

Diana Giova

Open Source Digital Asset Management Sys-
tem for Audio Content

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Media Engineering

Thesis

 27 November 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Diana Giova
Open source digital asset management system for audio con-
tent

32 pages + 4 appendices
27 November 2015

Degree Bachelor of Engineering

Degree Programme Media Engineering

Specialisation option Mobile Programming and .NET Application Development

Instructor(s)

Kari Salo, Principal Lecturer

The aim of this project was to repurpose an open source content management system to
manage audio files as per the requirements of Helsinki Museum of Technology in Finland.
The museum desired to have a storage system that they could use during their workshops
and share the files stored in this system with their visitors while letting those visitors not
only download and search files, but also upload their own creations.

The implementation of this system happened both on a developmental domain of Metropo-
lia University of Applied Sciences, where it would be used for testing by mobile application
developers, and on the server of Museum of Technology in Finland, where this content
management system would reside thereafter. At the time of writing and developing this
project, the museum had neither an online storage system nor any offline system to store
and manage audio files.

To be able to complete this system research was done on open source digital asset man-
agement systems, REST web services and audio metadata. This led to a decision on
which open source system to use which in turn led to modifications of this system accord-
ing to the requirements as well as creation of REST-applicable services for it.

This thesis is a starting point for future mobile application development and for future digi-
tal asset management system implementations in educational organizations which are
looking for similar functionality. Open source systems can be of use across multiple appli-
cations, regardless of their initial build requirements. It is important to realize that existing
systems can be adapted to any requirements, as long as licenses permit.

Keywords DAM, open source, audio metadata, API, REST

Contents

List of Abbreviations

1 Introduction 1

2 Open Source Digital Asset Management Systems 3

2.1 Open Source Software 3

2.2 Digital Asset Management System 4

2.3 RESTful Web Service 4

2.4 Comparison of Available Systems 6

2.5 Conclusion 8

3 Application Requirements 9

3.1 Audio Storage with Metadata 9

3.2 Management Interface 10

3.3 REST API Access 11

4 Application Design 12

4.1 Use Cases 12

4.2 User Stories 13

4.3 Structure of Resource Space 15

4.3.1 Management Interface 15

4.3.2 Storage of resources 16

4.3.3 APIs 17

5 Custom API Design 18

5.1 Auth API 18

5.2 Search API 19

5.3 Upload API 20

6 Testing 22

6.1 Auth API 22

6.2 Search API 22

6.3 Upload API 23

7 Finalizing Application for Client 24

7.1 Compiling User Guides 24

7.2 Trial Installations 24

8 Feedback 25

8.1 Feedback from Developer 25

8.2 Feedback from Museum Admin 26

8.3 Feedback from Mobile App Developers 26

9 Discussion and Evaluation 28

10 Conclusion 30

References 31

Appendices

Appendix 1. The People’s Smart Sculpture

Appendix 2. Open Source Definition

Appendix 3. Email from Telemeta’s Developer

Appendix 4. First version of Metadata

List of Abbreviations

DAM Digital asset management consists of management tasks and deci-

sions surrounding the ingestion, annotation, cataloguing, storage,
retrieval, and distribution of digital assets. These systems include
computer software and hardware that aid in the process of digital
asset management.

cURL This is a computer software project providing a library and com-
mand-line tool for transferring data using various protocols.

JSON JavaScript Object Notation is an open standard format that uses
human-readable text to transmit data objects consisting of attribute-
value pairs.

API Application Programming Interface which allows the use of a library
of pre-defined functions to simplify and standardize otherwise com-
plex tasks.

CSS Cascading Style Sheets is a style sheet language used for describ-
ing the presentation of a document written in markup language.

HTML HyperText Markup Language, commonly referred to as HTML, is
the standard markup language used to create web pages.

SQL Structured Query Language is a special-purpose programming lan-
guage designed for managing data held in a relational database
management system.

PHP PHP is a server-side scripting language designed for web develop-
ment, but also used as a general-purpose programming language.

JS JavaScript is a high-level, dynamic, untyped, and interpreted pro-
gramming language.

1

1 Introduction

Metropolia University of Applied Sciences has been taking part in the People’s Smart

Sculpture which is a creative research and innovation project regarding the integration

of new art, design, science, smart technologies, and user culture into the labs orga-

nized by twelve different partners across Europe. The University of Applied Sciences in

Bremen has been appointed as the lead partner of this project and Metropolia Universi-

ty of Applied Sciences as one of the partners. The other partners have been numerous

polytechnics, universities, museums and art institutions across Europe. The press re-

lease concerning this project can be found in appendix 1.

Metropolia has been collaborating with the Museum of Technology in Finland which will

be taking part in a project called the Neighborhood Living Room. This was a subproject

in the People’s Smart Sculpture initiative. The goal was to test ideas of how visitors

could participate and interact with the exhibitions. The methods that would be used in

this exhibition would be applied art, social media, and mobile technologies and the

main vision for this project was to bring together and induce interaction of the residents

in the nearby vicinity of the museum. This would be achieved by helping the museum’s

visitors develop new ideas and opinions, share experiences, and help discuss their

dreams and hopes as part of the museum’s interactive exhibition.

Metropolia’s faculties of Culture and Engineering collaborated together in order for the

above vision to be realized. This thesis analyzes the work from the engineering de-

partment, specifically the development of the digital asset management system that

would be used as a basis to store the assets that the museum will be using in its exhi-

bitions. The purpose of this final year’s project was to modify an open source digital

asset management system so that it would be better suited for storage and manipula-

tion of audio files as was required by the Museum of Technology in Finland. In addition

this system needed APIs so that the assets in it could be searched, downloaded and

uploaded by the mobile applications which would be created by the engineering stu-

dents.

The museum would be using this system during its workshops, events or exhibitions

where they would want to share and collect audio files with the public. Such a system

would require a well-managed back-end as well as front-end and APIs that would suit

2

any application (be they mobile or web) that would be built in the future. Of course all

the possible scenarios could not be anticipated during the development of this system,

so the documentation had to be very well structured and custom code had to be com-

mented appropriately. This would ensure successful future upgrades or modifications

to the existing system.

