

Temperature and Humidity Monitoring in
Switchgear

Johnny Huynh

Degree Thesis for Bachelor of Engineering

Degree Programme in Electrical Engineering and Automation

Vaasa, 2020

EXAMENSARBETE

Författare: Johnny Huynh

Utbildning och ort: El- och automationsteknik, Vasa

Inriktningsalternativ: Automation

Handledare: Ronnie Sundsten, Mats Warg, Tom Kanerva, Thore Björkgren

Titel: Temperatur och fuktövervakning av ställverk

Datum Maj 14, 2020 Sidantal 48 Bilagor 4

Abstrakt

Examensarbetet har gjorts åt företaget VEO Oy som specialiserar sig på lösningar för

automation och elektrifiering. Uppgiften gick ut på att undersöka olika temperatur- och

fuktgivare och givarsystem som används i ställverken på marknaden för att vidareutveckla

VEO:s ställverkprodukt VEDA5000.

Ett modernt tillvägagångsätt för implementering av temperatur och fuktövervakning av

ställverk presenteras med design baserade på Zigbees trådlösa nätverk, RFID-passiva

givare, Chameleon teknologin, SAW-baserad givare och optisk fiber. Examensarbetet går

igenom teknologin som används av olika företag på marknaden och den teori som behövs

för att konstruera ett mikrokontrollersystem för plattform, mjukvarutestande och för

grundläggande IoT-förståelse. Andra fokus har varit på IoT-domänen, i olika moln, IoT-

plattform, mikrokontroller och temperaturgivare.

Praktiska delen av examensarbetet går igenom processen för att ansluta en ESP32

mikrokontroller till temperatur- och fuktgivare med en Raspberry PI och för att sända data

till molnet som till exempel IBM cloud genom Node-Red. Data samlas för fortsatt analys

och grafisk visualisering.

Språk: engelska Nyckelord: VEO, ställverk, IoT, Zigbee, RFID, SAW, optisk
 fiber, VEDA5000, Raspberry Pi, ESP32, IBM

BACHELOR’S THESIS

Author: Johnny Huynh

Degree Programme: Electrical Engineering and Automation

Specialization: Automation

Supervisors: Ronnie Sundsten, Mats Warg, Tom Kanerva, Thore Björkgren

Title: Temperature and Humidity Monitoring in Switchgear

Date May 14, 2020 Number of pages 48 Appendices 4

Abstract

This Bachelor’s thesis has been done for the company VEO Oy that specializes in providing

solutions for automation and electrification, the assignment was to research different

temperature and humidity sensors and sensor systems used in switchgear in the market

to further improve VEO VEDA5000 switchgear product.

A modern approach to implementation of temperature and humidity monitoring for

switchgear is presented on designs based on Zigbee wireless, RFID passive sensors,

Chameleon technology, SAW-based sensor, and optic fiber. The thesis goes through the

technology used by different companies in the market and the needed theory to construct

a microcontroller system for platform, software testing, and basic IoT understanding.

Other focuses have been set into the IoT domain, into different clouds, IoT platforms,

microcontrollers, and temperature sensors.

The practical part of this thesis goes through the process to connect an ESP32

microcontroller to temperature and humidity sensors with a Raspberry Pi and to send data

to the cloud such as IBM cloud through Node-Red, and data collects for further analysis

and graphical visualization.

Language: english Key words: VEO, Switchgear, IoT, Zigbee, RFID, SAW, Optic
 fiber, VEDA5000, Raspberry Pi, ESP32, IBM

Table of Contents

1 Introduction ... 1

1.1 Purpose ... 1

1.2 VEO Oy .. 2

1.3 Switchgear VEDA 5000 .. 3

2 Internet of Things and microcontroller... 5

2.1 The Internet of Things (IoT) .. 5

2.2 Cloud computing.. 6

2.2.1 Cloud platforms ... 7

2.2.2 IBM Cloud services .. 8

2.3 Node-red .. 9

2.4 Raspberry Pi.. 10

2.5 ESP32 .. 11

2.6 Modbus and MAX485 Module .. 12

2.7 Open Platform Communications United Architecture (OPC UA) 13

2.8 I2C and SPI chip communication interface ... 14

2.8.1 SPI ... 14

2.8.2 I2C .. 15

2.9 Temperature and humidity sensors .. 15

2.9.1 Semiconductor based integrated circuit .. 15

2.9.2 Thermocouple ... 16

2.9.3 Resistance temperature detector (RTD) .. 16

2.9.4 Thermistor .. 17

2.9.5 BME280 ... 17

2.9.6 Thermocouple K type/MAX6675 ... 17

2.10 Message Queuing Telemetry Transport (MQTT) ... 18

2.10.1 Publish-Subscribe (pub-sub) .. 19

2.10.2 Quality of service ... 19

3 Switchgear sensor systems ... 20

3.1 Zigbee ... 20

3.1.1 Zigbee Green Power ... 21

3.2 Zigbee Green Power system ... 21

3.2.1 Concentrator ... 22

3.2.2 Mounting locations .. 22

3.3 Radio Frequency Identification (RFID) ... 23

3.3.1 Frequencies .. 24

3.4 Axzon (formerly RFMicron) Chameleon technology ... 25

3.4.1 Axzon sensor system .. 26

3.4.2 Mounting locations .. 28

3.5 Surface-acoustic waves (SAW) RFID .. 29

3.6 ABB SAW system .. 30

3.6.1 Mounting locations .. 31

3.7 Intellisaw SAW system .. 32

3.7.1 Mounting locations .. 32

3.8 Optical Fiber ... 33

3.8.1 Fluorescence sensor .. 34

3.9 Osensa optical fiber system .. 35

3.9.1 Temperature probes ... 35

4 ESP32 and Raspberry Pi prototype system .. 37

4.1 Hardware and software .. 37

4.1.1 ESP32 Code overview ... 38

4.1.2 Raspberry Pi ... 39

4.1.3 Pin connections .. 40

4.1.4 Raspberry Node-Red connection .. 41

4.1.5 IBM cloud services ... 42

4.1.6 IBM Watson IoT Platform .. 43

4.1.7 Cloudant .. 44

4.1.8 IBM cloud Node-Red service .. 45

4.1.9 Data historian Chart .. 46

5 Conclusion ... 47

6 References .. 49

6.1 Appendix-1 Function code for message conversion and utilization for the
historian chart... 52

6.2 Appendix-2 Exported Node-Red configuration on Raspberry Pi 54

6.3 Appendix-2 Exported Node-Red configuration on IBM cloud 56

6.4 Appendix-3 Arduino code for ESP32-2 MAX6675 .. 57

6.5 Appendix-4 Arduino code for ESP32-1 BME280 sensor ... 59

 1

List of figures
Figure 1 VEO business sectors [1].. 2

Figure 2 VEO key figures from 2018 [1] ... 3

Figure 3 Technical data of the VEDA5000 low-voltage switchgear [1] 4

Figure 4 IoT growth graph from 1992 to 2020 and onward [2].. 5

Figure 5 Market leading Cloud platforms from 2019 [5] .. 7

Figure 6 Services different cloud providers offers from 2018 [6] .. 8

Figure 7 Example system configuration with Cloudant service [8] .. 9

Figure 8 Different options to run Node-Red on [9] .. 10

Figure 9 Different feature and specification of the latest Raspberry Pi version 4 [11] 11

Figure 10 ESP32 main functions [12] .. 12

Figure 11 MAX485 Module [15] .. 13

Figure 12 SPI communication interface connection example [17] ... 14

Figure 13 I2C communication interface connection example [17] ... 15

Figure 14 Different types of thermocouples and their configurations [21] 16

Figure 15 BME280 measurement capabilities [22] .. 17

Figure 16 MAX6675 [24] ... 18

Figure 17 MQTT communication model [26] .. 19

Figure 18 CL110 humidity sensor and TH110 temperature sensor from Schneider [28] . 22

