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1 Introduction 

As the years have passed by, ever since the development of Tennis for Two in 1958, 

multiplayer games have become more and more popular. As opposed to single 

player activities, which set the players against preprogrammed challenges or artificial 

intelligence controlled opponents, multiplayer games allow the players to interact 

with other individuals in partnership, competition or rivalry, providing them with so-

cial interaction. Typically, multiplayer games require players to share the resources 

of a single player system or to utilize networking technology in order to play together 

over greater distances.  (Multiplayer video game 2016.) 

While networking technologies have evolved and grown more advanced, so have 

multiplayer games. Since the rapid increase in the availability of the Internet in the 

1990s, followed by the improvements in connection speeds in early 2000s, the “local 

only” features of multiplayer games have been steadily receding into the minority. 

Through their Internet connections, players are now able to socialize with even thou-

sands of other individuals from around the world on the same server as they are in, 

in MMOGs, massively multiplayer online games. As socialization is an important as-

pect in modern gaming, the implementation of online features is something to be 

considered during the development of every major release, as well as with smaller 

independent games. (Online game 2016.) 

In this thesis, two distinct multiplayer solutions have been investigated in order to 

implement online functionality into a game prototype by using Unity Engine. The im-

plementation methods under investigation were Unity Engine’s own Unity Network-

ing and one of Unity’s most popular third party networking plugins: Photon Unity 

Networking. The objective was to achieve at least nearly similar, appropriately opera-

tional functionality with both implementation variants in order to compare them 

against each other and to demonstrate hands-on how the functionalities were actu-

alized. The development of the prototype was carried out with Timo Holopainen, 

who, for his part, focused on comparing object oriented programming with entity 

based model in Unity Engine, as the author concentrated on said networking func-

tionalities. The project was not assigned by an outside employer. 
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To begin with, the structure, basic functionalities and main operating principles of 

Unity Engine are familiarized with in the theory section, followed by the elementary 

background knowledge concerning both implementation methods. The second half 

introduces the prototype project along with illustrative descriptions on how the ac-

tual network functionalities were accomplished, ultimately leading to the compari-

son of these two methods. In addition to the author’s previous experience on using 

the Unity Engine for over a year, the basis of knowledge was mainly accumulated by 

researching and analyzing the online documentations of Unity Network and Photon.  

Due to the fact that the author has been an enthusiastic gamer for over 20 years and 

has an interest in working in the game industry in the future, the driving motivation 

behind this project was to improve the author’s own workmanship in this field, as 

well as get acquainted with unfamiliar technology. That being said, the author did 

not have prior experience whatsoever, concerning multiplayer functionality program-

ming in any environment, nor with Unity Networking or Photon.    
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2 Unity 

2.1 What is Unity? 

Unity is a cross-platform game engine developed by Unity Technologies and used to 

develop 2D or 3D video games for PCs, consoles, mobile devices or web browsers. 

Popular especially among indie game developers, Unity boasts with over 4 million 

registered users around the world (Figure 1). In the year 2016 it dominates as the 

most popular global game development software. (Fast Facts 2016; Unity (game en-

gine) 2016.) 

 

Figure 1. Registered Unity developers 2012-2015 

 

Unity Technologies created said engine to match all the essential needs of game de-

velopment and to offer the necessary tools for creating and publishing high end soft-

ware. These built-in components and features include, but are not limited to, a com-

plete physics engine, lighting system, animator and networking. 

Originally released in 2005 only for Mac OS X and extended ever since, the Unity En-

gine reached its fifth version in 2015. With an emphasis on portability, multiplatform 

build options enable the user to select from over 20 different devices for publishing. 

This allows game developers more easily to target several different platforms with 

only minor changes into programming, such as player controls or other device spe-

cific optimization. (Unity (game engine) 2016; Unity – Game Engine 2016.) 

Unity uses a so called component based model, where every function is its own com-

ponent. This makes it easy to create reusable components which hand in hand with 
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the cross-platform options and built-in components, save valuable time and money 

for developers.  

The editor itself can easily be extended by third-party plugins and user generated 

content can be found in and downloaded from the Asset Store. These user generated 

contents can range from sound effects and scripts to 3D models and beyond.  

A thriving community has evolved around Unity Engine. Community forums are 

packed with tips or straight out solutions for different kinds of topics, while 

https://unity3d.com/learn offers comprehensive tutorials for beginners.  

Unity personal edition is available for download free of charge, while the profes-

sional edition costs 75$/month. Professional edition subscribers gain access to view 

additional statistical data and perform in-depth analysis of their game, in addition to 

various customizing options, bug handling and other pro tools. Personal edition may 

not be licensed or used by an entity with annual gross revenues or budget in excess 

of $100,000. (Get Unity 2016.) 

2.2 Unity Editor 

The main interface of Unity Editor is made up of various tabbed windows which can 

be rearranged, grouped, detached and docked. Each of these windows, or views, 

have their own purposes and functionality in Unity game development. The most im-

portant default views are: Scene, Game, Hierarchy, Project panel and Inspector. Fur-

thermore, Console window may be viewed for errors, warnings and other messages 

generated by the Editor or user, to aid with debugging.  

In this chapter the most essential views of the Editor will be discussed in some detail. 

The main interface of the Editor can be examined in Figure 2. 

https://unity3d.com/learn
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Figure 2. Main interface of Unity Editor 

 

2.2.1 Toolbar 

Although the layout of the editor can easily be modified by user and extended by 

plugins, the toolbar is the only part of Unity interface that cannot be rearranged. Al-

ways founded on top (see Figure 3), the toolbar holds a set of important tools each 

relating to different parts of the Editor.  

 

Figure 3. Editor toolbar 

 

 

Transform Tools – Move camera, Move object, Rotate, Scale and Rect Tool. 

 

Transform Gizmo Toggles – Affects coordinate system and pivot points. 
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Play/Pause/Step Buttons – Used to run the current scene. 

 

Layers Drop-down – Handles visibility and locking of layers.   

 

Layout Drop-down – For choosing layout presets. 

2.2.2 Scene view 

One of the most important views in the Editor is the Scene view – a visual represen-

tation of a game world or level (see Figure 4). It enables the maneuvering, manipula-

tion and positioning of all the objects and assets listed in Hierarchy, thus creating a 

physical space that players may explore and interact with. (Menard 2011, 23.) 

 

Figure 4. Scene view 

 

When an object is clicked in the Scene view, it becomes selected and the Inspector 

will be updated with the object’s appropriate data. Using the aforementioned tools 

found in the toolbar, the user may now manually alter the object’s position, rotation 

and scale. These manipulations are called transforms. Corresponding values can be 

altered through the Inspector as well. (Menard 2011, 29.) 



13 
 

 

The Translate tool, shown in Figure 5, moves the selected object’s position around 

the scene, either along one of the three axes or freely in space. The Rotate tool ro-

tates the object along selected axis, while the Scale tool allows the object to be 

scaled either uniformly in all dimensions or by single axis. The desired axis may be se-

lected by clicking on the colored handles. (Menard 2011, 30-32.) 

 

Figure 5. Transform tools and hotkeys 

 

The point of view can be changed by holding down either left or right mouse button 

and dragging the cursor around. Clicking the 2D button located in the upper left cor-

ner of the scene view, changes between 2D and 3D perspective. 

2.2.3 Game view 

Mainly used for previewing and testing, the Game view (see Figure 6) renders out the 

game exactly as it would be in the built version. Pressing the Play button on the 

toolbar makes the editor activate this view and run the game. Any changes made 

during this time will not be saved, however, changing values when the game is run-

ning might help while testing. 

Like the Scene view, the Game view also has its own Control Bar. The first area, the 

Aspect drop-down menu, changes the aspect ratio of the Game view on the fly, even 

while it is currently playing. Clicking the Maximize on Play toggle button will expand 

Game view to take up the entire editor view when playing. Pressing the Gizmos but-

ton lets the user choose which gizmos will be shown in the Game view. Lastly, the 

Stats button on the Control Bar will bring up the Render Statistics page which shows 



14 
 

 

useful optimization information about the game, like FPS, or Frames per Second. 

(Menard 2011, 38-39.)  

 

Figure 6. Game view 

 

2.2.4 Hierarchy 

The Hierarchy view, demonstrated in Figure 7, contains every GameObject in the cur-

rent scene, updating with each change as the user adds or removes objects. Some of 

these could be direct instances of asset files like 3D models, and others might be in-

stances of Prefabs. Each instance of an object will be listed individually, making good 

naming conventions especially important. (Unity – Manual: Hierarchy 2016.) 

 

Figure 7. Hierarchy 
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Parenting objects together in the Hierarchy view might help with organizing and 

moving a large amount of objects at once. When parenting objects together, unre-

lated objects are linked together under a single object, the parent. All the other ob-

jects under this parent are called its children. All the children will inherit the parent’s 

data, however, they still can be edited independently of each other and the parent 

object. (Menard 2011, 19-20.) 

Selecting an object in the Hierarchy and deleting it will remove the object from the 

current scene in the game but not from the project’s Assets folder. 

2.2.5 Project browser 

All of the current project’s files are organized and arranged under the Project 

browser. The left panel of the browser, as seen in Figure 8, displays everything in a 

hierarchical, folder like structure, exactly how the folders and their contents can be 

found on the hard drive. Using the small triangle expands or collapses the folder, dis-

playing any nested folders it contains. When a folder is selected from the list by click-

ing, its contents will be shown in the panel to the right as icons. (Unity – Manual: Pro-

jectView 2016.) 

 

Figure 8. Project browser 

 

Assets can be searched using the browser’s search feature that is especially useful for 

locating files in large or unfamiliar projects.  A basic search will filter assets according 

to the text typed in the search box. Files can also be opened and edited directly from 
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within the Project browser. Double-clicking will open the file in its default editor, for 

example a Photoshop file. After completing modifications for the opened file and 

saving, Unity will reimport the saved file automatically. (Menard 2011, 17.) 

The Create menu, located at the left side of the project toolbar allows the creation of 

new assets and folders. These options for new assets include scripts, materials, and 

animations and so on. Similar menu can also be opened by right clicking inside the 

browser panel and choosing create. 

2.2.6 Inspector 

Through the Inspector view, all of the components and values present in the cur-

rently selected GameObject or Asset, can be observed and edited. By adding or re-

moving components and editing their values, the Inspector is used to modify the 

GameObjects functionality. If several GameObjects with common components are 

selected at the same time, the corresponding values can be multi-edited simultane-

ously. The values supplied will be copied to all selected objects.  The components at-

tached to a player character can be seen in Appendix 1. (Unity – Manual: Using the 

Inspector 2016; Unity – Manual: Editing values 2016.) 

When GameObjects have custom script components attached to them, the public 

variables in that script are also shown in the Inspector and can be edited exactly like 

the properties of Unity’s built-in components. Components are added to GameOb-

jects by simply pressing the Add Component button in the Inspector. The GameOb-

ject can be deactivated by unticking the checkbox from the left side of the GameOb-

jects name. Underneath the GameObject name, the drop-down menus for Tag and 

Layer can be found, explained in chapter 2.3. (ibid.) 

On the right side of the component present in a GameObject, there is a question 

mark that leads to the Unity reference page of that particular component. The gear 

beside the question mark can be used to reset all the values of the component, copy-

ing, removing the component completely from the GameObject or to move it up and 

down in the Inspector view. (ibid.) 
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2.2.7 Build Settings 

When testing outside the editor is needed or a game is ready for publishing, the build 

settings window can be accessed by choosing “Build Settings” from the File menu. 

The options in this window (Figure 9) allow the choice of a target platform and vari-

ous adjustment settings for the building process and the end product. 

 

Figure 9. Build settings 

 

“Scenes in Build” part of the window shows the added scenes from the current pro-

ject that will be included into the build. Scenes can be added by pressing the Add 

Open Scenes button or by dragging scene assets into this window. Unticking a scene 

excludes it from the build without removing it from the list. (Unity – Manual: 

BuildSettings 2016.) 
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Graphical quality settings for the build can be found in Edit > Project Settings > Qual-

ity. The choice between saved quality level presets, designed by the developer, are 

given to the player when starting the game. Once build settings have been specified, 

clicking “Build” or “Build and Run” will create a runnable build of the current project 

on the specified platform. 

2.3 Main operating principles of Unity 

The Unity Engine uses a component based model in the creation of game worlds and 

their functionalities. In practice, components are functional pieces of GameObjects, 

which in turn represent characters, props, scenery and so on, in scenes. 

2.3.1 Component 

A component can be thought as a smaller piece of a larger machine. They are the 

functional pieces of every GameObject and in order to execute said functionalities, 

must always be attached to objects. Components carry out their functionalities 

through combination of methods and variables. Adding, deleting and editing of a 

component and its values are handled via the Inspector view. In Figure 10, a Rigid-

body component has been attached to a GameObject. (Unity – Manual: UsingCom-

ponents 2016.) 

 

Figure 10. GameObject with a Rigidbody component 

 



19 
 

 

In addition to built-in components, such as physics, custom components can be cre-

ated by writing scripts. When a script is attached to a GameObject it appears in the 

Inspector just like a component. This is because scripts compile as a type of compo-

nent and are treated as such by the engine. (Unity – Manual: CreatingComponents 

2016.) 

The components in a game can be either reusable or made to accomplish a specific 

task. For example in a vertical space shooter game, a script that handles shooting of a 

certain enemy, can be used in all instances of the same enemy. Whereas a script 

used for main character movement might only be used for that particular purpose.  

2.3.2 GameObject 

GameObjects are fundamental pieces in Unity. Although they do not accomplish 

much by themselves, they act as containers for components which implement the 

real functionalities. In Unity Engine, levels and game worlds are composed from mul-

titudes of these objects. (Unity – Manual: GameObject 2016.) 

By default, all GameObjects contain only a single Transform component, which de-

fines its position, orientation and scale in space. When different kinds of component 

combinations are added, they can be made up into characters, lights, trees, sounds, 

game logic managers or anything the user is willing to build. Components attached to 

completely different GameObjects are able to communicate between each other. 

(ibid; Unity – Manual: GameObjects 2016.) 

For every GameObject a name, tag and layer can be set according to the user’s 

needs. Stored objects are saved as prefabs. 

2.3.3 Asset 

Assets are representation of items that can be used by the developer in games or 

projects. An asset may come from a file created outside of Unity, such as a 3D model, 

an audio file, an image, or any of the other types of files that Unity supports. There 

are also some asset types that can be created within Unity, such as an Animator Con-

troller, an Audio Mixer or a Render Texture. Assets created outside of Unity must be 

imported either by saving or copying them directly into the assets folder of current 
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project. Unity will automatically detect files as they are added or modified. (Unity – 

Manual: AssetWorkflow 2016.) 

Importing and exporting Unity Asset packages is a simple way to share and re-use 

projects and asset collections. Packages are collections of files and data from Unity 

projects, or elements of projects, which are compressed and stored in one file, simi-

lar to zip files. The package maintains its original directory structure when it is un-

packed, as well as meta-data about assets such as import settings and links to other 

assets. Items on the Unity Asset Store are also supplied in packages. All imported 

project assets can be found in the project view. (Unity – Manual: AssetPackages 

2016.) 

2.3.4 Prefab 

Unity has a Prefab asset type that allows storing of GameObjects complete with com-

ponents and properties, in contrast for having independently editable multiple ob-

jects of the same kind in a scene. All modifications made to a prefab asset are imme-

diately reflected in all instances (copies) produced from it, however, overriding com-

ponents and settings for each instance individually is also possible if needed. Prefabs 

are particularly useful when instantiating recurring objects such as bullets, enemies 

and collectibles. (Unity – Manual: Prefabs 2016.) 

Prefabs are created by dragging existing GameObjects from hierarchy to project 

view. The prefab acts as a template from which new object instances can be created 

in the scene. Objects created as prefab instances will be shown in the hierarchy view 

in blue text. Like other GameObjects, prefabs are also edited in the inspector view. 

(ibid.) 

Copies of prefabs can also be instantiated through scripting at runtime. In the follow-

ing code, 10 copies of a prefab are being instantiated each 2 units apart.  
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2.3.5 Layer 

Most commonly used by Cameras to render only certain parts of the Scene (culling 

mask) or by Lights to illuminate specific areas, Layers can also be used to create colli-

sions or to ignore Raycasting collisions selectively (layerMask). In other words, layers 

are a way to classify different types of objects from each other in Unity. (Unity – 

Manual: Layers 2016.)  

In 2D games, sorting layers are used in conjunction with sprite graphics. The “sorting” 

refers to the overlay and drawing order of different sprites. Menu for organizing sort-

ing layers in Figure 11. (Unity – Manual: TagManager 2016.) 

 

Figure 11. Sorting Layers - menu 

 

Layers and sorting layers are applied to GameObjects in the Inspector view. Through 

the drop-down menu, new layers and sorting layers can be created by the user. 

2.3.6 Tag 

Tags are words, or Strings that can be issued to GameObjects and used to identify 

them for scripting purposes. For instance, defining “Player” and “Enemy” Tags for 

player-controlled characters and non-player characters respectively; a “Collectable” 
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Tag could be defined for items the player can collect in the Scene. In scripts, they 

save manual addition of GameObjects to exposed public properties and offer a useful 

timesaver if the same script code is being used in several GameObjects, for example 

when using TriggerColliders to detect collisions between player and enemies. Exam-

ple code of a trigger collision between a bullet and an enemy is presented below. 

(Unity – Manual: Tags 2016.) 

 

Tags are applied to GameObjects in the Inspector view. From the same drop-down 

menu, new tags created by the user are added. 

2.3.7 Scene 

Each scene file, with all the GameObjects it contains, can be thought as a unique 

level or a title screen, for example. Scenes encase all the information of what will 

happen when a game is being played. In each Scene, environments, decorations, 

characters and gameplay mechanics define a game level by level.  

Scenes may be edited one at a time in the editor or by opening additive scenes in the 

Hierarchy view, to allow multi scene editing. By default, all GameObjects are de-

stroyed when switching between scenes, however, they can be set not to, by using 

DontDestroyOnLoad () – method in scripts. (Unity – Manual: MultiSceneEditing 

2016.) 

2.4 Scripting 

While classic Object Oriented Programming (OOP) can be used, the Unity workflow 

highly builds around the structure of components and custom component scripting. 

The fine line between programming and scripting has become even more blurred 
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over the years. Essentially, scripting or writing scripts, is programming within a pro-

gram whereas programming is writing software that runs independent of an exterior 

program. (Porter 2013.) 

In line with the Unity Engine’s emphasis on usability and flexibility, it natively sup-

ports three different scripting languages: C#, Boo (a dialect of Python) and JavaScript, 

also referred to as UnityScript. A single project can contain scripts written in which-

ever of the three languages. While possible, but not recommended, scripts written in 

different languages can access each other’s functions and GameObjects can have 

them attached and running, all at the same time. As mentioned before, attached 

scripts behave like components in GameObjects. Unity also supports various scripting 

environments like: Visual Studio, MonoDevelop, UnityDevelop and SubEthaEdit to 

name a few.  Below, the initial contents of a C# script file are displayed. (Menard 

2011, 156 – 158.) 

 

One of the greatest differences between traditional OOP and Unity scripting is, that 

constructors are not used in a similar fashion, when a class inherits Unity’s MonoBe-

haviour. Instead, Awake () and Start () functions of MonoBehaviour are used for ini-

tialization. MonoBehaviour is the base class every script derives from; except when a 

script contains network functionality, NetworkBehaviour is used. NetworkBehaviour 

is discussed in detail in chapters 3 and 5. (Menard 2011, 157.) 

JavaScript is automatically derived from MonoBehaviour, while C# and Boo have to 

be explicitly derived from it. When MonoBehaviour is inherited in a class, it is able to 

use all basic features and functions of Unity Engine. Most commonly used and the 

most important functions are: Awake (), Start (), Update (), FixedUpdate (), OnGUI () 
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and functions concerning collisions. Appendix 2 introduces several important Mono-

Behaviour functions and their uses. The execution order of functions during a script’s 

lifetime is as follows: (Unity – MonoBehaviour 2016; Unity – Manual: ExecutionOrder 

2016.) 

