

Enhancing a product’s development

and debugging with supporting prod-

uct development

Joonas Varis

Bachelor’s thesis
May 2020
Technology, communication and transport
Degree Programme in Information Technology

Description

Author(s)

Varis, Joonas
Type of publication

Bachelor’s thesis
Date

May 2020

Language of publication:
English

Number of pages

33
Permission for web publi-

cation: x

Title of publication

Enhancing a product’s development and debugging with supporting product develop-
ment

Degree programme

Degree programme in information technology

Supervisor(s)

Salmikangas, Esa; Huotari, Jouni

Assigned by

Valu Digital Oy

Abstract

The aim of the project was twofold. First, to develop a product which makes developing
and maintaining a site search product more efficient. Second, to estimate the value of the
novel supporting product development in the process of developing a site search product.
The project was assigned by Valu Digital Oy, a Finnish company offering web services. The
site search product the novel supporting product development aims to assist is published
by Valu Digital Oy in software as a service model.

Problems the supporting product development aimed to solve were scattered debugging
tools, debugging tied to personnel resource, insufficient data indexed and tools inefficient
to use. The new supporting product was developed in test-driven development. The sup-
porting product gathered product development tools to a single point of origin, enriched
the log data, enabled new ways of debugging and untied personnel resources by making
debugging more approachable for new developers.

The value of the supporting product development was estimated with use-cases based on
problems encountered before. Each use-case execution time was timed with and without
the new supporting product. Results were gathered and summarized and the return of
timely investment was estimated to be around 4000 use-cases. The supporting product
also offered non-quantifiable benefits, such as debugging not being tied to a personnel re-
source and the enablement of different development.

The project succeeded in creating graphical user interface to an abstract system. This of-
fered new possibilities for future product development and enabled new sectors of devel-
opers to get involved in the debugging and development.

Keywords/tags

product development, test-driven development, Elasticsearch

Miscellaneous

3

Contents

1 Context .. 5

1.1 Valu Digital Oy ... 5

1.2 Site Search Product ... 5

1.2.1 Frontend ... 6

1.2.2 Backend .. 7

1.2.3 Configuration Manager .. 7

1.2.4 Development .. 7

1.2.5 Debugging ... 7

1.2.6 Installation .. 8

1.3 Areas of improvement... 9

2 Key Technologies Used ... 10

2.1 GraphQL ... 10

2.2 Cloud server services ... 11

2.3 WordPress ... 11

2.4 React .. 11

2.5 TypeScript .. 12

2.6 Test-Driven Development ... 12

2.7 Elasticsearch .. 12

3 Inspector .. 13

3.1 Definition and development practices .. 13

3.2 Requirements for Site Search Product from the Inspector definition 15

3.3 Final Minimum Viable Product .. 17

4 Inspector Applications in Product Development .. 22

4.1 Estimating Inspector value .. 23

4.2 Use-cases ... 23

4

4.2.1 Case 1. Page is not found with exact title 23

4.2.2 Case 2. Page is not found with exact title 24

4.2.3 Case 3. Page is not found with exact title 25

4.2.4 Case 4. Faulty data is shown in search results 26

4.2.5 Case 5. Developer selecting tags for search UI configuration 27

4.3 Estimating Inspector value based on use-case results 28

5 Discussion .. 29

References ... 31

Figures

Figure 1. Site Search Product software stack ... 6

Figure 2. GraphQL data to query to results example ... 11

Figure 3. The development cycle of test-driven development 12

Figure 4. First wireframe UI of the Inspector, Test Scrape tab 14

Figure 5. First wireframe UI of the Inspector, Stats tab ... 15

Figure 6. Site Search Product architecture figure with Inspector 18

Figure 7. Inspector General information .. 19

Figure 8. Scrape Info main view ... 20

Figure 9. Scrape Info dropdown menu ... 20

Figure 10. Example of a skipped link .. 21

Figure 11. Page inspect, url meta index ... 21

Figure 12. Test Scrape .. 22

Tables

Table 1. Inspector use-case summary .. 28

5

1 Context

This chapter provides contextual information for the better understanding of the

company Valu Digital Oy, its site search product, which this Bachelor’s thesis aims to

support, and the problematic areas of the debugging and development processes of

the site search product.