Figure 19 Harmony Hub ZBRN2, an example of a concentrator [29] 22

Figure 20 Example of possible mounting locations [28] .. 23

Figure 21 RFID system overview [31] ... 24

Figure 22 Frequencies in the radio frequency domain [32] ... 24

Figure 23 UHF ranges used around the world [33] ... 25

Figure 24 Magnus S sensor design overview [35] .. 26

Figure 25 Axzon RFM3250 sensor device [36] ... 26

Figure 26 Axzon RFM3260 lug-mounted sensor device [36] .. 27

Figure 27 Axzon RFM3240 sensor device [36] .. 27

Figure 28 Axzon RFM3254 [36] .. 27

Figure 29 Table on recommended locations to mount the sensors [36] 28

Figure 30 RFM3250 mounted using a flexible band [36] .. 28

Figure 31 Example of an antenna and reader [36] ... 29

Figure 32 Surface Acoustic Wave technology overview [39] .. 29

Figure 33 Saw technology signal overview [40] .. 30

Figure 34 ABB SAW sensor design overview [41] .. 30

Figure 35 Example of mounting areas and positions [41].. 31

Figure 36 Intellisaw temperature sensor [42] .. 32

Figure 37 IEC type switchgear mounting positions [42] ... 32

Figure 38 ANSI type switchgear mounting positions [42] ... 33

Figure 39 Fiber-optic cable overview [43] ... 33

Figure 40 Fluorescent sensor overview [45] .. 34

Figure 41 Schematic overview over the use of a fluorescence-based sensor by Osensa
[47] .. 34

Figure 42 FTX-910-PWR+R transmitter produced by OSENSA innovations [48] 35

Figure 43 PRB-110 fiber-optic temperature probe [48] ... 35

Figure 44 PRB-910 fiber-optic temperature probe [48] ... 36

Figure 45 Rings lugs in 1/4, 3/8, and 1/2 sizes can be fastened to the end of the probes
[48] .. 36

Figure 46 Mounting position example [48] .. 36

 2

Figure 47 Prototype ESP32-1 BME280 and ESP32-2 MAX6675 .. 37

Figure 48 Overview over the whole process [49] ... 39

Figure 49 Putty .. 40

Figure 50 Raspberry Pi Node-Red configuration.. 41

Figure 51 Message received visible from using the debug node ... 42

Figure 52 Different chart options on the dashboard ... 42

Figure 53 Services created in IBM cloud .. 43

Figure 54 Devices added to IBM Watson IoT ... 43

Figure 55 Device Credentials produced from adding a device ... 44

Figure 56 Graphical visualization of the data received .. 44

Figure 57 Creation of database in Cloudant service .. 45

Figure 58 Data stored as JSON format in the database created in Cloudant 45

Figure 59 IBM cloud Node-Red configuration to Cloudant ... 46

Figure 60 Function node code for the data reconstruction .. 46

Figure 61 Node-Red configuration on IBM cloud for historian chart 46

Figure 62 Historian chart ... 47

 1

1 Introduction

Electrical switchgear is an essential part of an electrical power system and is used to

distribute electrical power and to isolate electrical loads. Switchgears are produced in

different forms but include a combination of electrical elements such as circuit breakers,

disconnectors, fuses and distribution busbars arranged in a lineup of frames. Switchgears

distributes electrical current, up to thousands of amperes that build up heat that can have

unexpected temperature rises at a particular location, it can be useful to monitor

temperature, humidity or partial discharge to know the condition of the switchgear to

detect corrosion, some other type of defect or make improvements to the design. The

impractical way to monitor the temperature has been to use infrared cameras but the

systems available have now developed into more practical systems such as wireless

systems and systems connected to the cloud and software for remote data analysis that

uses different algorithms and graphical visualization of data.

1.1 Purpose

The main assignment was to research different temperatures and humidity systems and

solutions for VEO’s Low-voltage-switchgear VEDA5000 product to develop or implement

a system for the switchgear in the future and possibly also into other VEO switchgear

products like the Medium-voltage switchgear Vector. The systems researched could

improve the switchgear design and condition and become more automated from

monitoring from infrared cameras. As switchgears are installed, access to their backside

content can be difficult to reach and when a huge amount of current is conducted, a strong

magnetic field is developed so a non-interference system, non-maintenance, and wireless

system would be most practical.

As the IoT domain is becoming more and more active in the industrial sector,

implementing a system connecting the switchgear to the internet and taking advantage

of the data a switchgear can give, could be beneficial, cost-saving, and efficient for data

analysis using different algorithms.

 2

1.2 VEO Oy

Vaasa engineering now VEO Oy, was founded in 1989 by Mauri Holma, Harri Niemelä,

Martti Manner, Pekka Haakana, Jan Sandvik, Heikki Ojakoski and Martti Ehrnrooth. Vaasa

Engineering’s main business idea was to deliver automation and electrical system

solutions for energy and power plants in Finland and abroad has now expanded into

different business sectors. The different areas VEO offers solutions in are power

production, power distribution, and power utilization. [1]

Figure 1 VEO business sectors [1]

Power Generation applications:

- Hydropower: Consultation and turbine and generator turnkey deliveries and

modernization of electrification and automation systems for hydropower plants.

- Thermal Power: Turnkey deliveries of instrumentation, automation system design

and customization of automation and electrification system of power plants.

Engine and Hybrid power: Hybrid power plant and marine project solutions such

as plant commissioning services, spare parts for engines and modernization of

power plant equipment and electrification, maintenance, and end-user training.

Power Distribution applications:

- Wind power: Turnkey deliveries of applications, connecting wind farms to the grid

with the process consisting of engineering, civil work, substation building,

transformers, wind farm cabling, switchgear, control and protection systems,

monitoring systems, installation, and commissioning.

 3

Power Utilization applications:

- Industry: Small rebuilds and retrofit projects from greenfield to existing plants for

different industries such as pulp and paper, marine. Project deliveries include

design, engineering, factory acceptance testing, installation, commissioning,

start-up, and customer training.

- Marine: Solutions with a product range of main and distribution switchboards,

motor control centers, electric drives applications, generators, marine thrusters,

transformers, protection equipment. Deliveries can include preliminary design,

dimensioning, manufacturing, calculations and engineering, installation

supervision, commissioning, and customer training.

Figure 2 VEO key figures from 2018 [1]

VEO has over 400 employees and offices in Norway, Sweden and the UK with a turnover

of over €100M and aiming for over €200M by 2023 and VEO is one of the largest turnkey

delivery suppliers of substations in the Nordic countries. [1]

1.3 Switchgear VEDA 5000

Veda 5000 is a low voltage switchgear designed according to customer's needs for specific

applications in both land and sea industry.

 4

Figure 3 Technical data of the VEDA5000 low-voltage switchgear [1]

Main areas:

- VEDA Motor Control Center

- VEDA Drives

- VEDA Marine

- VEDA Hybrid

 5

2 Internet of Things and microcontroller

Chapter 2 gives a short overview of the IoT domain, hardware, sensors, and software used

in the practical part to test IoT platforms, different software and to get a basic

understanding of IoT.

2.1 The Internet of Things (IoT)

The Internet of Things is a wide technology category that includes connected devices

working together as a system to deliver data within an application, the subsets that can be

viewed with IoT are for example:

- Machine to Machine communication (M2M)

- Machine to Human communication (M2H)

- Radio Frequency Identification (RFID)

- Location-based services (LBS),

- Lab-on-a-Chip (LOC) sensors

- Augmented Reality (AR)

- Robotics and vehicle telematics

Figure 4 IoT growth graph from 1992 to 2020 and onward [2]

 6

Connected devices by 2020 are estimated to reach 50 billion devices with many of the

technologies started from military and industrial supply chain applications. The common

features are combined sensory objects with communication intelligence and data running

over a mix of wired and wireless networks, the data is associated with an analytics or

decision support engine enabling an actionable outcome. The data collected from the

system at different points is sent to a platform that enables the application and data

transmission to the device endpoint. [3]

2.2 Cloud computing

In Cloud computing there are three main types of cloud computing providing its distinct

range of services, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software

as a Service (SaaS).

