

Dalun Chen

PERSONAL HEALTH RECORD PROTOTYPE

PERSONAL HEALTH RECORD PROTOTYPE

Dalun Chen
Bachelor’s Thesis
Spring 2016
Degree Programme in Business
Information Technology
Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme, Business Information Technology

Author: Dalun Chen
Title of Bachelor´s thesis: Personal health record prototype
Supervisor: Pekka Ojala
Term and year of completion: Spring 2016 Number of pages: 74

Cardiovascular disease (CVD), chronic obstructive pulmonary disease (COPD) and diabetes are
the most common chronic diseases in the world, in addition to cancer. CVD is a general term for
heart and circulatory conditions, e.g. coronary heart disease (CHD) and stroke, whereas COPD is
a chronic condition of the lungs including chronic bronchitis and emphysema. CHD, stroke and
COPD are globally the top three causes of mortality. Diabetes, on the other hand, affects one in
twelve adults in the world and can lead to CVD and other complications. Diabetes is a chronic
metabolic condition. 90% of diabetes is type 2 diabetes. The risks of these chronic diseases are
often associated with unhealthy diet, sedentary lifestyle, drinking alcohol and smoking.

To combat these diseases, living a healthy lifestyle is as important as adhering to treatment. A
healthy lifestyle includes eating a balanced diet, exercising sufficiently, drinking less alcohol and
smoking cessation. As a result, it helps to keep the body healthy and thus reduce the risk of
chronic diseases and related complications.

eHealth tailored to achieve specific goals has the potential to empower people to live a healthier
life. ProWellness Health Solutions, a Finnish IT company which has dedicated itself to chronic
disease management system, is endeavoring to build an advanced personal health record
application. The application will help people with CVD, COPD and diabetes and others who are at
high risk of these diseases to manage their health more effectively and efficiently.

This thesis project was commissioned by the company to create a new prototype for a web-based
personal health record application. The prototype should be modern and tailored to a set of
specific requirements.

Much effort have been made to deliver the prototype. Prior to implementation, a literature review
on the target diseases was conducted. In addition, self-study on JavaScript and jQuery was
carried out. Furthermore, proactive and regular communication with the commissioner and the
instructing teacher had been kept throughout the thesis work to ensure that the project advances.

Finally, a new prototype was created according to the requirements. It is responsive and
interactive; it presents demo data with configurable charts and sortable tables and can leverage
the company’s technology. The prototype serves as a medium for obtaining further requirements
from the company’s stakeholders. A multidisciplinary approach will be integral to future
development. As for the future bachelor thesis, a usability study on well-received personal health
applications can provide valuable insights.

Keywords: chronic disease, healthy lifestyle, personal health record, prototype, visualization

4

CONTENTS

1 INTRODUCTION ... 5

2 TARGET CHRONIC DISEASES .. 8

2.1 Cardiovascular disease .. 8

2.2 Chronic obstructive pulmonary disease .. 11

2.3 Diabetes ... 13

2.4 Control and prevention ... 17

2.5 eHealth for chronic disease patients .. 20

3 TECHNOLOGIES AND TOOLS CHOSEN FOR PROTOTYPING 24

3.1 jQuery selector ... 25

3.2 Open source plugins: Chart.js and tablesorter ... 27

3.3 ASP.NET MVC5 partial view .. 31

3.4 ASP.NET MVC5 resource files ... 33

3.5 ASP.NET MVC5 Request.Form and FormCollection.. 36

3.6 ASP.NET MVC5 web deployment .. 38

4 IMPLEMENTATION ... 42

4.1 Creating HTML elements dynamically .. 42

4.2 Rendering demo data with responsive charts and sortable tables............................ 48

4.3 Creating reusable HTML elements ... 56

4.4 Implementing Finnish localization ... 59

4.5 Examining HTML forms which contain dynamically created input fields 64

4.6 Deploying the prototype to localhost .. 66

5 CONCLUSIONS .. 71

6 DISCUSSION .. 73

REFERENCES .. 74

5

1 INTRODUCTION

For Pat, Sirpa and Jim, cardiovascular disease, chronic obstructive pulmonary disease (COPD)

and diabetes have caused inconveniences in life and placed obstacles to self-fulfillment. Pat had

a heart attack in 2012. Before that, it had never come to her mind that she would one day be

plagued with a heart attack, a type of cardiovascular disease. In order to cope with the illness,

she quit smoking and began to take medication, pay attention to her diet and exercise regularly.

(Titaania suonessa 18.7.2013, cited 19.5.2015.) Sirpa, instead of having a heart attack, has been

living with COPD for 13 years. COPD makes her cough and breathe with difficulty. She has quit

smoking and changed her lifestyle – included giving up dancing, once her hobby. (Yle 5.6.2012,

cited 19.5.2015.) Jim, on the other hand, has type 2 diabetes. A heel injury almost caused him to

lose his leg. Luckily, after spending seven weeks in the hospital, he did not lose his leg. However,

the same heel was infected again, and the infection triggered a heart attack. As a result, he was

admitted to the hospital again. (Diabetes UK 2016, cited 4.2.2016.) These chronic conditions, in

addition to cancer, have been recognized as the most common chronic diseases in the world.

They have prohibited tens of millions of people from living their life to the fullest and claim 38

million lives every year. The risks of these diseases are often associated with living an unhealthy

lifestyle: eating unhealthy diet, living a sedentary lifestyle, drinking alcohol and smoking. (WHO

2015a, cited 19.5.2015.)

To combat these chronic diseases, living a healthy lifestyle is as important as adhering to

treatment. Living a healthy lifestyle reduces patients’ risk of developing complications. For people

without the conditions, chronic diseases can be postponed if not avoided by living a healthy life.

According to WHO (2014a, cited 20.5.2015), eating healthy diet, exercising sufficiently, drinking

less alcohol and smoking cessation can “decrease premature deaths by half to two-thirds”.

Adopting a healthy lifestyle is, however, easier said than done. Inadequate health literacy, poor

health conditions, adverse life circumstances and lack of support can keep people from taking

care of themselves (Kousoulis, Patelarou, Shea, Foss, Knutsen, Todorova, Roukova, Portillo,

Pumar-Méndez, Mujika, Rogers, Vassilev, Serrano-Gil & Lionis 2014, 11; Korhonen, Seppälä,

Järvenpää & Kautiainen 2014, 73). Therefore, healthcare systems are expected to provide

patients with more guidance on self-management and to reach out to others at high risk of

chronic diseases. However, the resources of healthcare systems seem unlikely to be increased

6

due to adverse economic conditions. (Kousoulis et al. 2014, 13.) Such a challenge has initiated

the studies of eHealth in the context of chronic diseases, and the results are promising: eHealth

which is tailored to achieve specific goals and leverages expertise in different fields can empower

people to take better care of themselves while alleviating the financial burden on healthcare

systems (Wicks, Stamford, Grootenhuis, Haverman & Ahmed 2014, 196).

Hence, in an attempt to help people like Pat, Sirpa and Jim; and others at high risk of chronic

diseases manage their health more effectively and efficiently, the commissioner of this thesis,

ProWellness Health Solutions is endeavoring to build an advanced eHealth solution. Prior to this

endeavor, the company had developed an award-winning chronic disease management system

(CDMS). Nowadays, the system is used by healthcare organizations in Finland and in the UK.

(ProWellness Health Solutions 2013, cited 4.2.2016; ProWellness Health Solutions 2014, cited

4.2.2016.) By leveraging the expertise in CDMS and exploring different technologies, the

company is devising an advanced personal health record application (PHR) for self-management.

The company commissioned this thesis project to create a new PHR prototype. Prior to the thesis

project, prototypes for a web-based PHR were created. However, they do not satisfy the new set

of requirements obtained by the commissioner. After consideration, the commissioner decided

that there is a need to create a new prototype tailored to the new requirements. Therefore, it

became the goal of the project.

Many efforts have been made to create the new PHR prototype. A literature review on

cardiovascular disease, COPD and diabetes was conducted prior to development phase, in order

to appreciate the context of the target diseases and to fully understand the commissioner’s

requirements. In addition, self-study on JavaScript and jQuery had been carried out before and

during the development phase, since implementing interactive webpages was the focus of

prototyping. Furthermore, I had maintained proactive and regular communication with the

commissioner and the instructing teacher throughout the thesis project to ensure that the

prototype was delivered by the end of the development.

The main results are documented in this report. The context of the target diseases is introduced

in the second chapter. The main technologies and tools chosen for prototyping are justified and

presented in the third chapter. An account of major implemented features and means of testing is

given in the fourth chapter. The knowledge gained from the thesis project and the major

7

characteristics of the delivered prototype are summarized in the fifth chapter. Finally, personal

reflection and suggestions are kept in the last chapter.

8

2 TARGET CHRONIC DISEASES

People with cardiovascular disease, chronic obstructive pulmonary disease and diabetes, as well

as people at high risk of those chronic conditions are the target users for the personal health

record application which the commissioner is developing. During earlier communication with the

commissioner, I had identified the need to equip myself with adequate knowledge of those

diseases, in order to better understand the commissioner’s requirements and thus deliver a

prototype accordingly.

Before the development phase commenced, I had conducted a literature review on the target

diseases. The main sources included WHO, national healthcare institutions in the UK and

Finland, Finnish official statistics, international and local chronic disease associations,

professional articles and online medical libraries. The literature review helped me understand how

the target chronic diseases develop in the body and what people can do to control and prevent

these diseases. In addition, I had visited the websites of multinational technology companies and

online application stores, in order to perceive the current development of personal health

applications and the general trend of eHealth.

The results of the literature review are documented in this chapter. It begins with an introduction

to each target chronic diseases. The introduction explains how each target chronic disease

develops in layman’s terms and outlines the prevalence of each disease in Finland, the UK and

the world. Since these target diseases share common methods for control and prevention, the

shared methods are recorded together after the introduction. Finally, the potential of eHealth for

empowering people to take better care of themselves is presented in the end of this chapter.

2.1 Cardiovascular disease

The heart and the vascular system are responsible for supplying oxygen and nutrients to the body

through circulation. The heart pumps blood, which carries oxygen and nutrients through arteries

to the organs and muscles in the body. Oxygen and nutrients are then exchanged for carbon

dioxide and other waste matter from the organs and muscles in smaller blood vessels called

capillaries. After the exchange, the blood carries carbon dioxide and other waste matter and

9

returns to the heart through veins to be pumped again. The continual supply of oxygen and

nutrients and removal of carbon dioxide and waste matter are called circulation. The network of

blood vessels, where circulation takes place, is termed the vascular system. (NHS choices

2014a, cited 18.7.2015; Johns Hopkins Medicine 2015a, cited 18.7.2015.)

Atherosclerosis and embolism impair the heart and the vascular system thus causing

cardiovascular disease. When a build-up of fatty matter like cholesterol thickens and hardens the

walls of arteries, the condition is called atherosclerosis. On the other hand, when a blood clot, an

air bubble or a foreign substance blocks an artery, it is called an embolism. Both atherosclerosis

and embolism will reduce or prohibit the flow of blood and thus damage the organ which cannot

receive sufficient oxygen and nutrients. (NHS choices 2014b, cited 18.7.2015; NHS choices

2015a, cited 18.7.2015.) Therefore, if coronary arteries, the arteries supplying blood to the heart

are becoming clogged, it will lead to coronary heart disease (CHD). If the coronary arteries are

completely blocked, it will cause a heart attack. If carotid arteries, the arteries transporting blood

to the brain fail to provide the brain with needed oxygen and nutrients, it will trigger a stroke. If the

blood flow to the arms and legs is restricted because of atherosclerosis and embolism, it will

result in peripheral arterial disease (PAD). Finally, atherosclerosis could also constitute a risk of

developing aortic disease, which weakens the largest artery, the aorta. As a result, it can cause

part of the aorta to swell or bulge and possibly lead to a fatal burst. These aforementioned

diseases are common medical conditions related to the heart or the vascular system; therefore,

they have been categorized under a general term: cardiovascular disease. (NHS choices 2014c,

cited 20.7.2015; NHS choices 2014d, cited 20.7.2015; NHS choices 2014e, cited 20.7.2015;

Johns Hopkins Medicine 2015b, cited 20.7.2015.)

Cardiovascular disease has been associated with a wide spectrum of risk factors. High blood

pressure (hypertension), high cholesterol (hyperlipidemia) and high blood sugar (hyperglycaemia)

can cause atherosclerosis and embolism, thus increasing the risk of developing cardiovascular

disease. Together with overweight and obesity, they are considered as intermediate risk factors.

While these intermediate risk factors can lead directly to the development of cardiovascular

disease, they are influenced by a much broader collection of interrelated factors which ranges

from individual to societal level. (NHS choices 2014f, cited 29.5.2015; NHS choices 2014g, cited

29.7.2015; NHS choices 2015b, cited 29.7.2015; NHS choices 2015c, cited 29.7.2015; WHO

2015b, cited 21.7.2015.) At the individual level, growing old, being male, having one parent or a

sibling affected by CVD, having South Asian or African Caribbean ethnic background,

10

experiencing stress constantly, eating unhealthily, drinking alcohol excessively, doing little or no

exercise and smoking can all add to a person’s risk of developing cardiovascular disease (NHS

choices 2014f, cited 29.5.2015). At the societal level, rapid unplanned urbanization has been

blamed for providing poor healthcare service and for exposing urban residents to health threats;

on the other hand, globalization has been blamed for spreading unhealthy lifestyles. In addition to

population aging and poverty, they can influence the prevalence of cardiovascular disease in a

society. (World Heart Federation 2015, cited 29.7.2015; WHO 2015a, cited 19.5.2015; WHO

2015b, cited 21.7.2015.)

In Finland, cardiovascular disease is still the most frequent cause of mortality, although the

number of people whom have died from it has decreased over decades. From 1971 to 1987, the

disease used to account for over 50% of national mortality. But the mortality rate caused by CVD

has decreased since then. (Statistics Finland 2014b, cited 24.7.2015.) In 2013, CVD constituted

38% of the total mortality in 2013 (N=51,478). Coronary heart disease was responsible for 54% of

the deaths from CVD (N=19,548), whereas stroke and other brain-related vascular diseases

accounted for 23%. (Statistics Finland 2014a, cited 23.7.2015.) According to the national institute

for health and welfare, there were more than 180,000 people taking medication for coronary heart

disease CHD in 2012. In the same year, there were 21,769 episodes of heart attack or other CHD

symptoms such as chest pain; nearly one out of five who had a heart attack or chest pain was

between age 15-64. 11,591 people died from CHD; one out of ten who died from CHD was

between age 15-64. Every year, coronary heart disease alone claims on average 12,000 lives; no

other disease kills as many as CHD does. Despite the number of death from cardiovascular

disease has decreased, the national institute for health and welfare is concerned that the number

of the population affected by coronary heart disease would increase in the future, as the country

is ageing. (Statistics Finland 2013, cited 22.7.2015; Statistics Finland 2014a, cited 23.7.2015;

Statistics Finland 2014b, cited 24.7.2015; Terveyden ja Hyvinvoinnin Laitos 2014, cited

19.5.2015.)

In the UK, the leading cause of mortality is coronary heart disease. The British Heart Foundation

announced that the deaths from CVD accounted for 28% of the national mortality in 2012; it was

one percent less than the mortality of cancer. It was the first time after five decades that the

leading cause of mortality in the country is not cardiovascular disease. Nevertheless, according to

the UK’s mortality statistics, CHD alone killed 73,680 people in 2012, which accounted for 13% of

the national mortality and made CHD the most notorious killer in the country. Together, coronary

11

heart disease and strokes were responsible for 71% of the CVD deaths and 20% of the national

mortality in 2012. Furthermore, the latest report published by the British Heart Foundation

revealed that nearly 2.3 million people in the UK were affected by coronary heart disease; 1.17

million people had suffered a stroke; about one million people were troubled with the condition of

irregular and rapid heart rate, called atrial fibrillation; 480,000 people struggled with heart failure,

which means the heart does not have enough strength to maintain the circulation. The report also

indicated that 22% of the premature deaths, i.e. die earlier than age 75, in 2012 were due to

cardiovascular disease. In terms of monetary costs, an estimation of over eight billion pounds in

total was spent by the whole National Health Service in 2012 fiscal year on treating

cardiovascular disease. In addition to the NHS expenditure on CVD, the report suggested that

non-healthcare costs such as informal care for CVD patients and productivity losses due to CVD

could be 1.5 times bigger than the NHS spending. (NHS choices 2014h, cited 27.7.2015;

Townsend, Williams, Bhatnagar, Wickramasinghe & Rayner 2014, 6, 13-15, 19-21, 59, 63, 86,

92-94; NHS choices 2015d, cited 27.7.2015.)

On the global scale, cardiovascular disease is the leading cause of mortality. WHO estimated that

CVD killed 17.5 million people in 2012, which accounted for 31% of the global deaths in that year;

more than 75% of the global CVD deaths occurred in low- and middle-income countries. The

disease was also responsible for 37% of the globally premature deaths, i.e. die before age 70.