1.1 Valu Digital Oy

Valu Digital Oy is a web service providing company from Jyväskylä. Founded in 1997

by Kari Turunen, who made the company's mission “auttaa asiakkaitamme

toimimaan verkossa tehokkaasti ja tuottavasti” [to assist our clients in acting

efficiently and productively online] (Yritys 2020).

In 2019, Valu Digital Oy’s revenue was two point five million euros (Finder 2020). The

company employs 30 people and it is among the leading WordPress experts in

Finland. Valu Digital Oy’s main source of income is customized WordPress theme

implementations, hosting and further development (Virenius 2020). In addition to

that, Valu Digital Oy does its own product development, such as the upcoming

Headup, headless WordPress integration framework and its own site search product

(Virenius 2020). The latter is described in detail in the following chapter. The name of

the product is left undisclosed as per Valu Digital Oy’s privacy requests, hence it is

refrerred to as Site Search Product.

1.2 Site Search Product

One of the products Valu Digital Oy offers is a cloud-based site search engine, which

is offered in a Software as a Service (SAAS) distributing model (Virenius 2020). Pages

crawled from sites are identified with tags. Each page can have an unlimited amount

of tags assigned to it that are used for result grouping.

6

Figure 1 presents an overview of the software stack. The site search product’s

software stack can be divided into three categories, i.e. frontend, backend and

configuration manager, each of which are described in the subchapters below.

Current development, debugging and instalment practices are also described in their

respective subchapters (see 1.2.1-1.2.6). The site search product is developed and

maintained by the product development team introduced in subchapter 3.1.

Figure 1. Site Search Product software stack

1.2.1 Frontend

Site search product’s user interface is made with a npm package developed and

maintained by Valu Digital Oy. The package is built with React TypeScript and offers

customizable react components that can be used to build different user interfaces to

match the clients’ needs. Furthermore, the npm package handles sending requests to

the backend and receiving responses, and rendering the data in a user-friendly way.

Based on the configuration specified, the npm package sends tag queries with the

search term to the backend.

7

1.2.2 Backend

The backend of the Site Search Product is built on a cloud platform in which its

different components are run.

In the core of the Site Search Product, the data is stored in Elasticsearch database.

The benefits and crude working of Elasticsearch are described in subchapter 2.7. A

custom site crawler walks through the websites pages and indexes their contents,

which are stored in the Elasticsearch. Crawlers can be triggered via a schedule or an

endpoint. Endpoints are also used, among others, for searches and configuration

saving.

1.2.3 Configuration Manager

The Site Search Product’s configuration manager is a website built for managing

client configurations. It can also be used for triggering manual crawls. The product

development reported in this Bachelor’s thesis is done as an additional feature to the

Manager website.

1.2.4 Development

Each of the areas of Site Search Product is under continuous development. Because

of the long planned lifespan of the product, the development is done in process akin

to test driven development (TDD). TDD is described further in subchapter 2.6.

1.2.5 Debugging

Debugging the Site Search Product can be divided into two categories, i.e. customer

support tickets and debugging development issues.

8

Customer support tickets

While the Site Search Product is in the production phase, clients who have it installed

send Valu Digital Oy support tickets about unexpected product behaviour. Typical

problems include:

A) Information is not found as expected

B) Wrong information is shown

Both of these can be a result from:

A) a human error during product instalment

B) a human error by client

C) a bug in the program

Debugging development issues

New features are done in TDD. Bugs are caught by tests. The cause of the bugs needs

to be tracked and solved. This is complicated by the interfaces between different

parts of the Site Search Product. A command line interface (CLI) is built with a series

of debugging tools, but this requires a local development environment.