3

2 Open Source Digital Asset Management Systems

The two main prerequisites for the final year project’s application were that the software

should be an open source digital asset management system and it should have a

REST API. The following paragraphs break apart and explain those prerequisites as

this is necessary for understanding how the system that would be used for this project

was chosen.

2.1 Open Source Software

Open source software is a well-known term amongst programmers nowadays. For clar-

ification, the official definition is included in appendix 2 and a summary follows. This

type of software must be free for download, its code should be readily available, mean-

ing that it is usually distributed with its source code, and the license of this software

must not restrict others from altering the code or distributing any derived works from it.

(Kavanagh 2004, 1.) The type of licenses that accompany open source software may

be:

 GNU General Public License

 Mozilla Public License

 BSD, Apache, or MIT license

 GNU Lesser General Public License

There is a possibility that a custom license has been made to open source software

therefore one must review the license in detail before its implementation.

One of the advantages of using open source software is that it is acceptable to view

and modify the source code (Kavanagh 2004, 41). In this case if an application is cho-

sen, but it doesn’t exactly suit the requirements perfectly, then it is possible to modify

the code in any way that is deemed necessary. This reduces working costs and time,

because the majority of the application has been developed already and only a few

changes are necessary. The developer must be ready and willing to understand the

code of other programmers in order to succeed in this venture. In order to understand

the functionality of open source software, it is preferable that a well-written documenta-

tion accompanies it. Otherwise the learning curve for such software might be too steep.

4

2.2 Digital Asset Management System

A digital asset management system, or DAM, should be able to manipulate as well as

protect from unintentional alteration the digital assets that are being stored in it (Jacob-

sen, Schenker and Edwards 2005, 3). In order to understand the types of data that this

system stores it is essential to understand what a digital asset is.

One of the definitions in the IT and Media world of a digital asset is that it is a file which

is tagged with the information about it. This way the file retains that information and is

thusly not lost amongst all the other files found in a management system. This defini-

tion, that “an asset is a file plus metadata” (Jacobsen, Schenker and Edwards 2005, 3),

is usually used by large companies. The second definition is that an asset is a file and

its rights. This essentially means that content has value as long as its owner has the

right to utilize it. For example an mp3 file created by a famous artist would not have any

value unless someone had the right to use it. (Sutter, Notebaert, Walle 2006.)

The two definitions are complementary where one usually does not exist without the

other. If a file has no metadata then this would make it a useless asset even if one had

the right to use it. On the other hand, if a file has extensive metadata, and yet there are

no usage rights, this also produces a similar problem.

Based on these findings it is determined that a digital asset management system

should contain digital files along with their metadata as well as usage rights. The man-

agement aspect of the system is fairly straightforward to understand as it is the actions

which are required to be executed onto these assets. The aforementioned assets could

be adding, removing, and editing assets’ data or metadata. This in turn would ensure

that the digital integrity of the asset is maintained while “providing re-purposed files for

every media need” (Roskiewics 2005, 7).

2.3 RESTful Web Service

Dealing with data is one of the major elements of building the World Wide Web. This

data is connected from system to system by services that are either delivering or con-

suming it. In order for this to happen, web services come into play. Some of the availa-

ble web services are Representational State Transfer (REST), Remote Procedure Call

5

(RPC) and Simple Object Access Protocol (SOAP). This project will be focusing on

REST services, as this was one of the requirements for the system.

REST is a set of principles that governs the transfer of data and is usually tied to

HTTP, HyperText Transfer Protocol. HTTP is a “stateless transport protocol where

each request is executed independently, without the knowledge of the request that

came before it” (Abeysinghe 2008, 11). Each HTTP transaction consists of a request

and a response, where HTTP verbs are used to make the requests and the response is

sent in a variety of formats, one of which is JavaScript Object Notation, or JSON.

The four basic HTTP verbs are used to provide the operations which are applied to

resources. Resources are the individual data records in a system (O’Reilly 2013, 55).

Those verbs are POST, GET, PUT, and DELETE which stand for Create, Read, Up-

date, and Delete respectively, or CRUD. It is also possible to see an implementation of

PATCH which allows partial update of a record. The use of PATCH is not very common

however.

RESTful services deal with transferring representations of resources and this represen-

tation might be in the format of JSON. Transferring of resources essentially means

transferring the data that these resources contain, which would make up the content of

the request. The data about the request goes into the headers while the actual content

is in the main body of the communication. This means that a well-structured RESTful

service will use the verbs, status codes and headers for extra information regarding the

request or response, reserving the body for the content only. (O’Reilly 2013, 55.)

To create resources in a system a POST request needs to be made to the specific col-

lection where this resource is supposed to go to. The Content-Type header of such a

request needs to be set appropriately so that the server will be able to understand it.

Once the resource has been created a successful status code needs to be included

with the response. A successful status code could be 201 (meaning ‘created’) or it is

acceptable to set a Location header which will redirect the user to the URI of the new

record. In the event that resource creation failed it is common to output a status code of

400 ‘Bad Request’ or 406 ‘Not acceptable’.

In order to read resources from where they are located the GET verb is applied. In an

unsuccessful read attempt the most often seen status code is 404 which indicates the

6

record was not found or does not exist. There are many possibilities for which codes to

use, depending on the individual cases. For example, the code 403 means ‘Forbidden’

which usually means the user does not have the correct rights to access this service.

It’s also possible that the user has exceeded their allotted number of requests in a giv-

en time frame and this would produce a code of 429 ‘Too many requests’. Exposing too

much information with the status codes is contraindicated. On the other hand, exposing

too little information would be practically useless.

