has already been stated that the first action that was taken was to visit the 

company. The explanations and the samples resulted in the conclusion that is would be 

necessary to use an electronics laboratory. In this case the laboratory used is situated in 

Technobothnia Education and Research Center, which is shared between University of 

Vaasa, Vaasa University of Applied Sciences (VAMK), and Novia University of Applied 

Sciences. 

 

10.1. Test 1 

The goal of the first test was to have a first observation of the behavior of the raw carbon 

fiber samples when electricity is conducted through them. Actually, the focus was on the 

behavior of single tows of carbon fibers. This and the other tests are evidently explained in 

more detail in the following sections. This test was to get used to the heating of the carbon 

fibers with the electricity. It was carried out by using some carbon fiber tows as an 

electrical conductor, and taking some basic measures on the voltage and current through the 

tows. No specific conclusion was being sought; however, an interesting fact was 

discovered: the variation of the resistance dependent on the temperature is similar to that of 

semiconductors. 

 

10.2. Test 2 

The performance of the first experiment was a motivation to continue with studying the 

conduction of electricity throughout a single tow. The second experiment consisted, thus, in 

heating up one tow, but in this case taking measures of the temperature in function of the 

voltage and the current applied. Therefore, what was done was mainly to heat two tows 
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until they started to burn. In this case, the goal was to get more precise information on the 

voltage and current needed to achieve the desired temperature. 

 

10.3. Test 3 

The goal of this test was to heat more than one tow at the same time. In the previous tests it 

was checked that it was possible to heat one carbon fiber tow and which approximate 

voltage and current was necessary for a certain length. In order to perform this experiment 

the company supplied one sample with parallel carbon fiber tows with a separation between 

them that were held together with a resin and another sample with parallel carbon fiber 

tows with the same distribution but in two directions. These samples are shown in Figure 

19 and Figure 20. In addition, two metal plates were also supplied to be able to connect the 

tows to a generator. 
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11. Development of test 1 

11.1. Equipment 

- Raw carbon fiber tows 

- Voltmeter 

- Ammeter 

- Generator 

 

11.2. Procedure 

1. A tow of carbon fiber is taken in order to be heated. 

2. The tow of carbon fiber is connected in series with the ammeter and in parallel with the 

voltmeter. 

3. One extreme of the carbon fiber tow is connected to the positive pole of the generator. 

4. The other extreme of the carbon fiber tow is connected to the negative pole of the 

generator. 

5. The generator is turned on. 

6. The voltage supplied by the generator is varied in order to observe the effects on the 

carbon fiber tow. 

7. The resistance of the tow is calculated. 

8. The resistance per unit of length of the tow is calculated based on the length of the 

carbon fiber tow so as to be able to compare the values with tows of other lengths. 
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11.3. Results 

The results of the experiment –intensity values per different voltage values- are shown in 

the following table. The resistance of the carbon fiber sample is calculated from these 

values by means of the Ohm’s law. 

 

Table 3. Results of the test 1: voltage and intensity values. Values of the resistance and the resistance per unit of length are calculated 

from those values. Length of the fiber. 

Voltage (V) Intensity (A) Resistance (Ω) Resistance (Ω/m)

0.5 0.058 8.6 37.5

3.0 0.36 8.3 36.2

7.0 0.87 8.0 35.0

9.0 1.14 7.9 34.3

10.0 1.28 7.8 34.0

11.0 1.43 7.7 33.4

12.0 1.57 7.6 33.2

13.0 1.72 7.6 32.9

14.0 1.86 7.5 32.7

15.0 2.02 7.4 32.3

16.0 2.18 7.3 31.9

17.0 2.33 7.3 31.7

18.0 2.49 7.2 31.4

19.0 2.65 7.2 31.2

20.0 2.83 7.1 30.7

23±1 cm

DATA EXPERIMENT 

10/02/2016 9:00

 

 

11.4. Conclusions 

The intensity passing through the carbon fiber filament increases while the voltage supplied 

increases. The results of the resistance show that it is not constant but decreases. Joule’s 

first law states that electricity passing through a conductor produces heat equal to the 

product of the resistance of the conductor, the square of the current, and the time for which 
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it flows. Therefore, the temperature of the filament increases with the voltage, which was 

noticed during the experiment. 