1.2.6 Installation

The Site Search Product is installed on a website in the following steps.

1. Creating a search configuration. Search configuration is done with configuration

manager and includes information about the sites to be crawled and how the crawls

are executed.

9

2. Crawling the sites. Sites are crawled and indexed to Elasticsearch.

3. Creating a search user interface. User Interface is created as described in the sub-

chapter 1.2.1.

4. Loading the script on site. The script can be loaded from a content delivery

network (CDN) with a script tag or the npm package can be installed locally.

1.3 Areas of improvement

Valu Digital Oy’s product development team has identified the following five areas as

problematic.

1. Inspecting indexed page is inefficient

There are tools, such as the Dejavu (Dejavu 2020), which can be used for the visual

inspection of data in the Elasticsearch index. Dejavu is currently used with local

Elasticsearch indexes, but using it adds steps to the debugging process. Another way

to inspect indexed contents of a page is to use an application, such as Postman

(Postman 2020), to send http-requests directly to the backend. Using this approach

requires manual copy-pasting of customer Application Programming Interface (API)

keys to request headers and manually forming search queries.

2. Debugging tools require local development environment

The site search product has helper functions for local debugging in command-line

interface (CLI). Customer installation can be performed by any of the Valu Digital Oy’s

developers. Those outside of the product development team, do not necessarily have

the site search product development environment installed. Installation and

debugging should be made easy to approach.

10

3. Debugging is tied to personnel resource

The debugging knowhow is tied to the product development team. Although

debugging is documented, it is faster to direct questions and problems to the

product development team.

4. Data indexed is insufficient for debugging

Currently, the Site Search Product does not index enough metadata for debugging

purposes. Data should be automatically generated from crawls and individual url

failures.

5. Debugging tools are scattered

The Site Search Product’s software stack is fairly complex and its different areas have

their own tools for debugging. This makes installing and debugging the Site Search

Product more difficult than it needs to be. All debugging tools used should be

available from one point of origin.

2 Key Technologies Used

This chapter describes the seven key technologies used throughout the project.

2.1 GraphQL

GraphQL is defined as “a query language for APIs and a runtime for fulfilling those

queries with your existing data” (GraphQL 2020). In GraphQL you can define a subset

of data to be fetched from the data set. Queries can fetch many resources with a

single request, unlike typical REST APIs (GraphQL 2020). GraphQL queries do not

crash on missing values, as all the fields are nullable by default. GraphQL also offers

11

great developer tools and full typescript support (GraphQL 2020). An example of the

GraphQL data type, query and response is depicted in Figure 2.

Figure 2. GraphQL data to query to results example

2.2 Cloud server services

Cloud server services is a product platform where a provider offers different services.

Possible services include different virtual servers, virtual machines and more. There

are currently many providers who offer these types of services, such as Amazon,

Microsoft and Google (Dignan 2020).

2.3 WordPress

WordPress is a content management system (CMS) written in PHP. According to a

W3Techs report on content management systems, WordPress is the leading CMS

with a market share of 63.4% (CMS Report 2020).

2.4 React

React is a component based JavaScript library for UI building (ReactJS 2020),

developed and maintained by Facebook (Dawson 2014).

12

2.5 TypeScript

TypeScript extends JavaScript by adding static type definitions, which allows using

TypeScript validators while programming (TypeScript 2020).

2.6 Test-Driven Development

Test-driven development (TDD) is a type of software development process where the

mindset is “test first”. In TDD, first a failing test is written, then a feature is

implemented, and finally, the test is checked to pass as planned. TDD process forces

the developer to divide features into smaller fragments that can be unit tested. TDD

development cycle is described in Figure 3.