 Editor 
o Reset 

 Initialization 
o Awake 
o OnEnable 
o Start 

 Physics 
o FixedUpdate 
o yield waitForFixedUpdate 
o OnTrigger 
o OnCollision 

 Input Events 

 Game logic 
o Update 
o yield waitForSeconds 
o StartCoroutine 
o Animation update 
o LateUpdate 

 Scene rendering 

 Gizmo rendering 

 GUI rendering 
o OnGUI 

 End of frame 
o yield waitForEndOfFrame 

 Pausing 
o OnApplicationPause 

 Disable 
o OnDisable 

 Decommissioning 
o OnApplicationQuit 
o OnDisable 
o OnDestroy 

 

Appendix 3 demonstrates simple 2D collision and Coroutine scripts, while Appendix 4 

shows an example of a player movement script written in C# using MonoDevelop. It 

handles the movement of a main character according to user input as well as anima-

tion control and raycasting to detect if player object collides with interactable ob-

jects.  
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2.5 Asset Store 

Whether you're a programmer, game designer, texture artist or 3D 

modeler, you’re welcome to share your creations with everybody in 

the Unity developer community! (Sell Assets 2016.) 

 

Originally launched in November 2010, the Unity Asset Store acts as an online mar-

ketplace for Unity users and other developers or artists alike to sell project assets to 

each other.  With over 40,000 asset packages available in various categories and 

prices ranging from free to over $1000, Asset Store offers a potential chance for sav-

ing resources during game development. Publisher of an asset receives 70% cut of 

their set price in the store, while Unity takes 30% off of each sale. Free tutorials, sam-

ple projects and standard assets are also available in courtesy of Unity Technologies. 

(Sell Assets 2016; Stats Monitor – Asset Store 2016.) 

The store may be accessed through a simple interface built into the Unity Editor (Fig-

ure 12) or a web browser. Purchased assets are downloaded and imported directly 

into your project. Three most popular asset packages in mid-2015 were NGUI: Next-

Gen UI, Playmaker and “Unity-Chan!”-model, excluding Unity Technologies assets. 

(Stats Monitor – Asset Store 2015; Unity – Manual: Importing from the Asset Store 

2016.) 

 

Figure 12. Main view of Asset Store 
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3 Multiplayer solutions for Unity game development 

3.1 Unity Networking 

Released with update 5.1 and recently coming out of beta, the UNet, or simply Unity 

Networking, is designed to replace the old networking system. It offers a new set of 

highly customizable components and tools for creating real time, networked games 

with Unity. It can be divided into two layers. 

The Lower Level API, called the Transport Layer, is a thin layer working on top of the 

operating system’s sockets-based networking. The LLAPI targets experienced net-

work programmers and users, who are building network infrastructures or advanced 

multiplayer games. This chapter mainly concentrates on the High Level API, which 

gives access to commands that cover most of the common requirements for multi-

user games without the need of worrying about the “lower level” implementation 

details. (Unity – Manual: Networking Overview 2016.) 

3.1.1 The High Level API 

Built on top of the lower level transport real-time communication layer, the High 

Level Application Programming Interface (HLAPI) is a system for building multiplayer 

capabilities for Unity games. The HLAPI contains a new set of networking commands 

built into Unity within a new namespace: UnityEngine.Networking and it handles 

many of the common tasks that are required for multiplayer games. While the 

transport layer supports any kind of network topology, the HLAPI is a server authori-

tative system; although, it allows one of the participants to be a client and the server 

at the same time, so no dedicated server process is necessarily required. Working in 

conjunction with the internet services, this allows multiplayer games to be played 

over the internet without major effort from developers. The layers which add func-

tionality to the HLAPI are displayed in Figure 13. (Unity – Manual: The High Level API 

2016.) 
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Figure 13. HLAPI layers 

 

In the Unity Networking system, games have a Server and multiple Clients. When 

there is no dedicated server to be found, one of the clients is able to play the role of 

the server, or “host”. The host is a server and a client in the same process. The host 

uses a special kind of client called the LocalClient, while other clients are RemoteCli-

ents. The LocalClient communicates with the (local) server through direct function 

calls and message queues, since it is in the same process, sharing the scene with the 

server. RemoteClients communicate with the server over a regular network connec-

tion. (Unity – Manual: Network System Concepts 2016.) 

3.1.2 NetworkBehaviour 

The NetworkBehaviour base class is, as a matter of fact, an “extension” of the Mono-

Behaviour class and scripts that inherit it have also access to MonoBehaviour func-

tions. Designed to work with objects containing the NetworkIdentity component, 

these special scripts are able to perform HLAPI functions such as Commands, Cli-

entRPCs, SyncEvents and SyncVars, and they should be inherited by scripts which 

contain Networking functionality. (Unity – Manual: NetworkBehaviour 2016.) 
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Using the networking features it provides, the user is able to synchronize member 

variables from server to clients or perform virtual, overridable callback functions for 

various network events, for example. Since the HLAPI is a server authoritative sys-

tem, usage of NetworkBehaviour Commands is the definitive way for clients to re-

quest to do something on the server while Client RPC calls are used by server objects 

to cause things to happen on client objects. Simplified interaction between client and 

server is demonstrated in Figure 14. Appendix 5 introduces the most notable Net-

workBehaviour functions and variables, as well as their uses. (ibid.) 

 

Figure 14. UNet function directions 

 

3.1.3 NetworkManager 

The NetworkManager can be thought as the core controlling component of a multi-

player game. Usable even completely without scripting, it manages the network 

states of a game, as its name suggests. In advanced games scripting is naturally a 

must, in order to access network functions. When added into a GameObject of the 

users liking, the inspector for the NetworkManager in the editor allows configuration 

and controlling of several features related to networking. These features include: 
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 Game state management 

 Spawning management 

 Scene management 

 Debugging information 

 Matchmaking 

 Network customization 
    

Another useful component to be used alongside with the NetworkManager is the 

NetworkManagerHUD which supplies a simple, default user interface at runtime that 

allows the network state to be controlled by the user. It is not a substitute for a 

proper interface found in real games, however, it might prove useful when getting 

started with Unity Networking. In Figure 15, both components have been attached 

into a GameObject. 

 

Figure 15. NetworkManager and HUD 

 

A UNet multiplayer game can run in three modes - as a client, as a dedicated server, 

or as a Host, which is both a client and a server at the same time. The NetworkMan-

ager holds methods for entering each of these modes. StartClient (), StartServer (), 

StartHost () and their counterparts for stopping are all available to be invoked from 

input handlers or from custom user interfaces, in addition to numerous other func-

tions. (Unity – Manual: Using the NetworkManager 2016.) 
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By default, there are two slots for scenes on the NetworkManager inspector, the of-

flineScene and the onlineScene. Dragging scene objects into these slots activates net-

worked scene management. When a server or host is started, the online scene will 

be loaded and it will then become the current network scene. Any clients connecting 

to that particular server will be instructed to also load that scene. When the network 

is stopped, by stopping the server or host, or by a client disconnecting, the offline 

scene will be loaded. This allows the game to automatically return to an offline menu 

scene when disconnected. (ibid.) 

For managing the spawning of networked prefab objects, the NetworkManager has 

slots for both the main player, as well as for any other objects to be spawned on the 

server. When a player prefab is set, it will automatically be spawned from that prefab 

for each user in the game. This applies to the local player on a hosted server, and re-

mote players on remote clients. The other dynamically spawnable prefab objects 

must be added into the Registered Spawnable Prefabs – list in order to register them 

with the ClientScene or by using the ClientScene.RegisterPrefab () functions. All 

spawnable prefabs that hold networking functions must have a NetworkIdentity 

component attached to themselves. (ibid.) 

Starting positions for players can be set by adding a NetworkStartPosition compo-

nent to an object in the play scene. The NetworkManager automatically registers the 

position and orientation of the object as a start position.  When a client joins the 

game and a player is added, the player object will be created at one of the starting 

positions with the same transform values. (ibid.) 

The NetworkManager runtime UI and NetworkManager inspector allow interactions 

with the UNet matchmaker service. The function StartMatchmaker () enables match-

making, and populates the NetworkManager.matchmaker property with a Network-

Match object. The default match host for matchmaking is the Unity Technology 

“mm.unet.unity3d.com” – server. (ibid.) 

3.1.4 NetworkLobbyManager 

The NetworkLobbyManager is a specialized NetworkManager component that pro-

vides a staging area for players to join before playing the actual game. In this area, 
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often called the lobby, the players may be able to change settings and set themselves 

ready before the game starts. As it is derived from the NetworkManager, it imple-

ments many of the virtual functions provided by the NetworkManager class, in addi-

tion to its own. (Unity – Manual: Multiplayer Lobby 2016.) 

Some of the features provided by the NetworkLobbyManager are listed below:  

 Limit on number of players that can join 

 Support for multiple players per client with a limit on number of players per 
client 

 Prevent players from joining game in-progress 

 Pre-player ready state, so that game starts when all players are ready 

 Per-player configuration data 

 Re-joining the lobby when the game is finished 

 Virtual functions that allow custom logic for lobby events 

 A simple user interface for interacting with the lobby 

 

In similar fashion to the NetworkManager, the lobby component has two slots for 

scenes by default. One for the lobby scene and another for the play scene. The key 

differences reveal themselves when player objects come into question. There are 

two kinds of player objects - each which has a prefab slot in the NetworkLobbyMan-

ager. (ibid.) 

A LobbyPlayer is created when a client connects and joins the lobby or when a new 

player is added. One prefab instance of LobbyPlayer is created for every player in the 

lobby and it persists to exist until that client disconnects from the server. It handles 

the commands given while in the lobby scene and holds the ready flags for all play-

ers. The LobbyPlayer prefab must have a NetworkLobbyPlayer component attached 

to itself; the NetworkIdentity is added automatically after attaching. (ibid.) 

In turn, the GamePlayer is created from a prefab when the game scene has loaded. It 

handles commands given by the players during the game and gets destroyed when 

re-entering the lobby scene or getting disconnected. This prefab must have a Net-

workIdentity component attached. (ibid.) 
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Below are some virtual callback functions of the LobbyPlayer, which are used for cre-

ating custom lobby behaviour. 

 

The function OnClientEnterLobby gets called on the client when the game enters the 

lobby. This happens when the lobby scene starts for the first time, and also when re-

turning to the lobby from the game-play scene. The OnClientExitLobby is called on 

the client when the game exists the lobby. This happens when switching to the play 

scene. OnClientReady is called on the client when the ready state of that player 

changes. (ibid.) 

When the minimum amount of ready flags given by players (represented by the 

“minimum players” field in the manager) have been set, the manager is able to 

transit from the lobby scene to the game scene. NetworkLobbyPlayer.SendReady-

ToBeginMessage () function can utilized to tell the server that this player is ready for 

the game to begin. The NetworkLobbyManager component and the aforementioned 

fields are displayed in Figure 16. 

 

Figure 16. NetworkLobbyManager component 
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3.1.5 Essential Networking Components 

Along with the two managers and HUD, Unity Networking offers several other com-

ponents to be used in multiplayer applications. In this chapter the most crucial com-

ponents and their uses and functionalities are explained shortly to give a better un-

derstanding about the workings of UNet.   

NetworkIdentity is at the heart of the new Networking system. When attached to a 

GameObject, it makes the networking system aware of the object’s presence and as-

signs unique NetworkInstanceId for it when spawned. There might be multiple ob-

jects instantiated of a particular object type, and the network ID is used to identify 

which object, for example, a network update should be applied to. The NetworkIden-

tity component has two visible checkboxes in the inspector (Figure 17). The “Server 

Only” checkbox sets off a flag that will ensure this particular object will not be 

spawned or enabled on clients. The “Local Player Authority” checkbox allows the ob-

ject to be controlled only by the client that owns it and have authority over it. Local 

player authority is used mainly to handle player commands, so that only the appro-

priate object has authority over controls. (Unity – Manual: NetworkIdentity 2016.) 

 

Figure 17. NetworkIdentity 

 

NetworkTransform component synchronizes movement across the network for all 

spawned GameObjects. It takes authority into account, so local player objects syn-

chronize their position from the client to server, then out to other clients, whereas 

other objects with server authority will be synchronized from the server to clients. In 

order to function properly, this component requires NetworkIdentity to be attached 

into the same object. (Unity – Manual: NetworkTransform 2016.) 

NetworkStartPosition, as mentioned in chapter 3.1.3, is used by the Net-

work(Lobby)Manager when spawning player objects. It is registered automatically as 

a starting position by the NetworkManager when fixed into a GameObject. When po-

sitioned in a scene like the user wishes, player objects are spawned after a game 
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level has been loaded, at one of the starting positions with the same transform val-

ues by default. To quickly alter how starting positions are issued, the Player Spawn 

Method can be set to Random or Round Robin from the manager components. 

(Unity – Manual: Using the NetworkManager 2016.) 

NetworkProximityChecker is a component which relies on physics to calculate and 

control the visibility of objects for network clients based on proximity. It has some 

configurable parameters (Figure 18), such as Vis Range and Vis Update Interval. Ob-

jects further away than Vis Range will not be visible to a player, and each player’s set 

of visible objects will be recalculated every Vis Update Interval seconds. In order to 

check proximities, objects must have colliders. (Unity – Manual: Object Visibility 

2016.) 

 

Figure 18. NetworkProximityChecker 

 

NetworkAnimator is a component which synchronizes animation states for net-

worked objects. Although it behaves very similarly as the regular Animator, it has 

some properties of its own. To name a few, the local authority controls whether a 

certain object is animated on the local client, and SetParameterAutoSend sets 

whether an animation parameter should be auto sent. (Unity – Manual: NetworkAni-

mator 2016.)   

NetworkDiscovery allows Unity applications to find each other in a local area net-

work by broadcasting their presence and by listening for other broadcasts. Network-

Discovery is able to run in a server mode by calling StartAsServer, where it broad-

casts to other computers on the local network, or in a client mode by calling Star-

tAsClient where it listens for broadcasts from a server. (Unity – Scripting API: Net-

workDiscovery 2016.) 
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3.1.6 Objects and authority in UNet 

In addition to the isLocalPlayer flag and the local authority property of player objects, 

which are provided by NetworkIdentity to prevent command invoking on another 

player, starting with Unity release 5.2, it is possible to have client authority over non-

player objects. Non-player objects with client authority can send commands just like 

the players, although these commands are run on the server instance of the object. 

Setting authority over these objects can be achieved by spawning the object using 

NetworkServer.SpawnWithClientAuthority or by using NetworkIdentity.AssignClientAu-

thority with the network connection of the client to take ownership. Nevertheless, 

objects that should not be controlled by players, like enemies, are recommended to 

be spawned on the server with server authority, as shown in Figure 19. (Unity – Man-

ual: Network System Concepts 2016.) 

 

Figure 19. Network authority 

  

In the server authoritative model of the UNet, registered spawnable network prefabs 

are instantiated on the server. The two formerly mentioned managers offer an easy 

drag-and-drop solution for registration. Spawning an object on the server means that 

it is created by the server onto currently connected clients, and state updates are 

sent to clients when the object changes on the server. The following code snippet 
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shows an enemy prefab to be instantiated on a server. (Unity – Manual: Object 

Spawning 2016.) 

 

GameObjects already existing in a scene are handled differently, when compared to 

dynamically instantiated objects. They are loaded with the scene on both the client 

and server and exist at runtime before any spawn messages are sent. If the Net-

workIdentity component is present in these objects and when a scene is fully loaded, 

NetworkServer.SpawnObjects () is called automatically by the managers to activate 

these networked scene objects. Due to this special way of instancing, they are 

hooked up to the network, which means that if an object of this kind is destroyed be-

fore a client joins the game, it will never be spawned on any new clients that join; 

however, these objects come with the benefit of having special modifications that 

differ from prefabs. (ibid.) 

3.1.7 State Synchronization 

State synchronization is set up from the server to remote clients and since local cli-

ents do not have data serialized to them, SyncVar hooks are needed. SyncVars are 

variables of NetworkBehaviour scripts that are synchronized from the server to cli-

ents. SyncVars can be of any basic type such as integers, floats or strings; or Unity 

types like Vector3. SyncVar updates are sent automatically by the server when ob-

jects are spawned or when new players connect to a game already in progress. The 

state of SyncVars is applied to objects on clients before OnStartClient () is called, 

which guarantees the state of the objects to be up-to-date when a client connects. 

Variables are made into SyncVars by tagging them with the [SyncVar] custom attrib-

ute, like such: (Unity – Manual: State Synchronization 2016.) 
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In order to synchronize a list of values, instead of individual values the usage of Syn-

cLists is recommended. SyncLists are specific classes and do not require the SyncVar 

tag. There are built-in SyncList types for basic variables: 

 SyncListString 

 SyncListFloat 

 SyncListint 

 SyncListUInt 

 SyncListBool 

 

There is also a type called SyncListStruct, which can be used for lists of user-defined 

structs. The struct used in SyncListStruct derived class, like in the following code, can 

contain members of basic types, arrays, and common Unity types. (ibid.) 

 

Sometimes SyncVars are not enough for scripts to serialize their state to clients, so 

the virtual functions on NetworkBehaviour can be implemented by developers to 

perform custom serialization. These functions are: 
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Appendix 6, made by Unity Technologies, demonstrates the difference between cus-

tom serialization and the simple usage of SyncVars. (Unity – Manual: State Synchroni-

zation 2016.) 

3.1.8 Remote Actions 

There are two types of Remote Procedure Calls, or RPCs, in the UNet system, to per-

form actions across the network. Commands, which are called from the client and 

run on the server and ClientRPCs, which are called on the server and run on clients. 

(Unity – Manual: Remote Actions 2016.) 

To make functions into Commands, a custom [Command] attribute tag must be set 

before the actual function. A “Cmd” prefix must also be added in front of the name 

of the function. These Commands are sent from player objects on the client, to 

player objects on the server and for security reasons they can only be sent by this 

particular client, to prevent taking over the controls of another player. If any argu-

ments are present, they are passed automatically to the server with Commands. The 

following code shows a Command function for player firing a bullet, with isLo-

calPlayer check, that prevents the execution of said Command if isLocalPlayer returns 

false. (ibid.) 

 

In similar fashion as Commands, the ClientRPC functions are created by setting a cus-

tom [ClientRPC] tag and ”Rpc” prefix. The ClientRPC calls are sent from objects on the 
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server to objects on clients, by any spawned server objects which have NetworkIden-

tity component attached. In other words, ClientRPC calls are a way for server objects 

to cause things to happen on client objects. Since the server has authority, there are 

no security issues with server objects being able to send these calls. The behaviour of 

a ClientRpc call is the same for LocalClients and RemoteClients; even though LocalCli-

ent is in the same process as the server. The following code shows an example of a 

ClientRpc call. (ibid.) 

 

3.1.9 Internet services 

The Unity Technologies offer a multiuser server service for games to communicate 

across the internet, which provides the users an ability to create, join, list and adver-

tise online matches. In order to enable the internet services for a project, it needs to 

be registered by clicking the cloud icon in the upper right corner of the editor, which 

leads to the cloud multiplayer website from where a project ID can be acquired. 

There is also a 20 CCU (concurrent users) limit for multiplayer development in the 

Unity Personal Edition. (Unity – Manual: Internet Services 2016.) 

When using the UNet internet services, network traffic goes through a relay server 

hosted by Unity in the cloud instead of going directly between the clients, which 

avoids problems with firewalls and NATs. The internet service matchmaking function-

ality can be utilized with a script in the UnityEngine.Networking.Match 

namespace. The most notable matchmaking features are as follows. (ibid.)  
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3.2 Photon Unity Networking 

3.2.1 Feature overview 

Photon Unity Networking, or PUN, is a Unity plugin package for creating multiplayer 

games. It provides authentication options, matchmaking and in-game communica-

tion through the Photon backend.  The PUN multiplayer features are based around 

room creation and games are hosted in globally distributed Photon Clouds, in order 

to guarantee low latencies for players worldwide. PUN exports to almost all plat-

forms supported by Unity and there are two different packages to choose from: PUN 

Free and PUN Plus. Figure 20 displays the comparison between these two packages. 

(Photon – Photon Unity Networking Intro N.d.) 

 

Figure 20. PUN versus PUN+ 
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As is the case with the UNet, PUN also has its own networking components, callback 

functions, remote procedure calls and classes. The most important classes are: (Pho-

ton Unity Networking: Class List N.d.) 

1. PhotonNetwork, which is the main class to use the PhotonNetwork plugin. 
2. Photon.Monobehaviour, which inherits MonoBehaviour and is inherited by Pho-

ton.PunBehaviour. This class adds the PhotonView property. 
3. Photon.PunBehaviour provides the PhotonView and all callbacks/events PUN is able 

to call. PunBehaviour uses the namespace “using.Photon”.  
 

The chapter 3.2 introduces the most essential features, functions and components of 

the PUN system. 