(2015b, cited 21.7.2015.)

2.2 Chronic obstructive pulmonary disease

When a person inhales, air enters the person’s nose or mouth and travels through the person’s

throat, where the air flows into the trachea, the airway to the lungs. At the end of the trachea, air

enters the lungs through the bronchi, the large airways branched from the trachea, and then flows

into the bronchioles, the small airways branched from the bronchi. Finally, the air fills the alveoli,

the tiny air bags at the end of the bronchioles. Through the thin blood vessels (capillaries) on the

walls of the alveoli, oxygen from the inhaled air is exchanged for carbon dioxide from the

capillaries. The oxygen-rich blood then returns to the heart to be pumped into the body, whereas

the air which contains carbon dioxide after the exchange is pushed upward by the diaphragm, the

muscle between the chest and the abdomen. Through the same path, the air is released from the

nose or mouth, when the person exhales. The nose, throat, trachea and lungs form the

12

respiratory system, which exchanges the carbon dioxide produced by the body for oxygen. (The

Nemours Foundation 2012, 1-2, cited 31.7.2015.)

Chronic obstructive pulmonary disease (COPD) is the general term for persistent infection of the

lower part of the respiratory system, i.e. the bronchi, bronchioles and alveoli. The disease causes

airways to gradually clog up and includes chronic bronchitis and emphysema. (Koskela 2005,

cited 3.8.2015; WHO 2015c, cited 31.7.2015.) Chronic bronchitis is a prolonging infection of the

bronchi, which causes persistent irritation and inflammation in the airways; as a result, less air

can enter the lungs, because the airways become narrow and produce more mucus than normal.

(Johns Hopkins Medicine 2015c, cited 31.7.2015.) On the other hand, emphysema is a condition

where the amount of the healthy alveoli decreases due to permanent damage, thus reducing the

amount of oxygen entering the capillaries when inhaling (ibid. 2015d, cited 31.7.2015). Therefore,

a person with COPD would cough more often and cough up mucus or even blood; the person

would easily feel short of breath and could have difficulty in breathing even when performing daily

activities like doing grocery shopping and taking out garbage. The person also becomes more

susceptible to other lung infection like pneumonia. If the person left COPD untreated, her/his

lungs will continue deteriorating and eventually stop functioning. (NHS choices 2014i, cited

31.7.2015; NHS choices 2014j, cited 31.7.2015; NHS choices 2014k, cited 31.7.2015; NHS

choices 2015e, cited 31.7.2015.)

Smoking, exposing regularly to dusty air or chemical gases, using biomass fuels such as manure

for heating and cooking indoors, as well as having lung infections frequently in one’s childhood

are commonly known to increase a person’s risk of developing COPD. In high- and middle-

income countries, smoking is the biggest risk factor of COPD, whereas using biomass fuels

indoors is the most frequent cause of COPD in low-income countries. (WHO 2015d, cited

3.8.2015.)

In Finland, COPD kills about 1,000 people every year. In addition, it has been estimated that

200,000 people are affected by the disease; whereas 200,000 more have chronic bronchitis,

which can deteriorate and lead to full-blown COPD, if the condition is left untreated. (Koskela

2005, cited 3.8.2015.) The main cause of COPD in the country is smoking – nine out of ten

COPD patients were smokers before they were diagnosed (Mustajoki 2014, cited 3.8.2015).

Other reasons include exposing to dust or chemical gases at work and lack of alpha-1 antitrypsin

in one’s genes. It has been anticipated that the prevalence of COPD might increase not only

13

because the country is ageing, but also because more women and young people are smoking

nowadays. (Koskela 2005, cited 3.8.2015.)

In the UK, 25,000 - 30,000 people died from COPD every year. The British Lung Foundation

estimated that three million people in the country are having COPD, but only one third of them are

receiving treatment. It is because people are less aware of the disease and its severity; if they are

smokers, they usually think the symptoms of COPD as merely “smoker’s cough” and do not seek

treatment for it. (British Lung Foundation 2014, cited 4.8.2015; NHS choices 2014i, cited

31.7.2015.) However, the cost for neglecting “smoker’s cough” could be high: one in four smokers

can be affected by COPD later, while 80% of the COPD in the UK are caused by smoking (British

Lung Foundation 2014; NHS choices 2014l, cited 4.8.2015). On the other hand, the Health and

Safety Executive (2014, 2) indicated that 15% of COPD cases could be caused by exposing to

dust and chemical gases at work. While smoking and exposing to dust and chemical gases at

work are the major causes of COPD, a few cases are caused by genetic deficiency and exposure

to air pollution which is not work-related (NHS choices 2014l, cited 4.8.2015).

In the world, more than three million people died from COPD in 2012, which made the disease

the third biggest killer of the year after coronary heart disease and stroke (WHO 2014b, cited

4.8.2015.) According to WHO, the mortality of COPD in low- and middle-income countries

constitutes over 90% of global COPD deaths. The reason has been attributed to poor prevention

and control. In terms of gender, COPD affects as much women as it affects men nowadays, since

the number of women in high-income countries who are smoking has increased and many

women in low-income countries continue exposing themselves to indoor air pollution from using

biomass fuels and coal. (2015e, cited 4.8.2015.) Overall, it has been estimated that 64 million

people worldwide are suffering from COPD; smoking is the main reason. (WHO 2015c, cited

31.7.2015; WHO 2015d, 3.8.2015.)

2.3 Diabetes

Glucose, a basic type of carbohydrate is one of the primary energy sources for the human body

as it can be effectively converted to energy by the body cells. Furthermore, it is the preferred

energy source to the brain (Gebel 2009, cited 6.1.2016; Gebel 2011, cited 6.1.2016).

14

For the body cells to consume glucose, insulin is required. After digestion, the carbohydrates in

the food and drink consumed by a person disintegrate into glucose molecules, which are then

released into the vascular system. As a result, blood glucose level, the amount of glucose in the

blood increases. Normally, the increase signals the pancreas, a long-shape gland behind the

stomach to supply more insulin. Insulin is a necessary hormone for glucose molecules entering

the body cells, thus reducing the blood glucose level. Once the molecules enter the body cells,

they are converted to energy or stored as glycogen in the liver or muscles for later use. (Gebel

2009, cited 6.1.2016; GroupHealth 2014a, cited 6.1.2016; GroupHealth 2014b, cited 6.1.2016.)

Therefore, when insulin is absent or insufficient, or when the body cells resist insulin, blood

glucose level will rise and remain at a high level which can eventually damage the body. The

persisting condition is known as diabetes. Specifically, a person will be diagnosed as having

diabetes, if her/his fasting blood glucose level after waking up continues to be 7 mmol/l or higher,

if the level is higher than 11 mmol/l after an oral glucose tolerance test, or if the amount of

glucose in the hemoglobin in red blood cells is 48 mmol/mol (6.5%) or more. (Mustajoki 2015,

cited 6.1.2016; Diabetes.co.uk 2016, cited 7.1.2016.) When the body cells resist insulin, glucose

cannot be consumed for energy; thus, a person with diabetes gets tired more easily. The person

also urinates more frequently as the body is trying to remove extra glucose through urine.

Consequently, she/he feels thirsty more often. These are some of the common symptoms. (NHS

choices 2014o, cited 7.1.2016.) If diabetes is left uncontrolled, the condition will deteriorate and

can cause complications by damaging the vascular system, the peripheral nerve system,

eyesight, the kidneys, muscles and skins (NHS choices 2014p, cited 7.1.2016).

Diabetes is usually categorized into type 1, type 2 and gestational diabetes (NHS choices 2014m,

cited 7.1.2016). In type 1 diabetes, the pancreas cannot secrete insulin, because the cells

responsible for producing the hormone have been destroyed by the immune system. Therefore, a

person with type 1 diabetes depends on regular injection for insulin supply. Type 1 diabetes

usually develops in a patient’s childhood; the exact cause of the autoimmune condition remains

unknown. (Mustajoki 2015, cited 6.1.2016.) On the other hand, in type 2 diabetes, either the

pancreas fails to supply sufficient insulin or the body cells resist the hormone. A person’s risk of

developing type 2 diabetes is believed to increase as the person gets old, if she/he has a large

waist, if her/his parent or sibling also has type 2 diabetes, or even by being of certain ethnic

origin. (NHS choices 2014n, cited 7.1.2016.) Especially, for overweight or obese middle-age

people, the risk rises 10 to 20-fold (Mustajoki 2015, cited 6.1.2016). Gestational diabetes, on the

15

other hand, is a temporary condition which might occur for some women during their pregnancy.

If a woman has gestational diabetes, her risk of type 2 diabetes in the future increases to 30%.

Overall, the most prevalent category is type 2 diabetes. (NHS choices 2014m, cited 7.1.2016.)

In Finland, population ageing and limited healthcare resources concern the Finnish diabetes

association (Suomen Diabetesliitto). According to the association, the trend of new diabetes

diagnoses based on the 2000-2014 statistics of people receiving special reimbursements for

blood glucose medicines reached its peak in 2011, when 33,383 people began to receive the

reimbursements. In 2014, the number declined to 24,682 people; it was still two times more than

in 2000. Furthermore, the number of retired people receiving the reimbursements had increased

threefold after 15 years. By the end of 2014, the total number of people receiving the special

reimbursements was 300,708, which was 2.3 times more than in 2000. (Koski 2015, 9-11.) After

2000, researches, programs and projects have been carried out to design and promote strategies

for more effective diabetes treatment and prevention (Koski 2015, 12). However, due to the

resource constraints in the healthcare system, many diabetes patients still feel being left alone in

dealing with the disease (Koski 2015, 16). How to implement holistic treatment for diabetes and

how to carry out effective prevention with limited resources remain great challenges to the

country (Koski 2015, 17-23). Furthermore, since it could take years for people to realize that they

have type 2 diabetes, the number of people receiving the reimbursements only represents part of

the diabetes population. The national institute for health and welfare (Terveyden ja Hyvinvoinnin

Laitos) estimated that half million people have type 2 diabetes and 50,000 people have type 1

diabetes. (Terveyden ja Hyvinvoinnin Laitos 2015, cited 8.1.2016.)

In the UK, obesity and sedentary lifestyle put Britons at increased risk of developing diabetes.

According to Diabetes UK, the prevalence of overweight condition and obesity had increased

13% from 1980 to 2013; as a result, nearly two third of Britons are above their normal weight. In

addition, about 60% of men and 70% of women do not exercise enough. (2015a, 6.) The increase

in the prevalence of diabetes seems to be associated with the increase in the overweight and

obese population. In 1996, 1.4 millions of people were diagnosed as having diabetes. The figure

has grown 2.5 times by 2015; almost 3.5 millions of people were diagnosed as having diabetes.

In addition, it is estimated that more than half a million have diabetes but have not been

diagnosed. Hence, the current diabetes population in the country is believed to be no less than

four million people, of which 90% are having type 2 diabetes and 10% are type 1 diabetes. It is

anticipated that the diabetes population will reach five million by 2025. (Diabetes UK 2015a, 2-3.)

16

For treating diabetes and reducing its complications effectively across the UK, the National

Institute for Health and Care Excellence (NICE) has published clinical guidelines for diabetes.

The guidelines advise people with diabetes to check at least once a year their glycated

hemoglobin (HbA1c), blood pressure, cholesterol, the retina, kidneys, feet, BMI and smoking

habit. In addition, these people are urged to take structured education for managing their diabetes

and to work with their healthcare professionals in setting and achieving targets for lowing blood

glucose, cholesterol and blood pressure, thus reducing the risk of developing complications.

However, according to the national diabetes audit in 2012-2013, there were still 40% of people

with diabetes in England and Wales who did not complete all the recommended checkups; the

figure rose to about 70% for type 1 under 40 years old and 54% for type 2 in the same age group.

The audit further indicated that the structured programmes have been offered to only about 6% of

people with diabetes in England and Wales, and less than 2% of the diabetes population in

England and Wales attended the programmes between 2012-2013. Finally, the majority of people

with diabetes in England and Wales (about 64%) were still at high risk of developing

complications, since at least one of their three values was still above the target level

recommended by NICE. The audit pointed out that there is need for adjusting healthcare services

to better reach and serve patients with type 1 diabetes and patients with type 2 diabetes who are

under 40, and for ensuring that diabetes patients are equipped with sufficient information for

managing their condition. (Health and Social Care Information Centre 2014, 9-10, 17, 21, 24.)

Similar needs exist also in Scotland, where type 1 diabetes patients received fewer checkups,

and the rate of attending structured programmes was also very low (Diabetes UK 2015b, 8, 13,

18).

To combat diabetes, the UK authorities have started new initiatives in the last two years. In 2014,

the Scottish government (2014, cited 13.1.2016) published a diabetes improvement plan to

improve its healthcare system for better diabetes control and prevention. In 2015, the National

Health Service (NHS) and Public Health England have begun a pilot project for national NHS

diabetes prevention programme. The pilot project offers to participants who are at high risk of

developing type 2 diabetes an intensive programme which includes doing more exercise, having

a healthier diet and reducing weight. (NHS England & Public Health England 2015, cited

13.1.2016.)

In the world, obesity and sedentary lifestyle are the major causes for the increasing prevalence of

type 2 diabetes, which accounts for 90% of the total diabetes population (WHO 2015f, cited

17

13.1.2016). As estimated, one in every twelve adults in the world is having diabetes and one ninth

of global healthcare cost is spent for treating diabetes and its complications (International

Diabetes Federation 2015, 10). Among the complications, cardiovascular disease is responsible

for at least 50% of mortality of diabetes patients. The mortality of diabetes is expected to become

the 7th cause of global death by 2030. (WHO 2015f, cited 13.1.2016.) Furthermore, it is

anticipated that 592 million people will have diabetes and a similar number of people will be at

high risk of developing diabetes by 2035 (International Diabetes Federation 2015, 6). WHO has

acknowledged the growing trend of diabetes, particularly in low- and middle-income countries;

and has dedicated this year’s World Health Day, in addition to the World Diabetes Day, to raise

global awareness of diabetes and to promote effective control and prevention (2016).

2.4 Control and prevention

A lifestyle of eating a healthy diet, doing exercise sufficiently, drinking less alcohol and smoking

cessation is believed to help patients with chronic diseases keep their condition under control,

besides complying with treatment. Furthermore, for people without chronic diseases, adopting

such a lifestyle can reduce the risk of developing chronic diseases. (WHO 2014a, cited

20.5.2015; WHO 2015a, cited 19.5.2015.)

A healthy diet provides humans with necessary nutrients without harming the body. Although the

amount of calories in a healthy diet varies for people of different age, body mass index, level of

physical activity and health conditions (NHS choices 2014q, cited 14.1.2016); there are general

guidelines for the contents of a healthy diet. National Health Service in the UK has published “The

eatwell plate”, which illustrates a healthy diet as a balanced diet among carbohydrate, fibre and

protein, while providing the vitamins and minerals needed by the body.

According to “The eatwell plate”, one third of the plate should contain starchy foods like potatoes

and bread, as starchy foods keep a person full longer and provide calcium, iron and B vitamins

besides starch. In addition, if a person eats potatoes with their skins on or wholegrain breads, the

person is also getting fibre, which helps digestion. (NHS choices 2015f, cited 14.1.2016; NHS

choices 2015g, cited 14.1.2016.)

18

Another one third of the plate should contain fruit and vegetables, as fruit and vegetables provide

vitamins, minerals and rich fibre. Specifically, taking at least 400g of fruit and vegetable every day

is believed to reduce the risk of cardiovascular disease and cancer. (NHS choices 2015f, cited

14.1.2016; NHS choices 2015h, cited 14.1.2016.)

The last one third of the plate should contain the kind of food providing protein but containing very

little fat (NHS choices 2015f, cited 14.1.2016), because protein is a necessary nutrient for

growing and repairing muscles and other body tissues (NHS choices 2014r, cited 14.1.2016), and

a little amount of fat is required for the body to receive vitamins A, D and E (NHS choices 2015i,

cited 14.1.2016). Examples of foods containing rich protein and little fat are lean meat, chicken

meat without the skin, white fish, pulses and low-fat milk. Furthermore, it is recommended to get

protein from diverse sources thus reducing the consumption of red and processed meat to 70

grams a day. (NHS choices 2015f, cited 15.1.2016; NHS choices 2015j, cited 15.1.2016; NHS

choices 2015k, cited 15.1.2016; NHS choices 2015l, cited 15.1.2016; NHS 2015m, cited

15.1.2016.)

There are two main reasons for favouring low-fat food: avoiding excessive calories and reducing

the intake of saturated fat. A person gains weight by eating more than her/his body needed. A

gram of fat contains 9 Kcal, whereas a gram of carbohydrate or protein contains 4 Kcal; in other

word, a person who eats a high-fat diet is likely getting more calories than her/his body need thus

becoming overweight or obese. Moreover, by eating more fat, a person is inevitably getting more

saturated fat, which increases the amount of low density lipoprotein (LDL) (a harmful type of

cholesterol) and triglycerides (a type of fatty matter) in the blood. As a result, atherosclerosis and

embolism can develop and eventually trigger cardiovascular disease. (NHS choices 2015i, cited

14.1.2016.)