Infrastructure as a Service (IaaS): Offers cloud computing based on on-demand to

networking, storage, and server computing resources. According to the storage and

processing needs, the hardware resource can scale and run on your platform and

applications through the provider's infrastructure. [4]

Platform as a Service (PaaS): Provides access to a cloud environment to develop, manage

and host applications with a range of tools to support testing and development, and the

provider is responsible for the underlying infrastructure, backups, security, and operating

system. [4]

Software as a Service (SaaS): Provides access to cloud-based software that self manages

itself instead of installing a software application on your local device. You access the

applications using the web or an API, An API (Application Programming Interface) is a

standardized, documented interface that allows one computer application to “talk” to

another application for the exchange of messages and data between one computer

application and another. [4]

Users pay for per-use-basis according to how much of the service is used and can be cost-

saving, reducing resources spent on managing hardware and software and gives you the

ability to scale your compute and storage requirements according to demand. It offers

 7

security solutions to protect your system and data with expert monitoring and provides

rapid data recovery/vast data center if an outage occurs. [4]

2.2.1 Cloud platforms

Figure 5 Market leading Cloud platforms from 2019 [5]

Amazon web services is the market leader with 33% of the share for 2019 after entering

the market in 2016 followed by Microsoft, Google, and IBM.

Choosing one cloud vendor over the other depends on the needs of each customer and the

workloads that are being run. Some organizations choose to use multiple providers within

different parts of the operations/use case for a multi-cloud approach. AWS, for example,

offers a wider choice of services because of entering the market first and Microsoft is a

popular choice because of its combination with other Microsoft applications such as Office

365 and Teams, all of them are strong in machine learning but Google stands out for its

deep expertise around open source technologies. Most of the cloud platforms offer mostly

the same services but some have better quality, different prices/price models, and

different options.

 8

Figure 6 Services different cloud providers offers from 2018 [6]

2.2.2 IBM Cloud services

IBM cloud offers over 170 services such as:

Compute

Compute resources, bare metal servers, virtual servers, serverless computing and

containers. [7]

Network

Cloud networking services, virtual private network (VPN) tunnels and firewalls. [7]

Storage

Object, block and file storage for cloud data. [7]

 9

Integration

Services to integrate on-premises systems or different kind of applications. [7]

IoT Watson platform

Cloud-hosted service with the capabilities to register, control and connect devices for

visualization and data storage. [7]

IBM Cloudant

Open-source Apache CouchDB based database service running as a service in the IBM

cloud which stores JSON documents.

Figure 7 Example system configuration with Cloudant service [8]

Artificial Intelligence (AI)

Machine learning, natural language processing, and visual recognition. [7]

2.3 Node-red

Invented by J, Paul Morrison, and developed by IBM’s Emerging Technology (a

collaboration between experts and customer), Node-red is a programming open-source

tool for wiring together “nodes” (code boxes), hardware devices and APIs through a user-

friendly browser-based editor. A wide range of nodes containing data with specific codes

can be wired together so that tasks pass on to the next node which creates a flow until the

end of the node flow. Without the need to program complex code and understand the

 10

individual lines of code, node-red simplifies the complex tasks by a visual representation

to make it more accessible to a wider range of users. [9]

Node red allows users to start doing complex tasks quite quickly without the need to spend

countless hours writing code.

Tasks Node-Red can do are for example:

- MQTT connection between development boards (Arduino, Raspberry, ESP32)

- Retrieve data from the web (stock prices, weather forecast)

- Create time-triggered events

- Store and retrieve data from different database services (MySQL, Cloudant, Db2)

- Communicate with third-party services (IFTTT.com, adafruit.io)

Figure 8 Different options to run Node-Red on [9]

Node-Red is built on Node.js making it possible to run it on different low-cost hardware,

cloud, and virtual computer.

2.4 Raspberry Pi

Raspberry pi is a low-cost single-board computer (SBC) built on a single circuit board with

microprocessor(s), memory, input/output (I/O) as the usual features. The device is made

by the Raspberry Pi Foundation, a charity from the UK aiming at educating people in

 11

computing and making computing education more accessible. The first Raspberry Pi was

launched 2012 with a single-core 700 MHz CPU and 256 MB RAM but has now developed

to the 4th version that has quad-core 1.5 GHz CPU and 4 GB RAM. Raspberry Pi runs on the

Linux operating system and is a perfect cost-effective device for hardware projects, home

automation, and industrial applications. [10]

Figure 9 Different feature and specification of the latest Raspberry Pi version 4 [11]

Raspberry Pi operates in the open-source ecosystem with Linux as its operating system.

The Raspberry Pi Foundation releases many of its own software and schematic as open-

source but the board is not open hardware. [10]

2.5 ESP32

Upgraded by Espressif from the previous version ESP8266 now supports WiFi and

Bluetooth 4.0. The ESP32 contains Tensilica Xtensa® Dual-Core 32-bit LX6 microprocessor

with 240MHz clock frequency and has a 4 MB flash memory for program and data storage

and 448 KB of ROM. The ESP32 has 802.11b/g/n HT40 WiFi transceiver integrated which

allows it to work as its network and WiFi Direct for peer to peer connection without the

need for an access point.

 12

Figure 10 ESP32 main functions [12]

The microcontroller has both analog to digital and digital to analog channels and Pulse

Width Modulation pins, it supports both SPI, I2C interfaces, and UART for RS232 or RS485

communication. Development platforms ESP32 can be used with are, for example,

ESPRRUINO (Javascript SDK), Mongoose OS (OS for IoT), and Arduino IDE. Arduino IDE

(Integrated Development Environment) is open-source software for wiring, compiling,

and uploading code to Arduino compatible devices for operating systems mac, Windows,

Linux. The environment supports C and C++ programming languages. [13]

2.6 Modbus and MAX485 Module

Modbus is a serial communication protocol developed by Modicon in 1979 who is now

owned by Schneider Electric for programmable logic controllers (PLC). RS-485 uses half-

duplex where only one transmitter can be active while transmitting to one or more receiver

(slave) and allows transmission distances of up to 1.2 km and can be extended with a

repeater. Its task is to transmit information over serial lines between electronic devices

from the Modbus Master to Modbus Slaves who function as devices supplying

information. [14]

 13

Figure 11 MAX485 Module [15]

There can be 247 Slaves in a standard Modbus network and each with a unique address

from 1-247 to tell the Slaves which message to ignore and to receive from the master, the

second byte sent by the master is the function code that tells the slave what to write or

read and checks if the right command was initiated, the last bytes is for error detection to

tell if the message content is correct. The Slave then confirms the data received and sends

the data requested and lastly error checks. There are 3 different Modbus protocols,

Modbus ASCII, Modbus RTU, and Modbus TCP/IP. Modbus ASCII uses readable ASCII to

transmit bytes, RTU uses binary and Modbus TCP/IP standard TCP/IP network

communication over port 502. [14]

The MAX485 module is used to connect microcontrollers like raspberry pi to RS-485

communication. The module works with +3.3 V/+5 V power supply with the rated current

300 μA and uses half-duplex communication when converting the TTL level (Transistor-

Transistor logic) into RS-485 level with the maximum transmission rate of 2.5 Mbps. [15]

2.7 Open Platform Communications United Architecture (OPC UA)

Open Platform Communications United Architecture (OPC UA) is a data exchange

standard for industrial communication M2M, PC2M. makes it possible to turn different

protocols like Profibus, Modbus, from different manufacturers like Siemens, Beckhoff into

one single line of communication. [16]

 14

2.8 I2C and SPI chip communication interface

Inter-inter grated circuit (I2C) and serial peripheral interconnect (SPI) are both serial

interfaces where I2C is more software complex and SPI less and requires more hardware

resources from pins.

2.8.1 SPI

Figure 12 SPI communication interface connection example [17]

SPI uses separate lines for data and clock to keep both sides in sync, the clock oscillates a

signal and tells the receiver when to sample the bits on the data line. When the receiver

detects low to high or high to the low edge, it will look at the data line to read the next bit.

SCK (serial Clock) or CLK (Clock signal) is the only side that generates the clock signal, the

side is called “master” and the other side slave and there is always only one master but

there can be multiple slaves. [18]

The line where data is sent from master to slave is called MOSI (Master Out/Slave in) and

when the slave sends back a response, the master will generate a prearranged number of

clock cycles meaning that the master always generates the clock cycle and needs to know

in advance how much data a slave returns data and when the slave will put data onto a

third data line called MISO (Master In / Slave Out). The SS (Slave Select) / CS (Chip Select)

tells a Slave when to wake up to receive or send data so the line can choose a slave to talk

to. [18]

 15

2.8.2 I2C

Figure 13 I2C communication interface connection example [17]

The Inter-inter grated circuit (I2C) only requires two signal wires to exchange information

and can allow multiple slaves to communicate with one or more master. The signals are

SCL (Serial Clock) for the clock signal and SDA (Serial Data) for the data signal. The clock

tells the device when to read a bit when the data signal is either low (0) or high (1), I2C is an

open-drain configuration where you need a pull-up resistor to make the signal high by

default. [19]

2.9 Temperature and humidity sensors

Different types of sensors are used in different environments and applications, its function

can either make it suited or not suited for the specific need. Some of the temperature

sensors in the market today are semiconductor sensors, thermocouples, resistance

temperature detectors, thermistors and they all sense a change in a physical

characteristic.