3.2.2 Initial setup 

After the PUN has been imported into a Unity project, the PUN Setup Wizard (Figure 

21) will pop up. Registering a new Photon Cloud account provides a personal applica-

tion id for the user, which is needed for Photon Cloud hosting. (Photon – Initial Setup 

N.d.) 

 

Figure 21. PUN Wizard 

 

The Wizard also adds a PhotonServerSettings file into the project’s asset folder, 

which can be used to alter the server configurations easily. Through the configura-

tion file the user is able to edit the hosting types, hosting regions, protocols, client 

settings and remote procedure calls. Figure 22 portrays the PhotonServerSettings file 

and the options it contains. (ibid.) 
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Figure 22. PhotonServerSettings 

 

From the Hosting drop-down menu the user is able to select which server will handle 

the networking of the game. Both Photon Cloud and Best Region options relate to 

the services managed by Photon. The Best Region mode will ping all specified regions 

when the application starts for the first time and lets the clients to select the region 

with best ping, if more than one region has been specified. The Self Hosted mode of-

fers a choice of running a Photon Server on one’s own. By default the connection 

protocol is set as UDP, however, Photon also supports TCP. (Photon – Initial Setup 

N.d.) 

The Client Settings section contains the options for “Auto-Join Lobby” and “Enable 

Lobby Stats”. If the “Auto-Join Lobby” is checked, the PUN will then automatically 

join players into the default lobby when connection has been established or when 

leaving rooms. Lobby statistics enable the receiving of statistical data from servers, 

which might prove useful when dealing with a game that uses multiple lobbies or 

when server activity, such as player count, needs to be displayed to the clients. (ibid.) 

PUN keeps a list of the game’s remote procedure calls, which are used to call func-

tions on all clients in a room. For further discussion about these functions, see Chap-

ter 3.2.7. (ibid.) 
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3.2.3 Essential components 

The PhotonView is the equivalent of UNet’s NetworkIdentity component and is used 

to send messages across the network. PUN requires one PhotonView per instantiated 

prefab in order to track networking references, object ownership and observed com-

ponent references. PUN keeps track of the PhotonViews it has instantiated locally 

and the referenced observed components are able to send updates to the other cli-

ents at runtime. For example, if a Transform component has been set as “observed”, 

its position, rotation and scale values are now synchronized across the network to 

other players. Figure 23 displays a PhotonView component. (Photon – Feature Over-

view N.d.) 

 

Figure 23. PhotonView component 

 

The PhotonAnimatorView (Figure 24) allows the developer to define which anima-

tion layer weights and parameters have to be synchronized. The layer weights only 

need to be synchronized if they change during the game and the same goes for pa-

rameters. Each parameter can be synchronized either discretely or continuously. In 

practice, discrete synchronization sends values 10 times per second (in OnPhotonSe-

rializeView) and the receiving clients pass the value on to their local Animator. Con-

tinuous synchronization means that the PhotonAnimatorView records additional val-

ues. When the OnPhotonSerializeView is called (10 times per second), the values rec-

orded since the last call are sent together. The receiving client then applies the val-

ues in sequence to retain smooth transitions. While continuous synchronization is 

smoother, it also needs to send more data. (Photon – Tutorials: Mecanim Demo N.d.) 
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Figure 24. PhotonAnimatorView 

 

The PhotonTransformView, PhotonRigidbodyView and PhotonRigidbodyView2D 

components offer a selection of customizable options for advanced synchronization. 

The RigidbodyView components can be used to synchronize velocities according to 

Rigidbody physics, while the PhotonTransformView opens up more options on how 

the Transform data is put in sync. All three components should be added into the 

“observed” field of the PhotonView, if they are attached into a GameObject. Figure 

25 presents the options found in the PhotonTransformView component. 

 

Figure 25. PhotonTransformView 
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3.2.4 Matchmaking 

The PhotonNetwork class always uses a master server and one or more game serv-

ers. The master server manages the currently available games and does matchmak-

ing, while the game servers handle actual gameplay once a room has been found or 

created. PhotonNetwork.ConnectUsingSettings (“v1.0”) is all the user needs in order 

to make use of Photon’s features. It sets the client’s game version and uses the Pho-

tonServerSettings to connect. Alternatively, Connect () may be used to ignore the 

server settings file altogether. There are no hosts in the same sense as in Unity Net-

working, however PUN has a replacement; The “Master Client” which is always the 

player with the lowest ID in a room. All clients are capable to check if they are cur-

rently the master with PhotonNetwork.isMasterClient. (Photon – Matchmaking & 

Room Properties N.d.) 

The following code showcases the basic functions for creating, joining and listing 

rooms: 

  

3.2.5 Instantiation 

In Photon, prefabs are instantiated during runtime with the PhotonNetwork.Instanti-

ate function. PUN automatically registers and takes care of the spawning of these 

networked objects by passing starting position, rotation and prefab name to the in-

stantiate function. All networked prefabs must contain a PhotonView component 
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and should be located directly under a resources/ folder for runtime accessing. (Pho-

ton – Instantiation N.d.)   

 

If the developer wishes not to rely on the resources folder for object instantiation, 

“manual” instantiation is an option as well. Spawning objects through remote proce-

dure calls will accomplish this task. The PhotonView.viewID is the key for routing net-

work messages to the correct GameObjects and scripts, while PhotonNetwork.Allo-

cateViewID () allocates new viedIDs, so everyone in the room has the same ID on the 

new object. Manual instantiation is carried out as follows: (ibid.) 

 

GameObjects spawned with the PhotonNetwork.Instantiate function will exist on 

other clients as long as the client who owns or creates them stays in the same room. 

If this kind of behaviour is not desirable, the “PhotonNetwork.autoCleanUpPlayerOb-

jects” can be set as false. Alternatively, the Master Client can create GameObjects 

which have the same lifetime as the room by using PhotonNetwork.InstantiateScene-

Object (). Objects created this way are associated with the room, not the Master Cli-

ent. By default, the Master Client controls the created objects, however control may 

be passed on to other clients with PhotonView.TransferOwnership (). (ibid.) 

If the GameObjects need to be set up as they get instantiated, it is possible to call the 

OnPhotonInstantiate (PhotonMessageInfo info) on them, with the info who triggered 

the instantiation. For example, setting an object as a player’s Tag object is as follows: 

(ibid.) 
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3.2.6 Player Authority 

There are a few ways to have authority over player controls in PUN. As the Photon-

Network.Instantiate returns the GameObject it created, a simple bool variable is suit-

able for this task. This is demonstrated in the code below, where a player object gets 

instantiated and its isControllable value is set as true for input registering. (Photon – 

Tutorials: Marco Polo N.d.) 

 

 

Another way to achieve similar functionality is to use the isMine property of the Pho-

tonView component, which returns true if this particular client owns the PhotonView 

in question. (ibid.) 

 

3.2.7 State synchronization 

As mentioned in chapter 3.2.3, GameObjects can easily be made network aware by 

assigning a PhotonView component on them. The PhotonView must be setup to ob-

serve other components such as Transform, or more commonly other custom script 

components. While a script is observed, the PhotonView component regularly calls 

the method OnPhotonSerializeView. The duty of this function is to create the info the 
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clients want to pass on to others and handle such incoming info, depending on who 

created the PhotonView. (Photon – Synchronization and State N.d.) 

A PhotonStream is passed on to the OnPhotonSerializeView and the value of isWrit-

ing tells the client if it needs to write or read remote data from it. The subsequent 

code snippet showcases this functionality as it sends and receives positional and ro-

tational data. (Photon – Tutorials: Marco Polo N.d.) 

 

It is also possible to set custom synchronizable properties through code for player 

objects and rooms with the SetCustomProperties (). Photon’s custom properties con-

sist of key-value Hashtables, which are synched and cached on clients. For example, 

to set custom properties for a player, PhotonPlayer.SetCustomProperties (Hashtable 

propsToSet) must be used. Similarly, PhotonNetwork.room.SetCustomProperties 

(Hashtable propsToSet) function is used for rooms. (Photon – Synchronization and 

State N.d.) 

3.2.8 RPCs and RaiseEvent 

In Photon, the PhotonView components are like “targets” for remote procedure calls. 

When a function has been tagged with [PunRPC], it is executed on the clients (de-

fined by PhotonTarget values) only on the networked GameObject with a specific 

PhotonView. For example, if a client damages another object in a game and calls for 

an “ApplyDamage” RPC function, all the receiving clients will apply the damage to the 

same object on their end. In order to call the functions marked as RPC, a PhotonView 
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is needed on a GameObject, as well as a Photon.MonoBehaviour or Photon.PunBe-

haviour in scripts. An example code of a message being sent through an RPC function 

is as follows: (Photon – RPCs and RaiseEvent N.d.) 

 

The PhotonTargets might have some parameters ending on “Buffered”. The server 

remembers these RPC functions and when a new player joins in, it receives the RPC, 

even though it happened prior to joining. Alternatively, parameters ending on Vi-

aServer disables the “All” parameter of PhotonTargets. The ViaServer sends RPCs 

through the server, executing them in the same order as they arrive on the server. 

Typically in Photon, when the sending client has to execute an RPC, it does so imme-

diately without sending the RPC through the server. The PhotonServerSettings file 

lists and stores all currently present RPCs. (Photon – RPCs and RaiseEvent N.d.) 

In some cases the RPCs are not exactly what is needed. With the PhotonNet-

work.RaiseEvent, the developers are able to create custom events and send them 

without any relation to networked objects or PhotonViews. To receive events, a 

script must implement with an EventCallback. The RaiseEventOptions parameter of 

the PhotonNetwork.RaiseEvent can be set as null or to define which clients receive 

this event, is it buffered, etc. (ibid.) 
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3.3 Other plugins 

There are several other third-party plugins to be found in the Asset Store and around 

the internet, either for a fee or completely free of charge, although many of the 

available plugins offer trial- or lite-versions for free and the unlocking of extended 

features requires a payment. In addition to PUN, some of the most popular plugins 

are: DarkRift, Forge, uLink and PlayFab. Each of these plugins have their own operat-

ing principles and networking libraries to be integrated into a Unity project. 

4 Project Quantum Knight 

4.1 Game story 

In the not so distant future the megacorporations rule the world. Human rights have 

been diminished in the city of Kyoto, as the malicious Yú Corporation enforces peace 

and obedience with an iron grip. The Cybernatural Affairs Department (C.A.D), a sec-

tion of Yú Corporation’s paramilitary security forces, responds swiftly and ruthlessly 

to all cyber security transgressions.  

The main character, only known by the name of Void, is a synthetic lifeform created 

by Yú Corporation’s Quantum Knight Program, in order to simulate how a machine is 
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able to coexist with organic lifeforms. Quantum Knights have the ability to physically 

move in and out of the Kyoto city’s labyrinthine data network (cyber world) through 

terminals and into different places in the real world. Void is completely oblivious to 

his/her true nature, while several other versions of Quantum Knights with the same 

ability have been produced. 

At the beginning of the game, the main character’s personal domain is attacked by a 

tracker virus. The virus causes a lockdown in the apartment block and Void must en-

ter the cyber world in order to defeat it. The cyber world bears a close resemblance 

to the real world, as perceived by organics, however, with different threats and chal-

lenges. Security protocols dispose infiltrators with mechanical precision, all the while 

some parts of the network have been infested by viruses. Although Void manages to 

conquer the virus in his/hers personal domain, the C.A.D agents will soon arrive. Be-

fore that happens, Void must flee the scene and escape from the district… 

Quantum Knight is a JRPG-styled game (Japanese Role Playing Game), with a battle 

system similar to Final Fantasy Tactics and Fire Emblem series, including online 

gameplay. The game is set in a cyberpunkish city of Kyoto for the player to explore. 

QK features retro style graphics and music to emulate 80s visions of dystopian fu-

ture.  

4.2 Project realization 

The Quantum Knight – prototype project was carried out by a two-man development 

team, handling everything from design and programming to music and sound effects, 

except graphics. The work load was distributed evenly for menial tasks, such as mu-

sic, effects, menus and level layouts, while tasks concerning topics of our separate 

theses, were divided accordingly; the main focal points being in the studying of mul-

tiplayer solutions and in Object Oriented Programming versus Entity Component Sys-

tem in Unity. 

Unity Engine was a natural choice over other game development platforms, as both 

team members had over a year of previous experience working with it. Another rea-

son were the built-in features of Unity, which greatly sped up the development pro-
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cess and workflow in a tight schedule. At the beginning, at the specification and de-

signing phase of the project, the development timeframe was set to four months and 

priorities for important features as follows: 

1. Basic gameplay  
2. Battle mechanics  
3. Viruses  
4. Multiplayer  
5. Environment building  
6. UI  
7. Music  
8. Dialog  
9. Sound effects  
10. Testing  

 

As with every proper software project, the development process went through a set 

of different phases and in this particular case, iteratively. The first step was to write 

out a requirement specification and Game Design Document (GDD), which includes 

all the assets needed, gameplay mechanics, overall game idea, game flow and how 

the development process is carried out.  

After the designing of key mechanics, functions and environments, the project ad-

vanced to implementation phase, where all achievable features were created in 

Unity and tested constantly as production moved forward. A small-scale end testing 

session was held for the prototype, to ensure no critical errors were to be found.   

To assure keeping on schedule, as well as task visualization and listing of working 

hours, team members chose Trello and Scrum for project handling tools. Trello is a 

web-based project management application originally made by Fog Creek Software 

and Scrum an iterative and incremental agile software development framework for 

managing product development. Other tools utilized during the development in-

cluded Renoise, a digital audio workstation tracker software and Paint.NET, 

a freeware raster graphics editor program for Microsoft Windows.  

https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Project_management_software
https://en.wikipedia.org/wiki/Fog_Creek_Software
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Freeware
https://en.wikipedia.org/wiki/Raster_graphics_editor
https://en.wikipedia.org/wiki/Microsoft_Windows
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4.3 Audiovisual design 

In order to create the feel of a future, where humanity has more or less failed, cyber-

punk and retro futurism heritage was used as an inspiration. Through common inter-

ests, an East Asian city, set in a dystopian future, was chosen as the setting for the 

game prototype, to reflect genuine 80s futuristic visions to the player. 

4.3.1 Graphics 

To save limited production time, retro styled graphics from RPG Maker were imple-

mented into the project. This enabled the quick creation of characters and environ-

ments as well as obtaining the desired retro style visually. In Figure 26, the different 

2D sprites needed for animating the main character’s movements can be inspected.  

 

Figure 26. Void, the main character 

 

The RPG Maker graphics are delivered in Sprite sheets. A sprite sheet is generally a 

large image, containing a collection of 2D sprites. All the characters and environ-

ments seen in the prototype were created by using various suitable sheets. Figure 27 

presents one of them. 
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Figure 27.  Sprite sheet 

 

Graphical design started with the choosing of fitting sprites for characters and envi-

ronments, followed by sketches drawn on grid paper. This made it easier to perceive 

the place and scale of an each object. After several discussions what the environ-

ments should include, which objects are interactable and the appearances of charac-

ters, the levels were assembled in the Unity editor. One of the resulted levels is dis-

played in Figure 28. It shows a portion of the Streets of Kyoto level which acts as a 

hub for smaller locations.  
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Figure 28. Streets of Kyoto 

 

4.3.2 Sounds 

Due to the common previous experience of the Renoise tracker software, it was cho-

sen as the platform to create sound effects and background music for the game. Ef-

fects and songs were composed by using a diverse selection of audio samples and 

VSTs, Virtual Studio Technology plugins. VST is a software interface that integrates 

software audio synthesizer and effect plugins with audio editors and recording sys-

tems.  Thousands of VST plugins exist, both commercial and freeware. (Virtual Studio 

Technology 2016.) 

Virtual instruments, including synthetisators and drums, for example, were chosen 

appropriately, to further the 80s feel aurally. Team members picked the sound effect 

samples together and held listening sessions and discussions over background music 

tracks. The prototype does not feature spoken dialogue for any character. Figure 29 

presents the user interface of Renoise. 

https://en.wikipedia.org/wiki/Sound_recording_and_reproduction
https://en.wikipedia.org/wiki/Synthesizer
https://en.wikipedia.org/wiki/Audio_signal_processing
https://en.wikipedia.org/wiki/Plug-in_(computing)
https://en.wikipedia.org/wiki/Audio_editor
https://en.wikipedia.org/wiki/Data_storage_device#Data_storage_methods
https://en.wikipedia.org/wiki/Data_storage_device#Data_storage_methods
https://en.wikipedia.org/wiki/Freeware
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Figure 29. Renoise user interface 

4.4 Gameplay and key mechanics 

In practice, the fundamental gameplay mechanics of Quantum Knight lean heavily on 

the standards set by JRPGs. Influenced by such classic games as Final Fantasy Tactics, 

Fire Emblem and Pokémon, the key mechanics include: 

 Exploration of the game world and dialogue exchange with NPCs (non-playable char-
acters) 

 Interacting with predestined objects 

 Switching between the physical world and cyber world 

 Puzzle solving that affect both of the worlds 

 Battling viruses in the cyber world and capturing them 

 Completing quests given by the NPCs 

 A multiplayer tournament mode 

4.4.1 Controls 

From using the menus and selecting combat actions during battle, to interacting with 

objects, a preset control scheme allows the prototype to be played with either key-

board or Xbox 360 controller. Table 1 presents the actions and corresponding but-

tons for both controlling options. Appendix 4, previously mentioned in chapter 2.4, 

shows a C# script for handling the player movement inputs and raycasting, to detect 

interactable GameObjects. 
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Table 1. Control Scheme 

Action Keyboard Gamepad 

Move left/selection left Left key / A Left directional / stick 

Move right/selection right Right key / D Right directional / stick 

Move up/selection up Up key / W Up directional / stick 

Move down/selection down Down key / S Down directional / stick 

Interact/Submit/ 

Advance dialogue 

Enter / E A 

Cancel Backspace / Q B 

Pause menu Escape Start 

 

4.4.2 Dialogue system 

When interacting with NPCs or predestined objects, the game enters into a dialogue 

mode. When this mode is active, other player controls and events occurring in the 

game, are disabled. By using a simple array of public strings, dialogue lines are dis-

played in a Unity.UI text component, inside a panel object on the top of the screen 

(Figure 30). If the player stands next to an interactable object the same panel shows 

an indicator that this particular object can be interacted with. Pressing interact but-

tons initiates and advances the dialogue between the main character and engaged 

GameObjects.  

 

Figure 30. Dialogue system 



58 
 

 

4.4.3 Battle system 

One of the defining characteristics of the JRPG genre is turn-based combat. In Quan-

tum Knight, battles are fought in virtual arenas that have various layouts and ob-

structions. The arenas are composed from square tiles, where each character has the 

ability to move according to their movement points and/or take one action per turn. 

At the start of the battle, the currently present characters are arranged in order by 

their speed attribute. The character with the highest value takes action first. If two 

characters have equal values, the order is randomized between the two. Each com-

batant has their own set of skills and combat statistics. Figure 31 displays the initia-

tion of the shrine demon battle. 

 

Figure 31. Shrine demon battle 

 

Skills and statistics are dependent on the role of each fighter. The stats are divided 

into five different main categories: Health points, attack strength, cyber magic, de-

fense and speed. In turn, the stats are set as low, medium or high for each role, or 

class. For example, a character class with high damage dealing abilities has a low de-

fense and a character with high cyber magic, a low attack strength. In the single 

player campaign, the main character takes place as one of the fighters. If the main 

character falls in battle, the game is over. Void also has the ability to capture viruses, 

not including bosses if they are weakened enough. 
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During the battle, commands are issued through a simple menu, which gives the 

player a choice between “move”, “attack”, “skills” or “end turn”. After selecting an 

action, besides turn ending, a “selector-icon” becomes visible on the battlefield. 

Moving this selector on top of enemies or allies, displays information about them in a 

panel at the top of the screen. With the selector, the player chooses where he/she 

wants to move or which enemy to attack. If player both moves and acts on same 

turn, end turn is initiated automatically. Figure 32 demonstrates the functionality of 

the selector and menu. 

 

Figure 32. Selector, stats and menu 

 

Arena layouts, skills and roles bring tactical aspects to play when battling against en-

emies. For instance, clever positioning of melee and ranged characters in order to 

block lines of sight by standing behind obstructions or smart co-operative usage of 

skills between different classes is needed for victory. In the single player campaign, 

battle scenarios are predetermined and played against AI, but in multiplayer tourna-

ments, two players go head-to-head; each representing their own team. The proto-

type has two distinct battle modes, which are: 

1. Node Conquest, both or only one of the players have a node, which must be pro-

tected from enemy damage. 