In order to create resources the verb PUT is used. It is essential to note that the per-

mission of the web server should be set to writable as the default will prevent any users

to upload their resources to the server through a request. In the real world instead of

PUT the POST request is used more often (Abeysinghe 2008, 80) due to the previously

described inconvenience regarding server permissions. If the server is set to writeable

then anyone with malicious code will be able to access and modify the files there.

Hence POST is used to create as well as update resources although in theory it might

look incorrect to do so. POST will send data to a specified URL and the server will do

whatever the program on its side is designed to do. It can either store the data received

or it can use it as input for existing resources.

In conclusion a RESTful web service will allow the communication between the applica-

tion containing that service and applications accessing that service, for example a mo-

bile app, a Curl application or a REST plugin for the web browser. Therefore it can be

inferred that the creation, deletion, reading, and updating of files will be performed in

the chosen digital asset management system so when choosing it these features have

to be taken into consideration.

2.4 Comparison of Available Systems

There are many different kinds of digital asset management systems. Some might be

specifically designed for image files while others might be designed to handle audio,

video or pdf files. Based on the initial prerequisites and the ensuing findings discussed

in previous paragraphs, a search was launched using the Google search engine for an

‘open source digital asset management system’. This produced a multitude of results,

all of which had to be tested for their suitability for this project.

7

In order to make a final decision of a suitable system for this project an effort was made

to find an open source system that can accommodate audio files along with their

metadata and one which has APIs available already or a possibility to create new ones

for it.

Error! Reference source not found. depicts a representation of open source DAMs

along with their features, license and programming language(s). The selection was

compiled from a webpage reviewing open source DAM software (Sarwan 2014) as well

as from a basic Google search for ‘open source audio management audio’. The best

suited systems were chosen from Sarwan’s website as well as from the results based

on Google search. Each chosen system was researched and tested which led to the

construction of the table below.

Table 1: List of DAMs. Data gathered from Sarwan (2014) and from Google search.

Software name Features License Language

Telemeta  open source

 web audio archiving software

 metadata

 user management

 English and French support

 REST API

CeCILL Python and

JavaScript

ResourceSpace  fully featured DAM system

 user management

 API available

 plugins available

 metadata

BSD PHP and SQL

Phrasenet  DAM system

 user management

 images/video/documents sup-

port

GPL3 PHP

EnterMedia  typical DAM system

 uses XML, but database possi-

ble

 plugins available

 metadata

LGPL JAVA

8

By looking at this table it can be determined what the best candidates for an audio sys-

tem might be. Telemeta seems to have been built exclusively for audio files containing

metadata, it is open source, has user management and supports a REST API. There-

fore it can be assumed it will be the best suited system for the requirements of the final

year’s project. The runner up candidate would be Resource Space as it also seems

suited well for audio storage, has user management and has an API. However, accord-

ing to Roskiewics (2005), it is important to know what the requirements for such a sys-

tem are as well as which programming language is best suited for the organization im-

plementing such a system before reaching a final decision.

In order to decide which system will be implemented all of the above systems were

tested for their suitability for this project and their compatibility with the initial require-

ments. The following paragraph provides the conclusion regarding these tests.

2.5 Conclusion

The system that was chosen to be implemented was ResourceSpace. Comparing to

other systems it offered services that were required. Although Telemeta seemed to be

better suited to the requirements, it was not chosen because it was still in development

mode and was not compatible with Windows systems, (cf. appendix 3). In addition the

use of PHP was preferable to the project’s author. Prior to starting testing of this sys-

tem, audio metadata and application requirements had to be analyzed, as will be dis-

cussed in the following chapters.

9

3 Application Requirements

Detailed application requirements were discussed at a meeting with Päivi Takala, a

senior lecturer in Sound Design from Metropolia University of Applied Sciences, and

one of her students. In addition to what was already known, as outlined in previous

chapters, the following topics were discussed and added to the requirements list.

 Metadata for audio files, to be researched further

 Formats of audio files such as wav, mp3, raw, or flac

 Possible categories such as nature, humans, machines, and stories

 Possible sound types such as soundscapes, ambience, and effects

 Filtering for user management: museum admin and general users

 Client interface

 API access for mobile users: downloading from mobile app, uploading through

mobile app, and searching through mobile app

The above topics will be discussed in the following chapters.

3.1 Audio Storage with Metadata

Metadata is information about a resource that is stored with this resource. Simply de-

fined it is “data about data” (Zeng and Qin 2008, 7). The definition has been refined

over time to “structured information that describes, explains, locates, or otherwise

makes it easier to retrieve, use, or manage an information resource” (NISO, 2004,1,

cited in Zeng and Qin 2008, 7). There are many metadata standards which provide

guidelines regarding content, structure and values. One such standard is the Dublin

Core. It is well known because it ‘has the most mapped element sets among and

across domain specific and community oriented metadata standards’ (Zeng and Qin,

2008, 16). Using Dublin Core’s metadata list as a base, a new concise list was created

10

and used in the first version of this software implementation. The first version can be

found in appendix 4 and the second version can be seen in Table 2. At the time of writ-

ing the second version had been implemented.

Table 2: Metadata Fields.

Metadata Fields Input style

Title of recording free-form text

Tags free-form text

Description free-form text

Length (sec) number value

Category – 1. nature 2. human 3. machine

4. story

options tick list

Sound Type – 1. soundscapes 2. ambi-

ence 3. effects

options tick list

Location – latitude number value

Location - longitude number value

File size (MB) automatically generated

File extension automatically generated

Creation date automatically generated

Table 2 depicts the names of metadata fields that accompany an audio file. An expla-

nation is given after each metadata fields as to how a user can input data into it. These

fields are changeable only by a system administrator and the role of the user of the

system is to either browse through those fields or edit/input values for them.

3.2 Management Interface

The management interface of the system that the person in charge of audio files will be

accessing, should be straightforward to use. A user guide will be provided. In this par-

ticular situation the person in charge of this system will be called the museum admin

and will be referred to as such from here on forward. The museum admin should be

able to upload files and assign metadata field values to them. These metadata fields

should be editable along with their options and if needed, it should be possible to cre-

ate new fields. Regarding audio files, the museum admin should be able to delete their

own files as well as those uploaded by different users. In addition the museum admin

11

should be able to create and delete users of this system as well as share selected au-

dio files with them.