2.9.1 Semiconductor based integrated circuit

Two different types of semiconductor-based temperature sensors are local temperature

and remote digital temperature sensors, local measures their die temperature by using the

physical properties of a transistor. The remote digital measures using an external

transistor away from the sensor chip. Local temperature sensors use analog

(voltage/current) or digital output (I2C, SPI). [20]

 16

2.9.2 Thermocouple

Thermocouples use Seebeck effect to measure temperature from the temperature

differential between junctions of two wires of dissimilar metals wired together, the voltage

change is measured from the change of temperature between the heated and cooler area.

There are various types of thermocouples made of different materials for different

temperature ranges and sensitivity. Assigned by letters, there are for example E, J, N types

and the most commonly used are K, J, and T type. Their small output voltage requires

precise amplification and external noise can occur with long wires but thermocouples have

a fast response. [20]

Figure 14 Different types of thermocouples and their configurations [21]

2.9.3 Resistance temperature detector (RTD)

Resistance temperature detector (RTD) sensors are based on measuring the resistance of

a metal that changes with temperature change. The most common and accurate material

used to make RTDs are platinum with 100 Ω and 1000 Ω resistance at 0 ℃ referred to

PT100 and PT1000, other materials can be nickel or copper. Near-linear response to

temperature changes makes platinum RTDs a stable and accurate sensor but responds

slower to temperature changes than thermocouples because of its high thermal mass, to

be reliable, RTDs requires external current and signal conditioning. Different types of

techniques exist to measure as the self-heat from a current flow can affect the

 17

measurement, the methods are two wired, three wired and four wired with the three wired

almost compensating and four wired method completely compensates. [20]

2.9.4 Thermistor

Thermistors are small resistance measuring based sensors similar to RTDs but use material

such as polymer, ceramic, and have a non-linear temperature to resistance which makes

them a bit unstable and in need of correction. Positive Temperature Calibrated (PTC)

thermistor is where the resistance increases with temperature and in Negative

Temperature Calibration (NTC) resistance decreases. [20]

2.9.5 BME280

BME280 is a digital temperature, humidity, and pressure sensor manufactured by Bosch,

Its measures temperature from -40 ℃ to 85 ℃ with ± 1.0 ℃ accuracy, barometric pressure

from 300 Pa to 1100 hPa with ± 1.0 hPa accuracy and humidity from 0-100% with ±3%

accuracy.

The module only requires 3.3 V or 5 V and uses an onboard 3.3 V regulator with the

possibility to either use I2C communication interface or SPI. The BME280 consumes less

than 1 mA during active measurements and 5 µA during idle.

Figure 15 BME280 measurement capabilities [22]

2.9.6 Thermocouple K type/MAX6675

The MAX6675 performs cold-junction compensation and digitizes the signal from a type-

K thermocouple from 0 ℃ to 1024 ℃ with ± 3 ℃ accuracy. The MAX6675 has been

 18

discontinued and replaced with MAX31855 that can output 14 bits instead of 12 bits and

measure in a wider temperature measurement range from -250 ℃ to 1600 ℃. [23]

Figure 16 MAX6675 [24]

2.10 Message Queuing Telemetry Transport (MQTT)

In an IoT system, you usually want different kind of devices exchanging data between each

other, the devices will request data from other devices and process the data received from

the devices that responded with the demanded data. The devices can be for example

Raspberry Pi, ESP32, a mobile phone running either on iOS or Android, and devices with a

different programming language. What is often wanted in the IoT system is real-time data,

low power consumption, and low bandwidth usage, especially in an area where the

wireless network is somewhat unreliable. The MQTT protocol is a Machine to Machine

(M2M) connectivity protocol, it’s a lightweight messaging protocol with a broker-based

publish-subscribe mechanism and runs on top of TCP/IP (Transmission Control Protocol/

Internet Protocol). [25]

The domains which MQTT can be used in are for example

- Asset tracking and management

- Home automation

- Automotive telematics

- SCADA

The protocol enables transmitting a high volume of data in small packets and from one

client to many, it provides reliable delivery of data in an unreliable network and with its

responsiveness makes it possible to send near real-time information.

 19

2.10.1 Publish-Subscribe (pub-sub)

A client works as an individual device without knowing the existence of other clients, its

main purpose is to publish a message and then there are the clients who are known as the

subscribers who receive the message. Between the publisher and subscriber client, there

is a broker (server) who establishes the connection between the publisher and subscriber.

The broker filters the data received from the publishers and sends a specific type of

message to the subscribers according to what is in interest. This pattern makes it possible

to send filtered messages to hundreds of clients from a single publisher through the

broker, which is the one responsible for sending the published data. [25]

Figure 17 MQTT communication model [26]

2.10.2 Quality of service

QoS level is an agreement between a sender and receiver on the guarantee of delivering

the message, it is possible to have a different level in publishing and subscribing and there

are three levels, 0,1,2.

O, At most once delivery

The sender sends the message without a reply once

1, At least once delivery

Sends a confirmation that the message has been delivered at least once to the subscriber.

2, Exactly once delivery

Guarantees that the message has been delivered

 20

3 Switchgear sensor systems

Chapter 3 goes through different sensor systems used in the market for switchgear and its

technology and different brands, the focus is in Zigbee wireless network system, Radio

frequency identification (RFID) system, Chameleon technology, SAW and optical fiber

system.

3.1 Zigbee

Zigbee is a low-cost, low-power wireless mesh-network standard, standardized as IEEE

802.15.4, and using the 2.4 GHz frequency band. A mesh-network has each node

connected and operates in a wireless personal area network (WPAN) like Bluetooth, the

network adapts to the change in the network and changes path if one node were to fail as

all the devices serve as routers. The two other major wireless standards are WiFi and

Bluetooth and the Zigbee technology named after the dance of honeybees to

communicate with other honeybees is designed to carry small amounts of data over a

short distance while consuming very little power, its low transfer speed of max 250 kbps

makes it most suitable for low data rate applications that needs long battery life. Zigbee

has several subsets like Zigbee RF4CE (Radio Frequency for Consumer Electronics) for

simpler/low power remote controlling and Zigbee Green Power for ultra-low-power

wireless standard supporting energy harvesting devices.

A Zigbee network can consist of:

Zigbee Coordinator: Works as the heart of the network and has the task to approve

routers and end devices attempting to join the network and there can only be one

coordinator per network.

Zigbee Router: Links the network and routes the packet between nodes to extend the

network and routes devices acting as the parent for end devices.

Zigbee End Device: Only achieves its task and communicates with the parent node.

 21

3.1.1 Zigbee Green Power

The green power technology is several technologies combined [27]:

Energy harvesting: The energy of a single led flash or a solar cell can be enough to

transmit radio messages every minute, the ability to harvest energy from local sources like

heat or light can allow sensors and actuators for automation systems to work without

costly installation with wires and batteries. [27]

Ultra-low-power RF silicon: A high power-optimized silicon designed to run on mA with

the ability to shut unnecessary functions, components, data transmission and optimizes

power from a cold start. [27]

Open global standard network technology: Energy saving by reducing packet length,

round trips, connection rediscovery, and on network time for devices that can be offline

for some time. [27]

Open global standard application layer protocol: Uses compressed message and

optimized message structure. Zigbee Green Power uses a universal language for smart

objects called Dotdot. [27]

3.2 Zigbee Green Power system

TH110 temperature sensor is self-powered through energy harvesting and CL110 humidity

sensor is battery-powered with both using Zigbee Green Power communication protocol.