Thus, the resistance of the carbon fiber tow is reduced when the temperature increases. 

Generally, conductive materials tend to increase their resistance with an increase in 

temperature. However, the resistance of semiconductors decreases with an increase in 

temperature. Hence, carbon fiber filaments behave like a semiconductor material. 
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12. Development of test 2 

12.1. Materials 

- Raw carbon fiber tows 

- Voltmeter 

- Ammeter 

- Generator 

- Infrared thermometer 

 

12.2. Procedure 

1. A tow of carbon fiber is taken in order to be heated. 

2. The tow of carbon fiber is connected in series with the ammeter and in parallel with the 

voltmeter. 

3. One extreme of the carbon fiber tow is connected to the positive pole of the generator. 

4. The other extreme of the carbon fiber tow is connected to the negative pole of the 

generator. 

5. The generator is turned on. 

6. The voltage supplied by the generator is varied in order to observe the effects on the 

carbon fiber filament. 

7. The temperature of the tow is measured. 

8. In this case, the experiment is repeated twice. The first time, using the carbon fiber tow 

from experiment 1, and the second time using another carbon fiber tow. 
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12.3. Results 

The results of the experiment –intensity and temperature values per different voltage 

values- are shown in the following tables. The results in the Table 4 correspond to the 

carbon fiber tow used in test 1 and the results in Table 5 correspond to the other carbon 

fiber tow. The temperatures that are presented in Table 5 are the maximum and minimum 

temperatures of the tow. 

 

Table 4. Results of the test 2: voltage, intensity, and temperature values. Length of the fiber. 

Voltage (V) Intensity (A) Temperature (°C)

0.0 0.00 23

6.9 0.83 69

8.2 1.00 84

10.1 1.25 103

10.8 1.35 113

11.5 1.45 123

12.2 1.55 142

12.9 1.65 154

13.7 1.76 164

14.4 1.86 175

15.0 1.95 190

15.7 2.05 200

16.3 2.15 218

17.3 2.25 204

18.0 2.40 244

23 cm

DATA EXPERIMENT 18/02/2016 9:00
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Table 5. Results of the test 2: voltage, intensity, and temperature values. Length of the fiber. 

Voltage (V) Intensity (A) Max. Temperature (°C) Min. Temperature (°C)

0.0 0.00 23 23

1.2 0.10 27 24

2.3 0.20 28 24

3.4 0.30 30 30

4.6 0.40 36 33

5.6 0.50 44 42

6.7 0.60 52 50

7.7 0.70 62 59

8.7 0.80 77 69

9.7 0.90 84 74

10.6 1.00 91 86

11.6 1.11 103 100

12.5 1.20 120 104

13.4 1.31 130 117

14.3 1.40 140 128

30.4 cm

DATA EXPERIMENT 18/02/2016 9:30

 

 

12.4. Conclusions 

The main conclusion of this experiment is that the temperature is not constant through the 

tow when it conducts electricity. This fact might be attributed to different possibilities: the 

relatively short length of the tow; a bad connection where it heats up more; an error in the 

measure using the infrared thermometer due to the small area of the tow compared to the 

area of measurement; or impact of the temperature of the table on which the test was 

performed. 

 

  



  50 

 

 

13. Development of test 3 

13.1. Materials 

- Raw carbon fiber tows held together 

- Four metal plates 

- Voltmeter 

- Ammeter 

- Generator 

- Infrared thermometer 

- Clamps 

 

13.2. Procedure 

1. Two plates are placed on one of the sides of the sample. These are placed with the 

carbon fiber tows between them. 

2. Two or more clamps are mounted pressing together the plates. 

3. The other two plates are placed with the same configuration at the other side of the 

sample. 

4. Two or more clamps are mounted pressing these other plates. 

5. One of the two plates on one side is connected to the positive pole of the generator.  

6. One of the two plates on the other side is connected to the negative pole of the generator. 

7. The generator is turned on. 
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8. The voltage supplied by the generator is varied to observe the effect on the tows. 