3.3 REST API Access

The RESTful web services that were discussed in the previous chapter are implement-

ed in an API. An API is an Application Programming Interface, in other words a pro-

gram, that lets a client make a call to the server and get data in return. This call is

made using the aforementioned RESTful services. The requirements for this project’s

APIs were the ability to upload (POST), download (GET) and search (GET). This in

turn would serve mobile users with their custom made applications as they would be

accessing the API and consequently interacting with the system.

In addition to the basic functions of uploading, downloading, and searching the files it

was decided to include an authentication API. This API would be a sort of starting point

from which entry into the system would be granted. By using the authentication API

only users which are granted access by the museum are able to use the other APIs

and consequently upload, download, or search. This is an obvious security measure so

that unauthorized users will not be able to access the system and alter its contents. It is

possible to use HTTP basic authentication, OAuth, Custom Headers, or design your

own application (O’Reilly 2013, 26). As a result a decision was made to create an au-

thentication API which would be customized precisely to this system.

12

4 Application Design

Upon initial inspection of Resource Space as a digital asset management system, it

was determined that indeed the decision to implement specifically this system was

well-founded. However in order to customize the system according to the requirements

of this project, a detailed breakdown of use cases and user stories was essential.

4.1 Use Cases

Figure 1, Figure 2, and Figure 3 are Venn diagrams depicting the use cases for this

system. As can be seen from the diagrams there will be three user groups. The

developer will install the system as required and maintain the integrity of it if needed.

The museum admin will be the person(s) in charge of distributing and manipulating the

audio resources stored in the system. The mobile user(s) will be accessing the system

to search and retrieve audio files as well as upload their own.

Figure 1: Museum Admin Use Cases.

13

Figure 2: Developer Use Cases.

Figure 3: Mobile User Use Cases.

4.2 User Stories

Based on the use cases depicted in the last chapter, it was possible to determine what

types of user stories might be applicable to the system. There will be three types of

users with the museum admin being the most important one. Therefore they have the

most diverse list of stories which follows below.

 As a museum admin I want to: create user accounts.

 As a museum admin I want to: delete user accounts.

 As a museum admin I want to: upload audio files to system.

 As a museum admin I want to: delete an audio file from system.

 As a museum admin I want to: create a new collection.

 As a museum admin I want to: view a list of all collections.

14

 As a museum admin I want to: add files to collection.

 As a museum admin I want to: move files among collections.

 As a museum admin I want to: edit audio files’ metadata values.

 As a museum admin I want to: edit audio files’ metadata fields.

 As a museum admin I want to: create metadata fields.

 As a museum admin I want to: delete metadata fields.

 As a museum admin I want to: change my dashboard layout.

 As a museum admin I want to: search for a file.

 As a museum admin I want to: see all the files in the system.

The developer will be in charge of setting up the system. For that reason their stories

are quite straightforward and limited. In the case of repairing the system the user sto-

ries might change, but this is beyond the scope of this thesis. The developer’s stories

are listed below.

 As a developer I want to: set up RS on the server.

 As a developer I want to: modify RS according the user guide.

 As a developer I want to: test the system.

Finally the mobile user is the last in line to use this system. The mobile user will be able

to use this system only if the museum admin gives them permission and populates the

storage with data. A list of user stories relevant to the mobile user is shown below.

 As a mobile user I want to: receive an access key for using the APIs.

 As a mobile user I want to: search for files.

 As a mobile user I want to: search for files based on parameters I set.

 As a mobile user I want to: download an audio file.

 As a mobile user I want to: upload an audio file.

 As a mobile user I want to: upload an audio file with metadata fields.

The users along with their stories have been determined and explained. As can be

seen the mobile user does interact directly with the system, but only with the APIs.

Therefore this should be taken into account when customizing the application and

15

building the APIs. Relevant user guides will need to be created for each user so that

once the application is complete the roles of these users will not become confused.

4.3 Structure of Resource Space

ResourceSpace is running on a server and has a management interface which is ac-

cessed from the web. It is programmed using PHP, MySQL, HTML, CSS and JS. This

system can be installed onto Linux/Unix, Windows, Mac OS X, and Synology DSM and

it works with the most web servers including Apache and IIS. It is possible to install a

stand-alone version or a development edition from Subversion. ResourceSpace re-

quires PHP greater than or equal to version 5, latest release recommended, and

MySQL greater than or equal to version 5.0.15, latest release recommended. Re-

sourceSpace has documentation online where one can find detailed instructions (Re-

sourceSpace Documentation Wiki 2014).

4.3.1 Management Interface

The management interface, what a user of ResourceSpace is using once they log into

the system, is fairly straightforward to understand and use. A few aesthetic changes

were needed to be applied to it in order for the future museum admin to be able to

quickly understand how to use the system. In addition, a screenshot of the dashboard

was included in the user guide along with explanations. This screenshot can be seen

below, Figure 4. The screenshot has been edited with Microsoft Paint and quick notes

about its functionality have been inserted into the picture.

Figure 4: AudioResourceSpace dashboard. Screenshot Giova (2015).

16

In order for ResourceSpace to be able to accommodate only audio files and have the

necessary metadata fields a few changes were done through the Team Center which

can be accessed through the top navigation bar in the dashboard. In addition relevant

rights were set for admin and general users. The instructions on how to make these

changes were written into the developer’s user guide in a step by step fashion. As a

final step to the metamorphosis of the original ResourceSpace system, the application

was renamed to AudioResourceSpace.

4.3.2 Storage of resources

Digital assets, called resources, are stored according to their IDs in a ’resources’ table.

The metadata fields like author, location or title are dynamically added to this table as

they are created in the management interface. These metadata fields are linked by ids

so the database can populate the fields based on the values that are set in the man-

agement interface. A simplified depiction of the database is shown below.