The TH110 measures from -25 ℃ to 115 ℃ (max 150 ℃) with ± 1 ℃ accuracy and CL110

humidity from 10% to 98% and temperature of the surface in contact with from -25 ℃ to

90 ℃ with ±1 ℃ accuracy. With Zigbee Green Power, CL110 battery is expected to last at

least 15 years.

 22

Figure 18 CL110 humidity sensor and TH110 temperature sensor from Schneider [28]

3.2.1 Concentrator

The sensor devices connect with a concentrator and the concentrator can send the data to

an HMI or software, platform, Schneider uses their AVEVA software on the EcoStruxure

platform.

Figure 19 Harmony Hub ZBRN2, an example of a concentrator [29]

3.2.2 Mounting locations

The TH110 sensor can be installed directly on the conductive metal part or the shielded

insulated part and uses a ferromagnetic ribbon around inside of TH110 for energy

harvesting. CL110 sensor uses magnets to mount on the switchgear. The sensors are

paired with a concentrator through holding a button on the sensors or inputting their ID

number in the concentrator.

 23

Figure 20 Example of possible mounting locations [28]

3.3 Radio Frequency Identification (RFID)

Passive RFID systems consist of a reader (interrogator), passive tag, and a host computer.

The tag's main components are an antenna coil and a microchip or integrated circuit (IC)

with basic modulation circuitry and non-volatile memory. The tag harvest energy through

electromagnetic radio frequency (RF) wave transmitted by the reader and the signal is

called the carrier signal. RF signal passes through the antenna coil and generates AC

voltage rectified to enough DC voltage for the device to become functional. The tag uses

“backscattering” to reflect the information stored in the tag to the reader. Due to its low

power requirement, limits the distance the tag can be read but depends on the design

parameters such as frequency, RF power level, size of the antenna, data rate, current

consumptions of IC, communication protocol, and readers receiving sensitivity. [30]

 24

Figure 21 RFID system overview [31]

There are three types of RFID tags:

Passive tags: Has no on-board power source and relies on harvesting electromagnetic

energy from an RFID reader.

Active tags: Has its power source and transmitter, often larger and more expensive than

passive tags.

Semi-Passive tags: Utilizes passive tag configuration and has its power source.

3.3.1 Frequencies

The frequency ranges of RFID tags can operate in are Low Frequency (LF), High Frequency

(HF) and Ultra-High Frequency (UHF). RFID tags can be affixed to a variety of surfaces in

different sizes and designs and in different forms like for example, labels, wristbands,

stickers, and the most common frequency range used for temperature sensors are in the

UHF range.

Figure 22 Frequencies in the radio frequency domain [32]

 25

Each country has its own frequency range for UHF RFID transmission according to

regulations:

Figure 23 UHF ranges used around the world [33]

• US/FCC 902-928 MHz

• EU/ETSI 865-868 MHz

• Global 860-960 MHz

3.4 Axzon (formerly RFMicron) Chameleon technology

RFMicrons Magnus (IC) uses Chameleon technology to adjust and tune the internal

variable capacitance of the sensor to match the impedance of the antenna to the reader

signal that can detune from environment changes, fixed impedance reduces the

performance of the tag. The battery-free wireless sensor works as an RFID tag that

consists of an antenna and a Magnus-S sensor die, the Magnus-s die has a bank of

capacitors of 32 capacitance states represented by a 5 -bit sensor code for the tuning

setting. With the sensor code enables it to become a wireless passive sensor, from

receiving a signal from the reader starts the data collection process that uses some of the

energy to power the Chameleon engine to align itself to the RF readers same frequency,

by then the sensor decodes the command embedded in the RF reader signal to execute

the command. [34]

 26

Figure 24 Magnus S sensor design overview [35]

3.4.1 Axzon sensor system

The biggest difference between the sensors is their reading range and form which can

make it more suitable for different locations, accuracy for all the sensors starts to decrease

when the temperature value increase over the normal temperature range.

Figure 25 Axzon RFM3250 sensor device [36]

The RFM3250 has the measurement range of -40 ℃ to 145 ℃ with an accuracy of ± 2, it

harvests energy through integrated RF antenna and is suitable on metal surfaces. The

device is a rugged ceramic sensor with an adhesive backing to mount it with the max

reading range of 6 m.

 27

Figure 26 Axzon RFM3260 lug-mounted sensor device [36]

The RFM3260 has the measurement range of -40 ℃ to 125 ℃ with an accuracy of ± 2

mounted using a nut and bolt or strap with the max reading range of 9 m.

Figure 27 Axzon RFM3240 sensor device [36]

The RFM3240 has the measurement range of -40 ℃ to 125 ℃ with an accuracy of ± 2 and

uses adhesive to mount with the max reading range of 18 m.

Figure 28 Axzon RFM3254 [36]

 28

The RFM3254 has the measurement range of -40 ℃ to 125 ℃ with an accuracy of ± 2

mounted using adhesive backing with the max reading range of 5 m.

3.4.2 Mounting locations

The sensors are recommended for different locations (see figure 29).

Figure 29 Table on recommended locations to mount the sensors [36]

Possible to insert the RFM3250 sensor into a flexible band for mounting.

Figure 30 RFM3250 mounted using a flexible band [36]

The antenna should be placed roughly on the level of the sensors and the reader in a

suitable place such as the upper chamber of the switchgear depending on the cables

needed to route for the antenna.

 29

Figure 31 Example of an antenna and reader [36]

3.5 Surface-acoustic waves (SAW) RFID

Instead of using semiconductor physics, this operation uses micro-acoustics of

piezoelectric crystals instead.

Surface acoustic wave (SAW) temperature sensor rely on signal modulation taking

advantage of the piezoelectric effect. The sensor consists of a piezoelectric substrate

which is a material that changes electrical charges due to mechanical stresses and

commonly uses quartz or lithium niobite for temperature sensing, a high-temperature

coefficient is more effective for its sensitivity to temperature change. The sensor can have

two interdigitated transducer resonator (IDT) and antennas and in the IDT resonator are

interlocking comb-like metallic electrodes deposited on the surface of the substrate and

space between these electrodes determines the frequency of the acoustic wave, the

physical temperature change on the crystal alters the IDT electrodes spacing that changes

the frequency of the surface acoustic wave. [37] [38]

Figure 32 Surface Acoustic Wave technology overview [39]

 30

The operating principle starts with an electromagnetic signal as the input from an

interrogation unit that transduces the signal into a surface acoustic signal by the IDT

resonator, a mechanical wave on the surface of the substrate is generated and the acoustic

surface wave is reverted to an electrical signal by the IDT that is sent back to the

interrogation unit for temperature measurement. The wave senses the environment for

changes in the phase, amplitude, and/or frequency to a reference. [40]

Figure 33 Saw technology signal overview [40]

3.6 ABB SAW system

The sensor receives an electromagnetic signal from a transceiver and converts the signal

through IDT resonator into a surface acoustic wave to thereafter echo the modified signal

back to the transceiver, the transceiver computes and translate it into exploitable data.

The ABB SAW sensor can measure from -25 ℃ to 150 ℃

Figure 34 ABB SAW sensor design overview [41]

 31

3.6.1 Mounting locations

The antennas have to be mounted on a suitable place to be able to read the sensors. ABB

uses MyRemoteCare platform that enables remote monitoring and different analytics

such as algorithms calculation the probability of failure and remaining useful life, circuit

breaker and switchgear health condition, and dashboard for visualization.

Figure 35 Example of mounting areas and positions [41]

 32

3.7 Intellisaw SAW system

Communicates with a transceiver and can measure from -25℃ to 125℃ with ± 2℃

accuracy at 0℃ to 80℃ and ± 4℃ accuracy at full range and is mounted with bolts or

alternative heat resistant tie wraps or heat resistant tape. The cover material is made of

Polycarbonate, UL94-HB with brass tin-plated base plate. With 15KV dielectric cover

strength.

Figure 36 Intellisaw temperature sensor [42]

3.7.1 Mounting locations

There are different possible mounting positions according to switchgear type IEC and ANSI,

the antennas have to be 45 degrees mounted from the sensor or straight toward the sensor.