Figure 3. The development cycle of test-driven development

2.7 Elasticsearch

Elasticsearch is a document store built on Apache Lucene search engine library

(Elasticsearch documentation 2020). According to DB-Engines (2020), it is the most

popular database model for search engines. Elastisticsearch has many features that

13

specifically benefit text based search systems, like the ability to analyze the text

while indexing or searching (Elasticsearch documentation 2020).

 Analyzers, like snowball stemmers, can be used for making text indexes more

searchable. With stemming algorithms, the system takes a word and strips it of

language-specific case endings, meaning different cases of the words are searchable

with other cases. For example, the English word “exciting” would be stemmed to

“excit” (Snowballstem 2020).

3 Inspector

The problem areas were identified in subchapter 1.2. A supporting product to solve

these problems was proposed, i.e. Inspector, which would add an interface to exist-

ing products to ease the development and debugging. Four features were identified

for the minimum viable product (MVP).

1. Inspect an URL for indexed content
2. Test scrape an URL for determining how page would be indexed
3. List metadata about the individual crawls
4. List general data about the search index

The development process, implementation of each of the features and the MVP

product are presented below.

3.1 Definition and development practices

The project team consisted of three members, all of whom contributed to the defini-

tion phase of the project. The team members are:

1. M. Virenius, CTO, Supervisory role in the project
2. E. Suuronen, Lead developer, Project management, definition and develop-

ment

14

3. J. Varis, Developer, Definition, development and reporting

The Inspector was defined to be for internal use only with the possibility of exposing

some of its features to the clients in the future. The technology choices were largely

influenced by the technologies already used in the project. Databases were set up

with Elasticsearch. Backend was written with Node.js. Frontend was written with

Typescript React. Data queries were made with GraphQL. Github was used for ver-

sion control.

Development was done in TDD. The alpha version of the Inspector was developed in

a separate branch to a working state and merged to the master branch after code re-

view. After that, each feature and fix was developed in a separate branch and re-

quired a code review before being merged to the master branch. Pull Requests (PRs)

opened by Varis were reviewed by Suuronen and PRs opened by Suuronen were re-

viewed by Varis.

After identifying the four features to be included in the MVP, a wireframe model of

the UI was created. The wireframe model is displayed in Figures 4 and 5.

Figure 4. First wireframe UI of the Inspector, Test Scrape tab

15

Figure 5. First wireframe UI of the Inspector, Stats tab

3.2 Requirements for Site Search Product from the Inspector definition

The features defined in the beginning of this chapter set new requirements for the

Site Search Product. Each customer's search index is an individual Elasticsearch index.

The need for supporting indexes was identified to fulfil the new requirements. An in-

dex where data about individual crawls were stored was added alongside the existing

page index. At the same time, a page meta index was added alongside the existing

page index, where information about individual page indexing was to be saved in the

events when the page was not indexed in the page index.

The crawl metadata index was named “stats index”. Stats index holds the metadata

of each individual crawl instance. Metadata about the site crawl offer insight into the

history of the search index. The following information of the crawl is indexed: the

crawl ID crawl, starting timestamp, crawl duration, the universally unique identifier

(UUID) of the crawl, different domains in the index, deleted domains during the

crawl, page count from sitemap(s), received bytes and an individual numeric value

16

for pages and pdfs (seen, added, deleted, updated, no operation and failed counts),

and, lastly, a data dump field where any additional data is stored.

The page meta index was named “url meta index”. Url meta index holds information

about encountered pages that were not indexed during the crawl. This data can be

used to debug why a specific page was not indexed. The following information is

stored for each such page: the page ID, url, domain, reason why it is not indexed, op-

tional message, url parent links, the scrape date, UUID, used CSS-selector, used

cleanup CSS-selector and a data dump field where any additional data about the re-

jection event is recorded.