In addition to avoiding excessive calories and saturated fat, NHS urges people to reduce the

intake of sugar and salt, because a person could easily become obese by eating excessive

amount of sugar and could have hypertension by adding too much salt to her/his food. According

to NHS, an adult should not consume more than 30 grams of added sugar and 6 grams of salt a

day; however, many Britons eat much more sugar and salt than recommended. (NHS choices

2015n, cited 15.1.2016; NHS choices 2015o, cited 15.1.2016; NHS choices 2015p, cited

15.1.2016.)

19

A healthy diet is, therefore, a balanced diet which provides the body with the right amount of

nutrition and without putting a person at risk of becoming overweight and developing high blood

glucose, high blood pressure, high cholesterol and triglycerides. For people having chronic

diseases, it could be useful to consult a dietician in order to customize a friendly diet for their

specific condition (NHS choices 2015f, cited 14.1.2016; East Sussex Healthcare NHS Trust 2016,

cited 15.1.2016).

However, eating a healthy diet alone is not enough for preventing or controlling chronic diseases,

if a person continues living a sedentary lifestyle and/or being overweight or obese. Especially, the

risk of developing cardiovascular disease and type 2 diabetes for overweight and obese people is

higher than people having normal weight (NHS choices 2014f, cited 29.5.2015; Mustajoki 2015,

cited 6.1.2016). Specifically, there is a negative correlation between obesity and physical health-

related quality of life: overweight and obese people are more likely to experience physical pain,

illness and impairment; and are more likely to have “high blood pressure, high blood glucose, low

HDL cholesterol and high triglycerides”, which could accelerate the development of chronic

diseases like cardiovascular disease and diabetes (Korhonen et al. 2014, 71, 73). Hence,

achieving and maintaining a healthy weight is integral to effective control and prevention of

chronic diseases. As estimated, a 1.61 kg/m2 reduction in body mass index could reduce the risk

of having diabetes related incident by 20% for middle-aged people without diabetes; for obese

people losing weight, a 30% decrease in the risk could be anticipated (Appuhamy, Kebreab,

Simon, Yada, Milligan & France 2014, 13). Finally, for losing weight effectively, doing sufficient

exercise is required in addition to eating a healthy but fewer calories diet (Tarnanen, Kesäniemi,

Kettunen, Kujala, Kukkonen-Harjula & Tikkanen 2010, cited 15.1.2016).

The combination of healthy diet and sufficient exercise not only can reduce the risk of developing

cardiovascular disease and diabetes, but also can alleviate the condition of COPD. Generally,

sufficient exercise means doing at least two and half hours of moderate aerobic exercise or one

hour fifteen minutes of vigorous aerobic exercise every week, plus strength exercise at least twice

a week. Fast walking and cycling are considered as moderate aerobic exercise; whereas jogging

and cross-country skiing exemplify vigorous aerobic exercise. Strength exercises like doing yoga

and going to gym, on the other hand, emphasize on improving the body’s flexibility and

strengthening the muscles. For people over 64 years old, it is recommended to exercise their

joints and train balance, in addition to regular aerobic exercise and strength exercise. (Tarnanen

et al. 2010, cited 15.1.2016.)

20

For people who drink alcohol regularly, they are urged to reduce the consumption to no more

than 14 units per week, the less alcohol the better; as well as to avoid drinking all the units in one

day, according to the new alcohol guidelines published by the UK’s Department of Health. The

Department of Health indicated that although a person will not be free from chronic diseases by

complying with the new recommendation, it does lower the person’s risk of cancers, liver disease

and other diseases. (2016, cited 18.1.2016.) The other diseases include cardiovascular disease

and impairment of the nervous system (NHS choices 2014s, cited 18.1.2016).

Finally, smoking cessation can significantly reduce the risk of developing COPD, in addition to

avoiding being exposed to harmful gas (WHO 2015d, cited 3.8.2015). For smokers with COPD,

smoking cessation delays the deterioration of their lungs (NHS choices 2014i, cited 31.7.2015).

Besides the respiratory system, the heart can also benefit from smoking cessation, as it stops the

poisonous substance in tobacco from harming coronary arteries (NHS choices 2014f, cited

29.5.2015).

2.5 eHealth for chronic disease patients

Patients with chronic disease might feel unmotivated and powerless to adopt a healthy lifestyle,

although they would be informed that adopting such a lifestyle is integral to the control and

prevention of their condition. The feeling and perception could be affected by the patient’s health

conditions, personal knowledge about the disease, life circumstances, and support from family

and healthcare professionals. (Kousoulis et al. 2014, 2, 5, 11-14.) The same perception and

feeling could also hinder some obese people without chronic disease in losing weight; Korhonen

et al. (2014, 73) found that some obese people are not motivated to lose weight because they are

either content with their life or unable to do enough exercise due to physical impairment. For

motivating the patients and other people who are at high risk of chronic diseases to take better

care of themselves, intervention from healthcare professionals is essential. Kousoulis et al.

indicated that in Europe, healthcare systems are expected to equip diabetes patients for efficient

self-management as well as to intervene to reduce citizens’ risk of developing diabetes. However,

to facilitate efficient self-management, much work still needs to be done, particularly in improving

the relevance and dissemination of educational information, in improving the quality and

frequency of communication among the patients, healthcare professionals and other

stakeholders; and in reducing overall cost of self-management. (2014, 11-14.) Despite the need

21

for more support and intervention from healthcare professionals, EU countries are in fact

tightening healthcare spending due to adverse economic conditions (ibid., 13). Furthermore, it

has been recognized that the challenge faced by EU, to effectively control and prevent chronic

diseases with finite resources is indeed global (Wicks et al. 2014, 196).

For motivating and empowering people to take better care of themselves while alleviating the

financial burden on healthcare systems, eHealth tailored to achieve specific goals might offer the

solution (Wicks et al. 2014, 196, 201). eHealth is a general term that means providing health

information and/or service by ICT solutions (ibid., 195). For instance, a web-based healthcare

system like CDMS and video conference could improve the efficiency and quality of healthcare

service; on the other hand, an online structured educational program, community and personal

health record application could help individuals adopt a healthy lifestyle (ibid., 196).

Over the last few years, studies regarding eHealth have been conducted in both sides of the

Atlantic. In the United States, a study suggested that a healthcare provider could lower its

customers’ glycated hemoglobin (HbA1c) value while saving cost, by implementing a mobile

application which automatically reminds the customers about medication and self-care and sends

structured educational information to the customers (Nundy, Dick, Chou, Nocon, Chin & Peek

2014, 266, 268-270). In the UK, University College London (2015, cited 20.1.2016) has

developed an online self-management program for type 2 diabetes patients called “HeLP

Diabetes”. The program is designed to provide diabetes patients with both initial training and

continuous support: it provides the user with educational information, with tools to manage

medication and to adopt a healthier lifestyle, and with support from healthcare professionals and

other users (Ross, Stevenson, Dack, Pal, May, Michie, Parrott & Murray 2014, 2). The program is

still under evaluation (University College London 2015, cited 20.1.2016). In Finland, a study was

made utilizing persuasive technology in the development of a web-based weight loss application.

The application provides the user with weekly information on weight management and with tools

and automatic reminders for self-monitoring. In addition, it enables the user to discuss questions

related to the weekly topics with other users. The study suggested that to support the user in

adopting a healthier lifestyle, an application should be easy-to-use in the first place; secondly, the

application should aim to provide the user with credible and comprehensible information tailored

to her/his condition; thirdly, suitable social support features should be incorporated in the

application. (Alahäivälä 2013, 20-22, 29-35, 47-50, 54-55.) All the presented studies revealed that

a multidisciplinary approach involving target users and healthcare experts was adopted in

22

tailoring self-management programs to achieving specific objectives (Alahäivälä 2013; Nundy et

al. 2014; Ross et al. 2014).

According to Wicks et al. (2014, 201), “there is no one size fits all solution, and matching the right

technology for a given patient population or desired clinical objective is key to ensuring sufficient

perceived usefulness and uptake.” In the future, it has been anticipated that by leveraging to

sensors, video conference and the “Internet of Things”, eHealth could make self-management

and intervention from healthcare professionals more effective and efficient (Wicks et al. 2014,

199).

Nowadays, many personal health applications targeting diabetes self-management can be found

from an app store, in addition to those monitoring diet and exercise. For each application, the app

store would display ratings and comments from other users. (Google 2016a, cited 22.1.2016;

Google 2016b, cited 22.1.2016.) However, the effectiveness of using those applications for self-

management still remains to be evaluated by users themselves. Meanwhile, Apple and Microsoft

have started to interface some fitness and medical applications and sensors with their health

platform, in an attempt to provide their users with a holistic picture of personal health. For

example, Apple provides its users with an application called Health; one feature of the application

is presenting the user’s health progress with a dashboard, which uses charts to display personal

data collected from other iOS health and fitness applications and from sensors, e.g. iHealth

Wireless Blood Glucometer. By looking at the dashboard, the user can quickly see her/his overall

health conditions. (Apple 2016a, cited 22.1.2016; Apple 2016b, cited 22.1.2016; Apple 2016c,

cited 22.1.2016.) Similar integration can also be observed from Microsoft. The company has

released a mobile application named Microsoft Health, which works with Microsoft Band to

automatically monitor its user’s physical activities and sleeping and to help the user determine

whether she/he has exercised enough and slept well. The data can be shared with Microsoft

HealthVault, which can store other health related data in addition to exercise and sleeping quality.

(Microsoft 2016a, cited 22.1.2016; Microsoft 2016b, cited 22.1.2016.)

In terms of user interface, charts and dashboards seem to be frequently used to visualize the

progress of the user’s health conditions in a personal health application, whether it is for general

fitness or for diabetes self-management. For example, Apple Health uses line charts and bar

charts to summarize the user’s physical activities, weight management and the range of heart

rate in a dashboard screen (Apple 2016a, cited 22.1.2016). Microsoft Health, on the other hand,

23

displays the cumulative amounts of the user’s physical activities, burned calories and sleep in a

summary screen and uses a map, a chart or a table accompanied by quantitative data to show

the details of a selected activity like jogging or golfing in another screen (Microsoft 2015, cited

25.1.2016). In a highly-rated application for diabetes self-management like mySugr Diabetes

Logbook, charts and relevant figures like daily highest and lowest blood glucose values,

consumption of carbohydrates, intake of medication and the duration of exercise are presented in

one screen to summarize the user’s current conditions; the combination of charts and figures is

also used to display the details of the user’s diet (mySugr GmbH 2016, cited 25.1.2016). While

mySugr Diabetes Logbook utilizing charts, figures, icons and images extensively; another highly-

rated app, Diabetes:M contains more text and tables. Nevertheless, the application also uses

charts to visualize the user’s blood glucose development and the daily intake of insulin over a

given period of time. (Verbanov 2015, cited 25.1.2016.)

In summary, the advantages of eHealth have the potential to empower both healthcare systems

and individuals to better control and prevent chronic diseases. However, there seems to be at

least two prerequisites for leveraging the advantages: the first prerequisite is possessing

sufficient knowledge about the need of target users and the second is tailoring a solution to the

goal with suitable technologies. For satisfying these prerequisites, a multidisciplinary approach

involving patients, healthcare professionals and IT experts would be necessary. After a brief

review of personal health applications, I found that there are already many mobile applications for

fitness and for diabetes self-management, but the effectiveness of these applications remains to

be evaluated by users themselves. On the other hand, it is more apparent that charts and

dashboards are used frequently to convey overall health conditions and progress to the user.

Finally, the ongoing integration across mobile applications, sensors and health platforms

exemplifies the anticipation of more empowering eHealth in the future.

24

3 TECHNOLOGIES AND TOOLS CHOSEN FOR PROTOTYPING

The objective of this thesis project is to create a new PHR prototype tailored to the

commissioner’s requirements. The commissioner is responsible for communication with the

company’s stakeholders and providing me with software requirements, advice and feedback

during the project. My responsibility is to deliver a prototype accordingly, which the commissioner

can present to the stakeholders and acquire necessary information from them for future iterations.

The prototype should be responsive, interactive, using charts and tables, and able to leverage the

company’s existing platform. Firstly, it should be readable and easy-to-navigate on both desktops

and mobile devices. Secondly, it should make the user’s tasks easier, for example, by providing

the user with relevant information only and by breaking an otherwise complicated form down into

logical steps. Thirdly, it should convey data effectively to the user by charts and tables. Finally, it

should be able to use the components from the company’s platform. Above mentioned are

general descriptions of the requirements. The details are not documented in the thesis report, in

order to protect the business secrets of the company. Nevertheless, these general descriptions

should be sufficient to serve as the criteria for choosing suitable technologies and tools.

Based on the descriptions, the main technologies and tools chosen included ASP.NET MVC5,

Bootstrap, jQuery, Chart.JS and Tablesorter. ASP.NET MVC5 framework was chosen, so the

prototype can leverage the company’s platform which is built on ASP.NET technology and enjoy

the benefits of MVC such as separation of concerns. Bootstrap was selected, since it is a well-

known framework for responsive web design and is included in the ASP.NET MVC5 solution by

default; in other words, by using Bootstrap, time can be focused on prototyping. jQuery, on the

other hand, is a powerful JavaScript library and makes creating interactive webpages easier. It is

also included in the ASP.NET MVC5 solution, thus offering the same benefit as using Bootstrap.

Finally, Chart.JS and Tablesorter are open source plugins and were chosen for drawing

responsive charts and creating sortable tables.

This chapter covers the features of the chosen technologies and tools which are integral to the

project, namely jQuery selectors, Chart.JS line charts, Tablesorter multicolumn and attribute

sorting methods; ASP.NET MVC5 partial views, resource files, and methods for examining

dynamic forms and testing the prototype on the mobile device. For clarity, italic type is used to

25

indicate HTML tags, XML tags, the names of folders and files in the Visual Studio solution, the

names of classes and methods, and the statements of programming languages.

3.1 jQuery selector

jQuery is an open source JavaScript library, which empowers developers by providing them with

a wide collection of robust functions for creating interactive web and mobile applications. By

utilizing the library, developers can save a lot of time from coding and testing their own functions

and focus more on realizing the vision of their projects. (The jQuery Foundation 2015a, cited

17.11.2015; The jQuery Foundation 2015b, cited 17.11.2015.)

The mean which enables JavaScript and jQuery to access, animate and change a webpage is the

Document Object Model (DOM). DOM is a group of objects which are created and arranged

hierarchically to represent the organization of a document such as a HTML page (MDN 2015,

cited 18.11.2015). A DOM is created by the browser after it loaded a webpage and is accessible

via JavaScript and jQuery (W3Schools 2015a, cited 18.11.2015).

Although using JavaScript alone can manipulate the DOM, I found using jQuery DOM selectors

more effective in terms of saving time and reducing the amount of code. Using JavaScript alone,

a developer who is unfamiliar with the language and DOM needs to learn firstly that there are

different HTML DOM methods for accessing HTML elements: getElementById(),

getElementsByTagName(), getElementsByClassName() and querySelectorAll(); in addition, there

are HTML DOM objects which can be directly accessed. Each of the directly accessible objects

represents a HTML element or a collection of an element, such as forms or images (W3Schools

2015b, cited 18.11.2015; W3Schools 2015c, cited 18.11.2015). On the other hand, using a

jQuery selector, the developer can access a HTML element with fewer lines of code and can

leverage the knowledge of CSS selector syntax (The jQuery Foundation 2015c, cited

18.11.2015). For example, using JavaScript to get all <p> elements in a <div> element with an id

“myDiv” would require two methods: getElementById() and querySelectorAll(). On the other hand,

using a jQuery selector only requires the same CSS syntax for selecting all <p> elements under

the id “myDiv” in the selector’s brackets. Figure 1 illustrates how using a jQuery selector

leverages CSS selector syntax and reduces the amount of code.

26

FIGURE 1. Using a jQuery selector to find HTML elements

After selecting an element or a collection of elements by the jQuery selector, jQuery methods can

be chained to the selector. The methods will be executed sequentially on the selected element(s).

(W3Schools 2015d, cited 18.11.2015.) For example, there are two <p> elements in a <div>

element with an id “myDiv”, and I would like to insert greeting text to the first <p> element and

introduce myself in the second <p> element. I could first select “myDiv” element, then use jQuery

method find() to choose the first <p> element of “myDiv”, use css() to style the element, and use

html() to insert greeting text to the element. Then, instead of writing a new statement to choose

the last <p> element, I could use a jQuery method end() to indicate the end of processing the first

<p> element. After that, I could proceed to the last <p> element with find() and other methods in a

single statement (see figure 2).