Figure 37 IEC type switchgear mounting positions [42]

 33

Figure 38 ANSI type switchgear mounting positions [42]

3.8 Optical Fiber

Optical fibers are immune to electromagnetic interference, require no electrical power at

the remote location, small in size, low transmission loss, large bandwidth, and low cost

make it suitable not only for telecommunication applications but also for other various

applications such as laser, sensing and medical sciences.

Figure 39 Fiber-optic cable overview [43]

A fiber-optic cable is composed of three parts, the core, the cladding, and the coating as a

cylindrical rod. The light propagates along with the core and the cladding has a lower

refractive index to confine the light guiding in the core decreasing the scattering loss and

absorption of environmental contaminants. For resistance, a coating layer is used to

protect the optical fiber from physical damage and abrasions. [43]

Optical fibers can be categorized as either intrinsic where the sensing mechanism operates

within an element of the optical fiber or extrinsic where the optical fiber is only used as an

 34

information carrier, coupling the optical signal to and from to be monitored. In operating

principle or modulation/demodulation, a fiber-optic sensor can be classified as an

intensity, a phase, a frequency or a polarization sensor. In application, the fiber-optic

sensor is classified as a physical sensor, a chemical sensor, or a biomedical sensor. [44]

3.8.1 Fluorescence sensor

Fluorescence-based fiber sensors are developed by doping fibers with materials of

luminescent properties and is an example of a wavelength modulated sensor with black

body sensors and the Bragg grating sensor in the same category. There exists a wide range

of luminescent doped optical fiber that has been developed and elements such as rare

earth is used as dopant mostly into silica-based fibers. There are different fluorescent

sensor configurations with the fiber end tip sensor as one of the most common

configurations.

Figure 40 Fluorescent sensor overview [45]

The fiber end tip configuration propagates the optical signal in the optical fiber into a

probe of fluorescent material, the fluorescent signal is then coupled into the same fiber

and guided to an optical signal analyzer. [46]

Figure 41 Schematic overview over the use of a fluorescence-based sensor by Osensa [47]

 35

3.9 Osensa optical fiber system

FTX-910-PWR+R is a fiber-optic temperature transmitter device mountable on 35 mm

DIN-rail. It is powered by 12-24 V DC and has 9 optical fiber sensor inputs, two

programmable 2 A relays for over-temperature alarms and an isolated RS-485

connectivity to Modbus RTU protocol. It is possible to connect multiple transmitters in

series supplied by a five-pin T-bus connector. There are also other versions such as FTX-

910-PWR+R, FTX-610-PWR+, FTX-310-PWR+, and HTX-110-PWR+.

Figure 42 FTX-910-PWR+R transmitter produced by OSENSA innovations [48]

3.9.1 Temperature probes

The PRB-110 probe can measure from -40 to 120 ℃ with ± 1 accuracy and the PRB-910

from -40 to 200 ℃ with ± 1 accuracy with the probe length of 10 m that can be cut shorter.

They can be installed on switchgear contacts, busbars, cast resin transformers, motors,

and generators. Both probes are constructed from durable and high dielectric strength

materials and can operate on equipment rated up to 38 kV 3 phase with different optional

probe tip attachments according to application. The PRB-110 probe uses nylon as cable

material and the PRB-910 also nylon but in the last 1 meter of the cable FEP (Fluorinated

ethylene propylene) material.

Figure 43 PRB-110 fiber-optic temperature probe [48]

 36

Figure 44 PRB-910 fiber-optic temperature probe [48]

It is possible to connect different ring lugs sizes to the probes.

Figure 45 Rings lugs in 1/4, 3/8, and 1/2 sizes can be fastened to the end of the probes [48]

The probes can be bolted to the desired location using a nut and bolt.

Figure 46 Mounting position example [48]

 37

4 ESP32 and Raspberry Pi prototype system

Chapter 4 is about the practical process to get the microcontrollers (Raspberry Pi, ESP32)

working and connected to the cloud using I2C and SPI communication interface, IBM cloud

services, Node-Red, MQTT communication protocol and the sensors BME280/MAX6675.

BME280 sensor was chosen for its temperature reliability and MAX6675 thermocouple

module for its fast response and high temperature measurement range, IBM Cloud was

the most suitable with the best compatibility and had a more user-friendly interface for

the task I tried to do than Microsoft azure which was first tested with.

Figure 47 Prototype ESP32-1 BME280 and ESP32-2 MAX6675

4.1 Hardware and software

Components:

- Two ESP32 WROOM-32 model

- Raspberry pi 3+

- Bosch BME-280 temperature/humidity sensor

- MAX 66750 thermocouple K-type temperature sensor

- Two 10 uF capacitor

 38

Software:

- Arduino IDE

- Node-Red

- IBM Cloud, Cloudant, IBM IoT Platform

- Putty

4.1.1 ESP32 Code overview

Code functions:

- Access to the WiFi

- Access to MQTT server

- Over the Air Programming (OTA)

- Publish to Node-Red as client

The code written and uploaded into ESP32 consists of Over the Air (OTA), MQTT

connection to the Raspberry Pi, and connection to the local WiFi. OTA enables the upload

of a new update to the hardware over the local WiFi. Connecting the device to MQTT

server IP given by the Raspberry Pi enables the ESP32 to work as a client. As the client, the

ESP32 will be publishing sensor data to Node-Red hosted by Raspberry Pi which can be

accessed from the host local IP address. ESP32-1 reads the temperature and humidity

value from the BME280 sensor connected through I2C and ESP32-2 reads MAX6675

thermocouple through SPI communication interface.

The pins for the communication interface is defined in the code which varies according to

ESP32 version and both ESP32 publishes to different topics, in this project, the

temperature value received from the thermocouple publishes to esp32/MAX6675 and

temperature from BME280 to esp32/BME280Temp and humidity to

esp32/BME280Humid, there can be additional topic levels by adding / after the topic.

 39

The libraries required for ESP32-1 are:

#include <WiFi.h>

#include <PubSubClient.h>

#include <Wire.h>

#include <Adafruit_BME280.h>

#include <Adafruit_Sensor.h>

#include <ESPmDNS.h>

#include <WiFiUdp.h>

#include <ArduinoOTA.h>

and ESP32- 2:

#include <WiFi.h>

#include <PubSubClient.h>

#include <Wire.h>

#include <ESPmDNS.h>

#include <WiFiUdp.h>

#include <ArduinoOTA.h>

#include <max6675.h>

To be able to bypass the need to press EN button while uploading code to ESP32, a 10uF

capacitator is connected, negative to GND and positive to the EN pin. The whole code for

ESP32-1 and ESP32-2 can be found in appendix 3 and 4.

Figure 48 Overview over the whole process [49]

4.1.2 Raspberry Pi

For the raspberry to work as the broker, Mosquitto is installed to process the MQTT

lightweight messaging protocol.

pi@raspberry:~ $ sudo apt update
pi@raspberry:~ $ sudo apt install -y mosquitto mosquitto-clients
pi@raspberry:~ $ sudo systemctl enable mosquito.service

First command updates, second row installs mosquitto, and third row auto starts the
program on boot

 40

Node-Red should already exist in the library in the latest Raspberry Pi if not, it will have to

be downloaded. The local IP can be checked by entering hostname – I in the terminal

window which is in this project 192.168.1.143.

Figure 49 Putty

For remote access, Secure Shell (SSH) software can be used such as Putty by enabling the

SSH interface on the raspberry and connecting with the local IP address.

4.1.3 Pin connections

Temperature sensor BME280 which can communicate to either SPI or I2C communication

interface is connected through I2C by connecting the pins:

- GND to GND

- D22 to SCK

- D21 to SDI

- 3V3 to VCC

The temperature sensor MAX 6675 pins are connected to SPI connection by connecting

the pins:

- D19 to SO

- D23 to CS

 41

- D5 to CLK

- GND to GND

- 3V3 to VCCS

4.1.4 Raspberry Node-Red connection

To access Node-Red on the raspberry, type in your local IP address and:1880 which is in

my case 192.168.1.143:1880. For a “flow” to work, it always needs an input and output

node, in between the nodes could have functions to check the data for resolving errors or

change the data format, there are many nodes that can be used.

Figure 50 Raspberry Pi Node-Red configuration

ESP32-2 code for the MAX6675 module is set to publish its value to the esp32/MAX6675

topic and ESP32-1 to esp32/BME280Humid, esp32/BME280Temp, from there the message

is set to be delayed by 40s per message and deletes all the messages occurred in-between.