2. Deathmatch, one must defeat the opponent’s main character. 
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4.4.4 Programs 

The “viruses”, from now on referred to as programs, are named according to real cy-

bersecurity terminology. They can be harmful damage dealers, like Malware or bene-

ficial “healers” such as Antivirus. Tables 2 and 3 illustrate the stats and class types of 

each program. 

Table 2. Program classes 

 

Table 3. Program stats 

Class HP Attack Magic Defense Speed 

Adware low medium high low high 

Antivirus medium low high low high 

Bot medium medium medium medium medium 

Firewall high low medium high low 

Malware low high high low medium 

Spyware medium medium medium low high 

Trojan high medium low high low 

Virus low high medium low high 

Worm medium high low low high 

Class Tank Healer Damage DoT AoE Buffs Debuffs Melee Ranged 

Adware    X   X  X 

Antivirus  X    X   X 

Bot     X  X  X 

Firewall X     X  X  

Malware   X  X   X  

Spyware  X X    X  X 

Trojan X      X X  

Virus   X X    X  

Worm   X    X X  
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4.4.5 Single player 

The short single player campaign of the prototype involves the main character Void 

exploring the two separate worlds. Conversing with NPCs, completion of quests and 

interaction with key objects trigger events which advance the plot. The progression is 

managed via an EventHandler script and a state machine it contains. When certain 

requirements are met, like completing a quest, a trigger value is sent to the state ma-

chine and it activates the designed subsequent plot objective. Appendix 7 shows the 

C# code of the EventHandler script. 

Game flow and progression key points of the single player campaign as described in 

the project’s game design document are listed as follows: 

1. Player wakes up in his/hers rundown apartment 

2. There is a light flickering on the screen of a local cyberterminal 

3. Tracker program attacks the players cyber domain 

4. Player cannot leave the apartment before interacting with the terminal 

5. Player uses the terminal and enters the cyberworld 

6. Tutorials in the cyberworld 

7. Player fights with the program and wins (battle scene) 

8. Cyberworld outside own domain is now open for access 

9. Player can now remove the lockdown from the apartment door 

10. Player leaves the apartment 

11. Player enters the rundown streets of Kyoto 

12. Player monologue 

13. Player movements are restricted by a murder scene, road construction site and virus 

infested security barrier 

14. Player can walk around the streets or visit a shrine, cybershop and an adult shop 

15. There are various NPC:s the player can talk and interact with 

16. There are non-significant events occurring, like protester getting shot by security 

droid 

17. Owner of the cybershop cannot access his/hers domain and player must enter the 

cyberworld to open access 

18. Reward 

19. Player must fix a glitch with the cyber shrine (demon virus) 

20. Reward 

21. When player has powerful enough programs the security barrier becomes hackable 

22. If player doesn’t have powerful enough programs, he/she can enter the cyberworld 

in order to try and capture some 

23. When player has hacked the gate, a plot twist for teasing purposes appears 

24. Game Ends! 

 

Figure 33 displays the event of a protester getting shot. 
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Figure 33. An event 

 

4.4.6 Multiplayer 

In addition to the single player campaign, the prototype has a separate multiplayer 

mode, where two players can battle against each other locally or over an internet 

connection. Battles are fought in a similar fashion as in the single player mode, but 

the length of each turn is now limited by a timer, to keep things more hectic.  

Multiplayer lobby menu, as seen in Figure 34, offers choices between hosting and 

joining games over the internet, hosting and joining locally or running a dedicated 

server.  Once two players have joined the same lobby and both have set their status 

to ready, multiplayer version of a battle arena is loaded. After the combat is over, 

winners and losers are declared and players have the option to choose a rematch or 

return to the lobby. Chapter 5 describes in detail how the implementation of multi-

player gameplay was carried out. 
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Figure 34. Multiplayer lobby main menu  

 

5 Implementation of multiplayer features 

Chapter 5 presents two different hands-on approaches on how the multiplayer fea-

tures of the prototype were actually implemented. The main focus is on the network-

ing functionality of the lobby, player prefabs and how remote actions, synchroniza-

tion, animations and gameplay mechanics are handled in the game scene. The fea-

ture implementation is examined through UNet and one of the most popular free As-

set Store third-party plugins.   

5.1 Unity Networking 

5.1.1 Lobby scene 

The main menu of the lobby, as previously seen in Figure 28, is built up by using the 

Unity UI components. It holds an input field and five different buttons to handle user 

requests on how to create and join games. When a button is clicked, it executes a 

function via an OnClick () event. These OnClick () events handle all the transitions in 

the lobby system by activating and deactivating predestined UI panels, as well as car-

rying out the network functionality. Figure 35 displays a UI button component. 
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Figure 35. Button and OnClick () 

 

When the “Create Room” button is clicked, it checks at first if the NetworkServer 

and NetworkClient return false. If they do, it instructs the NetworkLobbyManager to 

start the matchmaker service with appropriate parameters and creates a room with 

the name specified in the input field. By disabling and activating panels, the player is 

taken to the actual lobby which holds the ready status checks; now awaiting for an-

other player to join the same room. In the following code, the functionality behind 

this button can be inspected. 
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The “List Servers” button requests a list of the currently active matches from the 

UNet matchmaker. After instructing the manager to start matchmaking, it lists the 

matches by using the ListMatches function. Then, a Coroutine starts with a waiting 

time of three seconds, in order to ensure all matches are surely found. After three 

seconds have passed, a foreach-loop iterates through all the found matches and in-

stantiates a GameObject with room name and join button, to visually represent each 

room found (Figure 36).  

 

Figure 36. Server list 

 

When the corresponding “Join” button is clicked, it connects the client to that spe-

cific room. The “Join” – button identifies the correct room to connect the client to, by 

using the room’s NetworkID. The “Back” buttons found in each panel, depending on 

where the user is in the lobby system, hold the functionality for StopHost (), StopCli-

ent (), StopServer () and StopMatchmaker (). When the game scene is running, an 

OnGUI button with similar functionality is displayed. The code for the whole server 

listing process is presented as follows: 
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The “Localhost” button creates a game in the local network and in similar fashion as 

the “Create Room” button, it takes the player to the actual lobby. The StartHost () 

function creates a local server and client at the same time.  

 

Like the “Join” button in the server list, the “Join Localhost“ button connects a client 

to a game, however, in this case, into a local network. 
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If the user wants to start up a dedicated server for a game, the “Dedicated Server” 

button accomplishes this particular task. When the minimum required amount of 

players have connected into the server, it initiates the loading of the game scene. 

The next code snippet starts up a server and displays informative text via UI panels to 

the user, to visualize if the server is running or not. Figure 37 shows a server running 

on localhost at network port 7777 and awaiting for players to join. 

 

 

Figure 37. Dedicated server 
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When two players have joined the same lobby (Figure 38), their LobbyPlayer in-

stances are represented by two panels; Player 1 and Player 2. Each of these panels 

holds a button for sending a ready to begin message to the server. When both play-

ers have checked their status as ready, the game scene loading initiates. 

 

Figure 38. Two players in lobby 

 

As advised in Chapter 3, the NetworkLobbyManager has the lobby and game scenes 

assigned into their appropriate slots, as well as the player and registered spawnable 

prefabs (Figure 16). Because a custom interface for the lobby was needed, a modified 

NetworkManagerHUD script instructs the manager through the formerly mentioned 

button functions. Appendix 8 presents this script in its entirety.  

To mention an alternative option to custom lobby UI creation, the Unity Technolo-

gies offer a sample lobby asset package for beginners in the Asset Store, which pro-

vides a simple drag-and-drop solution. 

5.1.2 LobbyPlayer 

The LobbyPlayer GameObject is instantiated from a prefab, with local player author-

ity set in the NetworkIdentity component, when a client connects to a server. It visu-

ally represents this specific connected player and holds the ready to begin flag for it. 
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The ready status can only be controlled by the local player via an OnClick () event, 

which executes a Command function:  

 

If the status is set as “not ready” and the player sends an OnClick () event by clicking 

the button attached to the player object, it sends the ready to begin message as well 

as changes the button’s text to “Ready”; and vice versa. The LobbyPlayers persists to 

exist until the client disconnects from the server, although the panels and buttons 

are deactivated from code when both players are ready. Appendix 9 shows the C# 

code for LobbyPlayer functionality in a custom NetworkLobbyPlayer script. 

5.1.3 Game scene 

The game scene itself behaves very similarly to its single player counterpart. The only 

differences between these two are the absence of AI controlled objects; the Bat-

tleManager object now organizes the turn sequence for two online players and the 

presence of two NetworkStartPositions. Only the starting positions contain real net-

working behaviour for the actual scene and are registered automatically by the Net-

workLobbyManager, as it is carried over from the lobby scene. The relevant online 

functions in the game are performed by the GamePlayer objects. 

5.1.4 GamePlayer 

During runtime there are only two instances of the GamePlayer prefab existing in the 

game scene; one instance for each player. These objects perform their tasks through 
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an action selection script which is functionally tied to a canvas. By activating and de-

activating script components present in these objects and depending on which action 

has been chosen from the canvas, the action selection handles moving, attacking, 

passing and skipping turns as well as spawning of networked animation objects. Fig-

ure 39 displays all the attached components of the player object. 

 

Figure 39. Network GamePlayer 

 

The action selecting respects local player authority and exits if someone else is trying 

to access it. The functionality itself is carried out through a series of Commands and 

ClientRPCs. A perfect example of this is the choice of turn skipping. When player in-

put for selecting it has been received, it sends a Command to the server that the 

player wants to skip a turn. If the server receives this Command, it executes a Cli-

entRPC function which tells both players that the turn has been skipped. The RPC 

function then compares the two NetworkIDs found in both players and transfers the 

turn to the player with an id that differs from the current. While it is not the local 

player’s turn, all canvas actions are locally frozen. The turn skipping functionality 

written in C# is as follows: 
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The movement of the GamePlayer object should be automatically synchronized by 

the NetworkTransform component. In this turn-based case, however, old sprites may 

still linger on the clients and cause seemingly endless instances of players littering 

the arena when they move around.  This problem can be solved through some “re-

mote procedure call” magic. At first, a networked BattleMovement script orders the 

player to move into a new position on the arena, while a Command spawns corre-

sponding teleport effect on to the server. Inside this Command the server sends a Cli-

entRPC order to hide the player sprite across the network. Similarly, when the tele-

porting effect is over, the player is revealed in its new position to both players, by us-

ing a Command and ClientRPC. The beginning of character movement is depicted in 

the following code. 
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From the networking point of view, attacking works very similarly as the movement 

does. For example, when a character manages to hit another in the arena, two Com-

mands are sent in order to spawn an effect and deal damage.  

 

Another good example of Commands and RPCs is when the character who deals 

damage utilizes melee weapons. A corresponding effect for it will be spawned by 

sending a Command, however, a ClientRPC is needed to flip the effect in relation to 

the characters. The next code snippet demonstrates the implementation of this func-

tionality. 
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When a character gets hit by an attack or a skill is used in order to heal it, the syn-

chronized character stat values are needed. The variables holding these values are 

set for synchronization by simply tagging them as SyncVars. The values are then up-

dated across the network into the statistic panel; as seen before in Chapter 4, Figure 

26. An example of synchronized character stat variables can be inspected below, in 

addition to a damage dealing Cmd function which accesses some of these values. 
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The Networked animations were created from their single player counterparts. The 

conversion was a simple process of adding a NetworkIdentity and NetworkAnimator 

components into the effect objects. The default Animator needs to be given onto the 

NetworkAnimator by dragging it into the corresponding slot. Neither local authority 

nor server only is checked on the NetworkIdentity component as local authority is 

mainly for player Commands and server only for objects that exist only on the server, 

such as enemy spawners. A GameObject which contains an animation for a melee hit 

is displayed in Figure 40. 

 

Figure 40. Networked animation object 

 

The three most relevant GamePlayer NetworkBehaviour scripts are displayed in Ap-

pendices 10 – 12. Figure 41 shows two players in two separate windows, while con-

nected into the same game. This gives also a sense of the programming process of 

the network functionality, as with every minor change the game has to be built again 

and executed in two separate instances.  
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Figure 41. Networking in action 

 

5.2 Photon Unity Networking 

5.2.1 Lobby Scene 

The actual implementation of Photon networking functionality for the lobby scene is 

at the same time very similar and also completely different when compared with 

UNet. The main difference between these two is the absence of a dedicated server 

and local hosting options in the lobby menu for Photon. Photon is mainly focused on 

the cloud server services it provides and the creation of rooms. While it is possible 

for players to create their own servers and host locally, it is somewhat impractical 

and redundant in this context. Figure 42 demonstrates the Photon lobby main menu. 

 

Figure 42. Photon lobby main menu 
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To begin with, the users are automatically connected to the lobby system when the 

main menu has been opened. This is achieved by checking the “Auto-Join Lobby” 

from the PhotonServerSettings file and using the following code in Awake (), in a 

script which handles the network functionalities of the lobby. 

 

After a connection has been established, the users are now able to create rooms 

with input specified names, list rooms and also set player name aliases.  

The player name for the local user is randomized when the lobby is accessed for the 

first time, after which the user may change it at will. In Photon, the usernames of 

players can easily be stored locally with PhotonNetwork.playerName. When either 

the room creation or server listing buttons have been clicked, the player name is 

saved in order to ensure that any changes in the name are properly stored. The first 

section in the following code takes care of the initial name randomizing, and the sec-

ond stores the current name when a button has been clicked.  

 

 

Reminiscent of UNet, the “Create Room” button creates a room with the specified 

name and connects the user into it. When the room has been created, the appropri-

ate UI panels are set active and a visual representation of the lobby player gets in-

stantiated with PhotonNetwork.Instantiate () inside the OnCreatedRoom callback 

function. All the buttons in the lobby system execute functions through OnClick () 

events. The following code showcases the room creation: 
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When the “List Rooms” button is clicked, it requests a list of currently active games 

inside a Coroutine and instantiates a visual representation for each of them via the 

PhotonNetwork.GetRoomList () function. In Photon, it is extremely straightforward 

to access the roomInfo properties of created rooms; and unlike in the UNet realiza-

tion, this implementation displays the current and maximum number of players in 

each room inside the instantiated server objects (Figure 43). If no active rooms are to 

be found, a “No servers found” text is set as active.  

 

 

Figure 43. Server Object 

 

When the corresponding “Join” button is clicked, it connects the client to that spe-

cific room. The “Join” button then identifies the correct room to connect the client to 

by using the room’s name; in UNet the identification was handled using the Net-

workIDs. Similarly as with the room creation, the lobby player prefab is instantiated 

when joining a room after interacting with said button. The code behind room joining 

is as follows: 
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If the client leaves a room while still in the lobby scene, the visual representation of 

this particular client must be destroyed across the network in order to guarantee 

that no unwanted player objects remain on other clients. The OnLeftRoom callback 

function is perfect for this task. In this case, it surveys the PhotonViews of player ob-

jects and checks the isMine attributes of both players. According to the returning val-

ues of isMine, it destroys the correct lobby player GameObjects. 

     

This, and everything else regarding the lobby scene menu functionality, such as the 

code for the whole server listing process, are to be found in the Appendix 13. 
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5.2.2 LobbyPlayer 

PUN does not have LobbyPlayer objects in the similar sense as in UNet; hence, very 

little functionality is being handled automatically behind the curtains. In this case, as 

the client joins a room, the representing player object is instantiated and registered 

with the PhotonNetwork.Instantiate function, as previously mentioned. The custom 

lobby player GameObject (see Figure 44) contains a PhotonView component and a 

Photon.MonoBehaviour script to carry out the required functionalities. The Pho-

tonView component is set to observe the Transform and “Photon Lobby Player“ 

script in order to update their statuses across the network.  

 

Figure 44. Photon lobby player object 

 

Furthermore, it is not enough to just add components into the observed field of the 

PhotonView. The necessary values and parameters of these observed components 

must also be sent and received inside the OnPhotonSerializeView function. When 

two players have entered the same room, their transformational values and ready 

statuses are being written and read through the PhotonStream. Even though the po-

sitions of lobby player objects do not change after being instantiated into the lobby 

scene, as the players have no movement controls over them, this ensures they are 

not accidentally spawned on top of each other. The player objects are instantiated 

on preset positions for both clients, according to the isMine ownership parameters 



80 
 

 

of the PhotonView. The next code snippet showcases the reading and writing from 

the PhotonStream.  

 

 

The toggling of the ready status, however, is a different story; since it can be con-

stantly updated and there is no suitable equivalent to the UNet’s SendReadyToBegin-

Message () in Photon. In order to achieve similar functionality, a local bool value is 

being sent and received via the PhotonStream. When the local player toggles the 

ready status, it is received on the other client’s end and vice versa. In order to pre-

vent access into other player’s controls, the custom SetReady () function first verifies 

that this particular photonView.isMine returns true.  

 

The name of the remote client is updated locally with photonView.owner.name if the 

isMine parameter returns false, while the corresponding ready status texts are set 

normally inside the update function.  
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When both players have set their status as ready, PhotonNetwork.LoadScene () is 

called on both players in order to proceed into the actual game scene. Figure 45 

demonstrates two players in the same room before the game begins; with separate 

names and the remote client status set as ready. See Appendix 14 for the whole pho-

ton lobby player script.  

 

Figure 45. Two players in Photon lobby 

 

5.2.3 Game Scene 

The Photon game scene implementation builds upon its UNet counterpart by intro-

ducing a new custom, self-made GameObject called “PhotonBattleFeatures”, which 

handles the instantiation of player objects, along with an entirely new feature alto-

gether: an in-game chat. The battle features object contains a PhotonView compo-

nent and is owned by the scene itself, while the BattleManager object still organizes 

the turn sequence for two online players. Figure 46 displays the PhotonBattle-

Features GameObject and all the components attached into it. 
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Figure 46. PhotonBattleFeatures GameObject 

 

Currently there are no automatically registered starting position components in Pho-

ton, and therefore the positions are set manually through code in the Photon Player 

Spawner script. When the game scene has been loaded, two player objects are in-

stantiated on the server and then positioned consistently according to the Master 

Client parameter of the PhotonView. As mentioned before, the Master Client always 

is the player with the lowest ID in the room, and by means of thorough testing, it is 

safe to say the player who created the currently present room is always set as the 

Master Client by default. The following code snippet illustrates the instantiation of 

player objects, where the Master Client is positioned to the left side of the arena and 

the other one onto the right side. 
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After examining and researching the Photon documentation and demo projects, it 

was extremely easy to implement the in-game chat as an “extra” feature into the 

prototype. A chat window is now displayed on the lower left side of the screen and 

through it, the players are able to converse in real time while they are in the same 

room. The chat messages are sent as strings across the network to both players via 

PunRPC function calls with the name of the sender and shown in a GUILayout field 

(Figure 47). When the messages that have been sent take up a certain amount of 

space in the screen, a scrollbar appears next to the field while keeping focus on the 

most recent message. This prevents the messages from taking up too much screen 

space.     

 

Figure 47. In-game chat 

 

The PunRPC function currently in question demonstrates an excellent example of the 

chat’s functionality. When the “Send” – button is clicked, it calls the PunRPC on the 

PhotonView of the PhotonBattleFeatures object; targeting all players and passing the 

message string as a parameter. 

   

The consecutive C# code showcases the actual remote procedure call function: 
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If no connection has been properly established, the in-game chat script exits without 

executing any chat functionality. 

    

Furthermore, a “Return to lobby” – button, located on the upper left side of the 

screen, orders the client to leave the room and initiates the loading of the lobby 

scene. The in-game chat script can be seen in its entirety in Appendix 15. 

5.2.4 GamePlayer 

To begin with, the game player prefab and all the animation effect prefabs it instanti-

ates were relocated into the resources folder along with one PhotonView component 

attached into each of them. The PhotonView of the player object is set to observe its 

Transform, as well as the Character Stats script in order to synchronize the values it 

contains. Figure 48 displays all the attached components of the Photon game player 

object. 

 

Figure 48. Photon game player object 
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In this case, the greatest difference between Photon and UNet game player object 

scripting was how the variables are synchronized across the network. As aforemen-

tioned, the PhotonView observes the Character Stats script; hence, the values it con-

tains must be sent and received through the PhotonStream. In addition, a remote 

procedure call function was added into the script in order to properly handle the sub-

traction of player health.  

 

This time, the character action selection script is set to respect local player authority 

via the photonView.isMine property, and it exits if someone else is trying to access 

the local controls. 
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As previously stated, the Photon only has one type of remote procedure calls, the 

PunRPC, as opposed to Commands and ClientRPCs of UNet. For example, while the 

battle movement positioning is now automatically synchronized through the Pho-

tonView observer field, the server only needs to be told to hide the player object on 

the remote clients end. When the StealthBegin () function is executed, it sends an 

RPC targeting all players and ordering them to hide this object with this PhotonView. 