New GraphQL resolver functions were defined to support Inspector. The different re-

solvers were grouped by the index they fetch data from. Methods were created for

resolvers as needed. The following functions were programmed:

1. Page Index

- Fetching pages from page index
- Fetching current lock status
- Fetching current index size
- Fetching unique tags in page index
- Fetching different domains and their page counts

2. Stats Index

- Fetching an individual stat from stat index
- Fetching all the stat UUIDs
- Fetching the stat count from stat index
- Fetching the last crawl date

3. Url Meta Index

- Fetching results from url meta index

17

4. Other

- Performing a test scrape and returning the result without changes to the in-
dex

3.3 Final Minimum Viable Product

The product site is accessed via Configuration Manager. Each search configuration

automatically gains an inspector usage page from WordPress via template hierarchy

(WordPress template hierarchy).

The UI built with React TypeScript. Components are done mainly with Ant Design

(2020), a React UI library.

The state of the application is stored in the URL with the history API using a react

router npm package, “react-router-dom”. With this, it is possible to share the state of

the React application via link, which enables efficient communication between devel-

opers working on different machines (React Router Dom, N.d.).

The new architecture with added methods is depicted in Figure 6, where the new

features are colored green.

18

Figure 6. Site Search Product architecture figure with Inspector

19

When navigated through the Configuration Manager permalink in WordPress admin,

the Inspector opens in the “General information” tab (see Figure 7). GraphQL queries

are made to retrieve the data shown in the general tab. Detailed GraphQL queries

made for each of the Inspector tabs are outlined at the end of subchapter 3.2.

Figure 7. Inspector General information

20

The second tab, “Scrape Info”, displays metadata about the specific crawl instance

and page meta associated with said crawl, shown in Figures 8, 9 and 10. Crawl in-

stances can be switched with the dropdown menu at the top part of the page, as

demonstrated in Figure 9. Page metadata for individual targets can be browsed at

the bottom of the page. After choosing the target, the user can browse through the

grouped pages. An example of a skipped link entry can be seen in Figure 10.

Figure 8. Scrape Info main view

Figure 9. Scrape Info dropdown menu

21

Figure 10. Example of a skipped link

On the third tab, “Page Inspect”, the user can inspect indexed data about any given

url. If the page was not indexed for some reason, the GraphQL query fallbacks to

fetching from url meta index. GraphQL enables resolving different return types based

on the return type. When searching for a page, the Inspector first tries to search for

page in page index. If no result is found, the last crawl’s UUID is used to match to

results from url meta index. The returned data are provided in JSON format that

exposes the page index mapping and is redacted (see Figure 11).

Figure 11. Page inspect, url meta index

22

On the fourth tab of the Inspector, “Test Scrape”, the user can perform test scrapes

on any given url without making changes to the indexes. The test scrape feature

scrapes the page and returns the same data the same way as the actual crawl

process. This is achieved by using the same functions and methods in the backend.

The Test scrape handles both pages that would be and would not be indexed and

provides information on both. If the page were to be indexed, the method would

return all the data that would be indexed in the same format that the page index

uses. If the page were to be indexed in url meta index, the method would return the

data in same format the url meta index uses. Data models were deemed sensitive

and were redacted from figure 12.

Figure 12. Test Scrape

4 Inspector Applications in Product Development

The four features chosen for the MVP solution each address a problematic area

identified in subchapter 1.2. These features introduce new ways for debugging, while

they also improve and collect existing ones under the same point of origin.

23

4.1 Estimating Inspector value

Currently, there is no data set large enough to perform scientific analysis on before

or after the implementation of Inspector. However, the measured benefit of the

Inspector can be estimated on a use-case basis by listing steps and the time it takes

to perform each use-case with and without the Inspector. Use-cases selected for

analysis are chosen optimistically, i.e. they directly benefit from a feature

implemented in the Inspector. The Site Search Productcan be installed on sites other

than WordPress, but only WordPress sites hosted by Valu Digital Oy with a wp-valu-

search plugin installed are used in demo scenarios. The use-cases were tested in a

manner that the user knows what to do next and how to perform each of the steps.

Each of the steps involved in the use cases were performed and timed by Varis in

precision of five seconds.