The message is lastly sent to the IBM Cloud platform, a graph for graphical visualization

on the local network and to a debug node to see its content. The IBM cloud node needs

the right credentials to send to which is created in the IBM IoT service on IBM Cloud, the

information that is needed is the device type, device id, and Authentication token.

 42

Figure 51 Message received visible from using the debug node

To use the nodes that do not come with the core library on Node-Red, the nodes IBM

Watson IoT and dashboard node has to be downloaded from the Node-Red library to be

able to send data to IBM IoT platform and to visualize the data received in a local network

dashboard from the ESP32 that can be accessed by typing http//your IP address:1880/ui

Figure 52 Different chart options on the dashboard

4.1.5 IBM cloud services

In IBM Cloud, three services are created, Node-Red to connect the data from the

Raspberry Pi broker to the IBM cloud Node-Red, Internet of Things Platform to connect

the devices to IBM Cloud and Cloudant for data storage.

 43

Figure 53 Services created in IBM cloud

4.1.6 IBM Watson IoT Platform

Three devices are added to the IoT platform with different values by giving each device a

Device ID and an authentication token is provided which can be self-provided or auto-

generated that consists of 18 characters of mixed alphanumeric, characters and symbols

or between 8-36 self-generated. Two devices were added for ESP-1 for the separate

humidity and temperature value.

Figure 54 Devices added to IBM Watson IoT

 44

Creation of a new device is required if the authentication token is lost so it should be stored

somewhere safe.

Figure 55 Device Credentials produced from adding a device

Each device gets its unique authentication token and with the authentication token and

Device ID inserted into IBM IoT nodes, the device is connected to Node-Red service on IBM

Cloud for graphical visualization and status report on the IBM IoT.

Figure 56 Graphical visualization of the data received

4.1.7 Cloudant

After creating a Cloudant service, a database is created to store the value from ESP32-1

and ESP32-2

 45

Figure 57 Creation of database in Cloudant service

The values are stored in JSON format after connecting the flow to the Cloudant node in

Node-Red service on the IBM Cloud.

Figure 58 Data stored as JSON format in the database created in Cloudant

4.1.8 IBM cloud Node-Red service

IBM IoT and dashboard node has to be downloaded from the library to be able to receive

the data from the devices in the IBM IoT platform and send it to Cloudant database. In the

IBM IoT node settings, the device ID is filled and the type, the function node in between

reconstructs the message sent and sends from there to a debug node and the Cloudant

node, the Cloudant node needs only the database name which you want to send the data

to.

 46

Figure 59 IBM cloud Node-Red configuration to Cloudant

The function code implements a time code and the value to time and temp variable.

Figure 60 Function node code for the data reconstruction

4.1.9 Data historian Chart

The first flow starts with a node for a button and access to a Cloudant database according

to the database name set, the Cloudant runs through a function node (code found in

appendix 1) that converts the data and from the function node to a chart and debug node.

The flow operating principle for date range under the first flow (see figure 61) is to load the

data from the data input from the start date and end date.

Figure 61 Node-Red configuration on IBM cloud for historian chart

 47

The historian chart can be accessed by typing /ui at the end of the IBM Cloud Node-red

address.

Figure 62 Historian chart

5 Conclusion

Different cloud services have their advantage and disadvantages and there is various

software for specific uses, the software or cloud service should be used according to the

application as some perform and offers better functions and services than other providers.

Some of the presented sensor systems for switchgear can be impractical with cables

running around but such a system as the optic fiber can give a more reliable temperature

value than others. The Zigbee and RFID system enables a much more flexible system on

the selection of measurement locations but needs more planning on where to place the

RFID readers and antennas to best read the sensors. The systems offer self-powered

devices that solve the need to not have to put it on service and a web-based user interface

makes the system easier to access for personnel and enables remote monitoring and data

analysis.

The thesis can possibly give ideas to design a sensor system for switchgear and could give

an overview of the modern sensor system used today. The microcontroller part can give a

practical cost-effective IoT basic understanding as the device can also be used for many

different applications.

 48

The system I would opt for is an RFID/SAW system as it seems to be the most matured and

popular sensor system used today, it has long term reliability and is a simple and cheap

solution and cheaper and higher temperature sensing capabilities is developing with

better integrated circuit. Some cons can be having to carefully consider the placement of

the antenna and sensor for readability and possible limits the amount of sensor because

of frequency band regulations. Hence, I would also consider using a Zigbee system which

is still quite a new system but its simplicity to put it somewhere in interest and connect it

to a concentrator through a button or code makes it a very optimal sensor system. Zigbee

worldwide unified frequency band of 2.4 GHz to 2.5 GHz and its power source of directly

from the temperature rise in conductor makes it less complex than the RFID system. The

cons could be loss in data packets and connectivity loss from interference and its need to

have enough energy to start instead of energy received from an antenna, its need to

harvest energy from electromagnetic field and that the humidity sensor is using battery

that is said to last at least 15 years might not be very reliable, the technology seems to be

quite new still but has huge potential with its fast development.

Optic fiber can offer very reliable measurement and a very high measurement range to

replace thermocouples but I would not consider it because of cables needed to route the

signal and the ability to only be able to measure some components. An optic fiber system

would be suitable for switchgears where higher than 140 ℃ needs to be measured or more

accurate in very high voltage applications where the inherent noise and interference is

really high. The accuracy that RFID and Zigbee gives after going over 100 ℃ can go over ±

4 but less in optic fiber systems.

 49

6 References

[1] VEO, "VEO," 2020. [Online]. Available: https://www.veo.fi/.

[2] N. Kane, "Caring For Relatives By Robot," 21 October 2014. [Online]. Available:
http://www.telepresenceoptions.com/2014/10/caring_for_relatives_by_robot
/.

[3] Cisco, "Securing the Internet of Things: A Proposed Framework," 2020.
[Online]. Available:
https://tools.cisco.com/security/center/resources/secure_iot_proposed_frame
work.

[4] E. Jones, "Cloud Market Share – a Look at the Cloud Ecosystem in 2020," 10
April 2020. [Online]. Available: https://kinsta.com/blog/cloud-market-share/.
[Accessed 2020].

[5] F. Richter, "Amazon Leads $100 Billion Cloud Market," 11 February 2020.
[Online]. Available: https://www.statista.com/chart/18819/worldwide-
market-share-of-leading-cloud-infrastructure-service-providers/.

[6] Nodericks, "AWS VS AZURE VS GOOGLE VS IBM CLOUD, WHICH IS THE BEST
FOR ME?," 21 february 2018. [Online]. Available:
http://www.nodericks.com/aws-vs-azure-vs-google-vs-ibm-cloud-best/.

[7] M. Rouse, "IBM Cloud (formerly IBM Bluemix and IBM SoftLayer)," 0. [Online].
Available: https://searchcloudcomputing.techtarget.com/definition/IBM-
Bluemix.

[8] IBM, "IBM Cloudant," 2020. [Online]. Available:
https://www.ibm.com/cloud/cloudant.

[9] Node-Red, "Node-Red," 2020. [Online]. Available: https://nodered.org/.

[10] Source, Open, "What is a Raspberry Pi?," 2020. [Online]. Available:
https://opensource.com/resources/raspberry-pi.

[11] Raspberry Pi, "Raspberry Pi 4," 2020. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/.

[12] Espressif Systems, "ESP32 A Different IoT Power and Performance," 2015.
[Online]. Available:
https://www.espressif.com/en/products/socs/esp32/overview.

[13] Last Minute Engineers, "Insight Into ESP32 Features & Using It With Arduino
IDE," 2020. [Online]. Available: https://lastminuteengineers.com/esp32-
arduino-ide-tutorial/.

 50

[14] Schneider Electric, "What is Modbus and How does it work?," 25 July 2019.
[Online]. Available: https://www.se.com/nz/en/faqs/FA168406/. [Accessed
2020].

[15] itead, "MAX485 MODULE," 11 June 2014. [Online]. Available:
https://www.itead.cc/wiki/MAX485_MODULE. [Accessed 2020].

[16] S. Hoppe, "OPC Unifi ed Architecture," November 2019. [Online]. Available:
https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-
Interoperability-For-Industrie4-and-IoT-EN.pdf. [Accessed 2020].