 

Another good example of PunRPCs is when the players attack and damage each 

other. If the currently attacking player manages to hit the other player, the attack 

script retrieves the PhotonView from the character which is taking the hit and calls 

an RPC on its PhotonView. This RPC targets all players to synchronize the damage 

dealing process across the network and passes the damage attribute into the Charac-

ter Stats script for health subtraction. On a footnote, it is not possible to pass 

GameObjects inside PunRPC functions as it is unable to serialize them. The following 

code showcases the aforementioned damage dealing process. 
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A perfect case of the networked animations is the “Melee” effect animation. When a 

character which deals melee damage lands a hit on another character, the melee ef-

fect gets instantiated from a prefab through the PhotonNetwork.Instantiate function, 

to all players in the current room. At the same time, an RPC is called on its Pho-

tonView in order to flip the animation sprites in the right direction. The melee anima-

tion object itself contains a script with the said remote procedure call. The instanti-

ated object is then destroyed on all players after one second has passed.  

 

Additionally, the melee animation object has its PhotonView set to observe the Pho-

ton Animator View component as can be seen in Figure 49. 

 

Figure 49. Melee animation object 
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Apart from the player authority, RPC function calls and networked animations; the 

movement, attack and other scripts are essentially almost the same as the corre-

sponding scripts of the UNet implementation. To mention few minor improvements 

over the UNet implementation:  

The stats panel now displays the player names correctly by accessing their Pho-

tonViews and retrieving the owner names. Also, when it is the opposing player’s 

turn, the local battle canvas is completely hidden and a flashing “Enemy Turn” 

GameObject is displayed instead. Figure 50 showcases these functionalities, while 

Appendices 16-18 display the action selection, movement and attack scripts for com-

parison between Photon and UNet. 

 

Figure 50. Photon in action 

 

6 Results and Comparison 

This chapter compares the two implementation methods against each other accord-

ing to the evaluation criteria chosen by the author, after which the end results and 

the acquired networking data are investigated. 

6.1 Evaluation 

In Table 4, both UNet and Photon are evaluated by means of ten distinct criteria, and 

given points from zero to two, based on the author’s experience; 0 means poor, 1 
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stands for satisfactory and 2 is exemplary. After the table, each criterion along with 

its point distribution is shortly explained and justified in text.  

Table 4. Comparison 

Criterion of Evaluation UNet Photon 

Components 2 1 

Scripting 2 1 

Usability 2 1 

Performance 1 2 

Stability 1 2 

Flexibility 1 1 

Exportability 2 1 

Testability 1 2 

Documentation 2 1 

Sample projects 0 2 

Total points 14 14 

 

Components 

In terms of the number of built-in components and their automatically performed 

functions, UNet wins hands down. Even though the PhotonView component of Pho-

ton is universally usable along with its observer field, the two NetworkManagers of 

UNet, automatically registered player prefabs and easy to understand NetworkIden-

tity component allow the development workflow to be more intuitive.     

Scripting 

In both implementation methods, it is relatively easy and straightforward to utilize 

the networking classes as well as access the components and their functions through 

scripting. Naturally, some features are more effortless to achieve with the other, 

such as sending ready messages in UNet or the usage of player object properties in 

Photon. However, Photon loses this round as well, since it is not able to serialize 

GameObjects inside remote procedure calls and the synchronization of variables is 

considerably more complex. 
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Usability 

As stated earlier, the components of UNet enable the workflow to be more intuitive 

along with the fact that it has been developed by the same company as the engine 

itself. Therefore, the UNet offers a more user friendly experience for beginners with-

out the need for additional trickery, such as relocating the networked prefabs under 

the resources folder, if the developer does not wish to handle instantiating “manu-

ally”. Besides, the UNet is guaranteed to stay up to date with the engine, and it is 

easier for users to request support from the developers.  

Performance 

While gathering statistical data, it was taken into notice that the UNet version seems 

to have slightly higher round trip times (RTT). The only visible outcome of this was 

that the networked animations appeared with a minor delay for the remote player. 

No such delay was ever observed in the Photon implementation. This topic is further 

discussed in the Network statistics chapter. 

Stability 

During the testing process, the version utilizing Photon did not crash even once, and 

the cloud servers were always in up status, while the UNet project kept crashing ran-

domly. Furthermore, working hours got wasted while the UNet servers were down 

and no error notifications concerning this were ever received. This led the author to 

assume there were some faults in the programming, while the truth was quite differ-

ent. This may originate from the fact that UNet just recently came out of its beta sta-

tus.    

Flexibility 

Both methods seem to hold all the necessary tools and functionalities to create vari-

ous kinds of multiplayer games. However, neither receives two points due to the fact 

how tedious it is to create turn based controls. The foundations have clearly been 

built around the development of games with “real time” controls, such as plat-

formers and 3D action games. 
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Exportability 

In short, all UNet and PUN Plus projects can currently be exported to all platforms 

supported by Unity, while PUN Free exports to “almost all platforms”. Furthermore, 

as Photon is developed by a third party company, some future platforms might be 

supported with a slight delay or not at all, hence, UNet receives two points and Pho-

ton a single point. (Photon – Photon Unity Networking Intro N.d.)   

Testability 

The testing of a multiplayer game is a tedious process as with every change the pro-

ject must be rebuilt and run on two separate instances. As this was the reality with 

both methods the differences come down to the error messages. The messages in 

UNet are at the moment somewhat insufficient and lack vital information. Photon 

outperforms UNet in this aspect and it is possible to set the error message logging to 

even higher levels with PhotonNetwork.loglevel = PhotonLogLevel.Full. 

Documentation 

Photon has been around longer than UNet and for this reason, it is extraordinary 

how poor its documentation is. The scripting references are unreadable when com-

pared with the UNet documentation. In addition, some Photon documentation ex-

ample codes are outright incorrect and defunct. 

Sample projects 

On the other hand, Photon has more than enough well made, illustrative sample pro-

jects which demonstrate the basic networking functionalities satisfyingly. The only 

official example project released for UNet is the Network Game Lobby (beta) Asset 

Store package, which does little in the way of coherently introducing the networking 

features of UNet. 

Summary 

The comparison between these two different implementation methods results in a 

tie, which indicates that both practices are viable options, even for beginners, when 

creating the functionality of multiplayer games. Both approaches excel in different 

areas: UNet being more intuitive to work with and functionally more advanced, while 
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Photon is more stable and efficient. As UNet is freshly out of beta, it will be interest-

ing to see how it might evolve in the future and what Photon’s response to it will be. 

6.2 Network statistics 

Unfortunately, it is not possible to use exactly the same tools for both implementa-

tion methods in order to gather statistical network data. The Profiler tool of Unity En-

gine displays data concerning the network traffic of UNet, while the “Photon Stats 

Gui” component showcases only the information related to Photon. Therefore, the 

majority of the information these two tools display is not directly comparable. For 

example, while the Profiler logs all incoming and outgoing, buffered and unbuffered 

messages frame by frame, it is unclear if the Stats Gui component does the same. 

The Stats Gui clumps all outgoing and incoming messages together as follows:  

Out |In |Sum: 88 | 81 | 169 

This makes it impossible to tell the difference between buffered and unbuffered 

messages; or perhaps the Stats Gui counts merely the other ones, since this issue is 

not properly documented. Fortunately, there was a single clearly distinguishable 

property, the round trip time (RTT, also known as ping time), which is the average 

time in milliseconds until a message is acknowledged by the server and echoed back 

to its source. Through this value, a simple comparison can be achieved between the 

UNet matchmaking service and Photon cloud servers, when networked actions are 

being performed. 

The measurements were taken while using the movement, attack and skip turn func-

tions in runtime, with two players in the same game. Each measurement was re-

peated five times and an average RTT value was calculated for each function. The 

UNet measurements were obtained by observing the RTT field of the Profiler tool 

(see Figure 51). The Profiler is most commonly used for game optimization, as it rec-

ords and displays runtime data regarding, for example, CPU and memory usage in ad-

dition to network messages. Clicking inside one of the fields it contains makes it pos-

sible to furtherly inspect the recorded data by dragging the vertical bar back and 

forth. 
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Figure 51. The Profiler 

 

Consecutively, as the functions were executed in the Photon implementation, the 

“To Log” button of the Photon Stats Gui component was pressed simultaneously in 

order to print out the exact RTT values at the right moment. In Figure 52 the RTT, or 

ping, has been outlined with red.       

 

Figure 52. Photon Stats Gui 
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The following chart presents the average round trip times for all three functions in 

milliseconds: 

 

Figure 53. Round Trip Times 

 

As the chart depicts, Photon has lower round trip times for every function. This pre-

sumably originates from the fact how the Unity matchmaker servers are globally situ-

ated or that the UNet packages being sent are considerably larger in size.  

6.3 End results 

There were some more or less severe problems along the way of development. The 

most puzzling UNet issue was encountered while scripting the lobby system. Once 

the CCU limit had been reached, the matchmaker service seemed to redirect the con-

nection to localhost without any proper notifications from the editor. As it turns out, 

similar behaviour was discovered even when using the Network Game Lobby (beta) 

Asset Store package by Unity Technologies. This was the only severe identified UNet 

problem that remained unsolved after testing. 

Similarly, the most substantial issues occurred with the Photon lobby implementa-

tion. The entire system broke down systematically when the join button in the room 

list was clicked and the same client had previously created a room. The only way to 
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solve this issue in runtime was to back all the way down to the game’s title screen. 

This lead the author to believe there were some faults in the actual network func-

tionality programming. As it turns out, the problem was rather embarrassing to some 

extent. When the user creates a room, the isCreator bool value for that user is set as 

true, in order to properly instantiate the joining player. The same value was never set 

as false when backing out from a room. This lead to the very reason of the whole 

lobby systematically breaking down along with the loss of several precious working 

hours. 

Nevertheless, in the end, the results are satisfactory since both project variants oper-

ate mainly as originally intended. The minor discrepancies between the end results 

stem from the actuality how various tasks are being carried out differently in UNet 

and Photon, and also from time constraints. The Photon implementation is a bit 

more polished due to the fact it was built upon the foundations laid by the UNet pro-

ject and for having outstanding sample projects to be examined. The circumstances 

might have probably been completely different if UNet had come out of the beta sta-

tus sooner.  

7 Conclusion 

Ultimately, it was the Photon implementation which was chosen by the team to be in 

the final build of the prototype. The choice resulted directly from the reality of 

Photon’s servers being currently more reliable, along with the in-game chat 

functionality and overall refinement of the final outcome. However, neither the 

execution nor outcome is perfect for either version, since both are relatively complex 

and advanced networking systems, offering functionalities far beyond this thesis. 

Therefore, both implementation variants hold room for future improvement and 

investigation, as some issues remained unsolved, such as the aforementioned CCU 

problem with UNet.   

Personally, I found the whole research and development process intriguing and 

educational. Even though the Unity Engine was a familiar working environment for 

me from my previous experience with it; both UNet and Photon were not. Initially, 

before acquiring the basic knowledge concerning these two implementation 
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methods, I did not have the slightest clue where to even begin. Furthermore, I found 

myself facing various problems over and over again, for which there was no example 

code to be found. While this can be considered as a beneficial aspect regarding the 

learning process, it also led to programming by trial and error. On my part, the whole 

project realization took approximately 600 hours, when all completed tasks are taken 

into account along with network programming and writing. 

At the end of the day, as chapters 5 and 6 demonstrate, I was able to create two 

separate, satisfyingly functional lobby systems and gameplay mechanic 

implementations while using unfamiliar technologies. In my opinion, this fulfills the 

initially set research goals as well as the betterment of my own professional skills.          
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Appendices 

Appendix 1. Inspector view 
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Appendix 2. MonoBehaviour functions 

 

Function Usage 

Awake 

 

Awake is called when the script instance is being loaded. 

Awake is used to initialize any variables or game state 

before the game starts. Awake is called only once during 

the lifetime of the script instance. 

Start Start is called on the frame when a script is enabled just 

before any of the Update methods is called the first 

time. Start is called exactly once in the lifetime of the 

script. 

Update Update is called once every frame if MonoBehaviour is 

enabled. Update is the most commonly used function to 

implement any kind of game behavior. 

FixedUpdate This function is called every fixed framerate frame, if the 

MonoBehaviour is enabled. FixedUpdate should be used 

instead of Update when dealing with physics. 

LateUpdate LateUpdate is called after all Update functions have 

been called. 

OnApplicationQuit Sent to all game objects before the application is quit. 

OnApplicationPause Sent to all game objects when the player pauses. 

OnCollisionEnter 

OnCollisionEnter2D 

OnCollisionEnter is called when a collider/rigidbody has 

begun touching another rigidbody/collider. 

OnCollisionExit 

OnCollisionExit2D 

OnCollisionExit is called when this collider/rigidbody has 

stopped touching another rigidbody/collider. 

OnCollisionStay 

OnCollisionStay2D 

OnCollisionStay is called once per frame for every col-

lider/rigidbody that is touching rigidbody/collider. 

OnDestroy Called when MonoBehaviour will be destroyed. 

OnDestroy will only be called on game objects that have 

previously been active. 

OnEnable This function is called when a script becomes enabled 

and active. 
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OnDisable Called when a script becomes disabled or inactive. Also 

called when destroyed. 

OnGUI OnGUI is called for rendering and handling Graphical 

user interface events. OnGUI implementation might be 

called several times per frame. 

OnTriggerEnter 

OnTriggerEnter2D 

OnTriggerEnter is called when a Collider enters a trigger. 

This message is sent to the trigger collider and the rigid-

body (or the collider if there is no rigidbody) that 

touches the trigger. Trigger events are only sent if one of 

the colliders also has a rigidbody attached.  

OnTriggerExit 

OnTriggerExit2D 

OnTriggerExit is called when a Collider has stopped 

touching a trigger. This message is sent to the trigger 

and the collider that touches the trigger. 

OnTriggerStay 

OnTriggerStay2D 

OnTriggerStay is called once per frame for every Col-

lider that is touching a trigger. This message is sent to 

the trigger and the collider that touches the trigger.  

GetComponent Returns specific requested component if the game ob-

ject has one attached, null if it doesn't. 

Instantiate This function makes a copy of an object. Instantiate is 

most commonly used to instantiate projectiles, AI Ene-

mies, particle explosions or wrecked object replace-

ments from prefabs. 

Destroy Removes a GameObject, component or asset. 

StartCoroutine  A function that has the ability to pause execution and 

return control to Unity but then continue where it left 

off on the following frame. Declared with a return type 

of IEnumerator and with yield return statement. 
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Appendix 3. 2D Collision and Coroutine 
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Appendix 4. PlayerMovement script 

 
using UnityEngine; 
using System.Collections; 
 
public class PlayerMovement : MonoBehaviour { 
 
    float inputX = 0.0f; 
    float inputY = 0.0f; 
    public float speed; 
    private Vector2 movement; 
    Animator anim; 
    Vector3 previous = Vector3.zero; 
    public GameObject InteractionPanel; 
    public bool panelBool = false; 
 
    // Use this for initialization 
    void Start ()  
    { 
        anim = GetComponent<Animator> (); 
    } 
     
    // Update is called once per frame 
    void Update ()  
    { 
     
        inputX = Input.GetAxis ("Horizontal"); 
        inputY = Input.GetAxis ("Vertical"); 
 
        movement = new Vector2 (speed * inputX, speed * inputY); 
 
        //Normalizing speed for diagonal movement 
        if (movement.magnitude > speed)  
        { 
            movement = movement.normalized * speed ; 
        } 
 
        AnimationControl (inputX, inputY); 
     
    } 
 
    void FixedUpdate() 
    { 
        transform.Translate (movement * speed * Time.deltaTime); 
 
        InteractRaycast (inputX, inputY); 
    } 
 
    void AnimationControl(float inputX , float inputY) 
    { 
        if (inputY > 0.02f && anim.GetBool("WalkRight") == false && anim.GetBool("WalkLeft") == false)  
        { 
            anim.SetBool ("WalkUp", true); 
 
            if (anim.GetBool ("WalkUp") == true)  
            { 
                anim.SetBool ("WalkRight", false); 
                anim.SetBool ("WalkLeft", false); 
                anim.SetBool ("WalkDown", false); 
            } 
        } 
 
        else if (inputY == 0.0f)  
        { 
            anim.SetBool ("WalkUp", false); 
        } 
 
        if (inputY < -0.02f && anim.GetBool("WalkRight") == false && anim.GetBool("WalkLeft") == false)  
        {             
            anim.SetBool ("WalkDown", true); 
 
            if (anim.GetBool ("WalkDown") == true )  
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            { 
                anim.SetBool ("WalkRight", false); 
                anim.SetBool ("WalkLeft", false); 
                anim.SetBool ("WalkUp", false); 
            } 
        }  
        else if (inputY == 0.0f)  
        { 
            anim.SetBool ("WalkDown", false); 
        } 
 
        if (inputX > 0.02f && anim.GetBool("WalkUp") == false && anim.GetBool("WalkDown") == false)  
        { 
            anim.SetBool ("WalkRight", true); 
            anim.SetBool ("WalkLeft", false); 
 
            if (anim.GetBool("WalkRight") == true)  
            { 
                anim.SetBool ("WalkUp", false); 
                anim.SetBool ("WalkDown", false); 
            }         
        }  
        else if (inputX == 0.0f)  
        { 
            anim.SetBool ("WalkRight", false); 
        } 
 
        if (inputX < -0.02f && anim.GetBool("WalkUp") == false && anim.GetBool("WalkDown") == false)  
        { 
            anim.SetBool ("WalkLeft", true); 
            anim.SetBool ("WalkRight", false); 
 
            if (anim.GetBool("WalkLeft") == true)  
            { 
                anim.SetBool ("WalkUp", false); 
                anim.SetBool ("WalkDown", false); 
            } 
        }  
        else if (inputX == 0.0f)  
        { 
            anim.SetBool ("WalkLeft", false); 
        } 
             
    } 
 
    void InteractRaycast(float x, float y) 
    { 
        RaycastHit2D hit = Physics2D.Raycast(transform.position, -Vector2.up); 
 
        Vector3 dir = new Vector2(x,y); 
 
        if (dir == Vector3.zero) 
        { 
            dir = previous; 
        } 
        else 
        { 
            previous = dir; 
        } 
 
        hit = Physics2D.Raycast(transform.position, dir, 1); 
        Debug.DrawRay(transform.position,dir, Color.green); 
 
        if (hit.collider != null && hit.collider.tag == "Interactable")  
        { 
            if (panelBool == false && hit.collider.GetComponent<InteractionTest>().enabled == true)  
            { 
                InteractionPanel.SetActive (true); 
                panelBool = true; 
            } 
 
            if (Input.GetButtonDown ("Submit") && hit.collider.GetComponent<InteractionTest>().enabled == true)  
            { 
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                panelBool = false; 
                hit.collider.GetComponent<InteractionTest> ().interacted = true; 
 
                InteractionPanel.SetActive (false); 
            } 
        } 
 
        if (hit.collider == null && panelBool == true)  
        { 
             
            InteractionPanel.SetActive (false); 
            panelBool = false; 
        } 
             
    } 
} 
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Appendix 5. NetworkBehaviour functions 

 

Function/Variable Usage 

connectionToClient/ 

connectionToServer 

The NetworkConnection associated with this Net-

workIdentity. Only valid for player objects on the server. 

hasAuthority Returns true if this object is the authoritative version of 

the object in the distributed network application. 

isClient Returns true if running as a client and spawned by a 

server. 

isLocalPlayer Returns true if this object is the one that represents the 

player on the local machine. Used to filter out input for 

non-local players. 

isServer Returns true if this object is active on an active server. 

Only true if the object has been spawned. 

localPlayerAuthority Value set on the NetworkIdentity. Returns true if this 

player has authority. 

netId The unique network Id of this object. Assigned at 

runtime by the network server and will be unique for all 

objects for that network session. 

OnNetworkDestroy Invoked on clients when the server has caused this ob-

ject to be destroyed. 

OnStartAuthority Invoked on behaviours that have authority, based on 

context and localPlayerAuthority. Called after On-

StartServer and OnStartClient. 

OnStopAuthority Invoked on behaviours when authority is removed. 

Called on the client that owns the object.  