Some of the problems identified in subchapter 1.3 are not easily quantifiable, such as

“Debugging is tied to personnel resource”. An estimation of the value of

improvements to the identified problems was beyond the scope of this thesis.

4.2 Use-cases

Use-cases are described with how a client or developer would experience product

behaviour. Then, the underlying causing effect is listed and an explanation why a

particular behaviour occurs is provided. Steps to identify the underlying cause and

the time to execute those steps are listed with and without the use of Inspector.

4.2.1 Case 1. Page is not found with exact title

Cause: Faulty content selector.

Explanation: Developers and clients can define page content CSS-selectors and

cleanup CSS-selectors. It is possible to make human error with overlapping or faulty

selectors.

24

Steps without Inspector:

1. Navigating to the clients page (5s)
2. Use the client’s search to rule out user error (10s)
3. Logging in to the clients WordPress admin panel (15s)
4. Checking the page has not been published since the last crawl (15s)
5. Navigating to the page in question (5s)
6. Checking the page meta tag wp-valu-search exposes (20s)
7. Combining content selectors and cleanup selectors manually from

Configuration Manager and page meta tag (60s)
8. Manually checking the page’s DOM structure (120s)

total: 250s

Steps with Inspector:

1. Open Configuration Manager (15s)
2. Open clients inspector (5s)
3. Navigate to page inspect (5s)
4. Input page’s url in question → error: no content is shown + used content

selector and cleanup selector (5s)
5. Manually checking the page’s DOM structure (120s)

total: 150s

4.2.2 Case 2. Page is not found with exact title

Cause: Require meta tag option is set to true, and wp-valu-search is disabled.

Explanation: By default, the site search product only indexes pages that exposes a

meta tag, which provides additional information about the page to crawl. When wp-

valu-search is not installed or the plugin is disabled from wp-admin, no meta tag is

shown.

25

Steps without Inspector:

1. Navigating to the clients page (5s)
2. Use the client’s search to rule out user error (10s)
3. Logging in to the clients WordPress admin panel (15s)
4. Checking the page has not been published since the last crawl (15s)
5. Navigating to the page in question (5s)
6. Checking the page meta tag wp-valu-search exposes (5s)

total: 55s

Steps with Inspector:

1. Open Configuration Manager (15s)
2. Open clients inspector (5s)
3. Navigate to page inspect (5s)
4. Input page’s url in question → error: “No metatag provided” (5s)

total: 30s

4.2.3 Case 3. Page is not found with exact title

Cause: There is no link to the page and page is missing from sitemap.

Explanation: The site search product crawls through websites by walking links and /

or using the sitemap(s). If the site does not have a link leading to the page and it’s

not present in the sitemap the page cannot be found without defining it as a starting

path.

Steps without Inspector:

1. Navigating to the clients page (5s)
2. Use the client’s search to rule out user error (10s)
3. Logging in to the clients WordPress admin panel (15s)
4. Checking the page has not been published since the last crawl (15s)
5. Navigating to the page in question (5s)

26

6. Checking the page meta tag wp-valu-search exposes (20s)
7. Using CLI tools from local development environment for scraping the page

(15s)
8. Crawling the site to local elasticsearch index (120s)
9. Checking the local Elasticsearch index for page in question (60s)
10. Checking sites sitemap manually for missing page (30s)

total: 325s

Steps with Inspector:

1. Open Configuration Manager (15s)
2. Open clients inspector (5s)
3. Navigate to page inspect (5s)
4. Input page’s url in question → no page in index message (5s)
5. Navigate to test scrape (5s)
6. Input page’s url in question → shows page correctly (5s)
7. Checking sites sitemap manually for missing page (30s)

total: 70s

4.2.4 Case 4. Faulty data is shown in search results

Cause: Faulty content and or cleanup CSS-selectors.