FIGURE 2. jQuery chaining

jQuery selectors and methods not only can be used to manipulate existing HTML element(s), but

also can be used to create new element(s) according to a user’s input or configuration; thus, it

enables tailoring content and creating interactive webpages. It can be illustrated by expanding the

previous example. A text input field and a button have been added to the previous example. After

I typed some text in the input field and clicked the button, the text will be displayed in a new <p>

element after the <p> element which contains my name (see figure 3).

FIGURE 3. Displaying user input in a new element in the browser

27

The example can be achieved by the following steps: firstly, use a method click() to detect the

event when a user clicks the button “Add”; secondly, use another method val() to retrieve the text

entered in the input field; finally, create a new <p> element which contains the retrieved text by

using a new selector and inserting the element after the <p> element which contains my name

(see figure 4).

FIGURE 4. Displaying user input in a new element by jQuery

The presented examples demonstrate how developers who are unfamiliar with DOM and

JavaScript can still create interactive webpages by using jQuery selectors and methods and by

leveraging the knowledge of CSS. In addition, the developers would find jQuery easy-to-learn,

since there are comprehensible documentation and examples on the websites of the jQuery

Foundation and W3Schools.

3.2 Open source plugins: Chart.js and tablesorter

In autumn 2014, a fellow BIT student with whom I did professional training searched for a suitable

open source chart plugin for a project in which we both participated. From him, I heard about

Chart.js plugin for the first time. The plugin is under the MIT license, provides animation when

drawing a chart and produces in a line chart, a smooth curve between dots instead of a straight

line (Chart.js 2015a, License, Line Chart, cited 25.11.2015). However, the version we used does

not by default connect two dots if there is a missing value in between. The search for a chart

plugin which connects two dots over missing value(s) had been continued in the group work of

another degree programme course “Information Technology Project” in spring 2015. By the end

of the group work, Chartist plugin met all the criteria we set: free for commercial use,

responsiveness, customizable X and Y labels, and connecting two dots over missing value(s)

(CHARTIST.JS 2015, cited 25.11.2015).

As charts which connect two dots over missing value(s) were required for the thesis project,

Chartist plugin was utilized in the beginning. However, after comparing the appearance of a

28

Chartist chart with a Chart.js chart, the commissioner found Chart.js more appealing; therefore, I

began searching for the solution by learning how to achieve the same appearance as Chart.js

charts with Chartist plugin and by revisiting Chart.js documentation and its GitHub repository.

After I downloaded and tested Chart.js version 1.0.2, to my delight, I found the version connects

two dots over missing values by default. Although the latest version was 2.0.0-alpha3 when I

revisited the repository in August 2015, I decided to use the version 1.0.2 for three reasons:

stability, time, and capability. Firstly, version 2.0.0-alpha3 is a testing version which might be less

stable than a released version; whereas version 1.0.2 is the latest released version. Secondly, it

would require time to learn version 2.0.0-alpha3, since new methods are used in the version to

create and configure charts (Chart.js 2015b, 2.0.0-alpha3, cited 25.11.2015); on the other hand, I

have learned in the professional training and the IT project course, how to create and configure

charts with version 1.0.1; the same methods are still available in version 1.0.2. Finally and most

importantly, version 1.0.2 can produce charts which not only connect two dots over missing

values, but also are considered appealing by the commissioner.

Before Chart.js plugin can be used to draw charts in a webpage, the plugin file must be referred

in a <script> tag in either the <head> element or the <body> element of the page. After that, it

takes four steps to draw a responsive line chart. Firstly, create a <canvas> element in the

<body>. A pixel value should be given to each “width” and “height” attributes of the <canvas> to

set the ratio of a chart. An id would make finding the <canvas> straightforward in scripts, if there

are more than one in the <body>. Secondly, create a data object which contains “labels” and

“datasets” properties in a subsequent <script> tag to the one referring to the plugin file. Assign an

array of X labels to the “labels” property. In the “datasets” property, create an object for each line

in the chart. The object should contain the following properties: “label”, “fillColor”, “strokeColor”,

“pointColor”, “pointStrokeColor”, “pointHighlightFill”, “pointHighlightStroke” and “data”. An array

representing a line should be assigned to the “data” property. For rendering the chart properly,

the length of all the arrays assigned to the data object should be the same. Thirdly, create an

option object in the same <script> tag and set the “responsive” property of the object to be “true”.

Finally, instantiate a chart object with the context of the <canvas>, the data object and the option

object as parameters. As a result, a responsive line chart is created. (Chart.js 2015a, Line Chart,

cited 25.11.2015.)

29

For the plugin to connect two dots over missing values, one simply replaces the missing value(s)

in the “data” property of a dataset object with “null”. For example, exampleData.datasets[0].data:

[1, 2, null, 3, null, 5] replaces missing values with “null” in the “data” property of the first dataset

object, which exists in the “datasets” property of a data object named “exampleData”.

By default, the plugin will display a tooltip when a dot in a line chart is hovered or touched. The

feature might, however, have a negative impact on the user experience in a scenario, where a

line chart containing data of 30 days or longer is rendered on a mobile device, since the dots will

overlap each other and consequently become difficult for the user to trigger the tooltip for the dot

she/he wishes to see. A simple solution would be drawing no dots and disabling the tooltip when

creating a line chart containing 30 values or more in a line. The effect can be achieved by setting

“showToolTips” and “pointDot” properties in the option object to “false” (Chart.js 2015a, Line

Chart, Chart options, cited 25.11.2015).

In addition, the plugin generates the same amount of X labels as the amount of data in a line by

default; for example, a line chart indicating a progress over the last 30 days would have 30 date

labels on the horizontal axis. Again, it would become crowded on a smaller laptop or tablet screen

and unreadable on a smartphone screen. To avoid X labels crowding on the screen, one could

replace each unneeded X label with an empty string. For example, an array of X labels contains

seven date labels: “19.11”, “20.11”, “21.11”, “22.11”, “23.11”, “24.11”, and “25.11”. If we wish to

show only the first and the last date labels, we can change the array to [’19.11’,’’,’’,’’,’’,’’,’25.11’].

However, since the date labels between the first and the last date are replaced with empty

strings, they will not be displayed in the tooltip either. If a requirement is to show the date label in

the tooltip but not on the horizontal axis, it can be achieved by customizing a line chart with a

Chart.js method extend(). Instead of replacing the values in the X label array with empty strings,

the method can be used to display X labels in the tooltip but not on the horizontal axis

(StackOverflow 2015, cited 25.11.2015). For fine-tuning the appearance of the 30-day line chart,

one could set the property “scaleShowVerticalLines” in the chart option object to be “false”, thus

could remove the vertical lines from the grid displayed in the background of a line chart (Chart.js

2015a, Line Chart, Chart options, cited 25.11.2015).

Finally, as the requirements of the prototype included redrawing a line chart according to the

user’s selection, a Chart.js method destroy() was used. The method discards an existing chart

object (Chart.js 2015a, Advanced usage, Prototype methods, cited 25.11.2015), so the same

30

variable which used to contain the old chart can be reused for storing a new chart object

containing updated data and chart options.

Besides the chart, the table was another essential tool for presenting data in the prototype. A line

chart can indicate trends whereas a table can organize complicated and massive data into

comprehensible rows of information. However, a static table can only display rows in a fixed

order; for example, from the latest to the oldest row. As a result, it cannot satisfy users who want

to see the rows displayed in different orders. To delight the users who need to sort a table

differently for different purposes, after receiving consent from the commissioner, I implemented

sortable tables in the prototype.

Again, to save time for developing the prototype, I turned to open source. I found an easy-to-use

jQuery plugin for creating sortable tables called “tablesorter”, which is also available under the

MIT license. The plugin is developed by Christian Bach, a front-end developer in Sweden. He has

made the documentation of the plugin accessible on a dedicated website as well as on GitHub.

The plugin and its CSS files can be downloaded from its GitHub repository. (Bach 2015a, cited

27.11.2015; Bach 2015b, cited 27.11.2015; Bach 2015c, cited 27.11.2015.)

After referring to the plugin and its CSS files in a HTML document, one can select a <table>

element in a page by a jQuery selector and chain to the selector, a method called tablesorter(),

which transforms an otherwise static table into a sortable one (Bach 2015a, Getting started, cited

27.11.2015). Besides easy-to-use, the main reasons for choosing the plugin include the capability

of sorting multiple columns in a table and the option for sorting a set of custom attribute values

instead of the set of values visible in a column.

By pressing the “Shift” key, a user can click and sort more than one column (Bach 2015a, Demo,

cited 27.11.2015). Since a second and more columns can be chosen and sorted if there are

repeated values in the first column selected by a user, it could be useful, for example, for sorting

messages by their status and by the time when the messages arrived. In addition, the

multicolumn sorting by the status and the arrived time of messages can be passed as parameters

to tablesorter(); as a result, the selected columns will be sorted by default (see Bach 2015a,

Getting started).

31

Sorting a set of custom attribute values instead of the set of visible values in a column ensures

consistent sorting results, even if the values in a table are translated in different languages or

rendered in different formats. The consistency could be achieved by assigning to the attribute

“data-sort-value” of each cell in a column, a number which represents the text in the cell.

Assigning a number to the attribute of each cell in a column instructs the plugin to sort the

numbers instead of the rendered text in the cells (Bach 2015d, cited 27.11.2015). The feature

was invaluable for the prototype, as it ensures consistent sorting results in English and Finnish.

3.3 ASP.NET MVC5 partial view

In the prototype, certain parts of the content in one page were required in different pages for

performing different tasks. If the pages use the same layout, the HTML markup and CSS style for

rendering the shared content in these pages are often identical. Since the markup and style are

identical, copy-paste them to the pages might appear to be a straightforward solution at first

glance. However, it would have demanded more time and effort for editing the markup, if the

markup had been copy-pasted to many pages. A more effective solution, leveraging the partial

view feature in ASP.NET MVC framework was used instead.

While the partial view feature enables the same HTML markup to be reused in different pages in

an ASP.NET MVC solution, it eliminates the need for making change in all the pages which

reused the markup. It is achieved by creating a partial view and then rendering the partial view in

different pages; as a result, changes made in a partial view will be applied to all the pages which

utilize the partial view.

Creating a partial view is similar to creating an ordinary Razor C# document, which allows Razor

codes, a server side markup, to be incorporated into a HTML document and uses the extension

“.cshtml” (W3Schools 2015g, cited 2.12.2015; W3Schools 2015h, cited 2.12.2015). On the other

hand, unlike a complete view in an ASP.NET MVC solution, a partial view does not require a

method in the controller. A partial view contains only the necessary markup for rendering a part of

a HTML document, for example, a table which will be reused in different pages. (Vatsa 2013,

Partial views (Should know), cited 2.12.2015.)

32

To create a partial view in an ASP.NET MVC5 solution, firstly, right-click on the folder intended for

the partial view; as a result, a list will be displayed. Secondly, hover on the “Add” in the list to see

a sub-list. Thirdly, click on the “View…” to start the dialog box “Add View”. Fourthly, in the box,

enter the name for the partial view, select a template (select “empty” if no template is needed),

and check the option “Create as a partial view”. Finally, click the “Add” button in the box to create

the file in the intended folder. It is recommended that the name of a partial view begins with an

underscore, e.g. “_MyReusableTable”, in order to distinguish a partial view from a normal view

(Vatsa 2013, Partial views (Should know), Partial helper, cited 2.12.2015). Once the file has been

created, the markup for reusable content can be stored in it.

After storing reusable content in a partial view, there are four methods for rendering the partial

view in a parent view: Html.Partial(), Html.RenderPartial(), Html.Action(), and

Html.RenderAction(). Both Html.Partial() and Html.RenderPartial() take the partial view as a

parameter and render the view without invoking any method in the controller, whereas

Html.Action() and Html.RenderAction() take the name of a child-method in the controller as a

parameter and invoke the child-method. Then, the child-method returns the partial view to be

rendered in the parent view. Html.Partial() and Html.RenderPartial() are straightforward methods

when no server-side process is needed, whereas Html.Action() and Html.RenderAction() are

used if a certain process is required, for example, fetching specific data from a database

according to a given id. (Vatsa 2013, Partial views (Should know), cited 2.12.2015.)

Since the controller logic was not implemented in the prototype, Html.Partial() and

Html.RenderPartial() were sufficient for rendering reusable content. Html.Partial() can be called

directly in a Razor inline syntax: @Html.Partial(“_NameOfAPartialView”) whereas

Html.RenderPartial() must be invoked in a Razor code block: @{

Html.RenderPartial(“_NameOfAPartialView”); } (Galloway, Wilson, Allen & Matson 2014, Chapter

5, Rendering helpers, cited 2.12.2015).

Html.RenderPartial() is supposed to be faster than Html.Partial(), as Html.RenderPartial() renders

a partial view directly to a parent view; whereas Html.Partial() returns an object of MvcHtmlString

class, which contains a HTML-encoded string and can be assigned to a variable for further

processing in a Razor code block (Vatsa 2013, Partial view (Should know); Jones 2015, cited

2.12.2015; Microsoft Developer Network 2015c, cited 2.12.2015). However, it would only become

33

apparent when the method is used heavily (Galloway et al. 2014, Chapter 5, Rendering helpers,

cited 2.12.2015).

3.4 ASP.NET MVC5 resource files

The stakeholders of the company in Finland and the U.K. are the intended audience of the

prototype. Since the culture and language of the two countries are different, globalization for the

prototype was necessary. Globalization is the task which enables an application to be used by

users in different cultures. It consists of two sequential tasks: internationalization and localization.

Internationalization designs and prepares an application to be easily rendered in different

languages and culture formats; whereas localization means the actual translation. Localization

can be further categorized into two levels: language level and locale level. In the language level,

only text is localized; whereas in the locale level, date, number and currency are also rendered

according to the end user’s culture format. (Penberthy 2013, chapter 3, Objective 3.2: Plan and

implement globalization and localization, cited 9.12.2015.)

For globalizing an ASP.NET MVC5 application, besides creating language specific views, the

ASP.NET MVC5 framework offers an easier way: utilizing resource files. A resource file stores

language specific (e.g. “en”) or locale specific (e.g.”en-GB”) text, pictures and videos in XML

format. The application can be configured to detect the language-locale preference in the user’s

HTTP GET request and render a page in the requested language, if a corresponding resource file

exists. If such a file does not exist, the application will use the default resource file instead.

(Penberthy 2013, chapter 3, Objective 3.2: Plan and implement globalization and localization;

Microsoft Developer Network 2015d, cited 9.12.2015.)

Before the resource files can be utilized for localization, configuration is required. Firstly, add

<globalization enableClientBasedCulture=”true” culture=”auto” uiCulture=”auto”> to the

<system.web> element in the file Web.config situated at the application level (see figure 5). It

instructs the application to check the user’s language-locale preference and then to display pages

in the corresponding language, if the resource file for the preferred language exists. (Penberthy

2013, chapter 3, Objective 3.2: Plan and implement globalization and localization, cited

9.12.2015.)

34

FIGURE 5. Enabling globalization in the Web.config

Secondly, add the App_GlobalResources folder to the application (Microsoft Developer Network

2015e, cited 9.12.2015). For example, I added the folder to a demo application by right-clicking

on the application folder ThesisExample (see figure 5) to trigger a list; then, hovering on the “Add”

in the list to open a sub-list; again, in the sub-list, hovering to “Add ASP.NET Folder” to display

yet another sub-list; finally, from the latter list, selecting “App_GlobalResources”.

Thirdly, create a default resource file and store key-value pairs to the file (Microsoft Developer

Network 2015e, cited 9.12.2015). The application utilizes the default file when there is no file

matching the language or locale requested by the user. For creating a default resource file, first,

right-click on the App_GlobalResources folder to open a list; second, hover on the “Add” in the list

to open a sub-list; third, from the sub-list, choose “Resources File”, which will trigger a dialog box

requesting a name for the file. Finally, enter a name or use the suggested name “Resource” and

click “OK” will add a default resource file to the App_GlobalResources folder. After the file is

created, all the words which need to be localized can be stored to the default file in key-value

pairs, i.e. storing a word as value and give it a name for referencing later. For example, an

application displays the word “Welcome!” when a user logs in. The word needs to be stored in the

default resource file before localization. Figure 6 illustrates how to store “Welcome!” in the default

resource file.

35

FIGURE 6. Storing a string in the default resource file

Fourthly, create a resource file containing the same keys but translated values in a specific

language. An easy way for creating a new resource file containing the same keys is duplicating

the default resource file and adding a language or language-locale suffix to the new file. This step

can be repeated for each target language. (Microsoft Developer Network 2015e, cited 9.12.2015.)

For example, for localizing the demo application in Finnish, I duplicated the default resource file

and renamed it as Resource.fi.resx. After creating a language or language-locale specific

resource file, the original words in the “Value” column can be translated into target language.

Continuing the “Welcome!” example, a resource file has been created for Finnish localization; the

file contains the same key “welcome” but the original word “Welcome!” in the “Value” column has

been replaced with the corresponding Finnish word “Tervetuloa!” (see figure 7).