OnStartClient Called on every NetworkBehaviour when it is activated 

on a client. Objects on the host have this function called, 

as there is a local client on the host. SyncVars on object 

are guaranteed to be initialized correctly with the latest 

state from the server. 
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PreStartClient A method called on client objects to resolve GameObject 

references. 

OnStartLocalPlayer Called when the local player object has been set up. 

Happens after OnStartClient (), as it is triggered by an 

ownership message from the server. Appropriate place 

to activate components or functionality that should only 

be active for the local player. 

OnStartServer Called when the server starts listening. 

CmdDelegate Delegate for Command functions. 

EventDelegate Delegate for Event functions. 

OnConnectedToServer Called on the client when it successfully connects to a 

server. 

OnDisconnectedFrom-

Server 

Called on the client when the connection was lost or it 

disconnects from the server. 

OnFailedToConnect Called on the client when a connection attempt fails for 

some reason. 

OnPlayerConnected Called on the server whenever a new player has success-

fully connected. 

OnPlayerDisconnected Called on the server whenever a player disconnected 

from the server. 

InvokeCommand Manually invokes a Command. Returns true if successful. 

InvokeRPC Manually invokes an RPC function. Returns true if suc-

cessful. 

InvokeSyncEvent Manually invoke a SyncEvent. Returns true if successful. 

OnNetworkInstantiate Called on objects which have been network instantiated. 

Useful for disabling or enabling components for objects 

which have been instantiated and their behavior de-

pends on if they are locally or remotely owned.  

SetDirtyBit Used to set the behaviour as dirty, so that a network up-

date will be sent for the object. 

ClearAllDirtyBits Clears all the dirty bits that were set on this script by 

SetDirtyBits() 
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Appendix 6. State serialization 

 
public class data : NetworkBehaviour 
{ 
 
    [SyncVar] 
    public int int1 = 666; 
 
    [SyncVar] 
    public int int2 = 23487; 
 
    [SyncVar] 
    public string MyString = "exampleText"; 
}  
 
public class data : NetworkBehaviour 
{ 
 
    public int int1 = 666; 
    public int int2 = 23487; 
    public string MyString = "exampleText"; 
 
    public override bool OnSerialize(NetworkWriter writer, bool forceAll) 
    { 
        if (forceAll) 
        { 
            // the first time an object is sent to a client, send all the data (and no dirty bits) 
            writer.WritePackedUInt32((uint)this.int1); 
            writer.WritePackedUInt32((uint)this.int2); 
            writer.Write(this.MyString); 
            return true; 
        } 
        bool wroteSyncVar = false; 
        if ((base.get_syncVarDirtyBits() & 1u) != 0u) 
        { 
            if (!wroteSyncVar) 
            { 
                // write dirty bits if this is the first SyncVar written 
                writer.WritePackedUInt32(base.get_syncVarDirtyBits()); 
                wroteSyncVar = true; 
            } 
            writer.WritePackedUInt32((uint)this.int1); 
        } 
        if ((base.get_syncVarDirtyBits() & 2u) != 0u) 
        { 
            if (!wroteSyncVar) 
            { 
                // write dirty bits if this is the first SyncVar written 
                writer.WritePackedUInt32(base.get_syncVarDirtyBits()); 
                wroteSyncVar = true; 
            } 
            writer.WritePackedUInt32((uint)this.int2); 
        } 
        if ((base.get_syncVarDirtyBits() & 4u) != 0u) 
        { 
            if (!wroteSyncVar) 
            { 
                // write dirty bits if this is the first SyncVar written 
                writer.WritePackedUInt32(base.get_syncVarDirtyBits()); 
                wroteSyncVar = true; 
            } 
            writer.Write(this.MyString); 
        } 
 
        if (!wroteSyncVar) 
        { 
            // write zero dirty bits if no SyncVars were written 
            writer.WritePackedUInt32(0); 
        } 
        return wroteSyncVar; 
    } 
}  
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Appendix 7. EventHandler script 

using UnityEngine; 
using System.Collections; 
 
public class EventManager : MonoBehaviour 
{ 
    public GameObject ToCyberWorld; 
    public bool playerIsInCyberWorld; 
    public bool droneEventHasHappened; 
 
    public void EventStater(int index, GameObject sender) 
    { 
        switch (index)  
        { 
        default: 
            break; 
 
        case 0: // prologue part 1 
 
            GameObject.Find ("PROLOGUE").GetComponent<PrologueEvent> ().pleaseContinue = true; 
 
            break; 
 
        case 1: // prologue part 2 
 
            GameObject.FindWithTag ("Player").GetComponent<PlayerMovement> ().enabled = true; 
 
            GameObject.Find ("PROLOGUE").GetComponent<PrologueEvent> ().Bunk.SetActive (true); 
 
            Destroy (GameObject.Find ("PROLOGUE")); 
 
            break; 
 
        case 2: // To cyber world and back 
 
            if (playerIsInCyberWorld == true) 
            { 
                playerIsInCyberWorld = false; 
            } 
 
            else 
            { 
                playerIsInCyberWorld = true; 
            } 
 
            Destroy (Instantiate(ToCyberWorld, Camera.main.ScreenToWorldPoint(new Vec-
tor3(Screen.width/2, Screen.height/2, Camera.main.nearClipPlane)), Quaternion.Euler(0, 0, -90)), 1f); 
 
            GameObject.Find (sender.name).GetComponent<SceneChanger> ().ActivateSceneChange (); 
 
            break; 
 
        case 3: // drone event 
 
            GameObject.Find("Drone").GetComponent<DroneEvent> ().enabled = true; 
 
            droneEventHasHappened = true; 
 
            break; 
 
        case 4: // battle start 
 
            gameObject.GetComponentInParent<PlayerPositionHandler> ().playerStartPosition = GameOb-
ject.FindWithTag ("Player").transform.position; 
 
            GameObject.Find (sender.name).GetComponent<SceneChanger> ().ActivateSceneChange (); 
 
            break; 
        } 
 
    } 
}   
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Appendix 8. Custom NetworkManagerHUD 

 

#if ENABLE_UNET 

using UnityEngine; 

using System.Collections; 

using UnityEngine.UI; 

using UnityEngine.SceneManagement; 

using UnityEngine.Networking; 

using UnityEngine.Networking.Types; 

using UnityEngine.Networking.Match; 

namespace UnityEngine.Networking 

{ 

    [AddComponentMenu("Network/NetworkManagerHUD")] 

    [System.ComponentModel.EditorBrowsable(System.ComponentModel.EditorBrowsableState.Never)] 

 

    public class NetworkManagerHUD : MonoBehaviour 

    { 

        public NetworkLobbyManager manager; 

        public InputField inputF; 

        public GameObject mainPanel; 

        public GameObject serverListPanel; 

        public GameObject dedicatedPanel; 

        public GameObject lobbyPanel; 

        public GameObject panels; 

        public GameObject noServersPanel; 

        public GameObject serverObject; 

        string roomName; 

        public bool ready = false; 

        NetworkMatch networkMatch; 

        bool matchCreated; 

        bool extraOfExtras = false; 

 

        [SerializeField] public bool showGUI = true; 

        [SerializeField] public int offsetX; 

        [SerializeField] public int offsetY; 

 

 

        bool showServer = false; 

 

        void Awake() 

        { 

            manager = GetComponent<NetworkLobbyManager>(); 

            panels.SetActive (true); 

            networkMatch = gameObject.AddComponent<NetworkMatch>(); 

        } 

             

        void Update() 

        { 
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            if(GameObject.FindGameObjectsWithTag("NetworkPlayer").Length == 0) 

            { 

                panels.SetActive (true); 

            } 

        } 

 

        public void LanHost() 

        { 

            if (!NetworkClient.active && !NetworkServer.active && manager.matchMaker == null)  

            { 

                manager.StartHost(); 

                mainPanel.SetActive (false); 

                lobbyPanel.SetActive (true); 

            } 

        } 

 

        public void LanClient() 

        { 

            if (!NetworkClient.active && !NetworkServer.active && manager.matchMaker == null)  

            { 

                manager.StartClient (); 

                mainPanel.SetActive (false); 

                lobbyPanel.SetActive (true); 

            } 

        } 

 

        public void LanServerOnly() 

        { 

            if (!NetworkClient.active && !NetworkServer.active && manager.matchMaker == null) { 

                manager.StartServer (); 

                mainPanel.SetActive (false); 

                dedicatedPanel.SetActive (true); 

                dedicatedPanel.GetComponentInChildren<Text> ().text = "Server running" +  

                "\n" + "Address: " + manager.networkAddress + "\n" + " Port: " + manager.networkPort + 

                "\n" + "Waiting for players..."; 

            }  

            else  

            { 

                dedicatedPanel.GetComponentInChildren<Text> ().text = "Server startup error"; 

            } 

        } 

 

        public void CreateInternetMatch() 

        { 

            if (!NetworkServer.active && !NetworkClient.active)  

            { 

                if (manager.matchMaker == null)  

                { 

                    manager.StartMatchMaker (); 
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                    manager.matchMaker.CreateMatch (manager.matchName, manager.matchSize, true, "", manager.OnMatchCreate); 

                } 

            } 

        } 

 

        public void CreateMatch () 

        { 

            mainPanel.SetActive (false); 

            lobbyPanel.SetActive (true); 

            CreateMatchRequest create = new CreateMatchRequest(); 

            create.name = inputF.text ; 

            create.size = 2 ; 

            create.advertise = true ; 

            create.password = "" ; 

            networkMatch.CreateMatch(create, MatchCreated); 

        } 

 

        public void MatchCreated (CreateMatchResponse matchResponse) 

        { 

             

            if (matchResponse.success) 

            { 

                matchCreated = true ; 

                manager.SetMatchHost ("mm.unet.unity3d.com", 443, true); 

                manager.matchInfo  = new MatchInfo(matchResponse); 

                Utility.SetAccessTokenForNetwork(matchResponse.networkId, new NetworkAccessToken(matchResponse.ac-

cessTokenString)); 

                manager.StartHost(manager.matchInfo) ; 

            } 

        } 

 

 

        public void GetServerList() 

        { 

            if (!NetworkServer.active && !NetworkClient.active)  

            { 

                manager.StartMatchMaker (); 

                mainPanel.SetActive (false); 

                serverListPanel.SetActive (true); 

 

                if (manager.matchInfo == null)  

                { 

                    if (manager.matches == null)  

                    { 

                        manager.matchMaker.ListMatches (0, 10, "", manager.OnMatchList); 

                        StartCoroutine (WaitForServers()); 

                    }  

                } 

            }     
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        } 

 

        IEnumerator WaitForServers() 

        { 

            yield return new WaitForSeconds (3); 

            int yPos = 0; 

 

            foreach (var match in manager.matches)  

            { 

                GameObject serverO = (GameObject)Instantiate (serverObject,  

                                        serverListPanel.transform.position, serverListPanel.transform.rotation); 

                serverO.transform.SetParent (GameObject.FindWithTag ("ServerList").transform, false); 

                serverO.transform.localPosition = new Vector3 (0, yPos, 0); 

                serverO.GetComponentInChildren<Text> ().text = match.name; 

                serverO.GetComponentInChildren<Button> ().onClick.AddListener(() => JoinMatch(match.networkId));; 

 

                yPos -= 100; 

            } 

 

            if (manager.matches.Count == 0)  

            { 

                noServersPanel.SetActive (true); 

            }  

            else  

            { 

                noServersPanel.SetActive (false); 

            } 

        } 

 

        void JoinMatch(Networking.Types.NetworkID id) 

        { 

            serverListPanel.SetActive (false); 

            lobbyPanel.SetActive (true); 

            manager.matchMaker.JoinMatch (id, "", manager.OnMatchJoined); 

        } 

             

        public void StopServer() 

        { 

            if (NetworkServer.active) 

            { 

                manager.StopServer(); 

                dedicatedPanel.SetActive (false); 

                mainPanel.SetActive (true); 

            } 

        } 

 

        public void StopLanHost() 

        { 

            if (NetworkServer.active || NetworkClient.active) 
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            { 

                manager.StopHost (); 

                lobbyPanel.SetActive (false); 

                mainPanel.SetActive(true); 

            } 

        } 

 

        public void StopMatchMaker() 

        { 

            manager.StopMatchMaker (); 

            lobbyPanel.SetActive (false); 

            noServersPanel.SetActive (false); 

            serverListPanel.SetActive (false); 

            mainPanel.SetActive (true); 

        } 

 

        public void BackToTitle() 

        { 

            Destroy (GameObject.FindWithTag ("EventSystem")); 

            GameObject.FindWithTag ("LobbyManager").GetComponent<NetworkLobbyManager> ().dontDestroyOnLoad = false; 

            Destroy (GameObject.FindWithTag ("LobbyManager")); 

 

            SceneManager.LoadScene ("Title"); 

        } 

 

        void OnGUI() 

        { 

            if (!showGUI) 

                return; 

 

            int xpos = 10 + offsetX; 

            int ypos = 40 + offsetY; 

            int spacing = 24; 

 

         

            if (NetworkServer.active) 

            { 

                GUI.Label(new Rect(xpos, ypos, 300, 20), "Server: port=" + manager.networkPort); 

                ypos += spacing; 

            } 

            if (NetworkClient.active) 

            { 

                GUI.Label(new Rect(xpos, ypos, 300, 20), "Client: address=" + manager.networkAddress + " port=" + manager.network

Port); 

                ypos += spacing; 

            } 

 

 

            if (NetworkServer.active || NetworkClient.active) 
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            { 

                if (GUI.Button(new Rect(xpos, ypos, 200, 20), "Stop")) 

                { 

                    manager.StopHost(); 

                    manager.StopClient (); 

                    manager.StopServer (); 

                    panels.SetActive (true); 

                    dedicatedPanel.SetActive (false); 

                    lobbyPanel.SetActive (false); 

                    mainPanel.SetActive (true); 

                } 

                ypos += spacing; 

            } 

        } 

    } 

}; 

#endif //ENABLE_UNET 
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Appendix 9. NetworkLobbyPlayer script 

 
using UnityEngine; 
using UnityEngine.UI; 
using UnityEngine.Networking; 
using System.Collections; 
using System.Collections.Generic; 
using System.Linq; 
 
public class LobbyPlayerSpawn : NetworkLobbyPlayer 
{ 
    public int id = 0; 
    bool boolOfExtras = false; 
    public GameObject playerPanel; 
    string readyText = "Ready"; 
    string notReadyText = "Not Ready"; 
 
    void Awake() 
    { 
 
        if (GameObject.FindGameObjectsWithTag ("LobbyPlayer").Length == 2)  
        { 
            id = 1; 
        } 
 
    } 
 
    void Start() 
    { 
        if (id == 0)  
        {      
            gameObject.transform.SetParent (GameObject.FindWithTag ("LobbyManager").transform, false); 
 
            gameObject.GetComponentInChildren<Text> ().text = "Player 1 (HOST)"; 
 
            transform.localPosition = new Vector3 (-250, 0, 0); 
        }  
        else  
        { 
            gameObject.transform.SetParent (GameObject.FindWithTag ("LobbyManager").transform, false); 
            gameObject.GetComponentInChildren<Text> ().text = "Player 2 (CLIENT)"; 
 
            transform.localPosition = new Vector3 (250, 0, 0); 
        } 
    } 
         
 
    [Command] 
    public void CmdPlayerReady() 
    { 
        if(!isLocalPlayer) 
        { 
            return; 
        } 
 
        if (readyToBegin == false)  
        { 
            SendReadyToBeginMessage (); 
 
        } 
        else if (readyToBegin == true)  
        { 
            SendNotReadyToBeginMessage (); 
 
        } 
    } 
 
    public void OnClientReady() 
    { 
        if (readyToBegin) 
        { 
            gameObject.GetComponentInChildren<Button> ().GetComponentInChildren<Text>().text = readyText; 
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        } 
        else 
        { 
            gameObject.GetComponentInChildren<Button> ().GetComponentInChildren<Text>().text = notReadyText; 
        } 
    } 
 
    void Update() 
    { 
        if (playerPanel.activeSelf == true)  
        { 
            OnClientReady (); 
        } 
    } 
 
    void LateUpdate() 
    { 
 
        if (GameObject.FindGameObjectsWithTag ("LobbyPlayer").Length == 2 && boolOfExtras == false)  
        { 
            GameObject player1 = GameObject.FindGameObjectsWithTag ("LobbyPlayer") [0]; 
            GameObject player2 = GameObject.FindGameObjectsWithTag ("LobbyPlayer") [1]; 
 
            if (player1.GetComponent<NetworkLobbyPlayer>().readyToBegin == true && player2.GetComponent<NetworkLobby-
Player>().readyToBegin == true)  
            { 
                boolOfExtras = true; 
                playerPanel.SetActive (false); 
            } 
        } 
    } 
} 
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Appendix 10. Character Action Selection script 

 

using UnityEngine; 
using UnityEngine.UI; 
using UnityEngine.Networking; 
using System.Collections; 
using System.Collections.Generic; 
 
public class CharacterActionSelection : NetworkBehaviour 
{ 
    BattleMovement movementScript; 
    public bool hasMoved = false; 
    public bool hasActed = false; 
    Attack attackScript; 
    public int selection; 
    float inputXLast; 
    public Text[] selectionObjects; 
    public List<GameObject> ObstacleColliders; 
    public SelectorMovement selectorScript; 
    public bool forEnemyPurposes; 
    public GameObject BattleCanvas; 
    public uint playerID; 
    public GameObject[] Allies; 
    public bool extra = false; 
 
 
    void Awake() 
    { 
        movementScript = gameObject.GetComponent<BattleMovement> (); 
 
        attackScript = gameObject.GetComponent<Attack> (); 
 
        selectorScript = gameObject.GetComponent<SelectorMovement> (); 
 
        selection = 0; 
    } 
 
 
    IEnumerator waitForEnabling() 
    { 
        Debug.Log ("waiting"); 
         
        yield return new WaitForSeconds (0.1f); 
 
        this.enabled = true; 
    } 
 
 
 
    void OnEnable () 
    { 
        playerID = gameObject.GetComponent<NetworkIdentity> ().netId.Value; 
 
        foreach (GameObject collider in ObstacleColliders) 
        { 
            Destroy (collider); 
 
        } 
 
        BattleCanvas.SetActive (true); 
 
        if (hasMoved && hasActed) 
        { 
            CmdSkipTurn (); 
        }  
        else if (hasMoved) 
        { 
            selection = 0; 
        }  
        else if (hasActed) 
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        { 
            selection = 1; 
        } 
    } 
 
    [Command] 
    public void CmdSkipTurn() 
    { 
        Debug.Log ("Skipping turn"); 
 
        RpcEnableOther (); 
    } 
 
    [ClientRpc] 
    void RpcEnableOther() 
    { 
        selectorScript.isMoving = false; 
        selectorScript.isAttacking = false; 
 
        hasMoved = false; 
        hasActed = false; 
        selection = 0; 
 
        BattleCanvas.SetActive (false); 
 
 
        GameObject[] players2 = GameObject.FindGameObjectsWithTag ("NetworkPlayer"); 
 
        for (int i = 0; i < players2.Length; i++) 
        { 
            if (players2 [i].GetComponent<NetworkIdentity> ().netId.Value != 
                gameObject.GetComponent<NetworkIdentity>().netId.Value) 
            { 
                players2[i].GetComponent<CharacterActionSelection>().enabled = true; 
                 
                this.enabled = false; 
            } 
        } 
    } 
 
    void Update () 
    { 
        if (!isLocalPlayer) 
        { 
             
            return; 
        } 
     
        Action (); 
    } 
 
 
    public void Action() 
    { 
        float inputX = Input.GetAxis ("Horizontal"); 
 
        if (inputX >= 0.5f && inputXLast < 0.5f)   
        { 
            selection += 1;  
 
            if (hasActed == true && selection == 0)  
            { 
                selection += 1; 
            } 
 
            if (hasMoved == true && selection == 1)  
            { 
                selection += 1; 
            } 
 
            if (selection > 2) 
            { 
                selection = 0; 
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                if (hasActed == true && selection == 0)  
                { 
                    selection += 1; 
                } 
 
                if (hasMoved == true && selection == 1)  
                { 
                    selection += 1; 
                } 
            } 
 
        } 
 
        else if (inputX <= -0.5f && inputXLast > -0.5f) 
        { 
            selection -= 1; 
 
            if (hasActed == true && selection == 0)  
            { 
                selection -= 1; 
            } 
 
            if (hasMoved == true && selection == 1)  
            { 
                selection -= 1; 
            } 
 
            if (selection < 0)  
            { 
                selection = 2; 
 
                if (hasActed == true && selection == 0)  
                { 
                    selection -= 1; 
                } 
 
                if (hasMoved == true && selection == 1)  
                { 
                    selection -= 1; 
                } 
            } 
 