Explanation: Developers and clients can define page content CSS-selectors and

cleanup CSS-selectors. It is up to the developer installing the site search product to

select correct content/cleanup CSS-selectors.

Steps without Inspector:

1. Navigating to the clients site (5s)
2. Using browser developer tools correct content / cleanup CSS-selectors are

determined for different page layouts. (300s)
3. Open Configuration Manager (15s)
4. Update client’s Configuration (15s)
5. Crawl site with updated config (300s --- 8h)

27

6. Search results are checked again and CSS-selectors are updated if necessary.
(120s) → This is problematic as it might take many iterations to get selectors
to be perfect. Each crawl can take anywhere from 5 minutes to many hours
depending on the size of the site.

total: 555s + (crawl time x N)

 Steps with Inspector:

1. Navigating to the clients site (5s)
2. Using browser developer tools correct content / cleanup CSS-selectors are

determined for different page layouts. (300s)
3. Open Configuration Manager (15s)
4. Update client’s Configuration (15s)
5. Open clients Inspector (5s)
6. Navigate to test scrape (5s)
7. Ensure correct selectors (120s)
8. Iterate if necessary
9. Crawl site with updated config (300s --- 8h)

total: 465s + (iterations * N) + crawl time

4.2.5 Case 5. Developer selecting tags for search UI configuration

Cause: Tags are used for content grouping as described in subchapter 1.1.

Explanation: When defining the site search product’s user configs developers need

to form tag queries which are used for content grouping.

Steps without Inspector:

1. Navigate to CDN endpoint exposing client specific tags in JSON-format (20s)
2. Select correct tags from JSON (120s)

total: 140s

28

 Steps with Inspector:

1. Open Configuration Manager (15s)
2. Open clients Inspector (5s)
3. Click to open indexed tags and page counts to see tags in used friendly format

(5s)
4. Select tags (60s)

total: 85s

4.3 Estimating Inspector value based on use-case results

In all of the selected cases, the Inspector saved time. Results of the use-case study

are shown in table 1.

Table 1. Inspector use-case summary

If we assume that the average use-case matches the average of cases selected, the

time saved with Inspector on an average use-case equals the average time saved of

use-cases (105 seconds). The Inspector took approximately 116 hours to complete.

The Inspector’s return of investment on use-cases alone would take 3977 cases.

Inspector use-case summary

Case

Completion time
without Inspec-
tor(s)

Completion
time with In-
spector(s)

Time Sa-
ved(s)

% time saved /
without inspec-
tor

Case 1. Page is not found with ex-
act title 250 150 100 40.00%

Case 2. Page is not found with ex-
act title 55 30 25 45.45%

Case 3. Page is not found with ex-
act title 325 70 255 78.46%

Case 4. Faulty data is shown in
search results* 555 465 90 16.22%

Case 5. Developer selecting tags for
search UI configuration 140 85 55 39.29%

* the final time of the case largely depends on the customer crawl time

29

Nearly 4000 cases sounds like a lot, but each individual installation instance includes

many instances where the Inspector is used. The developer installing the search

product uses the Inspector approximately 8 to 10 times and when the developer

skips one of these steps, it tends to result in a support ticket in the future.

The benefits of the Inspector in the Site Search Product’s development are more

polarized as the Site Search Product’s technology stack is wide and the Inspector only

covers a very specific area of it. Therefore, while it might be invaluable in some of the

development, it might not be used at all in others.

5 Discussion

The novel project described in this thesis supports that the product development

process can be enhanced with supportive product development. The value of said

product development must be evaluated on a case-by-case basis. It should be noted

that the value of supporting product development should not be judged by return of

investment over use-cases alone, as it can offer immaterial benefits which are hard

to quantify. Regarding the Inspector project, such benefits were debugging is no

longer tied to personnel resources, enrichment of data logs that offer a basis for new

ways of debugging, and professional growth and learning gained during the project

by the project team. The Inspector also adds value when it comes to training

employees new to the Site Search Product. If the Site Seach Product stack is easier

and faster to comprehend, hours or even days are cut out of the time it would take

to reach the same level of competence with the system.