Figure 5: RS Database simplified.

By following this structure it is easy to add, edit, or remove the values that had been set

for the metadata fields. In addition it is simple to modify or delete existing metadata

fields as well as create new ones. The database updates its structure based on what is

set in the web management interface by the admin, so the more custom metadata

fields that are created, the bigger the table becomes.

There are many other tables in the RS database which are used to specify which col-

lection resources are in, who has the rights to these resources, how many users there

are, various reports, how many users have accessed the APIs, etc. The tables are very

informative which simplifies the programming of the APIs, for example, as the relevant

data can be fetched by joining or pivoting tables with MySQL.

17

In ResourceSpace resources are based on their ids. If a user sends an audio file into

another user’s collection then only a record of that action is saved into the database,

the files are not duplicated or physically copied on the server space. In order to dupli-

cate audio files these files would need to be downloaded and then uploaded. This in

turn saves server space since the files are not created each time they are copied.

4.3.3 APIs

The basic installation of ResourceSpace contains two built in APIs, an upload and

search API. Both were tested to see if they comply with the museum’s requirements.

The upload API would need a few minor additions, but the search API was fairly use-

less. Modifying it would require too many custom changes and this action interfered

with the application’s core code.

Therefore it was decided to construct a completely custom search API which would use

only a few of the core files. The search API would also serve as a download API be-

cause when searching for files one of the options when listing their information could

be to show a link to that searched file. This link would provide the functionality for

downloading that file. Therefore search and download API will be called Search API

and the ability to download files from it will be set in one of its parameters.

As discussed in chapter 3, Application Requirements, an authentication API will need

to be created so that the mobile users would be able to receive an access key with

which to use the upload and search APIs. The mobile users would need to send to the

authentication API a username and password given to them by the museum admin. If

the credentials would match with the approved ones then this user will receive an ac-

cess key.

18

5 Custom API Design

According to the requirements three APIs were needed: an authentication (auth), an

upload, and a search API. The authentication and search APIs would be created anew

while the upload API will be modified since the existing code is acceptable to the re-

quirements. The APIs have been coded procedurally and no PHP framework was used

as neither ResourceSpace used any. The following paragraphs describe how each one

works.

5.1 Auth API

The authentication API is needed specifically by the mobile users so that they can re-

ceive an access key which will in turn be used with the search and upload API. This

authentication gives an access key to existing users of AudioResourceSpace, which

means that only users that have been created by the museum admin are able to get

that key. The mobile application will send a POST request to the API. This request

should be in the form of JSON and the form of it is shown in Listing 1.

{"username":"xxxx","password":"xxxx"}

Listing 1: Auth request.

In the auth request, listing 1, the ‘xxxx’ stands for real values. The auth API receives

these values and checks them against the database entries after scrambling the pass-

word using a hashing algorithm. This algorithm uses the SHA-256 hash on the MD5

hash which hashes the letters “RS” and the received username and password.

In the case of a match the API outputs an access key which is unique for the creden-

tials that were sent in the request. The access key is output in JSON in the form as

shown in Listing 2.

{"api_key":"xxxx"}

Listing 2: Auth response.

In Listing 2, just as in Listing 1 the ‘xxxx’ stands for real values.

19

This functionality lets the mobile application receive an access key as soon as they

have received official credentials from the museum admin and thus proceed to use

search and upload APIs.

5.2 Search API

The search API outputs all the audio files stored in AudioResourceSpace or specific

audio files based on search parameters that are set along with the search request. This

API accepts a GET request which is structured as follows (cf. Listing 3).

/plugins/api_audio_search/index.php/?key=insert key

here¶meter

Listing 3: Search URL.

The table below defines all the available parameters of a search request, Table 3. The

parameters are added at the end of the request.

Table 3: SearchAPI parameters.

Parameters do not need to be written in any specific order neither is it required to have

all of them in the request. Following are a few examples of the requests (cf. Listing 4).

20

 url/plugins/api_audio_search/index.php/?key=api_key_writ

ten_here&help=true

 url/plugins/api_audio_search/index.php/?key=api_key_writ

ten_here&format=wav&link=true

 url/plugins/api_audio_search/index.php/?key=api_key_writ

ten_here&size=<50KB&category=human&search=dog&link=true

 url/plugins/api_audio_search/index.php/?key=api_key_writ

ten_here&format=mp3&size=<100KB&category=nature&sound_ty

pe=effects&created_by=museumAdmin&search=wood

Listing 4: Search request examples.

As can be noticed from these requests, different parameters can be written to their end.

A user can guess just by looking at this string what a request is searching for. The only

requirements for structure of the request are that they contain an access key, which

was provided by the auth API. Omission of this access key will lead to an error telling

the user to read the user guide.

5.3 Upload API

The upload API lets users who possess a valid authentication key upload their audio

files along with metadata they choose to transmit to AudioResourceSpace. This API is

based on REST principles, using POST for requests and using JSON to output the

response. To upload a file the following needs to be typed into the address bar (to form

the URL) as shown in Listing 5.

url/plugins/api_upload/?key=insert key

here¶meter_values

Listing 5: Upload URL.

The parameter values are seen in Table 4 on the next page. The request will be visible

in the address bar once it is executed.

21

Table 4: Upload parameters.

Value Info

key=[string] authentication key

userfile=[@file] set the file path

resourcetype=4 default is 4

collection=[int] collection id, required field

see /help_collections.php

’metadata DB field’=[string] see /help_metadata.php

The following is a sample upload URL (cf. Listing 6).

url/plugins/api_upload/?key=api_key_here&collection=3&resourc

etype=4&field8=Dogs&field73=barking&field74=woof+dog&field75=

human&field76=effects&field77=20&field78=05&field79=25

Listing 6: Upload URL.

Just like it was seen in the search API requests this request is just as informative and

any user can guess what is being sent. There is no reference to the file which is being

sent in the request because the file, or representation of the resource, is being sent in

the body of the HTTP request (O’Reilly 2013, 61). The content-type which is used

when submitting this file is called multipart/form-data and is set as the attribute to the

form which processes the uploading functionality.