FIGURE 7. A resource file for Finnish localization

Finally, although not mandatory, adding @using Resources to the beginning of a view makes

referencing to resources a bit easier. For example, without the statement, one would have to type

@Resources.Resource.welcome to use the resource in a view whereas using the name space

Resources explicitly in the view, one only needs to type @Resource.welcome instead.

After the resource files are created, the original words used in HTML documents such as in

headers, labels, placeholders and buttons should be replaced with corresponding resources for

the globalization to take effect. Figure 8 exemplifies the use of resources in a Razor HTML

document. The original words “Home Page” and “Welcome!” have been replaced by

corresponding resources. In this example, there are two resource files: one in English as default

36

and another one in Finnish. Finnish text will be displayed, if it is the most preferred language in

the browser’s language setting; otherwise, English text will be displayed.

FIGURE 8. Using resources in a view

3.5 ASP.NET MVC5 Request.Form and FormCollection

The strongly typed view and model binding are two of the main features of ASP.NET MVC

framework. The former defines a view model, i.e. the type of data object for a view, and the latter

constructs a view model object with the data returned from a view. Both features are fully

supported by Visual Studio IntelliSense and compile-time checking. IntelliSense can provide the

developer with a list of the properties of a view model when the developer accesses the object,

whereas compile-time checking alerts the developer if the property she/he tried to access does

not exist in the view model. (Galloway et al. 2014, chapter 3, Strongly typed views, chapter 4,

Model binding; Microsoft Developer Network 2015f, cited 11.12.2015; Microsoft Developer

Network 2015g, cited 11.12.2015.) Therefore, leveraging both features can reduce runtime error

and enhance control and maintenance of data integrity between the view and the controller.

However, for exploiting the merits of the strongly typed view and model binding, design and

implementation of strongly typed view models are prerequisites (Galloway et al. 2014, chapter 3,

Strongly typed views, chapter 4, Model binding). Furthermore, in a view using a dynamic form,

the properties of a view model object should be mapped correctly in the scripts for successful

model binding in the controller (Johansson 2015, cited 14.12.2015). Together they would have

demanded more time than I had for the thesis project. Furthermore, the primary goal is delivering

a prototype containing the most essential views for the commissioner to demonstrate to the

stakeholders. Therefore, the design and implementation of the strongly typed view and model

binding were left for the future iteration.

37

Without the presence of the strongly typed view and model binding, the data sent to the controller

from a form, particularly a dynamic form, can still be examined to determine whether the form

works. There are two basic methods to access the complete collection of form values which has

been posted back from a dynamic typed view: the first method is accessing the Request object

created by ASP.NET MVC framework, and the second by passing an instance of FormCollection

class as a parameter to an ActionResult method which handles the HTTP POST request (Allen

2009, cited 15.12.2015; Gnazzo 2015, cited 15.12.2015).

The first approach utilizes a default feature of ASP.NET MVC framework. The framework creates

for each HTTP request, a Request object, which is a property of Controller class and contains

client-side information including the data which has been posted back from a form. In the

ActionResult method which handles the HTTP POST request, the postback value for each input

field in a form can be fetched from Request.Form, a property which stores postback form values

as key-value string pairs. (Microsoft Developer Network 2015h, cited 15.12.2015; Microsoft

Developer Network 2015i, cited 15.12.2015; Microsoft Developer Network 2015j, cited

15.12.2015.) As the postback values are stored as strings, conversion is needed before they can

be assigned to non-string type variables in the ActionResult method (Gnazzo 2015, cited

15.12.2015).

The second approach instantiates an object from FormCollection class, which contains only the

postback form values in key-value string pairs (Microsoft Developer Network 2015k, cited

17.12.2015; Microsoft Developer Network 2015l, cited 17.12.2015). Like Request.Form,

conversion is also required before assigning a postback value to a non-string type variable. But,

unlike the Request object, the framework does not instantiate a FormCollection object

automatically. Instead, the developer should pass a FormCollection type variable as a parameter

to the ActionResult method which handles the HTTP POST request; as a result, the framework’s

model binder will create a FormCollection object from postback values (Galloway et al. 2014,

chapter 4, Model binding).

At first glance, the first approach might appear straightforward as the Request object has been

automatically created. However, the second approach suits the design in which the ActionResult

methods handling HTTP GET and POST for the same view share the same name. In addition,

the FormCollection object can be replaced later with a view model object for intended model

binding. Finally, the advantage of the second approach might become more apparent when

38

mimicking the Request.Form property in the unit testing. Instead of mocking up the Request

object and then the property, a FormCollection object containing testing values can be

instantiated to represent the postback values in the Request.Form property (Microsoft ASP.NET

Forums 2008, cited 18.12.2015; Hammarberg 2009, cited 18.12.2015; Harford 2013, cited

18.12.2015).

3.6 ASP.NET MVC5 web deployment

Testing the prototype on the tablet was essential as the tablet is one of the target devices besides

the desktop and laptop. Although there are free mobile device simulators and emulators on the

Internet, testing on the real device could still reveal bugs, responsiveness and other user

experience issues which would otherwise remain unnoticed (see Mooney 2013, cited 22.12.2015;

Google 2015, cited 22.12.2015; Looper 2015, cited 22.12.2015; Microsoft ASP.NET 2015, cited

22.12.2015; Microsoft Developer Network 2015n, cited 22.12.2015; Mobile Joomla! 2015, cited

22.12.2015). Since the company has its own wireless local area network (WLAN), it provided the

project with an ideal environment for testing the prototype on the real mobile device.

Before an ASP.NET MVC5 application can be tested on a WLAN, the application should be

deployed to a machine on the network, which could be the developer’s machine. To succeed in

the deployment, correct configurations in the machine’s operating system and in the Visual Studio

solution are prerequisites. Since Windows 7 was the operating system and Visual Studio 2013

was the integrated development environment (IDE) I used for creating the prototype, I will present

the necessary configurations in Windows 7 in this subchapter and the configurations in the Visual

Studio solution in the subchapter 4.6.

The Windows 7 machine which will host an ASP.NET MVC5 application requires the Internet

Information Services (IIS) feature to be enabled (Dykstra 2015, cited 5.1.2016). IIS is an interface

for managing websites and applications on a Windows server (Techopedia 2015, cited 5.1.2016).

After enabling IIS, the developer should check whether the IIS application pool contains .NET

Framework 4, which is required for hosting ASP.NET MVC5 applications (Dykstra 2015, cited

5.1.2016).

39

The following steps show how to enable IIS feature on the Windows 7 machine. Firstly, open the

“Turn Windows features on or off” box by clicking on the “Start” icon, typing “Turn Windows

features on or off” into the “Search programs and files” field and then hitting “Enter”. Secondly,

select the check box “Internet Information Services”. A blue square will appear in the check box

after the check box has been selected (see figure 9). Thirdly, check “.NET Extensibility”, “ASP”,

“ASP.NET” for hosting ASP.NET applications; “ISAPI Extensions” and “ISAPI Filters” will be

automatically selected after “ASP” and “ASP.NET” are checked (see figure 10). Finally, click “OK”

to complete the configuration. (Dykstra 2015, cited 5.1.2016.)

FIGURE 9. Selecting "Internet Information Services" check box

FIGURE 10. Configuring "Application Development Features" for hosting ASP.NET applications

40

After the IIS feature is enabled, a tool named “Internet Information Services (IIS) Manager” should

be available for managing websites and applications. If the tool is not listed in the “Start” menu, it

should be found after typing “iis” in the search field.

Manually registering .NET Framework version 4 with IIS will be necessary, if the framework is

installed to the machine before IIS feature is activated (Microsoft Developer Network 2016, cited

5.1.2016). For example, as a result of installing Visual Studio 2013 before turning on IIS feature,

IIS will not automatically register the version 4 in the application pools. Figure 11 depicts the

location of IIS “Application Pools” and the use of .NET Framework version 2 by default.

FIGURE 11. Default IIS Application Pools using .NET Framework version 2

Registering .NET Framework version 4 with IIS takes three steps. Firstly, open “Command

Prompt” as administrator. Secondly, navigate to the directory of .NET Framework v4.0.30319.

Thirdly, register the framework with IIS by aspnet_regiis.exe -i command (see figure 12). (Dykstra

2015, cited 5.1.2016.)

FIGURE 12. Registering .NET Framework version 4 with IIS in the Command Prompt

41

After registering .NET Framework version 4 with IIS, restart the IIS manager and navigate to the

“Application Pools”. It should now display four application pools; all of them should be using .NET

Framework version 4 (see figure 13). At this point, the IIS manager is ready to host ASP.NET

MVC5 applications in its “Default Web Site” folder.

FIGURE 13. The IIS Application Pools after registering .NET Framework 4

42

4 IMPLEMENTATION

Proactive and regular communication with the commissioner and the instructing teacher

facilitated the development of a PHR prototype. During the 13-week development phase, I had

regular meetings with the commissioner and other members of the company. In the meetings, I

presented my latest work and received feedback and further requirements from them. In addition

to the meetings, I turned to the commissioner for advice on urgent issues. Meanwhile, I sent an

email once a week to the instructing teacher to keep him updated on the development progress

and sometimes, to seek technical advice. The communication helped me clarify the requirements,

improve the prototype and overcome programming issues.

User interface (UI) was the focus of the development. I implemented web pages using the

ASP.NET MVC5 framework for the use cases given by the commissioner. JavaScript and jQuery

were used extensively to create interactive pages and demo data. Much effort had been made to

implement a configurable dashboard, a step-by-step form, interactive charts and sortable tables.

In addition, testing the pages on different devices was carried out frequently to identify bugs and

responsiveness issues which could not be noticed on my development machine. Finally, Finnish

localization was implemented in the last couple of weeks of the development phase.

This chapter records how the major UI components were implemented and how certain features

in ASP.NET MVC5 framework and Visual Studio 2013 were utilized for creating reusable

resources and testing. To protect the company’s business secrets, the implemented user

interface is concealed. Instead, web pages have been created to illustrate the main ideas of the

implemented components. After that, details are given on creating reusable UI resources,

implementing Finnish localization and enabling testing on different devices. For clarity, italic type

is used to indicate HTML tags, XML tags, the names of folders and files in a Visual Studio

solution, the names of classes and methods, and the statements of programming languages.

4.1 Creating HTML elements dynamically

Two main dynamic features I implemented by JavaScript and jQuery during the development

phase were a dashboard and a step-by-step form. The dashboard can display relevant

43

information according to the user’s configuration. The step-by-step form, on the other hand,

breaks a complicated form down into sequential steps. Each step contains a group of related

input fields.

The main ideas of the implemented dashboard are illustrated in figure 14 & 15. The dashboard

enables the user to choose relevant content according to her/his need and thus avoids

overloading the user with irrelevant information.

FIGURE 14. The view before a user selects any content

FIGURE 15. The view after a user selected the content needed

The selection can be loaded from a database or carried out by the user during runtime. In either

way, the selected content and the HTML elements for displaying the content do not exist in the

original HTML document; instead, the elements are created and the content is rendered by

JavaScript and jQuery. For example, the content boxes in figure 15 do not exist in the original

HTML document; instead, each box is created in the <script> tag after the user checked the

44

corresponding checkbox. If the user unchecks a checkbox, the corresponding content box will

also be removed from the page. The code for this example is shown in figure 16.

FIGURE 16. Create HTML elements in <script>

45

In addition to the dashboard, a step-by-step form which makes a complicated task easier for the

user was implemented. The task requires the user to complete a form containing at least 30 input

fields. To make the form user-friendly, the commissioner designed sequential steps and a group

of related input fields for each step. The design takes the user step-by-step to complete the

otherwise overwhelming form. Figure 17-19 illustrate a simplified version of the implemented

form.

FIGURE 17. Step 1 displays question 1-5 and the button “Next”

46

FIGURE 18. Step 2 shows question 6-10 and an additional button "Previous"

FIGURE 19. Step 3 displays question 11-15, hides the button “Next” and shows the button "Save"

47

The major difference between the form and the dashboard is that the HTML document of the form

contains most of the HTML elements already, but displays only a part of the form to the user for

each step. For example, the simplified version contains 15 questions in total but displays only a

third of the questions in each step. When the user clicks the button “Next” or “Previous”, the

questions and answers entered in the current step will be hidden, and the questions in the next

step will be shown. For each button, a jQuery method click() is used to detect when the user

clicks on it. Inside the method handler, jQuery selectors are used to find the group of HTML

elements for the current step and for the next step, which can be a step forward or backward;

then jQuery methods addClass() and removeClass() are used to hide the elements of the current

step and to display the elements of the next one. The code inside the two click() handlers for

implementing the simplified example is presented in figure 20 and 21.

FIGURE 20. Codes inside the "Next" button click event handler

48

FIGURE 21. Codes insides the "Previous" button event handler

4.2 Rendering demo data with responsive charts and sortable tables

Chart.js plugin version 1.0.2 can be found and installed by using “Manage NuGet Packages” in

Visual Studio. The tool not only installs the plugin itself, but also ensures the solution has other

necessary files, such as the right version of jQuery. The following steps show how to install the

plugin by “Manage NuGet Package”. Firstly, find “NuGet Package Manager” under “TOOLS” tab

in Visual Studio. Secondly, move the mouse cursor over “NuGet Package Manager” to trigger a

list, then select from the list “Manage NuGet Packages for Soluction…”. As a result, a window

called “Manage NuGet Packages” is displayed. Thirdly, in the window, select “Online” category on

the top-left corner; then, type “Chart.js” in the “Search Online” field on the top-right corner.

Afterward, search results should be visible in the central column. Fourthly, locate the version

1.0.2 of the plugin from the results. Once found, an “Install” button will also be visible on the

selected result if the plugin has not been installed. Finally, click the button. Visual Studio will

install the plugin and its minified JavaScript file to the Scripts folder in the solution. If the plugin

will be used in more than one view in the solution, it should be referred in the layout view.

In the prototype, multi-line charts were implemented to indicate the progress of the user’s health

conditions. The charts will be redrawn according to the day range selected by the user, e.g. a

week or 30 days. If there are missing values between two dots, the dots will still be connected

49

with a smooth line. Figures 22 and 23 illustrate the main ideas of the implemented charts. In

figure 22, a tooltip is displayed when the cursor hovers over the second dot on the gray line.

Since there is also a value on the blue line for the same day, the tooltip displays the date and

both values for comparison. The figure also demonstrates how the second and the fifth values on

the gray line are connected by a smooth line, although there are two missing values in between.

In figure 23, dots are removed and the tooltip feature is disabled when a longer day range, “Last

30 days” is selected, in order to avoid overlapped dots on a small screen. Unneeded X labels are

replaced with empty strings; as a result, there are only four date labels displayed: the first, the

tenth, the twentieth, and the last. The vertical lines in the background gird are also removed.

FIGURE 22. Showing the values of last 7 days by default

50

FIGURE 23. Showing the values of last 30 days

There were three ways which I used during prototyping to pass data to the data object of a chart:

the first way was assigning a static array, the second one was calling a JavaScript function which

returns an array, and the third way was converting a MVC5 ViewBag object to a JavaScript array.

As the priority of the thesis project is creating a prototype which contains all required views for

presentation, work was focused on the view; in other words, most of the demo data in the

prototype was generated by JavaScript functions instead of rendered from the controller.

The methods are demonstrated in the code which draws the simplified chart (see figure 24). The

data object of the chart requires three arrays: one for the “labels” property, one for the “data”

property in the first dataset object, and one for the “data” property in the second dataset object.

All three arrays must have the same length. The first array, “last7DaysDateLabels” is extracted

from another array “last30DaysDateLabels”, which is a JSON object converted from a MVC5

ViewBag object (see the first highlight box in figure 24). The second array, the “data” array in the

first dataset, is a static array; the values inside the array will remain the same unless being

changed in the later part of the scripts; each “null” in the array represents a missing data (see the

second highlight box in the figure). On the contrary, the third array, the “data” array in the second

dataset is generated by generateDemoData(), a function I wrote which will create data randomly

every time when the page is loaded (see the third highlight box in the figure).

51

FIGURE 24. Three ways to pass data to the data object

Before continuing, I would like to point out a false warning of syntax error in the older version of

Visual Studio 2013 prior to Update 5 when converting a ViewBag object to a JSON object in the

<script> tag (see figure 25). The syntax in the figure calls a system method Json.Encode() to

create a JavaScript Object Notation (JSON) object from a MVC5 ViewBag object (Microsoft

Developer Network 2015a, cited 26.11.2015), then uses another system method Html.Raw() to

prevent the code in the object from being replaced with HTML entities (Kennedy 2012, cited

26.11.2015; Microsoft Developer Network 2015b, cited 26.11.2015; W3Schools 2015e, cited

26.11.2015); specifically, to prevent the quotation marks in the JSON object from being replaced

with the HTML entity “"” (W3Schools 2015f, cited 26.11.2015). The output of the syntax

produces a valid JavaScript array containing date labels of last 30 days.

FIGURE 25. A false indication of syntax error in Visual Studio 2013 version prior to Update 5

52

In the older version, a red mark would appear in the end of the statement as shown in the figure.