9. The temperature of the tows is measured. 

 

13.3. Image 

 

 

Figure 21. Image of the system 
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13.4. Results 

The results of the experiment –voltage, intensity, and temperature values- are shown in the 

following table. The temperatures that are presented in Table 6 are the maximum 

temperatures measured in the sample. The minimum temperatures hardly vary. It was 

observed that there were some tows which were not affected by the current because of bad 

connection between the plates. 

 

Table 6. Results of test 3: voltage, intensity, and temperature values. 

Voltage (V) Intensity (A) Temperature (°C)

6,8 3,7 31

8,9 5,2 38

10,8 6,5 42

11,7 7,5 51

13,2 7,8 61

15,2 9,1 70

16,6 12,6 81

18,9 15,0 88

20,8 17,7 102

22,2 19,4 113

22,8 20,5 117

50 cm x 50 cm

DATA EXPERIMENT 14/04/2016 14:00

 

 

13.5. Conclusions 

The main conclusion of this experiment is that it is hard to achieve a uniform temperature 

throughout all the tows. To be able to achieve a uniform temperature the pressure of the 

plates on the fibers should be adequate and the size of the tows should be the same. 
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PART 4: CONCLUSIONS 

14. Results and discussion 

In this project, it has been confirmed that carbon fiber reinforced polymer (CFRP) is a 

composite with properties that make it great choice in many engineering applications. It is 

due to its high mechanical properties together with light weight; thus, the consequence of 

using CFRP in the structural parts is that to achieve the same strength and stiffness less 

weight is needed, compared to the common metals. 

The main disadvantage of using CFRP is the high cost of the manufacturing process. The 

manufacturing process of the carbon fibers and the manufacturing process of the CFRP, 

which includes the curing and the molding process, imply different heat treatments. In 

order to study the heating of the CFRP by means of electricity the experiments have been 

performed. 

It was already known that the carbon fibers are a conductor material. Obviously, this could 

be confirmed from the tests. In the first test it was discovered that the behavior of the 

carbon fibers when they conduct electricity is similar to that of semiconductor materials. 

On the condition that carbon fibers conduct electricity their temperature increases, and with 

the increase of the temperature the resistance of carbon fibers decrease, unlike metals. 

In the other experiments, it was possible to heat up the carbon fibers up to the desired 

temperature of 115°C. However, this temperature was not uniform on the whole carbon 

fiber tow in one of the tests, and not uniform on the surface on the other test. Therefore, it 

was not possible to heat the carbon fiber tows in an adequate way. 

The fact that the carbon fiber tows could not be heated in an adequate way might be caused 

because of the equipment used. Actually, when heating one carbon fiber tow it burned in 

the point of connection. In addition, having it on a table might have affected the 

temperature the tow. Another point to take into account is the accuracy of the infrared 

thermometers. 
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In the third test where an area was intended to be heated the temperature was again no 

uniform. In this case, it was observed that the connection with the plates was not good 

enough and some carbon fiber tows where not conducting at all. 
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15. Challenges during the tests 

The performance of the experiments has been highly affected by some factors that have not 

allowed for reaching the desired objective. This was to determine the suitability of heating 

the CFRP by means of conducting electricity through the fibers. The current stage of the 

tests does still need further development in order to achieve a result that showed whether 

this method is suitable or not. The main difficulties that were found during the tests are 

explained hereunder. 

Test 1, as explained above, was mainly carried out as a first approach to the behavior of the 

CFRP when connected to a generator to heat it up. The first thought was to start by heating 

one of the fabrics. However, there was not enough knowledge on how the filaments would 

perform and, in addition, the actual voltage that would be needed it. Therefore, the way to 

perform this experiment was heating up a single tow. 

Each extreme of the tow was connected to an electrical spice connector. These were then 

connected to the generator by means of cables. The carbon fiber filament laid on a table 

during the experiment. The first issue that was encountered in this case was that the joint 

and the electrical spice connector started to heat up too much. Actually, up to the point 

where it started to melt. This fact together with the fact that the tow was on a wooden table 

which could influence the temperature of the tow were the main limitations in this test. 

Test 2 was performed the same way but measuring the temperature, as explained in the 

respective section. In this case, the temperature was controlled and the tow was heated up 

until the temperature needed in the curing and molding was reached. At this temperature 

the electrical spice connectors did heat but did not melt. Nonetheless, another issue was 

encountered. 