22

6 Testing

Initial testing of this system was done using cURL. Curl (written as cURL and pro-

nounced see ‘URL’) is a command line tool with which web requests are made. In addi-

tion it can be written into a PHP file so the command line is not always necessary.

These types of tests proceeded throughout development up until the application was

transferred to the admin in charge of a trial installation on the server of Metropolia. The

final testing was done on the server of the Museum of Technology in Finland.

6.1 Auth API

The cURL tests with this API helped improve its functionality where needed. Improve-

ments were adding error messages in case of wrong credentials as well as optimizing

the code. Since the development proceeded simultaneously with the cURL tests the

testing of this API was dynamic, meaning that an error was fixed as soon as it was en-

countered up until the point that no errors occurred.

Testing on Metropolia’s server produced no errors. In other words this means that this

API worked as expected and fulfilled all of its requirements.

6.2 Search API

The Search API worked as planned while testing it with cURL. However, when testing it

on Metropolia’s server a major flaw was discovered. This flaw was not so much in the

functionality, but in the understanding of how audio files will be shared amongst users

in AudioResourceSpace. What was understood was that the museum admin would

create new guest users and upload audio files directly into their accounts. However, the

requirement was to let the museum admin share files from their own collection with the

mobile users. The problem was that an audio file that had been shared by an admin to

the collection of another user would not be seen by the Search API at all.

In order to fix this the majority of the code needed to be modified because completely

different tables should have had been accessed when getting reference ids to those

shared files. In addition those shared files need to be cross referenced with the admin’s

23

private collection as well as with any duplicates. After modifying the API to suit the

most recent requests a subsequent test proved successful and the API functionality

was accepted.

6.3 Upload API

Tests with upload worked as expected since this API was well designed by the original

developers of ResourceSpace. There was one minor detail which needed to be ad-

dressed and it was regarding the size audio property that needed to be stored in the

database. To fix this a simple addition of retrieving the size from the uploaded file as

well as inserting it to the database was sufficient.

24

7 Finalizing Application for Client

In order to make this system complete for the client, in addition to providing the code,

relevant user guides needed to be created. These user guides needed to be tested

with a new installation which was done on the development server under a different

directory. In addition feedback from the museum server’s admin, the museum admin

and the mobile application programmers was received.

7.1 Compiling User Guides

The following user guides were created:

1. AudioResourceSpace Installation Guide – aimed at server admin.

2. AudioResourceSpace User Guide – aimed at museum admin.

3. Api Auth User Guide – aimed at API application developers.

4. Api Audio Search User Guide – aimed at API application developers.

5. Api Upload User Guide – aimed at API application developers.

All of these guides were distributed amongst the appropriate parties as well as included

in the final disk which contains the installation files in addition to the user guides.

7.2 Trial Installations

In order to test the server admin’s and museum admin’s user guides it was necessary

to perform a few brand new installations of AudioResourceSpace. Those were imple-

mented while following the steps outlined in the guide and simultaneously rewriting any

instructions that were incorrect or not clear enough. In total five new installations of

AudioResourceSpace were required to achieve a flawless install and functionality. At

some point a glitch occurred in one installation that could not be explained or fixed.

However the next installation did not have that glitch even though the install files were

identical. This occurrence is left as an unexplained mystery.

25

8 Feedback

8.1 Feedback from Developer

The developer is whoever manages the museum’s server, installs AudioRe-

sourceSpace on it and modifies the system to the museum’s requirements. Shortly

after commencing the installation process the following error occurred (cf.

Listing 7).

Sorry, an error has occurred

Please go back and try something else.

You can check your installation configuration.

/var/www/resourcespace/include/db.php line 221: Cannot

modify header information - headers already sent by

(output started at

/var/www/resourcespace/include/config.php:143)

Listing 7. Error output code.

This happened because the user guide was not clear enough on the instructions re-

garding input of relevant installation configurations. The input concerning installation

configurations such as database name and password happens online. The developer

assumed that the files that are located on the server need to be edited manually. This

produced an error because the system is not designed to be installed this way and the

developer became very confused.

To rectify this problem the instructions in the user guide were written more clearly and

a new copy of the user guide was delivered to the developer. Using the updated in-

structions the installation proceeded without errors.

In addition the developer wished to remove the link with which a new user could apply

for an account for the AudioResourceSpace system. This function is unnecessary with

the given requirements so it was removed for the time being by making it not visible

with CSS. The code snippet was sent to the developer so the relevant CSS file can be

26

altered. This ensures an easier modification in the future, in case the requirements

change.

As a final test, once the installation was complete, the system and the APIs were tested

by this developer. The developer uploaded a few audio files to the system, created a

few extra users, and shared some of the audio files with those users. It is not known

how the API was tested, however the developer assured that it worked properly. In

conclusion, the results of using AudioResourceSpace by the developer were satisfacto-

ry and the system worked flawlessly.

8.2 Feedback from Museum Admin

The museum admin tested the system according the user guide provided. This user

guide was specifically written for the museum admin containing step by step instruc-

tions on how to upload files, create other users, share files with those users and edit

metadata. There were no errors or questions regarding the installation. In addition to

the step by step instructions that the museum admin followed, in the same user guide

file are general instructions which cover any possible problems that the admin might

run into. It might be impossible to anticipate all the problems that might happen on the

backend or the front end of AudioResourceSpace. However, the majority of errors has

been anticipated because so much time went into learning and testing this open source

system, ResourceSpace.

8.3 Feedback from Mobile App Developers

The group of students who were developing mobile apps which would be accessing

AudioResourceSpace are the mobile app developers. The feedback received was that

they wished the API would output an empty array in JSON if the results for search were

null. The response they got from a search that produced no results is shown in Listing

8.

Unexpected token T

Listing 8: Response error.