 
        } 
 
 
        ShowSelected (); 
 
        if (Input.GetButtonDown("Submit")) 
        { 
            // Actions when activated 
 
            switch (selection) 
            { 
            default: 
                break; 
 
            case 0: 
 
                if (hasActed == false)  
                { 
                    selectorScript.isMoving = false; 
                    selectorScript.isAttacking = true; 
 
                    attackScript.enabled = true; 
                    this.enabled = false; 
                } 
 
                break; 
 
            case 1: 
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                if (hasMoved == false)  
                { 
                    selectorScript.isMoving = true; 
                    selectorScript.isAttacking = false; 
 
                    movementScript.enabled = true; 
                    this.enabled = false; 
                } 
 
                break; 
 
            case 2: 
                 
                CmdSkipTurn (); 
 
                break; 
            } 
        } 
             
        inputXLast = Input.GetAxis("Horizontal"); 
    } 
             
    public void ShowSelected() // Shows the selected item graphically, currently changes its color to red 
    { 
        switch (selection) 
        { 
        default: 
            break; 
 
        case 0: 
             
            selectionObjects [0].GetComponent<Text> ().color = new Color (1f, 0f, 0f, 1f); // Currently se-
lected text color is changed to red 
 
 
            if (hasMoved == false)  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); // Others are returned normal 
 
            } 
            else  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
 
            selectionObjects [2].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            break; 
 
        case 1: 
 
 
            selectionObjects [1].GetComponent<Text> ().color = new Color (1f, 0f, 0f, 1f); 
 
 
            if (hasActed == false)  
            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            }  
            else  
            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
 
            selectionObjects [2].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            break; 
 
        case 2: 
 
            selectionObjects [2].GetComponent<Text> ().color = new Color (1f, 0f, 0f, 1f); 
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            if (hasMoved == false)  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); // Others are returned normal 
 
            } 
            else  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
 
            if (hasActed == false)  
            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            }  
            else  
            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
                 
            break; 
        } 
    } 
}  
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Appendix 11. Battle Movement script 

 

using UnityEngine; 
using System.Collections; 
using UnityEngine.Networking; 
 
public class BattleMovement : NetworkBehaviour 
{ 
    public GameObject CharacterToMove; 
    public GameObject ColoredTiles; 
 
    [SyncVar] 
    public bool readyToMove = false; 
 
    public GameObject teleportEffect; 
    public Vector2 currentPosition; 
 
    [SyncVar] 
    float timeStart, timeNow; 
 
    [SyncVar] 
    private Color col1 = new Color (1, 1, 1, 0); 
 
    [SyncVar] 
    private Color col2 = new Color (1, 1, 1, 1); 
 
    public SelectorMovement selectorScript; 
 
    [SyncVar] 
    bool timerIsOn = false; 
 
    GameObject MovementTiles; 
    CharacterActionSelection actionSelectScript; 
 
 
    void Awake() 
    { 
        selectorScript = gameObject.GetComponent<SelectorMovement> (); 
 
        actionSelectScript = gameObject.GetComponent<CharacterActionSelection> (); 
    } 
 
    void OnEnable () 
    { 
         
        CharacterToMove = gameObject; 
 
        MovementTiles = (GameObject) Instantiate (ColoredTiles, CharacterToMove.transform.position, Quaternion.identity); 
 
        selectorScript.enabled = true; 
 
        selectorScript.isMoving = true; 
 
        currentPosition = selectorScript.currentPosition; 
 
        selectorScript.spriteRenderer.color = new Color (1, 1, 1, 1); 
    } 
 
    void Update () 
    { 
        if (Input.GetButtonDown("Cancel")) 
        { 
            Destroy (MovementTiles); 
 
            selectorScript.isMoving = false; 
 
            actionSelectScript.hasMoved = false; 
 
            actionSelectScript.enabled = true; 
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            selectorScript.enabled = false; 
 
            this.enabled = false; 
        } 
 
        if (readyToMove) 
        { 
            MoveCharacterToPlaceTheBeginning (CharacterToMove, false); 
 
            timeStart = Time.time; 
 
            timerIsOn = true; 
 
            readyToMove = false; 
        }  
 
        else if(timerIsOn) 
        { 
            timeNow = Time.time; 
 
            if (timeNow - timeStart >= 1.0f) 
            { 
                MoveCharacterToPlaceTheEnd (CharacterToMove, false); 
 
                timerIsOn = false; 
            }         
        } 
    } 
 
 
    public void MoveCharacterToPlaceTheBeginning(GameObject Character, bool isEnemy) 
    { 
 
        CmdStealthBegin (Character); 
 
        currentPosition = selectorScript.currentPosition; 
 
        Vector2 oldPosition = new Vector2 (Character.transform.position.x, Character.transform.position.y); 
 
        Character.transform.position = currentPosition + new Vector2(0, 0.25f); 
     
 
        if (isEnemy == false) 
        { 
            Destroy (MovementTiles); 
        } 
    } 
 
    [Command] 
    public void CmdStealthBegin(GameObject Character) 
    { 
        GameObject teleportEffect2 = (GameObject)Instantiate  
            (teleportEffect, Character.transform.position + new Vector3(0,0.75f,0), Quaternion.identity); 
 
        NetworkServer.Spawn (teleportEffect2); 
 
        Destroy (teleportEffect2, 2.0f); 
         
        RpcHide1 (Character); 
    } 
 
    [ClientRpc] 
    public void RpcHide1(GameObject Character) 
    { 
        Character.GetComponent<SpriteRenderer> ().color = col1; 
    } 
 
    public void MoveCharacterToPlaceTheEnd(GameObject Character, bool isEnemy) 
    { 
         
        CmdStealtEnd (Character); 
 
        selectorScript.isMoving = false; 
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        if (isEnemy == false) 
        { 
            actionSelectScript.hasMoved = true; 
 
            actionSelectScript.enabled = true; 
 
            selectorScript.enabled = false; 
 
            this.enabled = false; 
        } 
    } 
 
    [Command] 
    public void CmdStealtEnd(GameObject Character) 
    { 
        GameObject teleportEffect3 = (GameObject)Instantiate (teleportEffect, Character.transform.position + new Vec-
tor3(0,0.75f,0), Quaternion.identity); 
 
        NetworkServer.Spawn (teleportEffect3); 
 
        Destroy (teleportEffect3, 2.0f); 
 
        RpcHide2 (Character); 
    } 
 
 
    [ClientRpc] 
    public void RpcHide2(GameObject Character) 
    { 
        Character.GetComponent<SpriteRenderer> ().color = col2;     
    } 
}  

  



128 
 

 

Appendix 12. Attack script 

 

using UnityEngine; 
using UnityEngine.Networking; 
using System.Collections; 
 
public class Attack : NetworkBehaviour 
{ 
    public bool isRanged = false; 
    public GameObject CharacterAttacking; 
    public GameObject CharacterTakingTheHit; 
    public SelectorMovement selectorScript; 
    public GameObject MeleeAttackTiles, RangedAttackTiles; 
 
    [SyncVar] 
    public bool attackNow = false; 
 
    CharacterActionSelection actionSelectScript; 
    GameObject AttackTiles; 
    public GameObject RangedEffect, MeleeEffect, HitEffect, MissEffect; 
 
    [SyncVar] 
    public Vector3 pos; 
 
    void Awake() 
    { 
        selectorScript = gameObject.GetComponent<SelectorMovement> (); 
        actionSelectScript = gameObject.GetComponent<CharacterActionSelection> (); 
    } 
 
    void OnEnable () 
    { 
        CharacterAttacking = gameObject;  
 
        isRanged = CharacterAttacking.GetComponent<CharacterStats> ().hasRangedAttack; 
 
        if (isRanged == false) 
        { 
            AttackTiles = (GameObject) Instantiate (MeleeAttackTiles, CharacterAttacking.transform.position, Quaternion.identity); 
        } 
 
        else 
        { 
            AttackTiles = (GameObject) Instantiate (RangedAttackTiles, CharacterAttacking.transform.position, Quaternion.identity); 
        } 
 
        selectorScript.isAttacking = true; 
 
        selectorScript.enabled = true; 
 
        selectorScript.spriteRenderer.color = new Color (1, 1, 1, 1); 
    } 
         
    void Update () 
    { 
        if (Input.GetButtonDown("Cancel")) 
        { 
            Destroy (AttackTiles); 
 
            selectorScript.isAttacking = false; 
 
            actionSelectScript.hasActed = false; 
 
            actionSelectScript.enabled = true; 
 
            selectorScript.enabled = false; 
 
            this.enabled = false; 
        } 
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        if (attackNow) 
        { 
            Destroy (AttackTiles); 
 
 
 
            if (isRanged) 
            { 
                // calculate angle from enemy to player 
 
                float angle = Mathf.Atan2(CharacterTakingTheHit.transform.position.y - CharacterAttacking.transform.position.y, 
                    CharacterTakingTheHit.transform.position.x - CharacterAttacking.transform.position.x) * 180 / Mathf.PI; 
 
                pos = CharacterTakingTheHit.transform.position; 
                CmdRanged (angle, pos); 
            } 
 
            else 
            { 
                // check from which direction the attack is coming 
 
                Vector3 attackDirection = (CharacterTakingTheHit.transform.position - CharacterAttacking.transform.position).normal-
ized; 
                pos = CharacterTakingTheHit.transform.position; 
 
                CmdMelee (attackDirection, pos ); 
 
            } 
 
            // hit change calculation, if target's speed is higher -> the change is lower, if attacker's speed is higher -> change is higher 
 
            int hitchange = 90 - (CharacterTakingTheHit.GetComponent<CharacterStats> ().currentSpeed 
                - CharacterAttacking.GetComponent<CharacterStats> ().currentSpeed); 
 
            if (Random.Range(0, 100) <= hitchange) 
            { 
                // It's a hit! 
                pos = CharacterTakingTheHit.transform.position; 
 
                CmdHit (pos); 
 
                CmdDamage (CharacterTakingTheHit, CharacterAttacking); 
            } 
 
            else 
            { 
                // miss 
 
                pos = CharacterTakingTheHit.transform.position; 
                CmdMiss (pos); 
            } 
                 
            selectorScript.isAttacking = false; 
 
            actionSelectScript.hasActed = true; 
 
            actionSelectScript.enabled = true; 
 
            selectorScript.enabled = false; 
 
            attackNow = false; 
 
            this.enabled = false; 
        } 
    } 
 
    [Command] 
    public void CmdDamage(GameObject CharacterTakingTheHit, GameObject CharacterAttacking) 
    { 
        int damage = CharacterAttacking.GetComponent<CharacterStats> ().currentAttack 
            - CharacterTakingTheHit.GetComponent<CharacterStats> ().currentDefense; 
 
        if (damage > 0) 
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        { 
            CharacterTakingTheHit.GetComponent<CharacterStats> ().currentHealth -= damage; 
        } 
 
        Debug.Log (CharacterAttacking.name + " attacks " + CharacterTakingTheHit.name +  
                    " for " + damage + " damage!"); 
    } 
 
    [Command] 
    public void CmdMiss(Vector3 pos) 
    { 
        GameObject Miss = (GameObject)Instantiate (MissEffect, pos, Quaternion.identity); 
        NetworkServer.Spawn (Miss); 
        Destroy(Miss, 1f); 
    } 
 
    [Command] 
    public void CmdHit(Vector3 pos) 
    { 
        GameObject Hit = (GameObject)Instantiate (HitEffect, pos, Quaternion.identity); 
        NetworkServer.Spawn (Hit); 
        Destroy(Hit, 1f); 
    } 
 
 
 
    [Command] 
    public void CmdRanged(float angle, Vector3 pos) 
    { 
        GameObject Ranged = (GameObject)Instantiate (RangedEffect, pos, Quaternion.Euler(0, 0, angle)); 
        NetworkServer.Spawn (Ranged); 
        Destroy(Ranged, 1f); 
    } 
 
    [Command] 
    public void CmdMelee(Vector3 attackDirection, Vector3 pos) 
    { 
        GameObject Melee = (GameObject)Instantiate (MeleeEffect, pos, Quaternion.identity); 
        NetworkServer.Spawn (Melee); 
 
        RpcFlip (Melee, attackDirection); 
 
        Destroy(Melee, 1f); 
    } 
 
    [ClientRpc] 
    public void RpcFlip(GameObject Melee, Vector3 attackDirection) 
    { 
        if (attackDirection.x >= 0) 
        { 
            Melee.GetComponent<SpriteRenderer> ().flipX = true; 
        } 
 
        else 
        { 
            Melee.GetComponent<SpriteRenderer> ().flipX = false; 
        } 
    } 
     
}  
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Appendix 13. Photon LobbyManager script 

 

using UnityEngine; 
using System; 
using System.Collections; 
using UnityEngine.UI; 
using UnityEngine.SceneManagement; 
using Random = UnityEngine.Random; 
 
public class LobbyPhoton : Photon.MonoBehaviour { 
 
    public InputField inputFName; 
    public InputField inputFRoom; 
    public GameObject mainPanel; 
    public GameObject serverListPanel; 
    public GameObject lobbyPanel; 
    public GameObject panels; 
    public GameObject noServersPanel; 
    public GameObject serverObject; 
    string roomName; 
    bool isCreator = false; 
 
    public static readonly string SceneNameMenu = "LobbyV2"; 
    public static readonly string SceneNameGame = "multiArena"; 
 
    void Awake() 
    { 
        panels.SetActive (true); 
 
        PhotonNetwork.automaticallySyncScene = true; 
 
        if (PhotonNetwork.connectionStateDetailed == PeerState.PeerCreated) 
        { 
             
            PhotonNetwork.ConnectUsingSettings("1.0"); 
        } 
 
        if (String.IsNullOrEmpty(PhotonNetwork.playerName)) 
        { 
            PhotonNetwork.playerName = "Guest" + Random.Range(1, 9999); 
 
        } 
 
        inputFName.text = PhotonNetwork.playerName; 
 
    } 
         
    public void CreateRoomButton () 
    { 
        roomName = inputFRoom.text; 
        PhotonNetwork.playerName = inputFName.text; 
        PlayerPrefs.SetString("playerName", PhotonNetwork.playerName); 
        PhotonNetwork.CreateRoom(roomName, new RoomOptions() {maxPlayers = 2}, null); 
    } 
 
    public void OnCreatedRoom() 
    { 
        mainPanel.SetActive (false); 
        lobbyPanel.SetActive (true); 
        GameObject player = PhotonNetwork.Instantiate("LobbyPlayerV2", Vector3.zero, Quaternion.identity, 0); 
        player.GetComponentInChildren<Text> ().text = PhotonNetwork.playerName; 
        isCreator = true; 
    } 
         
    public void GetRoomListButton() 
    { 
         
        mainPanel.SetActive (false); 
        serverListPanel.SetActive (true); 
        PhotonNetwork.playerName = inputFName.text; 
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        PlayerPrefs.SetString("playerName", PhotonNetwork.playerName);             
        StartCoroutine (WaitForRooms ()); 
    } 
 
    IEnumerator WaitForRooms() 
    { 
        yield return new WaitForSeconds (3); 
        int yPos = 0; 
 
        foreach (RoomInfo roomInfo in PhotonNetwork.GetRoomList())  
        { 
             
            GameObject serverO = (GameObject)Instantiate (serverObject,  
                serverListPanel.transform.position, serverListPanel.transform.rotation); 
             
            serverO.transform.SetParent (GameObject.FindWithTag ("ServerList").transform, false); 
            serverO.transform.localPosition = new Vector3 (0, yPos, 0); 
 
            serverO.GetComponentInChildren<Text> ().text = roomInfo.name +  
                "    " + roomInfo.playerCount + "/" + roomInfo.maxPlayers; 
             
            serverO.GetComponentInChildren<Button> ().onClick.AddListener(() => JoinMatch(roomInfo.name));; 
 
            yPos -= 100; 
        } 
 
        if (PhotonNetwork.GetRoomList().Length == 0)  
        { 
            noServersPanel.SetActive (true); 
        }  
        else  
        { 
            noServersPanel.SetActive (false); 
        } 
    } 
 
    void JoinMatch(String roomInfoName) 
    { 
        PhotonNetwork.JoinRoom(roomInfoName); 
    } 
 
    public void OnJoinedRoom() 
    { 
 
        if (isCreator == false) 
        { 
            mainPanel.SetActive (false); 
            serverListPanel.SetActive (false); 
            lobbyPanel.SetActive (true); 
            GameObject player = PhotonNetwork.Instantiate ("LobbyPlayerV2", Vector3.zero, Quaternion.identity, 0); 
            player.GetComponentInChildren<Text> ().text = PhotonNetwork.playerName; 
        } 
    } 
 
    public void BackToMainFromRoom() 
    { 
        PhotonNetwork.LeaveRoom (); 
        isCreator = false; 
        lobbyPanel.SetActive (false); 
        noServersPanel.SetActive (false); 
        serverListPanel.SetActive (false); 
        mainPanel.SetActive (true); 
 
    } 
 
    public void BacktoMainFromList() 
    { 
        lobbyPanel.SetActive (false); 
        noServersPanel.SetActive (false); 
        serverListPanel.SetActive (false); 
        mainPanel.SetActive (true); 
    } 
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    public void BackToTitle() 
    { 
        Destroy (GameObject.FindWithTag ("EventSystem")); 
 
        SceneManager.LoadScene ("Title"); 
    } 
 
    public void OnLeftRoom() 
    { 
        isCreator = false; 
 
        if (GameObject.FindGameObjectsWithTag ("LobbyPlayer").Length == 1) 
        { 
            if (GameObject.FindGameObjectWithTag ("LobbyPlayer").GetPhotonView ().isMine) 
            { 
                Destroy (GameObject.FindGameObjectWithTag ("LobbyPlayer")); 
            } 
        }  
 
        else if (GameObject.FindGameObjectsWithTag ("LobbyPlayer").Length == 2) 
        { 
            if (GameObject.FindGameObjectsWithTag ("LobbyPlayer") [0].GetPhotonView ().isMine) 
            { 
                Destroy (GameObject.FindGameObjectsWithTag ("LobbyPlayer") [0]); 
            }  
            else 
            { 
                Destroy (GameObject.FindGameObjectsWithTag ("LobbyPlayer") [1]); 
            } 
        } 
    } 
} 

   



134 
 

 

Appendix 14. Photon Lobby Player script 

 

using UnityEngine; 
using UnityEngine.UI; 
using Photon; 
using System.Collections; 
 
public class PhotonLobbyPlayer : Photon.MonoBehaviour { 
 
    private Vector3 correctPlayerPos; 
    private Quaternion correctPlayerRot; 
    public bool ready = false; 
    string readyText = "Ready"; 
    string notReadyText = "Not Ready"; 
 
    public static readonly string SceneNameGame = "multiArena"; 
 
    void Update() 
    { 
        if (!photonView.isMine) 
        { 
            gameObject.GetComponentInChildren<Text> ().text = photonView.owner.name; 
 
            transform.SetParent (GameObject.FindWithTag ("LobbyManager").transform, false); 
 
            transform.localPosition = new Vector3 (250, 0, 0); 
        }  
        else 
        { 
            transform.SetParent (GameObject.FindWithTag ("LobbyManager").transform, false); 
            transform.localPosition = new Vector3 (-250, 0, 0); 
        } 
 
        OnReady (); 
 
        if (GameObject.FindGameObjectsWithTag ("LobbyPlayer").Length == 2) 
        { 
            if (GameObject.FindGameObjectsWithTag ("LobbyPlayer") [0].GetComponent<PhotonLobbyPlayer> ().ready == true && 
                GameObject.FindGameObjectsWithTag ("LobbyPlayer") [1].GetComponent<PhotonLobbyPlayer> ().ready == true) 
            { 
                StartCoroutine (waitForLoading ()); 
            } 
        } 
    } 
 
    IEnumerator waitForLoading() 
    { 
        yield return new WaitForSeconds (0.5f); 
        PhotonNetwork.LoadLevel (SceneNameGame); 
 
 
    } 
 
    void OnPhotonSerializeView(PhotonStream stream, PhotonMessageInfo info) 
    { 
        if (stream.isWriting) 
        { 
            stream.SendNext(transform.position); 
            stream.SendNext(transform.rotation); 
            stream.SendNext (ready); 
 