In addition, a syntax error warning message would be displayed in the “Error List”. However, I can

still build and publish the project. After investigating the situation, it appeared that many people

used an older version of Visual Studio experienced the same issue, and the issue seemed to be a

bug in the older versions (StackOverflow 2012a, cited 26.11.2015; StackOverflow 2012b, cited

26.11.2015; Microsoft Visual Studio 2012, cited 26.11.2015; StackOverflow 2013, cited

26.11.2015). The false warning disappeared after I installed Visual Studio 2013 Update 5.

Let us return to the dropdown list of the simplified chart. To redraw the chart when a user selects

a different day range, a jQuery method change() is used. The method detects if a different day

range has been chosen by the user; consequently, it will generate the same amount of data as

the selected range and assign the data to the existing data object. In addition, if the user selects

“Last 30 days”, code has been written to display only the first, the tenth, the twentieth, and the

last date; as well as to configure the chart option object to show neither dots nor tooltips. In the

end of the method scope, a Chart.js method destroy() is used to discard the old chart. Then, a

new chart is created with the updated data and chart option object, and the new chart is assigned

to the same variable containing the old chart object, thus replacing the old one. The code inside

the change() method is shown in figure 26.

53

FIGURE 26. Redraw the chart according to a user's selection

Although a line chart enables the user to instantly see the trend of her/his health conditions, the

chart might become less effective if it displays too many lines and too large amount of data in a

small screen. In addition, a line chart is useful only for presenting numeric data. For presenting

information which contains both numbers and text, such as a list of messages from different

senders, a table would be adequate. Better yet, a sortable table provides the user with means for

managing her/his messages.

For implementing sortable tables in the prototype, the version 2.0.5b of the jQuery plugin

“tablesorter” was used. Since the version cannot be found by the online search in the “Manage

NuGet Packages” in the Visual Studio, it should be downloaded from its GitHub repository and

included to a solution manually. For utilizing the plugin and its default theme, one would need the

following files from the downloaded and extracted folders: “jquery.tablesorter.js” from “tablesorter-

master” folder; “style.css”, “asc.png”, “bg.png” and “desc.png” from either “green” or “blue” folder,

54

which can be found in “themes” folder. Then, in a Visual Studio solution, click on a preferred

folder for storing the files, and use the shortcut “Shift + Alt + a” to find and include the files in the

folder. Repeat the action to include files in a different folder. Following the default folder structure

of a MVC5 solution, I added the script file “jquery.tablesorter.js” to the Scripts folder, and created

a sub-folder under the Content folder and added the downloaded PNG files and the CSS file to

the sub-folder. After the script file and the CSS file are referred in a layout or a view, the plugin is

ready to be used.

Sortable tables were implemented in the prototype for tasks including sorting messages. Figure

27 illustrates a simplified version of an implemented message list. As shown in the figure, the

column of message status is sorted in ascending order; whereas the column of received time is

sorted in descending order. Therefore, the latest message will always be displayed in the first row

when the page is loaded. In addition, since every column in the table is sortable, the table

enables the user to sort messages according to her/his specific criteria.

FIGURE 27. A sortable message list

For configuring the default sorting to sort the “Status” column in ascending order and the

“Received Time” in descending order, I passed an object { sortList: [[1,0], [2,1]]} as parameter to

the tablesorter() method (see figure 28). There are two arrays in the object property “sortList”: the

first array instructs the plugin to sort the second column, “Status” in ascending order; whereas the

second array instructs the plugin to sort the third column, “Received Time” in descending order.

55

For both the simplified table and the sortable tables implemented in the prototype, the table rows

and demo data were created by JavaScript and jQuery. This way, the demo data does not require

a database, and the code for generating the data can be reused. As demonstrated in figure 28,

the <tbody> element of the simplified table has no content. The content is created in the second

<script> tag by a custom function createMessageTable(). After that, an object containing default

sorting configuration is passed to the plugin method tablesorter() as a parameter. The plugin

method is then chained to a jQuery selector which points to the <table> element of the simplified

table. As a result, the table has rows and becomes sortable when the page is rendered.

FIGURE 28. Creating a sortable message list

Finally, since the result of sorting words alphabetically can vary in different languages, using

attribute sorting instead of sorting the words in a column can ensure consistent sorting results.

For example, although “new”, “read” and “replied” are in ascending order, the order will not hold

true when the words are translated into Finnish: “uusi”, “luettu”, “vastattu”. Since the prototype

was created in English and translated in Finnish, attribute sorting was implemented for ensuring

consistent results. For demonstration, I also implemented attribute sorting in the simplified table

56

(see figure 29). Firstly, I assign a number to the “data-sort-value” attribute of each cell; “0”

represents a new message; “1” represents a read message; and “2” represents a replied

message (see the first highlight box in the figure). Secondly, either “new”, “read” or “replied” is

displayed in a cell according to the value of its “data-sort-value” attribute (see the second

highlight box in the figure). Later, the words can be translated in different languages. This way, no

matter in which language the words are rendered, new messages will always appear on the top

rows as long as the “Status” column is sorted in ascending order.

FIGURE 29. Assigning a custom value to the "data-sort-value" attribute of each cell in the
“Status” column and displaying text in the cell according to its attribute value

4.3 Creating reusable HTML elements

Partial views were utilized in the prototype for reusing HTML elements in different pages while

making editing the elements more effective than a copy-paste solution. Before creating and

rendering partial views, I usually made a complete page and presented it to the commissioner

first, then edited the page according to the commissioner’s feedback. Once the major change was

57

completed, I moved the part of HTML elements which will be reused to a partial view. After I had

created a partial view, I used Html.Partial() to render the markup in the original page as well as in

other pages which require the same elements.

For one of the use cases of the prototype, I created a partial view to store HTML markup for log

entries. The logs were created on one page and read on another. Because the HTML markup for

displaying the logs in both pages is identical, the markup was stored in a partial view for reusing.

As a result, any change made in the partial view, e.g. using a different CSS class, changing the

container id, will be applied to both pages.

To demonstrate the case above, I created two controllers representing two different contexts:

ContextAController and ContextBController. An Index page was created for each controller. Logs

can be read in both pages, but a new log can only be entered in the Index page of

ContextAController (see figure 30 and 31).

FIGURE 30. The index view of “ContextAController” displays logs and allows entering a new log

58

FIGURE 31. The index view of “ContextBController” displays logs only

The title “Log Entries”, the horizontal line under the title, and the HTML markup for containing the

logs are rendered from a partial view named _LogEntries (see figure 32). The partial view was

created in the Views/Shared folder, so it can be accessed by views (pages) in different folders.

Any change made in the partial view will be applied to both Index pages.

FIGURE 32. The markup in the partial view

Html.Partial() method was used here to render the partial view as in the prototype. In the Index

page of “ContextAController”, a form for entering a new log was added after the partial view

method whereas in the Index page of “ContextBController”, only the partial view was used. The

date and text in the logs were generated by a custom JavaScript method generateDemoLogs().

See figure 33 and 34 for the use of Html.Partial() and for the markup differences between the two

Index page.

59

FIGURE 33. The markup in the Index view of context A

FIGURE 34. The markup in the Index view of context B

The main reasons for using Html.Partial() are short syntax and familiarity. The method does not

need an additional code block like Html.RenderPartial(). Furthermore, as I am more familiar with

Html.Partial(), I can use it with confidence thus being able to concentrate on the task at hand.

4.4 Implementing Finnish localization

As I am more familiar with English than with Finnish, I created the prototype in English first.

Finnish localization was implemented in the last couple weeks of the development phase, after

60

major changes were completed. For the task, I was able to reuse some Finnish translations from

the company’s other project. In addition, I looked up general words in Finnish from an online

dictionary “Sanakirja.org”; whereas for medical terminology, I consulted an online Finnish medical

library “DUODECIM Terveyskirjasto”. After I had translated the prototype into Finnish, I asked the

commissioner for proofreading and feedback, and made final corrections accordingly.

For demonstrating the use of resource files in localization, I created and utilized two resource files

for the simplified sortable table illustrated in 4.2 and the navigation bar above the table. The

default resource file is in English; whereas the language specific resource file is in Finnish. As a

result, the page will be displayed in either English or Finnish depending on the language setting in

the browser (see figure 35 and 36).

FIGURE 35. The sortable table example in English by default

61

FIGURE 36. The sortable table example in Finnish

As shown in figure 36, all the words except the names in the first column are translated into

Finnish, as well as the dates are rendered in Finnish format. The text is localized by the Finnish

resource file whereas the dates are formatted by toLocaleDateString(), a method of the

JavaScript Date object.

The resource files can be accessed not only in a Razor HTML document, but also in an external

JavaScript file after the resources have been converted to a JSON object. Therefore, dynamically

created HTML elements, e.g. the rows in the simplified sortable table, can also leverage the

resources for localization.

A basic solution for accessing ASP.NET MVC5 resources in an external JavaScript file was

adopted in the prototype. The solution takes two steps: firstly, in the <script> tag of a Razor

HTML document, create a JSON object which contains the needed key-value pairs from the

resources (StackOverflow 2014, cited 8.12.2015); secondly, pass the object as a parameter to a

function written in an external JavaScript file which is referred by the Razor HTML document.

Instead of passing a complete resource file, the solution allows me to pass only the necessary

resources to the function in an external JavaScript file.

62

The same solution was also used for localizing the dynamically created rows in the simplified

sortable table. As highlighted in figure 37, an object called “textResources” is created and stores

the necessary key-value pairs from the resources. The object is then passed to

createMessageTable(), which is a function I wrote in an external JavaScript file.

FIGURE 37. Using the resource files for localization

63

After receiving the object “textResources” as a parameter, the function createMessageTable()

can access the properties of the object in its scope (see highlights in figure 38 and 39). As a

result, the rows created by JavaScripts and jQuery can also leverage ASP.NET MVC5 resources

for localization.

FIGURE 38. Accessing a resource object in an external JavaScript file part I

FIGURE 39. Accessing a resource object in an external JavaScript file part II

64

4.5 Examining HTML forms which contain dynamically created input fields

Dynamic forms were implemented in the prototype to satisfy the requirement which enables the

user to insert new input fields to a form by clicking an “add” button. For detecting the click event,

a jQuery method click() was used. Once the method is triggered, the HTML elements for an input

field will be generated and then inserted back to the form; as a result, a new input field will be

inserted to the form every time when the user clicks the “add” button. Figure 40 illustrates a

simplified example which inserts a new input field for phone number after the user clicked “Add

Phone”.

FIGURE 40. An example of a dynamic form

In order to ensure the server receives the values entered by the user, a developer should make

sure that for each input field in a form, a unique name attribute is given. During the

implementation of the dynamic forms in the prototype, it had concerned me that the chance of

missing or repeating name attributes might increase. Hence, I felt compelled to examine whether

the implemented forms send back all the input values.

Although I could inspect the postback name-value string pairs by accessing Request.Form in a

HTTP POST ActionResult method, I would still need to pass a parameter to the method in order

to use the same method name as the corresponding HTTP GET method. Otherwise, Visual

Studio would indicate an error message and would not compile the solution (see figure 41).

65

FIGURE 41. The HTTP POST ActionResult method expects a parameter

The main reason for using the same method name is to make debugging and maintenance a bit

easier: other developers can quickly identify the pair of methods which handle HTTP GET and

POST requests for the same view. The name conflict shown in figure 41 can be resolved by

passing an object of FormCollection type to the HTTP POST ActionResult method. As a result, an

object of FormCollection containing postback values will be created when the HTTP POST

method is called. The parameter also indicates to other developers that the method expects

postback form values.

One way to inspect the postback name-value pairs in a FormCollection object is looping through

the object’s property AllKeys, which is a string array containing all the “name” attributes of the

input fields in a form (Microsoft Developer Network 2015m, cited 21.12.2015). In the loop, each

name-value pair can be written to the destination page for inspection. Figure 42 illustrates the

code for looping through the property AllKeys of the FormCollection object which contains the

testing values I entered in the simplified form. In the loop, a system method Response.Write() is

used to display the name-value pairs in a destination view; the comment-out code shows the

same loop could be applied to Request.Form. As a result, the method returns a view displaying

the name attributes of the input elements and the values I entered (see figure 43). The inspection

helped to determine whether a dynamic form functions properly.

66

FIGURE 42. Accessing the name-value pairs in the FormCollection object

FIGURE 43. Displaying the name-value pairs in a view

4.6 Deploying the prototype to localhost

During the development phase, the prototype was regularly deployed to the localhost of my

machine and tested on a smartphone, a tablet and a laptop on the company’s WLAN. Testing on

different devices helped me discover bugs and responsiveness issues which could not be noticed

on the desktop. In this subchapter, I will show how to publish a MVC5 project to the localhost of a

machine by “Web Deploy” method.

67

Firstly, run Visual Studio 2013 as administrator. Find “Visual Studio 2013” from the “Start” menu,

then right-click on the program and select “Run as administrator”. After the program is ready,

open the solution which contains the intended project for publishing. (Dykstra 2015, cited

5.1.2016).

Secondly, create a publish profile for the project. Make sure the project for publishing is selected

in the “Solution Explorer”, otherwise publish option is disabled (ibid.). Right click on the project

and select “Publish…” to open the “Publish Web” configuration box. For publishing a project to

the localhost of the same machine, select “Custom” as the publish target (see figure 44). Then,

give a name to the profile (see figure 45).

FIGURE 44. Publish Web box

68

FIGURE 45. Naming the profile

Thirdly, configure the profile to publish the project automatically to IIS, known as “one-click

publish” (Dykstra 2015, cited 5.1.2016). After naming the profile, the “Publish Web” box displays

input fields for configuring “Connection”. By default, “Web Deploy” has been selected as “Publish

method”. In the simplest deployment scenario where database is not included in the project, the

only configurations needed are for “Server” and “Site name”. Entering “localhost” in the field for

Server and “Default Web Site/CustomName” will instruct Visual Studio to publish the project to a

custom folder “CustomName” under the “Default Web Site” in IIS. For example, I configured the

“Site name” in my publish profile to a custom folder named “MyThesis” under the “Default Web

Site” (see figure 46).

FIGURE 46. Configuring Connection

69

Finally, after configuring the “Connection”, the project can be deployed to IIS by clicking the

“Publish” button. If a browser has not been opened automatically to display the index page of the

published application, one can access the application by typing “localhost”, a forward slash, then

the name of the custom folder in the address bar of the browser. For other devices on the WLAN

to access the published application, simply replace “localhost” with the private IP address of the

machine. For example, if I had a WLAN at home, I could access my published application on the

smartphone by entering the private IP address and the subfolder name (see figure 47). Once a

publish profile is created and configured, clicking on the “Publish” button is the only action needed

when publishing the project next time (see figure 48).

FIGURE 47. The result of a successful deployment

FIGURE 48. "One-click publish”

70

The advantage of publishing a project to a subfolder is that it can be easily removed later without

affecting other files in the “Default Web Site” folder in IIS. However, if a login mechanism is

implemented in a project, publishing the project to a subfolder instead of to the root level might

result “page not found” error, because of the additional URL parameter, i.e. the name of the

subfolder. A solution for that is creating a dedicated website folder under the “Sites” folder in IIS

and publishing the project directly to the dedicated folder. Make sure the dedicated folder uses a

different port than the “Default Web Site”. Since database and real login mechanism were not

implemented in the prototype, the configurations described in this subchapter were sufficient.

71

5 CONCLUSIONS

The literature review helped me understand the requirements clearly and drew my attention to the

way data is presented in the prototype. In addition, by applying the knowledge gained from the

literature review, meaningful demo data, e.g. representing blood pressure and blood glucose,

were created and presented by responsive charts and sortable tables.

Through regular meetings and personal discussions with the commissioner and other members of

the company, the requirements for the prototype were collected and clarified. The requirements

could be summarized as the following statement: delivering a prototype of a web-based PHR

application; which is responsive, interactive, uses charts and tables, and is able to leverage the

company’s existing platform.

ASP.NET MVC5, Bootstrap, jQuery, Chart.JS and Tablesorter open source plugin were chosen

for implementing the requirements. Creating the prototype using ASP.NET MVC5 framework

enabled the prototype to enjoy the benefits of MVC such as separation of concerns and to easily

utilize the company’s components which are built on ASP.NET technology. To create responsive

and interactive pages, Bootstrap and jQuery were used, since they are by default included in a

MVC5 solution. I had studied Chart.JS and Tablesorter plugin before used them in the prototype.

Chart.JS version 1.0.2 can draw appealing responsive charts even when there is missing data;

whereas Tablesorter can easily transform a static table to a sortable one; furthermore, it offers

multicolumn sorting and custom attribute sorting.

The prototype utilized the concept of a configurable dashboard which I developed in the

beginning of the development phase. The configurable dashboard displays personal health

measurements by charts and tables. In addition, there is a menu containing checkboxes, which

enables the user to re-configure the content of the dashboard. Although the dashboard was

tailored to the company’s other PHR project and was not incorporated in the prototype due to

time constraints, the concept of the dashboard was adopted in the development of the prototype.