27

When the search API was created, the output for null results was a custom error mes-

sage explaining what the problem was and which parameter caused it. This error mes-

sage was output as normal text instead of JSON. Since the developers requested an

empty JSON array to be output the search API was modified in such a way as to pro-

duce this result. Instead of outputting an error message the below code would be used

(cf. Listing 9).

echo json_encode(array());

Listing 9. Empty JSON array.

The search API had to be modified in numerous places because there were a lot of

instances when such an output might be needed. After modification the API was tested

and it seemed to work without error.

Regarding the other APIs, the upload and auth, there was no feedback so it is as-

sumed they work as they should.

28

9 Discussion and Evaluation

The most important part of this project was to understand the requirements of the mu-

seum and implement them correctly when customizing and building the audio storage

system. It was challenging to find a suitable open source system because there were

quite many so it took quite a long time to test them out before deciding which one will

be used, ResourceSpace. In addition it was not very clear what types of users will be

using the system and if those users will be created as part of that system or inde-

pendently from it. Towards the middle of the project it was made clear that the mobile

users will not be part of AudioResourceSpace (former ResourceSpace) which led to a

rush to design and create suitable APIs for them.

As a developer of this system and all its ensuing components it was necessary not only

to have skills in coding, but as well in organizational techniques. As described in an

article about DAMs (Roskiewics 2005, 5), the author states that the person or team

responsible for creating and successfully maintaining such a system should understand

all “the interdependencies of all of the components in the system and the support path

for each is important”. In order to achieve that one needs to be able to prioritize the

goals of the project as well as be able to adapt to any changes that might arise during

development or alterations of requirements.

Taking into consideration the feedback from the developer the system developed for

the final year project was a success. There was just one minor error during installation,

which was more a technicality in understanding the instructions than a major flaw in

coding. The user guides were one of the hardest things to write because every possible

situation that could occur with this system had to be imagined and written about. This

process took quite a lot of time and tedious work, especially with installing the system

over and over again.

The feedback from the mobile application developers was of most use. It is assumed

that their application receives all responses from the API in JSON format. This means

that the programming of those applications is done in such a way that JSON is parsed

and any other format is unrecognizable or produces an error. Since they did say that

they receive an unexpected token if there are no search results the above assumption

is well justified. Such an error would produce quite a lot of unnecessary coding for the

29

mobile application developers. It would be much easier if the response was in the cor-

rect format.

Overall this project proceeded quite slowly. In the beginning there was a lot of research

to be done regarding open source management systems, metadata standards and web

services. There was quite a steep learning curve for determining how ResourceSpace

works as an application because it had multiple features and it was not very clear

which features would be used and which will be ignored. Towards the end of the pro-

ject the requirements became clearer and as mentioned earlier there was a rush to

fulfill them. This resulted in the final changes being done long after the project’s allotted

time was concluded.

30

10 Conclusion

The purpose of the final year project, or thesis, was to create a system for the Museum

of Technology in Finland. This system would be able to store and handle digital assets

in the form of audio files. It was preferable to create an application with minimal re-

sources in terms of time, personnel and costs. One way to approach this would be to

find a suitable open source digital asset management system, modify it accordingly and

create any extra functionalities that it might need.

The system that was chosen was open source and it was able to store and manipulate

the audio files as required. The extra functionality, in the form of custom APIs was cre-

ated and after testing showed to be working as expected. This system is designed in

such a way that a subversion installation of it goes to the client which ensures constant

updates and patches. With the customizations performed this option was not possible

as any official updates to the system would render the APIs dysfunctional. This might

bring problems in the future with security or programming language incompatibilities.

In a perfect scenario a totally new system would have been preferable to be built. This

way it could be designed specifically for the requirements of the museum. However in

the long run it would also need to be updated, which in a way negates the argument of

building a personally designed digital asset management system. In either scenario the

DAM will need to be regularly updated to ensure security and functionality.

One of the advantages of ResourceSpace is that it is very versatile and can accommo-

date different types of assets. Therefore this thesis could be used a base for the next

development of an open source digital asset management system for another client.

Obviously a lot of changes will need to be made and a newer version of the application

installed, but at least after reading what types of changes were made for this version

the next developer can infer what might be expected of them.

Overall this project was a success and fulfilled all of the requirements. The only way to

see how well it actually does in practice is visit the museum and become part of their

audio exhibition.

31

References

Abeysinghe S. RESTful PHP web services. Birmingham, UK: Packt; 2008.

Giova D. AudioResourceSpace [screenshot].
URL: http://dev.mw.metropolia.fi/dianag/AudioResourceSpace/pages/home.php.
Accessed 20 October 2015.

Jacobsen J, Schlenker T, Edwards L. Implementing a digital asset management sys-

tem. Massachusetts, USA: Elsevier Inc; 2005.

Kavanagh P. Open source software. Boston, Massachusetts, USA: Elsevier Inc; 2004.

Mitchell L. PHP web services. Sebastopol, CA, USA: O’Reilly Media, Inc; 2013.

Open Source Initiative [online]. 22 March 2007.

URL: https://opensource.org/osd.

Accessed 10 June 2010.

ResourceSpace documentation wiki (2014) [online].

URL: http://wiki.resourcespace.org/index.php/.

Accessed 23 October 2015.

Riszkiewicz R. A survival guide to customizing and outsourcing a DAM system. Sey-

bold Report: Analyzing Publishing Technologies 2005; 5(1):5-11.

Sarwan Naresh (2014) Open source digital asset management [online].

URL: http://www.opensourcedigitalassetmanagement.org/reviews/available-open-

source-dam/.

Accessed 2 June 2015.

Sutter R, Notebaert S, Walle R. Evaluation of metadata standards in the context of digi-

tal audio-visual libraries. In: Gonzalo J, Thanos C, Verdejo M, Carrasco R, editors. Re-

search and advanced technology for digital libraries. Berlin, Germany; 2006. p.220-

231.

32

Zeng M, Qin J. Metadata. London, England: Facet; 2008.