 
        } 
        else 
        { 
            this.correctPlayerPos = (Vector3)stream.ReceiveNext(); 
            this.correctPlayerRot = (Quaternion)stream.ReceiveNext(); 
            this.ready = (bool)stream.ReceiveNext (); 
        } 
    } 
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    public void SetReady() 
    { 
        if (photonView.isMine && ready == false) 
        { 
            ready = true; 
 
        }  
        else if (photonView.isMine && ready == true) 
        { 
            ready = false; 
        } 
    } 
 
    public void OnReady() 
    { 
        if (ready) 
        { 
            gameObject.GetComponentInChildren<Button> ().GetComponentInChildren<Text>().text = readyText; 
 
        } 
        else 
        { 
            gameObject.GetComponentInChildren<Button> ().GetComponentInChildren<Text>().text = notReadyText; 
        } 
    } 
}  
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Appendix 15. In-game chat script 

 

using System.Collections.Generic; 
using UnityEngine; 
using UnityEngine.SceneManagement; 
using System.Collections; 
 
[RequireComponent(typeof(PhotonView))] 
public class InRoomChat : Photon.MonoBehaviour  
{ 
    public Rect GuiRect = new Rect(0,0, 250,300); 
    public bool IsVisible = true; 
    public bool AlignBottom = false; 
    public List<string> messages = new List<string>(); 
    private string inputLine = ""; 
    private Vector2 scrollPos = Vector2.zero; 
 
    public static readonly string ChatRPC = "Chat"; 
 
    public void Start() 
    { 
        if (this.AlignBottom) 
        { 
            this.GuiRect.y = Screen.height - this.GuiRect.height; 
        } 
    } 
 
    public void OnGUI() 
    { 
        if (!this.IsVisible || PhotonNetwork.connectionStateDetailed != PeerState.Joined) 
        { 
            return; 
        } 
 
        if (GUILayout.Button("Return to Lobby")) 
        { 
            PhotonNetwork.LeaveRoom(); 
        } 
         
        if (Event.current.type == EventType.MouseDown) 
        { 
            if (!string.IsNullOrEmpty(this.inputLine)) 
            { 
                this.photonView.RPC("Chat", PhotonTargets.All, this.inputLine); 
 
                this.inputLine = ""; 
                GUI.FocusControl(""); 
                return; 
            } 
            else 
            { 
                GUI.FocusControl("ChatInput"); 
            } 
        } 
 
        GUI.SetNextControlName(""); 
        GUILayout.BeginArea(this.GuiRect); 
 
        scrollPos = GUILayout.BeginScrollView(new Vector2(0,100000)); 
        GUILayout.FlexibleSpace(); 
        for (int i = 0; i <= messages.Count-1; i++) 
        { 
            GUILayout.Label(messages[i]); 
        } 
        GUILayout.EndScrollView(); 
 
        GUILayout.BeginHorizontal(); 
        GUI.SetNextControlName("ChatInput"); 
        inputLine = GUILayout.TextField(inputLine); 
        if (GUILayout.Button("Send", GUILayout.ExpandWidth(false))) 
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        { 
            this.photonView.RPC("Chat", PhotonTargets.All, this.inputLine); 
            this.inputLine = ""; 
            GUI.FocusControl(""); 
        } 
        GUILayout.EndHorizontal(); 
        GUILayout.EndArea(); 
    } 
 
    [PunRPC] 
    public void Chat(string newLine, PhotonMessageInfo mi) 
    { 
        string senderName = "anonymous"; 
 
        if (mi != null && mi.sender != null) 
        { 
            if (!string.IsNullOrEmpty(mi.sender.name)) 
            { 
                senderName = mi.sender.name; 
            } 
            else 
            { 
                senderName = "player " + mi.sender.ID; 
            } 
        } 
 
        this.messages.Add(senderName +": " + newLine); 
    } 
 
    public void AddLine(string newLine) 
    { 
        this.messages.Add(newLine); 
    } 
 
    public void OnLeftRoom() 
    { 
        SceneManager.LoadScene(LobbyPhoton.SceneNameMenu); 
    } 
}  
  



138 
 

 

Appendix 16. Character Action Selection script Photon 

 

using UnityEngine; 
using UnityEngine.UI; 
using Photon; 
using System.Collections; 
using System.Collections.Generic; 
 
public class CharacterActionSelection : Photon.MonoBehaviour 
{ 
    BattleMovement movementScript; 
    public bool hasMoved = false; 
    public bool hasActed = false; 
    Attack attackScript; 
    public int selection; 
    float inputXLast; 
    public Text[] selectionObjects; 
    public List<GameObject> ObstacleColliders; 
    public SelectorMovement selectorScript; 
    public bool forEnemyPurposes; 
    public GameObject BattleCanvas; 
    public int playerID; 
    public GameObject[] Allies; 
    public bool extra = false; 
    public bool isControllable = false; 
    public GameObject Indicator; 
 
 
    void Awake() 
    { 
        movementScript = gameObject.GetComponent<BattleMovement> (); 
 
        attackScript = gameObject.GetComponent<Attack> (); 
 
        selectorScript = gameObject.GetComponent<SelectorMovement> (); 
 
        selection = 0; 
    } 
 
 
    IEnumerator waitForEnabling() 
    { 
        Debug.Log ("waiting"); 
         
        yield return new WaitForSeconds (0.1f); 
 
        this.enabled = true; 
    } 
 
 
 
    void OnEnable () 
    { 
        playerID = photonView.ownerId; 
 
        foreach (GameObject collider in ObstacleColliders) 
        { 
            Destroy (collider); 
 
        } 
 
        if (isControllable) 
        { 
            BattleCanvas.SetActive (true); 
 
        } 
 
        if (photonView.isMine) 
        { 
            Indicator.SetActive (false); 
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            Destroy (gameObject.GetComponent<FirstTimeTurn> ()); 
        } 
 
        if (hasMoved && hasActed) 
        { 
            this.photonView.RPC("SkipTurn", PhotonTargets.All); 
        }  
        else if (hasMoved) 
        { 
            selection = 0; 
        }  
        else if (hasActed) 
        { 
            selection = 1; 
        } 
    } 
 
    [PunRPC] 
    public void SkipTurn() 
    { 
        Debug.Log ("Skipping turn"); 
 
        this.photonView.RPC("EnableOther",PhotonTargets.All); 
    } 
 
    [PunRPC] 
    void EnableOther() 
    { 
        selectorScript.isMoving = false; 
        selectorScript.isAttacking = false; 
 
        hasMoved = false; 
        hasActed = false; 
        selection = 0; 
 
        BattleCanvas.SetActive (false); 
 
 
        GameObject[] players2 = GameObject.FindGameObjectsWithTag ("NetworkPlayer"); 
 
        for (int i = 0; i < players2.Length; i++) 
        { 
            if (players2 [i].GetPhotonView().ownerId != 
                gameObject.GetPhotonView().ownerId) 
            { 
                players2[i].GetComponent<CharacterActionSelection>().enabled = true; 
 
                if (photonView.isMine) 
                { 
                    Indicator.SetActive (true); 
                    Indicator.transform.localPosition = new Vector3 (0, 0, 0); 
                } 
                this.enabled = false; 
            } 
        } 
    } 
 
    void Update () 
    { 
        if (!photonView.isMine) 
        { 
            return; 
 
        } 
     
        Action (); 
    } 
 
 
    public void Action() 
    { 
        float inputX = Input.GetAxis ("Horizontal"); 
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        if (inputX >= 0.5f && inputXLast < 0.5f)   
        { 
            selection += 1;  
 
            if (hasActed == true && selection == 0)  
            { 
                selection += 1; 
            } 
 
            if (hasMoved == true && selection == 1)  
            { 
                selection += 1; 
            } 
 
            if (selection > 2) 
            { 
                selection = 0; 
 
                if (hasActed == true && selection == 0)  
                { 
                    selection += 1; 
                } 
 
                if (hasMoved == true && selection == 1)  
                { 
                    selection += 1; 
                } 
            } 
 
        } 
 
        else if (inputX <= -0.5f && inputXLast > -0.5f) 
        { 
            selection -= 1; 
 
            if (hasActed == true && selection == 0)  
            { 
                selection -= 1; 
            } 
 
            if (hasMoved == true && selection == 1)  
            { 
                selection -= 1; 
            } 
 
            if (selection < 0)  
            { 
                selection = 2; 
 
                if (hasActed == true && selection == 0)  
                { 
                    selection -= 1; 
                } 
 
                if (hasMoved == true && selection == 1)  
                { 
                    selection -= 1; 
                } 
            } 
 
 
        } 
 
 
        ShowSelected (); 
 
        if (Input.GetButtonDown("Submit")) 
        { 
            // Actions when activated 
 
            switch (selection) 
            { 
            default: 
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                break; 
 
            case 0: 
 
                if (hasActed == false)  
                { 
                    selectorScript.isMoving = false; 
                    selectorScript.isAttacking = true; 
 
                    attackScript.enabled = true; 
                    this.enabled = false; 
                } 
 
                break; 
 
            case 1: 
 
                if (hasMoved == false)  
                { 
                    selectorScript.isMoving = true; 
                    selectorScript.isAttacking = false; 
 
                    movementScript.enabled = true; 
                    this.enabled = false; 
                } 
 
                break; 
 
            case 2: 
                 
                this.photonView.RPC("SkipTurn", PhotonTargets.All); 
 
                break; 
            } 
        } 
             
        inputXLast = Input.GetAxis("Horizontal"); 
    } 
             
    public void ShowSelected() // Shows the selected item graphically, currently changes its color to red 
    { 
        switch (selection) 
        { 
        default: 
            break; 
 
        case 0: 
             
            selectionObjects [0].GetComponent<Text> ().color = new Color (1f, 0f, 0f, 1f); // Currently se-
lected text color is changed to red 
 
 
            if (hasMoved == false)  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); // Others are returned normal 
 
            } 
            else  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
 
            selectionObjects [2].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            break; 
 
        case 1: 
 
 
            selectionObjects [1].GetComponent<Text> ().color = new Color (1f, 0f, 0f, 1f); 
 
 
            if (hasActed == false)  
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            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            }  
            else  
            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
 
            selectionObjects [2].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            break; 
 
        case 2: 
 
            selectionObjects [2].GetComponent<Text> ().color = new Color (1f, 0f, 0f, 1f); 
 
            if (hasMoved == false)  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); // Others are returned normal 
 
            } 
            else  
            { 
                selectionObjects [1].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
 
            if (hasActed == false)  
            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (1f, 1f, 1f, 1f); 
 
            }  
            else  
            { 
                selectionObjects [0].GetComponent<Text> ().color = new Color (0f, 0f, 0f, 1f); 
            } 
                 
            break; 
        } 
    } 
} 
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Appendix 17. Battle Movement script Photon  

 

using UnityEngine; 
using System.Collections; 
using Photon; 
using UnityEngine.Networking; 
 
public class BattleMovement : Photon.MonoBehaviour 
{ 
    public GameObject CharacterToMove; 
    public GameObject ColoredTiles; 
 
 
    public bool readyToMove = false; 
 
    public GameObject teleportEffect; 
    public Vector2 currentPosition; 
 
 
    float timeStart, timeNow; 
 
 
    private Color col1 = new Color (1, 1, 1, 0); 
 
 
    private Color col2 = new Color (1, 1, 1, 1); 
 
    public SelectorMovement selectorScript; 
 
    bool timerIsOn = false; 
 
    GameObject MovementTiles; 
    CharacterActionSelection actionSelectScript; 
 
 
    void Awake() 
    { 
        selectorScript = gameObject.GetComponent<SelectorMovement> (); 
 
        actionSelectScript = gameObject.GetComponent<CharacterActionSelection> (); 
    } 
 
    void OnEnable () 
    { 
         
        CharacterToMove = gameObject; 
 
        MovementTiles = (GameObject) Instantiate (ColoredTiles, CharacterToMove.transform.position, Quaternion.identity); 
 
        selectorScript.enabled = true; 
 
        selectorScript.isMoving = true; 
 
        currentPosition = selectorScript.currentPosition; 
 
        selectorScript.spriteRenderer.color = new Color (1, 1, 1, 1); 
    } 
 
    void Update () 
    { 
        if (!photonView.isMine) 
            return; 
         
        if (Input.GetButtonDown("Cancel")) 
        { 
            Destroy (MovementTiles); 
 
            selectorScript.isMoving = false; 
 
            actionSelectScript.hasMoved = false; 
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            actionSelectScript.enabled = true; 
 
            selectorScript.enabled = false; 
 
            this.enabled = false; 
        } 
 
        if (readyToMove) 
        { 
            MoveCharacterToPlaceTheBeginning (false); 
 
            timeStart = Time.time; 
 
            timerIsOn = true; 
 
            readyToMove = false; 
        }  
 
        else if(timerIsOn) 
        { 
            timeNow = Time.time; 
 
            if (timeNow - timeStart >= 1.0f) 
            { 
                MoveCharacterToPlaceTheEnd (false); 
 
                timerIsOn = false; 
            }         
        } 
    } 
 
 
    public void MoveCharacterToPlaceTheBeginning(bool isEnemy) 
    { 
 
        StealthBegin (); 
 
        currentPosition = selectorScript.currentPosition; 
 
        Vector2 oldPosition = new Vector2 (gameObject.transform.position.x, gameObject.transform.position.y); 
 
        gameObject.transform.position = currentPosition + new Vector2(0, 0.25f); 
     
 
        if (isEnemy == false) 
        { 
            Destroy (MovementTiles); 
        } 
    } 
 
 
    public void StealthBegin() 
    { 
        GameObject teleportEffect2 = PhotonNetwork.Instantiate ("TeleObject", gameObject.transform.position + new Vec-
tor3(0,0.75f,0) , Quaternion.identity, 0); 
 
        StartCoroutine (waitForDestroy (teleportEffect2)); 
 
        this.photonView.RPC ("Hide1", PhotonTargets.All); 
 
    } 
 
    [PunRPC] 
    public void Hide1() 
    { 
        gameObject.GetComponent<SpriteRenderer> ().color = col1; 
    } 
 
    public void MoveCharacterToPlaceTheEnd(bool isEnemy) 
    { 
 
        StealthEnd (); 
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        selectorScript.isMoving = false; 
 
        if (isEnemy == false) 
        { 
            actionSelectScript.hasMoved = true; 
 
            actionSelectScript.enabled = true; 
 
            selectorScript.enabled = false; 
 
            this.enabled = false; 
        } 
    } 
 
 
    public void StealthEnd() 
    { 
        GameObject teleportEffect3 = PhotonNetwork.Instantiate ("TeleObject", gameObject.transform.position + new Vec-
tor3(0,0.75f,0) , Quaternion.identity, 0); 
 
        StartCoroutine (waitForDestroy (teleportEffect3)); 
 
        this.photonView.RPC ("Hide2", PhotonTargets.All); 
 
    } 
 
 
    [PunRPC] 
    public void Hide2() 
    { 
        gameObject.GetComponent<SpriteRenderer> ().color = col2;     
    } 
 
    IEnumerator waitForDestroy(GameObject obj) 
    { 
        yield return new WaitForSeconds (2.0f); 
 
        PhotonNetwork.Destroy (obj); 
    } 
}  
  



146 
 

 

Appendix 18. Attack script Photon 

 

using UnityEngine; 
using Photon; 
using System.Collections; 
 
public class Attack : Photon.MonoBehaviour 
{ 
    public bool isRanged = false; 
    public GameObject CharacterAttacking; 
    public GameObject CharacterTakingTheHit; 
    public SelectorMovement selectorScript; 
    public GameObject MeleeAttackTiles, RangedAttackTiles; 
 
 
    public bool attackNow = false; 
 
    CharacterActionSelection actionSelectScript; 
    GameObject AttackTiles; 
    public GameObject RangedEffect, MeleeEffect, HitEffect, MissEffect; 
 
 
    public Vector3 pos; 
 
    void Awake() 
    { 
        selectorScript = gameObject.GetComponent<SelectorMovement> (); 
        actionSelectScript = gameObject.GetComponent<CharacterActionSelection> (); 
    } 
 
    void OnEnable () 
    { 
         
        CharacterAttacking = gameObject;  
 
        isRanged = CharacterAttacking.GetComponent<CharacterStats> ().hasRangedAttack; 
 
        if (isRanged == false) 
        { 
            AttackTiles = (GameObject) Instantiate (MeleeAttackTiles, CharacterAttacking.transform.position, Quaternion.identity); 
        } 
 
        else 
        { 
            AttackTiles = (GameObject) Instantiate (RangedAttackTiles, CharacterAttacking.transform.position, Quaternion.identity); 
        } 
 
        selectorScript.isAttacking = true; 
 
        selectorScript.enabled = true; 
 
        selectorScript.spriteRenderer.color = new Color (1, 1, 1, 1); 
    } 
         
    void Update () 
    { 
        if (!photonView.isMine) 
            return; 
         
        if (Input.GetButtonDown("Cancel")) 
        { 
            Destroy (AttackTiles); 
 
            selectorScript.isAttacking = false; 
 
            actionSelectScript.hasActed = false; 
 
            actionSelectScript.enabled = true; 
 
            selectorScript.enabled = false; 
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            this.enabled = false; 
        } 
 
        if (attackNow) 
        { 
            Destroy (AttackTiles); 
 
 
            if (isRanged) 
            { 
                // calculate angle from enemy to player 
 
                float angle = Mathf.Atan2(CharacterTakingTheHit.transform.position.y - CharacterAttacking.transform.position.y, 
                    CharacterTakingTheHit.transform.position.x - CharacterAttacking.transform.position.x) * 180 / Mathf.PI; 
 
                pos = CharacterTakingTheHit.transform.position; 
                Ranged (angle, pos); 
            } 
 
            else 
            { 
                // check from which direction the attack is coming 
 
                Vector3 attackDirection = (CharacterTakingTheHit.transform.position - CharacterAttacking.transform.position).normal-
ized; 
                pos = CharacterTakingTheHit.transform.position; 
 
                Melee (attackDirection, pos ); 
 
            } 
 
            // hit change calculation, if target's speed is higher -> the change is lower, if attacker's speed is higher -> change is higher 
 
            int hitchange = 90 - (CharacterTakingTheHit.GetComponent<CharacterStats> ().currentSpeed 
                - CharacterAttacking.GetComponent<CharacterStats> ().currentSpeed); 
 
            if (Random.Range(0, 100) <= hitchange) 
            { 
                // It's a hit! 
                pos = CharacterTakingTheHit.transform.position; 
 
                Hit (pos); 
 
                int damage = CharacterAttacking.GetComponent<CharacterStats> ().currentAttack 
                    - CharacterTakingTheHit.GetComponent<CharacterStats> ().currentDefense; 
 
                if (damage > 0) 
                { 
 
                    PhotonView pv = CharacterTakingTheHit.GetPhotonView (); 
 
                    pv.RPC("Damage", PhotonTargets.All, damage); 
                } 
 
            } 
 
            else 
            { 
                // miss 
 
                pos = CharacterTakingTheHit.transform.position; 
                Miss (pos); 
            } 
                 
            selectorScript.isAttacking = false; 
 
            actionSelectScript.hasActed = true; 
 
            actionSelectScript.enabled = true; 
 
            selectorScript.enabled = false; 
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            attackNow = false; 
 
            this.enabled = false; 
        } 
    } 
 
    public void Miss(Vector3 pos) 
    { 
         
        GameObject Miss = PhotonNetwork.Instantiate ("Miss", pos , Quaternion.identity, 0); 
        StartCoroutine (waitForDestroy (Miss)); 
    } 
 
 
    public void Hit(Vector3 pos) 
    { 
        GameObject Hit = PhotonNetwork.Instantiate ("GettingHit", pos , Quaternion.identity, 0); 
        StartCoroutine (waitForDestroy (Hit)); 
    } 
 
 
    public void Ranged(float angle, Vector3 pos) 
    { 
        GameObject Ranged =  PhotonNetwork.Instantiate ("RangedAttack", pos , Quaternion.Euler(0,0,angle), 0); 
        StartCoroutine (waitForDestroy (Ranged)); 
    } 
 
 
    public void Melee(Vector3 attackDirection, Vector3 pos) 
    { 
        GameObject Melee = PhotonNetwork.Instantiate ("MeleeAttack", pos , Quaternion.identity, 0); 
 
        PhotonView MpV = Melee.GetPhotonView (); 
 
        MpV.RPC ("Flip", PhotonTargets.All, attackDirection); 
 
        StartCoroutine (waitForDestroy (Melee)); 
    } 
 
    IEnumerator waitForDestroy(GameObject obj) 
    { 
        yield return new WaitForSeconds (1.0f); 
 
        PhotonNetwork.Destroy (obj); 
    } 
     
} 

 

 

 