A page displaying a summary of personal health measurements was created in the prototype.

A step-by-step form conceptualized by the commissioner was implemented in the prototype. The

form was designed to help the user complete a complicated task by breaking it into sequential

72

steps. As a result, the user can better concentrate on the subtasks in each step. To create

reusable elements for the form, ASP.NET MVC5 partial view feature was used. Furthermore, as

the form allows new input fields to be inserted, special attention was paid to ensure that the data

entered in the new input fields get send back to the controller. To inspect postback values and to

allow the same method name be given to the HTTP GET and HTTP POST ActionResult methods

which serve the same page, ASP.NET MVC FormCollection class was used.

Responsive line charts and sortable tables were created for effective data presentation. The line

charts are not only responsive, but also configurable. They were implemented to visualize the

progress of personal health measurements. The user can either select a day range from a

dropdown list or pick a day range from a calendar; as a result, the charts will redraw accordingly.

If there is missing data between two dots, the charts will still connect the dots with a smooth line.

If a selected day range is longer than 14 days, dots are removed, tooltip feature is disabled and

date labels are reduced or hidden. Nevertheless, the day range is indicated on top of the chart.

The tables, on the other hand, enable the user to sort multiple columns. Message List is one of

the pages in which a sortable table was implemented. In the page, a table displays messages

from the newest to the oldest by default. In addition, the user can sort the messages differently by

choosing different columns and in either ascending or descending order.

During the development, frequent web deployment had facilitated testing on mobile devices.

Testing on the tablet and the smartphone helped me discover bugs, responsiveness and other

issues which cannot be detected in a simulator.

Finally, the prototype was translated into Finnish in order to be presented to the company’s

domestic stakeholders. Translation took place after all required pages had been created. The

commissioner was asked to proofread the translation; corrections were made accordingly. As the

prototype is available in Finnish and English, the commissioner can present it to both domestic

and international stakeholders and obtain essential information for the next iteration.

73

6 DISCUSSION

The objective to create a prototype of a web-based PHR application tailored to the

commissioner’s requirements was achieved. The delivered prototype is responsive, contains

interactive pages, presents meaningful demo data in configurable charts and sortable tables, and

is able to leverage the company’s platform. The prototype serves as a medium for the

commissioner to collect feedback and to obtain new requirements from the company’s domestic

and international stakeholders.

Proactive and regular communication with the commissioner and the instructing teacher

facilitated the implementation. The feedback from the commissioner and other members in the

company steered the development, while the advice from the instructing teacher showed me

where to find answers for technical issues. Literature review and self-study, on the other hand,

supported the development. The knowledge gained from the literature review made me

appreciate the role of a personal health record application in chronic disease self-management,

helped me understand the requirements better, and enabled me to create meaningful demo data.

Self-study was carried out to equip myself with the required JavaScript and jQuery programming

skills for the implementation. Finally, 13 weeks were allocated to the development phase for

ensuring that the objective was achieved.

For future iterations, I suggest recruiting target users, healthcare professionals and experts in

graphical design into the project team. As revealed in other studies, a wide range of knowledge

and skills is required in eHealth projects for achieving desired results.

Finally, for students who are interested in eHealth, besides participating in an eHealth project, a

usability study on a collection of popular personal health applications can also be a feasible topic

for the scope of a bachelor thesis. Such a study can contribute to the advance of personal health

application by providing insights into the building blocks of the well-received applications.

74

REFERENCES

Alahäivälä, T. 2013. Software design of a health BCSS: Case Onnikka. University of Oulu.

Department of Information Processing Science. Master’s thesis. Reviewed 3.6.2015,

http://herkules.oulu.fi/thesis/nbnfioulu-201306061567.pdf

Allen, K. S. 2009. 6 tips for ASP.NET MVC model binding. Cited 15.12.2015,

http://odetocode.com/blogs/scott/archive/2009/04/27/6-tips-for-asp-net-mvc-model-binding.aspx

Apple 2016a. Health. Cited 22.1.2016, http://www.apple.com/ios/health/

Apple 2016b. Health & fitness. Cited 22.1.2016, http://www.apple.com/shop/iphone/iphone-

accessories/health-fitness

Apple 2016c. iHealth wireless blood glucometer with 50 test strips. Cited 22.1.2016,

http://www.apple.com/shop/product/HJ152ZM/A/ihealth-wireless-blood-glucometer-with-50-test-

strips?fnode=4a

Appuhamy, J. A. D. R. N., Kebreab, E., Simon, M., Yada, R., Milligan, L. P. & France, J. 2014.

Effects of diet and exercise interventions on diabetes risk factors in adults without diabetes: meta-

analyses of controlled trails. Diabetology & Metabolic Syndrome 6:127. Cited 15.1.2016,

http://www.dmsjournal.com/content/pdf/1758-5996-6-127.pdf

Bach, C. 2015a. Tablesorter documentation. Cited 27.11.2015, http://tablesorter.com/docs/

Bach, C. 2015b. Christian Bach. Cited 27.11.2015, https://www.linkedin.com/in/cbach

Bach, C. 2015c. christianbach / tablesorter. Cited 27.11.2015,

https://github.com/christianbach/tablesorter

Bach, C. 2015d. tablesorter / docs / example-attribute-sort.html. Cited 27.11.2015,

https://github.com/christianbach/tablesorter/blob/master/docs/example-attribute-sort.html

British Lung Foundation 2014. World COPD Day: key facts. Cited 4.8.2015,

https://www.blf.org.uk/Page/World-COPD-Day-key-facts

Chart.js 2015a. Chart.js documentation. Cited 25.11.2015, http://www.chartjs.org/docs/

75

Chart.js 2015b. Release. Cited 25.11.2015, https://github.com/nnnick/Chart.js/releases

CHARTIST.JS 2015. Chartist – examples. Cited 25.11.2015, https://gionkunz.github.io/chartist-

js/examples.html

Department of Health 2016. New alcohol guidelines show increased risk of cancer. Cited

18.1.2016, https://www.gov.uk/government/news/new-alcohol-guidelines-show-increased-risk-of-

cancer

Diabetes UK 2015a. Facts and stats. London: Diabetes UK. Cited 11.1.2016,

https://www.diabetes.org.uk/Documents/Position%20statements/Diabetes%20UK%20Facts%20a

nd%20Stats_Dec%202015.pdf

Diabetes UK 2015b. State of the nation 2015: the age of diabetes. London: Diabetes UK. Cited

13.1.2016, https://www.diabetes.org.uk/upload/Scotland/SOTN%20Diabetes.pdf

Diabetes UK 2016. My story is a warning to others. Cited 4.2.2016, cited

https://www.diabetes.org.uk/Your-stories/Type-2/My-story-is-a-warning-to-others/

Diabetes.co.uk 2016. Guild to HbA1c. Cited 7.1.2016, http://www.diabetes.co.uk/what-is-

hba1c.html

Dykstra, T. 2015. ASP.NET web deployment using Visual Studio: deploying to test. Cited

5.1.2016, http://www.asp.net/mvc/overview/deployment/visual-studio-web-deployment/deploying-

to-iis

East Sussex Healthcare NHS Trust 2016. Who might need to see a dietitian. Cited 15.1.2016,

http://www.esht.nhs.uk/nutrition-dietetics/who/

Galloway, J., Wilson, B., Allen, K. S. & Matson, D. 2014. Professional ASP.NET MVC 5.

Birmingham, UK: Wrox Press. Internal source. Cited 2.12.2015,

http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/programming/microsoft-

aspdotnet/9781118794760/firstchapter#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODExM

Tg3OTQ3NjAlMkZjMDVfbGV2ZWwxXzRfaHRtbCZxdWVyeT1yZW5kZXJpbmclMjBoZWxwZXI=

Gebel, E. 2009. The science of carbs: sugars, starches, and fiber, from molecule to meal. Cited

6.1.2016, http://www.diabetesforecast.org/2009/sep/the-science-of-carbs.html?loc=howthebody

76

Gebel, E. 2011. How the body uses carbohydrates, proteins, and fats. Cited 6.1.2016,

http://www.diabetesforecast.org/2011/mar/how-the-body-uses-carbohydrates-proteins-and-

fats.html?referrer=https://www.google.fi/

Gnazzo, J. 2015. ASP.NET MVC 5 – Passing data from a View to a Controller. Cited 15.12.2015,

http://www.teamscs.com/2015/09/asp-net-mvc-5-passing-data-from-a-view-to-a-controller/

Google 2015. Device mode & mobile emulation. Cited 22.12.2015,

https://developer.chrome.com/devtools/docs/device-mode

Google 2016a. Google Play search result of “diabetes”. Cited 22.1.2016,

https://play.google.com/store/search?q=diabetes&c=apps

Google 2016b. Google Play > Sovellukset > Terveys ja kuntoilu. Cited 22.1.2016,

https://play.google.com/store/apps/category/HEALTH_AND_FITNESS/collection/topselling_free

GroupHealth 2014a. How our bodies turn food into energy. Cited 6.1.2016,

http://www.ghc.org/healthAndWellness/?item=/common/healthAndWellness/conditions/diabetes/f

oodProcess.html

GroupHealth 2014b. How insulin works. Cited 6.1.2016,

http://www.ghc.org/popup.jhtml?item=/common/healthAndWellness/conditions/diabetes/insulinPr

ocess.html

Hammarberg, M. 2009. UpdateModel, FormCollection and unit test. Cited 18.12.2015,

http://www.marcusoft.net/2009/03/updatemodel-formcollection-and-unit_5466.html

Harford, R. 2013. How to use the MVC FormCollection object. Video. Cited 18.12.2015,

https://www.youtube.com/watch?v=e6bN-HHaKeU

Health and Safety Executive 2014. Chronic obstructive pulmonary disease (COPD) in Great

Britain in 2014. Cited 4.8.2015, http://www.hse.gov.uk/Statistics/causdis/copd/copd.pdf

Health and Social Care Information Centre 2014. National diabetes audit 2012-2013 report 1:

Care processes and treatment targets. Leeds: Health and Social Care Information Centre. Cited

12.1.2016, http://www.hscic.gov.uk/catalogue/PUB14970/nati-diab-audi-12-13-care-proc-rep.pdf

77

International Diabetes Federation 2015. Annual report 2014. Brussels: International Diabetes

Federation. Cited 13.1.2016, http://www.idf.org/sites/default/files/IDF-2014-Annual-Report-

final.pdf

Johansson, P. 2015. ASP.NET MVC: Proper model binding with dynamic form. Cited 14.12.2015,

https://patricjsson.wordpress.com/2015/05/25/asp-net-mvc-proper-model-binding-with-dynamic-

form/

Johns Hopkins Medicine 2015a. Overview of the vascular system. Cited 18.7.2015,

http://www.hopkinsmedicine.org/healthlibrary/conditions/cardiovascular_diseases/overview_of_th

e_vascular_system_85,P08254/

Johns Hopkins Medicine 2015b. Peripheral vascular disease. Cited 20.7.2015,

http://www.hopkinsmedicine.org/healthlibrary/conditions/cardiovascular_diseases/peripheral_vasc

ular_disease_85,P00236/

Johns Hopkins Medicine 2015c. Chronic bronchitis. Cited 31.7.2015,

http://www.hopkinsmedicine.org/healthlibrary/conditions/respiratory_disorders/chronic_bronchitis_

85,P01303/

Johns Hopkins Medicine 2015d. Pulmonary emphysema. Cited 31.7.2015,

http://www.hopkinsmedicine.org/healthlibrary/conditions/respiratory_disorders/pulmonary_emphy

sema_85,P01309/

Jones, M. P. 2015. What are partial views? – ASP.NET MVC Demystified. Cited 2.12.2015,

http://www.exceptionnotfound.net/partial-views-asp-net-mvc-demystified/

Kennedy, M. 2012. Understanding text encoding in ASP.NET MVC (ASP.NET MVC foundations

series). Cited 26.11.2015, http://blog.michaelckennedy.net/2012/10/15/understanding-text-

encoding-in-asp-net-mvc/

Korhonen, P. E., Seppälä, T., Järvenpää, S. & Kautiainen, H. 2014. Body mass index and health-

related quality of life in apparently healthy individuals. Quality of Life Research 23 (1), 67-74.

Internal source. Cited 15.1.2016,

http://search.proquest.com.ezp.oamk.fi:2048/docview/1491226003?accountid=13030

Koskela, K. 2005. Krooninen keuhkoputkitulehdus ja keuhkoahtaumatauti. Cited 3.8.2015,

http://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=suo00032#refs

78

Koski, S. 2015. Diabetesbarometri 2015. Tampere: Suomen Diabetesliitto ry. Cited 8.1.2016,

http://www.diabetes.fi/files/6203/barometri2015.pdf

Kousoulis, A. A., Patelarou, E., Shea, S., Foss, C., Knutsen, I. A.R., Todorova, E., Roukova, P.,

Portillo, M. C., Pumar-Méndez, M. J., Mujika, A., Rogers, A., Vassilev, I., Serrano-Gil, M. & Lionis,

C. 2014. Diabetes self-management arrangements in Europe: a realist review to facilitate a

project implemented in six countries. BMC Health Services Research 14:453. Cited 1.6.2015,

http://search.proquest.com.ezp.oamk.fi:2048/docview/1611278590?accountid=13030

Looper, J. 2015. Through the looking glass: adventures in mobile app simulation, emulation, and

device testing. Cited 22.12.2015, http://developer.telerik.com/featured/looking-glass-adventures-

mobile-app-simulation-emulation-device-testing/

MDN 2015. Introduction to the DOM. Cited 18.11.2015, https://developer.mozilla.org/en-

US/docs/Web/API/Document_Object_Model/Introduction

Microsoft 2015. Microsoft Health for android phones. Cited 25.1.2016,

https://play.google.com/store/apps/details?id=com.microsoft.kapp

Microsoft 2016a. Microsoft Health. Cited 22.1.2016, https://www.microsoft.com/microsoft-

health/en-us

Microsoft 2016b. Health Vault. Cited 22.1.2016, https://www.healthvault.com/fi/fi/overview

Microsoft ASP.NET 2015, Simulate popular mobile devices for testing. Cited 22.12.2015,

http://www.asp.net/mobile/device-simulators

Microsoft ASP.NET Forums 2008. Form collection. Cited 18.12.2015,

http://forums.asp.net/t/1313286.aspx?FormCollection

Microsoft Developer Network 2015a. Json.Encode method. Cited 26.11.2015,

https://msdn.microsoft.com/en-us/library/system.web.helpers.json.encode(v=vs.111).aspx

Microsoft Developer Network 2015b. HtmlHelper.Raw method. Cited 26.11.2015,

https://msdn.microsoft.com/en-

us/library/system.web.mvc.htmlhelper.raw(v=vs.118).aspx#M:System.Web.Mvc.HtmlHelper.Raw

%28System.Object%29

79

Microsoft Developer Network 2015c. MvcHtmlString Class. Cited 2.12.2015,

https://msdn.microsoft.com/en-us/library/system.web.mvc.mvchtmlstring(v=vs.118).aspx

Microsoft Developer Network 2015d. ASP.NET web page resources overview. Cited 9.12.2015,

https://msdn.microsoft.com/en-us/library/ms227427(v=vs.100).aspx

Microsoft Developer Network 2015e. How to: Create resource files for ASP.NET web sites. Cited

9.12.2015, https://msdn.microsoft.com/en-us/library/ms247246(v=vs.100).aspx

Microsoft Developer Network 2015f. Using IntelliSense. Cited 11.12.2015,

https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx

Microsoft Developer Network 2015g. Using type dynamic (C# programming guide). Cited

11.12.2015, https://msdn.microsoft.com/en-us/library/dd264736.aspx

Microsoft Developer Network 2015h. Request object. Cited 15.12.2015,

https://msdn.microsoft.com/en-us/library/ms524948(v=vs.90).aspx

Microsoft Developer Network 2015i. Request.Form collection. Cited 15.12.2015,

https://msdn.microsoft.com/en-us/library/ms525985(v=vs.90).aspx

Microsoft Developer Network 2015j. Controller.Request property. Cited 15.12.2015,

https://msdn.microsoft.com/en-US/library/system.web.mvc.controller.request(v=vs.118).aspx

Microsoft Developer Network 2015k. FormCollection class. Cited 17.12.2015,

https://msdn.microsoft.com/en-us/library/system.web.mvc.formcollection(v=vs.118).aspx

Microsoft Developer Network 2015l. NameValueCollection class. Cited 17.12.2015,

https://msdn.microsoft.com/en-

us/library/system.collections.specialized.namevaluecollection(v=vs.100).aspx

Microsoft Developer Network 2015m. NameValueCollection.AllKeys property. Cited 21.12.2015,

https://msdn.microsoft.com/en-

US/library/system.collections.specialized.namevaluecollection.allkeys(v=vs.118).aspx

Microsoft Developer Network 2015n. Emulate browsers, screen sizes, and GPS locations. Cited