Appendix 1

 1 (2)

Press Release: The people’s smart sculpture

PRESS RELEASE

The People’s Smart Sculpture

December 2014

__

Start of smart participation project, co-funded by the Creative Europe Programme of the Euro-

pean Union:

The People’s Smart Sculpture

The People’s Smart Sculpture – Social Art in European Spaces is a creative research and inno-

vation project about the cultural evolution of the European city of the future. It addresses the

growing complexity of life in today’s city spaces and imminent challenges to the development of

the urban environment. The People’s Smart Sculpture PS2 explores the possibilities of partici-

pation that will become a smart culture technique as a result of the ongoing digitalization of so-

ciety. 12 partners – including universities, museums, galleries, theatres and research institutes

– in 8 European countries will organize 11 connected open labs integrating new art, design

thinking, science, smart technologies and user culture for the participatory re-design of urbanity.

The project has a budget of 2 million Euros and is funded by the European Commission within

the Creative Europe programme for 3.5 years.

11 creative experiments in participatory art and design for the city of the future

The 12 project partners will implement 11 experimental sub-projects and a European study

about new forms of participation. While some PS2 sub-projects shed light on the ways we per-

ceive our city space, or create speculative city environments, others will analyse problems, iden-

tify challenges and explore interdisciplinary solutions with citizens. The variety of approaches

will reflect the diversity of people, skills, urban art, social processes and urban development.

Renowned artists and designers from 29 countries will participate in the sub-projects. PS2 will

explore and document new strategies for involving digital media and ICT in the development of

user-centered culture.

Appendix 1

 2 (2)

Development of new forms of participation for Smart Cities

Scientists from media-labs, computer science, cultural science, art history, sociology, architec-

ture, design and urban planning will engage with the creative processes. Digital technologies

will not only play an important role in the PS2 project art activities themselves, but directly sup-

port the innovation process by offering new opportunities for empowerment and societal integra-

tion of people of all social groups. The project will connect people and foster the exchange of

ideas about and for smart cities. It is the base for cutting-edge communication between science

and art, creatives, artists, media designers and citizens, and between the people and their gov-

ernments. At the same time it will motivate the broad dissemination of new skills, design exper-

tise and social knowledge relevant to urban re-design.

The People’s Smart Sculpture

The University of Applied Sciences Bremen is the lead partner of the project. The lead coordina-

tor is Martin Koplin, director of the M2C Institute for Applied Media Technology and Culture. The

partners are: Helsinki Metropolia University of Applied Sciences, GAUSS Institute, National

Institute and Museum Bitola, Kristianstad University, Warehouse9, Museum of Broken Relation-

ships, Oslo Barnemuseum, University of Oslo, University of Applied Sciences Düsseldorf,

Gdańsk City Gallery.

Contact:

Martin Koplin

Coordinator The People´s Smart Sculpture PS2

Director / CEO

M2C Institute for Applied Media Technologies and Culture

at the University of Applied Sciences Bremen

Phone: +49-421-5905-5402 E-Mail: koplin@m2c-bremen.de Web: www.m2c-bremen.de

Post address: Flughafenallee 10, D-28199 Bremen, Germany, EU

mailto:koplin@m2c-bremen.de
http://www.m2c-bremen.de/index.php?lang=en

Appendix 2

 1 (2)

Open Source Definition (Open Source Initiative, 2007)

Introduction

Open source doesn't just mean access to the source code. The distribution terms of

open-source software must comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a

component of an aggregate software distribution containing programs from several

different sources. The license shall not require a royalty or other fee for such sale.

2. Source Code

The program must include source code, and must allow distribution in source code as

well as compiled form. Where some form of a product is not distributed with source

code, there must be a well-publicized means of obtaining the source code for no more

than a reasonable reproduction cost preferably, downloading via the Internet without

charge. The source code must be the preferred form in which a programmer would

modify the program. Deliberately obfuscated source code is not allowed. Intermediate

forms such as the output of a preprocessor or translator are not allowed.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be

distributed under the same terms as the license of the original software.

4. Integrity of The Author's Source Code

The license may restrict source-code from being distributed in modified form only if the

license allows the distribution of "patch files" with the source code for the purpose of

modifying the program at build time. The license must explicitly permit distribution of

software built from modified source code. The license may require derived works to

carry a different name or version number from the original software.

Appendix 2

 2 (2)

5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field

of endeavor. For example, it may not restrict the program from being used in a busi-

ness, or from being used for genetic research.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistrib-

uted without the need for execution of an additional license by those parties.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a

particular software distribution. If the program is extracted from that distribution and

used or distributed within the terms of the program's license, all parties to whom the

program is redistributed should have the same rights as those that are granted in con-

junction with the original software distribution.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with

the licensed software. For example, the license must not insist that all other programs

distributed on the same medium must be open-source software.

10. License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style of

interface.

Appendix 3

 1 (1)

Email from Telemeta’s developer

Guillaume Pellerin notifications@github.com

Thu, Jun 4, 2015

Hi Diana,

The next release of Telemeta coming in a few days will introduce a new install proce-

dure based on docker which will make it compatible with windows.

For now, and as a developer, you can grab and start it with our DevBox:

https://github.com/Parisson/DevBox

Please give us some feedback if any trouble (it has not been tested so much on Win-

dows). Thanks!

Guillaume

mailto:notifications@github.com
https://github.com/Parisson/DevBox

Appendix 4

 1 (1)

First version of metadata

1. partial path to file

2. origin of recording (location)

3. timestamp of recording

4. description

5. recorder with¨

6. sample rate

7. filesize

8. bitdepth

9. channels

10. filetype (wav, mp3, etc..)

11. uploaded timestamp

12. uploaded by

13. average bytes per sec

14. bits per sample

15. keywords/tags

16. length

17. artist

18. author

19. sound type

20. category

21. publisher

22. copyright message

23. title

24. subtitle

25. language

26. original filename

27. media type

28. release year

29. place of recording

30. geotag