In order to measure the temperature, an infrared thermometer was used. The way this type 

of thermometers work is by measuring the thermal radiation emitted by an object. These 

thermometers detect the radiation emitted from an area. The area of the carbon fiber is very 

small compared to that that the infrared thermometer may detect. Therefore, the accuracy of 
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the measures is to be questioned. Furthermore, the temperature of the tow was far from 

being uniform. 

In test 1, test 2, and test 3, the carbon fiber fabrics were not used. The reason is that it was 

not possible to connect them to the generator. In addition, the fact that the tows were in 

contact could imply having a short circuit. In that regard, Baltic Yachts supplied the other 

two samples with the separate tows and four metal plates. 

In test 3 the sample with the tows in only one direction was used, shown in Figure 19. This 

was connected with two plates in each side pressing together the tows. The reason why the 

other sample, shown in Figure 20, was not used is that there were not enough plates and, in 

addition, in this case a short circuit could also be produced. The main problem that was 

encountered in this test is that the temperature of the carbon fiber tows was far from being 

uniform. Actually, the results in this case were much worse than that of test 2. The non-

uniformity can be attributed to the bad connection of the tow with the metal plates, even if 

three clamps in each side were used. Moreover, in this case the point of connection of the 

cable with the metal plates reached high temperatures and the isolating cover started to 

melt. On the other hand, the material holding the tows together did not seem to heat much. 

Hence, development of the thesis was limited by the equipment of the laboratory since it is 

by far not that that could be found in a specialized company in this sector. And last but not 

least, the time was a determining factor. 
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16. Further work 

The current results of the project do not match the desired objective; thus it can be 

continued. The way to continue should imply to take into account the current limitations 

and try to overcome them. The most important point is to solve the non-uniformity of the 

temperature. 

The heating of a single carbon fiber tow could be done without having it lying on a table 

but being on the air. In addition, the points of connection should be improved in order to 

avoid them to heat up too much. These improvements might make the temperature more 

uniform. Moreover, the temperature should be measured in a more accurate way; thus, 

instead of using an infrared thermometer, some kind of sensors measuring the temperature 

at different points could be used. 

Furthermore, this test could be done some more times in order to find a correlation between 

the length of the tows and the voltage that is needed to reach the desired temperature. This 

relation is the most probable to be linear. The voltage needed to heat up carbon fiber tows 

that are in a parallel circuit should be the same than to heat up a single carbon fiber tow of 

the same length. The reason is that the voltage at the extremes of resistances in parallel is 

the same and the total current is the sum of the current passing through each resistance. 

The previous results would be used to calculate the voltage needed to heat up the parallel 

carbon fiber tows in the sample with separated tows in only one direction. Moreover, the 

issue to solve in this case is the connection between the tows and the metal plates. The 

plates used in the test were scant flexible, and therefore despite using clamps the tows were 

not well pressed. In that regard, using more flexible metal plates could be tried so to check 

if in that case the connections were better. In case they were, the uniformity of the 

temperature is probable to be improved. Moreover, it should be verified that the 

temperature of the resin also increases as desired. The temperature, again, could be 

measured using different sensors spread throughout the samples. 

The next step could be to focus on bidirectional carbon fiber tows samples. To avoid the 

possible short circuit, the tows with different directions should not be in contact. The way 
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to solve this issue could be to put resin in between. That is to say, to build the sample in 

two layers, one with the tows in one direction and the other with the tows in the other 

direction, with resin in between. Then, the four sides of the sample should be connected to 

a generator, producing the same voltage in both directions if the sample is quadratic. If this 

experiment is successfully performed, it could be made more complicated by adding layers 

at -45°, and later at 45°. 

If all the previous steps were successful, the progress in comparison to the current stage of 

the project would be highly noticeable. Furthermore, the next steps would be to use fabrics. 

This should be heated up, and epoxy resin could be added to make the tests much more 

realistic. At the moment, it is difficult to predict how the process could turn out as during 

the development new issues could be encountered. Nevertheless, it would be satisfactory to 

have it continued. 
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