22.12.2015, https://msdn.microsoft.com/en-us/library/dn255001(v=vs.85).aspx

80

Microsoft Developer Network 2016. ASP.NET IIS Registration Tool (Aspnet_regiis.exe). Cited

5.1.2016, https://msdn.microsoft.com/library/k6h9cz8h(v=vs.100).aspx

Microsoft Visual Studio 2012. Valid javascript/Razor syntax marked as syntax error. Cited

26.11.2015, https://connect.microsoft.com/VisualStudio/feedback/details/760339/valid-javascript-

razor-syntax-marked-as-syntax-error

Mobile Joomla! 2015. How to test mobile websites on desktop: best emulators and tools. Cited

22.12.2015, http://www.mobilejoomla.com/blog/222-how-to-test-mobile-websites-on-desktop-

best-emulators-and-tools.html

Mooney, G. 2013. Emulated vs. real device mobile app testing. Cited 22.12.2015,

http://blog.smartbear.com/mobile/emulated-vs-real-device-mobile-app-testing/

Mustajoki, P. 2014. Keuhkoahtaumatauti (COPD). Cited 3.8.2015,

http://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=dlk00029#s1

Mustajoki, P. 2015. Diabetes (sokeritauti). Cited 6.1.2016,

http://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=dlk00011

mySugr GmbH 2016. mySugr diabetes logbook. Cited 25.1.2016,

https://play.google.com/store/apps/details?id=com.mysugr.android.companion&hl=en

NHS choices 2014a. NHS Health Check / Testing for the biggest killers. Cited 18.7.2015,

http://www.nhs.uk/conditions/nhs-health-check/pages/why-these-conditions.aspx

NHS choices 2014b. Atherosclerosis. Cited 18.7.2015,

http://www.nhs.uk/conditions/Atherosclerosis/Pages/Introduction.aspx

NHS choices 2014c. Cardiovascular disease. Cited 20.7.2015,

http://www.nhs.uk/conditions/Cardiovascular-disease/Pages/Introduction.aspx

NHS choices 2014d. Abdominal aortic aneurysm. Cited 20.7.2015,

http://www.nhs.uk/conditions/repairofabdominalaneurysm/Pages/Introduction.aspx

NHS choices 2014e. Abdominal aortic aneurysm – causes. Cited 20.7.2015,

http://www.nhs.uk/Conditions/repairofabdominalaneurysm/Pages/Causes.aspx

81

NHS choices 2014f. Cardiovascular disease - risk factors. Cited 29.5.2015,

http://www.nhs.uk/Conditions/cardiovascular-disease/Pages/Risk-factors.aspx

NHS choices 2014g. High blood pressure (hypertension) - complications. Cited 29.7.2015,

http://www.nhs.uk/Conditions/Blood-pressure-(high)/Pages/Complications.aspx

NHS choices 2014h. Heart failure. Cited 27.7.2015, http://www.nhs.uk/Conditions/Heart-

failure/Pages/Introduction.aspx

NHS choices 2014i. Chronic obstructive pulmonary disease. Cited 31.7.2015,

http://www.nhs.uk/Conditions/Chronic-obstructive-pulmonary-disease/Pages/Introduction.aspx

NHS choices 2014j. Bronchitis. Cited 31.7.2015,

http://www.nhs.uk/Conditions/Bronchitis/Pages/Introduction.aspx

NHS choices 2014k. Bronchitis - Symptoms. Cited 31.7.2015,

http://www.nhs.uk/Conditions/Bronchitis/Pages/Symptoms.aspx

NHS choices 2014l. Chronic obstructive pulmonary disease – causes. Cited 4.8.2015,

http://www.nhs.uk/Conditions/Chronic-obstructive-pulmonary-disease/Pages/Causes.aspx

NHS choices 2014m. Diabetes. Cited 7.1.2016,

http://www.nhs.uk/conditions/Diabetes/Pages/Diabetes.aspx

NHS choices 2014n. Type 2 diabetes – cause. Cited 7.1.2016,

http://www.nhs.uk/Conditions/Diabetes-type2/Pages/Causes.aspx

NHS choices 2014o. Type 2 diabetes – symptoms. Cited 7.1.2016,

http://www.nhs.uk/Conditions/Diabetes-type2/Pages/Symptoms.aspx

NHS choices 2014p. Healthy living with diabetes. Cited 7.1.2016,

http://www.nhs.uk/Livewell/Diabetes/Pages/Healthfordiabetics.aspx

NHS choices 2014q. What should my daily intake of calories be?. Cited 14.1.2016,

http://www.nhs.uk/chq/pages/1126.aspx?categoryid=51

NHS choices 2014r. Eating a balanced diet. Cited 14.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/Healthyeating.aspx

82

NHS choices 2014s. The risks of drinking too much. Cited 18.1.2016,

http://www.nhs.uk/Livewell/alcohol/Pages/Effectsofalcohol.aspx

NHS choices 2015a. Embolism. Cited 18.7.2015,

http://www.nhs.uk/Conditions/Embolism/Pages/Introduction.aspx

NHS choices 2015b. High cholesterol. Cited 29.7.2015,

http://www.nhs.uk/conditions/Cholesterol/Pages/Introduction.aspx

NHS choices 2015c. Hyperglycaemia - complications. Cited 29.7.2015,

http://www.nhs.uk/Conditions/Hyperglycaemia/Pages/Complications.aspx

NHS choices 2015d. Atrial fibrillation. Cited 27.7.2015, http://www.nhs.uk/Conditions/Atrial-

fibrillation/Pages/Introduction.aspx

NHS choices 2015e. Respiratory tract infections. Cited 31.7.2015,

http://www.nhs.uk/conditions/Respiratory-tract-infection/Pages/Introduction.aspx

NHS choices 2015f. The eatwell plate. Cited 14.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/eatwell-plate.aspx

NHS choices 2015g. Starchy foods and carbohydrates. Cited 14.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/starchy-foods.aspx

NHS choices 2015h. Why 5 A DAY?. Cited 14.1.2016,

http://www.nhs.uk/Livewell/5ADAY/Pages/Why5ADAY.aspx

NHS choices 2015i. Fat: the facts. Cited 14.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/Fat.aspx

NHS choices 2015j. Meat in your diet. Cited 15.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/meat.aspx

NHS choices 2015k. Fish and shellfish. Cited 15.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/fish-shellfish.aspx

NHS choices 2015l. Pulses in your diet. Cited 15.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/pulses.aspx

83

NHS choices 2015m. Milk and dairy in your diet. Cited 15.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/milk-dairy-foods.aspx

NHS choices 2015n. Eight tips for healthy eating. Cited 15.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/eight-tips-healthy-eating.aspx

NHS choices 2015o. How does sugar in our diet affect our health. Cited 15.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/sugars.aspx

NHS choices 2015p. Salt: the facts. Cited 15.1.2016,

http://www.nhs.uk/Livewell/Goodfood/Pages/salt.aspx

NHS England & Public Health England 2015. National NHS diabetes initiative launched in major

bid to prevent illness. Cited 13.1.2016, https://www.gov.uk/government/news/national-nhs-

diabetes-initiative-launched-in-major-bid-to-prevent-illness

Nundy, S., Dick, J. J., Chou, C., Nocon, R. S., Chin, M. H. & Peek, M. E. 2014. Mobile phone

diabetes project led to improved glycemic control and net savings for Chicago Plan participants.

Health affairs 33 (2), 265-272. Cited 1.6.2015,

http://search.proquest.com.ezp.oamk.fi:2048/docview/1498231630?accountid=13030

Penberthy, W. 2013. Exam Ref 70-486: Developing ASP.NET MVC 4 web applications.

Redmond, WA: Microsoft Press. Internal source. Cited 9.12.2015,

http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/certification/9780735677418/3dot-

develop-the-user-experience/ch03s02_html?query=((asp.net+mvc)+AND+(globalization))#snippet

ProWellness Health Solutions 2013. Yhtiö. Cited 4.2.2016,

http://www.prowellness.com/fi/?s=4&id=8

ProWellness Health Solutions 2014. Central London for Community Healthcare (CLCH) / Imperial

College NHS Trust wins BTS Award. Cited 4.2.2016,

http://www.prowellness.com/?s=news&id=32

Ross, J., Stevenson, F., Dack, C., Pal, K., May, C., Michie, S., Parrott, S. & Murray, E. 2014.

Evaluating the implementation of HeLP-Diabetes within NHS services: study protocol. BMC

Health Services Research 14:51. Internal source. Cited 1.6.2015,

http://search.proquest.com.ezp.oamk.fi:2048/docview/1496010731?accountid=13030

84

StackOverflow 2012a. Razor/javascript and trailing semicolon. Cited 26.11.2015,

http://stackoverflow.com/questions/12111729/razor-javascript-and-trailing-semicolon

StackOverflow 2012b. Upgrade from .net 4 to 4.5 breaks Html.Raw call in Javascript. Cited

26.11.2015, http://stackoverflow.com/questions/12275095/upgrade-from-net-4-to-4-5-breaks-

html-raw-call-in-javascript

StackOverflow 2013. Razor syntax error serializing ASP.NET Model to JSON with Html.Raw.

Cited 26.11.2015, http://stackoverflow.com/questions/17617263/razor-syntax-error-serializing-

asp-net-model-to-json-with-html-raw

StackOverflow 2014. How to get a string from .resx file to a .js file. Cited 8.12.2015,

http://stackoverflow.com/questions/26522133/how-to-get-a-string-from-resx-file-to-a-js-file

StackOverflow 2015. Show label in tooltip but not in x axis for chartjs line chart. Cited 25.11.2015,

http://stackoverflow.com/questions/31604040/show-label-in-tooltip-but-not-in-x-axis-for-chartjs-

line-chart

Statistics Finland 2013. Appendix table 1a. Deaths by underlying cause of death and by age in

2012, both sexes. Cited 22.7.2015, http://www.stat.fi/til/ksyyt/2012/ksyyt_2012_2013-12-

30_tau_001_en.html

Statistics Finland 2014a. Appendix table 1a. Deaths by underlying cause of death and by age in

2013, both sexes. Cited 23.7.2015, http://www.stat.fi/til/ksyyt/2013/ksyyt_2013_2014-12-

30_tau_001_en.html

Statistics Finland 2014b. Tilastokeskuksen PX-Web-tietokannat. >> PX-Web Statfin >> Terveys

>> Kuolemansyyt >> Kuolleet ja ikävakioitu kuolleisuus peruskuolemansyyn ja sukupuolen

mukaan, kaikki ja 15-64-vuotiaat 1971-2013. Cited 24.7.2015,

http://pxnet2.stat.fi/PXWeb/sq/90156a70-54e7-41af-85bc-9e373118b87e

Tarnanen, K., Kesäniemi, A., Kettunen, J., Kujala, U., Kukkonen-Harjula, K. & Tikkanen, H. 2010.

Liikunta on lääke (Liikunta suositus). Cited 15.1.2016,

http://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=khp00077

Techopedia 2015. Internet Information Services (IIS). Cited 5.1.2016,

https://www.techopedia.com/definition/24953/internet-information-services-iis

85

Terveyden ja Hyvinvoinnin Laitos 2014. Sydän- ja verisuonitautien yleisyys. Cited 19.5.2015,

https://www.thl.fi/fi/web/kansantaudit/sydan-ja-verisuonitaudit/sydan-ja-verisuonitautien-yleisyys

Terveyden ja Hyvinvoinnin Laitos 2015. Diabeteksen yleisyys. Cited 8.1.2016,

https://www.thl.fi/fi/web/kansantaudit/diabetes/diabeteksen-yleisyys

The jQuery Foundation 2015a. jQuery Foundation mission and vision statement. Cited

17.11.2015, https://jquery.org/mission/

The jQuery Foundation 2015b. jQuery API. Cited 17.11.2015, http://api.jquery.com/

The jQuery Foundation 2015c. Category: Selectors. Cited 18.11.2015,

https://api.jquery.com/category/selectors/

The Nemours Foundation 2012. KidsHealth > Teens > Body > Body Basic Library > Lungs and

Respiratory System. Cited 31.7.2015,

http://kidshealth.org/teen/your_body/body_basics/lungs.html#

The Scottish Government 2014. Diabetes improvement plan. Cited 13.1.2016,

http://www.gov.scot/Publications/2014/11/6742

Titaania suonessa 18.7.2013. Vuosi infarktista. Cited 19.5.2015,

http://titaaniasuonessa.blogspot.fi/2013/07/vuosi-infarktista.html

Townsend, N., Williams, J., Bhatnagar, P., Wickramasinghe, K. & Rayner, M. 2014.

Cardiovascular disease statistics 2014. London: British Hearth Foundation. Cited 23.7.2015,

https://www.bhf.org.uk/~/media/files/publications/research/bhf_cvd-statistics-2014_web_2.pdf

University College London 2015. HeLP Diabetes – Diabetes self management programme. Cited

20.1.2016, https://www.ucl.ac.uk/pcph/research-groups-themes/ehealth/projects/projects/dmsmp

Vatsa, A.K. 2013. Instant Razor view engine how-to. Birmingham, UK: Packt Publishing Ltd.

Internal source. Cited 2.12.2015,

http://proquest.safaribooksonline.com.ezp.oamk.fi:2048/book/programming/9781849696302/1dot-

instant-razor-view-engine-how-

to/ch01s07_html#X2ludGVybmFsX0h0bWxWaWV3P3htbGlkPTk3ODE4NDk2OTYzMDIlMkZjaD

AxczA3X2h0bWwmcXVlcnk9cGFydGlhbCUyMHZpZXc=

86

Verbanov, R. 2015. Diabetes: M. Cited 25.1.2016,

https://play.google.com/store/apps/details?id=com.mydiabetes

W3Schools 2015a. JavaScript HTML DOM. Cited 18.11.2015,

http://www.w3schools.com/js/js_htmldom.asp

W3Schools 2015b. JavaScript HTML DOM Document. Cited 18.11.2015,

http://www.w3schools.com/js/js_htmldom_document.asp

W3Schools 2015c. JavaScript HTML DOM Elements. Cited 18.11.2015,

http://www.w3schools.com/js/js_htmldom_elements.asp

W3Schools 2015d. jQuery – Chaining. Cited 18.11.2015,

http://www.w3schools.com/jquery/jquery_chaining.asp

W3Schools 2015e. HTML Entities. Cited 26.11.2015,

http://www.w3schools.com/html/html_entities.asp

W3Schools 2015f. HTML ANSI (Windows-1252) reference. Cited 26.11.2015,

http://www.w3schools.com/charsets/ref_html_ansi.asp

W3Schools 2015g. ASP.NET web pages – adding Razor code. Cited 2.12.2015,

http://www.w3schools.com/aspnet/webpages_razor.asp

W3Schools 2015h. ASP.NET MVC – Views. Cited 2.12.2015,

http://www.w3schools.com/aspnet/mvc_views.asp

WHO 2014a. Together we can prevent and control the world’s most common diseases. Cited

20.5.2015, http://www.who.int/nmh/publications/ncd-infographic-2014.pdf?ua=1

WHO 2014b. The top 10 causes of death. Cited 4.8.2015,

http://www.who.int/mediacentre/factsheets/fs310/en/

WHO 2015a. Noncommunicable diseases fact sheet. Cited 19.5.2015,

http://www.who.int/mediacentre/factsheets/fs355/en/

WHO 2015b. Cardiovascular diseases (CVDs) fact sheet. Cited 21.7.2015,

http://www.who.int/mediacentre/factsheets/fs317/en/

87

WHO 2015c. Chronic obstructive pulmonary disease (COPD). Cited 31.7.2015,

http://www.who.int/respiratory/copd/en/

WHO 2015d. Causes of COPD. Cited 3.8.2015, http://www.who.int/respiratory/copd/causes/en/

WHO 2015e. Chronic obstructive pulmonary disease (COPD) fact sheet. Cited 4.8.2015,

http://www.who.int/mediacentre/factsheets/fs315/en/

WHO 2015f. Diabetes fact sheet. Cited 13.1.2016,

http://www.who.int/mediacentre/factsheets/fs312/en/#

WHO 2016. World Health Day 2016: Diabetes. Cited 13.1.2016,

http://www.who.int/campaigns/world-health-day/2016/event/en/

Wicks, P., Stamford, J., Grootenhuis, M. A., Haverman, L. & Ahmed, S. 2014. Innovations in e-

health. Quality of Life Research 23 (1), 195-203. Internal source. Cited 1.6.2015,

http://search.proquest.com.ezp.oamk.fi:2048/docview/1491225586?accountid=13030

World Heart Federation 2015. Urbanization and cardiovascular disease. Cited 29.7.2015,

http://www.world-heart-federation.org/press/fact-sheets/urbanization-and-cardiovascular-disease/

Yle. 5.6.2012. Keuhkoahtaumatauti laittaa elämän uusiksi. Cited 19.5.2015,

http://yle.fi/uutiset/keuhkoahtaumatauti_laittaa_elaman_uusiksi/5671896