Currently, approximately one fourth of the developers at Valu Digital Oy have

installed the Site Search Product for a client and first installations were done without

the Inspector. The general consensus is that the current documentation and the

developer tools developed have made installation relatively simple and easy to

follow. Virenius estimates that the number of developers who have installed the Site

30

Search Product by the end of 2020 will rise to nearly 100% (Virenius 2020). Future

use and wider user base will determine the true value of the Inspector.

During the development of Inspector, the groundwork for building a visualization

into an abstract system was done. This enables personnel outside the Site Search

Product development team to gain independent insights about the system. In the

future, Valu Digital Oy plans to add more tools to the Inspector for its developers and

plans to keep the option to expose some part of the Inspector to its clients. The

development of the Inspector has opened new doors for product development and

offers a solution for the problematic areas identified in the beginning of the project.

31

References

Ant Design. 2020. React UI library. Accessed 14.4.2020. https://ant.design/

Dawson, C. 2014. JavaScript’s History and How it Led To ReactJS. Web article pub-

lished in the new stack website. Accessed 14.5.2020. https://thenewstack.io/javas-

cripts-history-and-how-it-led-to-reactjs/

DB-Engines. 2020. DB-Engines Ranking of Search Engines. Monthly updated web

chart about dbms popularity. Accessed 14.5.2020. https://db-engines.com/en/rank-

ing/search+engine

Dejavu. 2020. Appbase’s Open Source library; Dejavu. Accessed 2.5.2020.

https://opensource.appbase.io/dejavu/

Dignan, L. 2020. Top cloud providers in 2020. Web article published in zdnet, business

technology news website. Accessed 22.5.2020. https://www.zdnet.com/article/the-

top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas/

Elasticsearch documentation. 2020. Documentation of Elasticsearch. Accessed

14.5.2020. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-

analyze.html

Finder. 2020. Finder, Financial information. Accessed 24.4.2020.

https://www.finder.fi/Internet-palvelut/Valu+Digi-

tal+Oy/Jyv%C3%A4skyl%C3%A4/yhteystiedot/156790

GraphQL. 2020. GraphQL technology website. Accessed 2.5.2020.

https://graphql.org/

Postman. 2020. Postman application website. Accessed 2.5.2020. https://www.post-

man.com/

ReactJS. 2020. React technology website. Accessed 22.5.2020. https://reactjs.org/

React Router Dom. N.d. Npm package documentation website. Accessed 14.4.2020.

https://reacttraining.com/react-router/web/api/Hooks/usehistory

https://ant.design/
https://opensource.appbase.io/dejavu/
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas/
https://www.zdnet.com/article/the-top-cloud-providers-of-2020-aws-microsoft-azure-google-cloud-hybrid-saas/
https://graphql.org/
https://www.postman.com/
https://www.postman.com/
https://reactjs.org/
https://reacttraining.com/react-router/web/api/Hooks/usehistory

32

Snowballstem. 2020. Snowball string processing language website. Accessed

14.5.2020. https://snowballstem.org/

TypeScript 2020. TypeScript technology website. Accessed 14.5.2020.

https://www.typescriptlang.org/

Usage statistics of content management systems. Report about CMS usage percen-

tile. W3Techs. Updated daily. Accessed 22.5.2020. https://w3techs.com/technolo-

gies/overview/content_management

Virenius, M. 2020. CTO. Valu Digital Oy. Interview. 1.11.2020.

WordPress template hierarchy. N.d. WordPress documentation. Accessed 14.5.2020.

https://developer.wordpress.org/themes/basics/template-hierarchy/

Yritys. 2020. Valu Digital website. Accessed 24.4.2020. https://www.valu.fi/yritys/

https://snowballstem.org/
https://www.typescriptlang.org/
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management