[17] SFUPTOWNMAKER, "I2C," 0. [Online]. Available:
https://learn.sparkfun.com/tutorials/i2c/all.

[18] Sparkfun, "Serial Peripheral Interface (SPI)," 2020. [Online]. Available:
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi/all.

[19] Amlendra, "I2C Protocol,bus and Interface: A Brief Introduction," 2016.
[Online]. Available: https://aticleworld.com/i2c-bus-protocol-and-interface/.

[20] J. Gums, "Types of Temperature Sensors," 26 January 2018. [Online]. Available:
https://www.digikey.com/en/blog/types-of-temperature-sensors.

[21] Maxim Integrated, "Temperature Sensor," September 2017. [Online]. Available:
https://www.digikey.com/en/pdf/m/maxim/temperature-sensor-tutorial.

[22] Last Minute Engineers, "Interface BME280 Temperature, Humidity & Pressure
Sensor with Arduino," 0. [Online]. Available:
https://lastminuteengineers.com/bme280-arduino-tutorial/.

[23] Maxim integrated, "MAX6675," 2020. [Online]. Available:
https://datasheets.maximintegrated.com/en/ds/MAX6675.pdf.

[24] Protosupplies, "MAX6675 Thermocouple Temperature Module," 0. [Online].
Available: https://protosupplies.com/product/max6675-thermocouple-
temperature-module-2/.

[25] G. C. Hillar, MQTT Essentials - A Lightweight IoT Protocol, Packt Publishing Ltd,
2017.

[26] R. Pujar, "MQTT Protocol tutorial using Mosquitto and CloudMQTT," 0. [Online].
Available: http://www.raviyp.com/mqtt-protocol-tutorial-using-mosquitto-
and-cloudmqtt/.

[27] Zigbee alliance, "Zigbee Green Power White Paper," 2016. [Online]. Available:
https://zigbeealliance.org/wp-content/uploads/2019/11/Green-Power-
White-Paper.pdf.

[28] Schneider Electric, "MCset," 2018. [Online]. Available:
https://download.schneider-

 51

electric.com/files?p_enDocType=Catalog&p_File_Name=McSet_NRJED312404E
N_0319.pdf&p_Doc_Ref=NRJED312404EN.

[29] Schneider Electric, "ZBRN2," 0. [Online]. Available:
https://www.se.com/ie/en/product/ZBRN2/harmony-hub%2C-wireless-to-
modbus%2C-serial-line-gateway%2C-24...240-v-ac-dc/.

[30] Microchip, "Passive RFID Basics," 2004. [Online]. Available:
http://ww1.microchip.com/downloads/en/devicedoc/21299e.pdf.

[31] M. B. H. H. a. M. E. Mehdia Ajana El Khaddar, "RFID Middleware Design and
Architecture," 15 June 2011. [Online]. Available:
https://www.intechopen.com/books/designing-and-deploying-rfid-
applications/rfid-middleware-design-and-architecture.

[32] atlasRFIDstore, "What is RFID? | The Beginner's Guide to RFID Systems," 0.
[Online]. Available: https://www.atlasrfidstore.com/rfid-beginners-guide/.

[33] RFID 4u, "Basics – RFID Regulations," 0. [Online]. Available:
https://rfid4u.com/rfid-basics-resources/basics-rfid-regulations/.

[34] RFMicron, "Chameleon™ Technology Enables Low-Cost Sensors," RFMicron, 0.

[35] Azxon, "Chameleon™ Sensor Engine," 0. [Online]. Available:
http://rfmicron.com/technology/chameleon/.

[36] Axzon, "Sensors," 2020. [Online]. Available: https://axzon.com/sensors/.

[37] J. A. Jonathan Murray, "They Eye On Medium-Voltage Switchgear," 2016.
[Online]. Available: https://www.intellisaw.com/technology/case-studies-and-
white-papers2/60-publication-eye-on-mv-switchgear-electricity-today-2016-
pdf/file.html.

[38] C. Turcu, Development and Implementation of RFID Technology, 2009.

[39] S. S. D. S. S. S. J. J. M. B. B. W. W. T. M. R. G. Jeffrey C. Andle, "Temperature
Monitoring System Using Passive Wireless Sensors for Switchgear and Power
Grid Asset Managemen," 9 December 2010. [Online]. Available:
https://www.researchgate.net/publication/228863244_Temperature_Monitor
ing_System_Using_Passive_Wireless_Sensors_for_Switchgear_and_Power_Grid_
Asset_Management.

[40] Jonathm, "Surface acoustic wave (SAW) sensors," 1 May 2014. [Online].
Available:
https://wiki.metropolia.fi/display/sensor/Surface+acoustic+wave+%28SAW
%29+sensors.

[41] ABB, "ABB Ability™ Condition Monitoring for switchgear," June 2019. [Online].
Available:
https://library.e.abb.com/public/6c851fbb8eeb45f68630a6f6f219d087/ABB

 52

%20Ability%20Condition%20Monitoring%20for%20switchgear%20-
%20SWICOM%20-%20June%202019.pdf.

[42] IntelliSAW, "IntelliSAW CAM™ Platform Sensors," 19 September 2016. [Online].
Available: https://www.abmicro.pl/pdf/IntelliSAW-Sensor-Installation-
Manual.

[43] H. K. Hisham, "Optical Fiber Sensing Technology: Basics, Classifications," 2018.
[Online]. Available:
https://www.researchgate.net/publication/322935904_Optical_Fiber_Sensing
_Technology_Basics_Classifications_and_Applications.

[44] P. B. R. F. T. S. Y. SHizhuo Yin, Fiber optic Sensors Second edition, 2008.

[45] T. M. A. M. David Krohn, Fiber optic Sensors, Fundamentals and Applications,
2014.

[46] M. F. F. R. A. Domingues, Optical Fiber Sensors for IoT and Smart Devices, 2017.

[47] Osensa Innovations, "OSENSA’s Optical Fluorescent Sensor Technology," 0.
[Online]. Available: https://www.osensa.com/technology.

[48] Osensa Innovations, "Products," 2020. [Online]. Available:
https://www.osensa.com/products.

[49] Random Nerd Tutorials, "ESP32 MQTT – Publish and Subscribe with Arduino
IDE," 0. [Online]. Available: https://randomnerdtutorials.com/esp32-mqtt-
publish-subscribe-arduino-ide/.

[50] B. Innes, "esp8266Workshop," 10 January 2019. [Online]. Available:
https://github.com/binnes/esp8266Workshop/blob/master/en/part3/HISTO
RY.md.

6.1 Appendix-1 Function code for message conversion and utilization
for the historian chart

// This function reformats the timeseries data into an array that

var starttime = flow.get("start-time");

var endtime = flow.get("end-time");

if(msg.payload.length === 0) {

 // The historical database does not contain values for this date

range

 // Reset the chart with a blank array

 msg.payload = [] ;

 return msg;

}

// The Array has this structure, inserting the first element as a

template.

 53

var ChartData = [{"series":["Data"],

 "data":[[{"x":msg.payload[0].time,"y":msg.payload[0].t

emp}]],

 "labels":["Data"]}];

// Start at 1 because we've already added element 0 in the initial array

definition

for(var i=1; i < msg.payload.length; i++) {

 if((msg.payload[i].time >= starttime) && (msg.payload[i].time <=

endtime)) {

 // This temperature reading is within the Date Range

 ChartData[0].data[0].push({

"x":msg.payload[i].time,"y":msg.payload[i].temp });

 }

}

// Now we need to sort on the time so that we give the Chart node an

array in time order

ChartData[0].data[0].sort(function sortNumber(a,b) { return a.x - b.x;

});

msg.payload = ChartData;

return msg;

[50]

 54

6.2 Appendix-2 Exported Node-Red configuration on Raspberry Pi

[{"id":"b6698309.ca1d","type":"tab","label":"Flow 1","disabled":false,"info":""},{"id":"873ec389.c5265","type":"mqtt

in","z":"b6698309.ca1d","name":"","topic":"esp32/MAX6675","qos":"2","datatype":"auto","broker":"d2bb4b5a.1802b8","x":120,"y":18

0,"wires":[["3c351fa.68404e"]]},{"id":"394ad3b0.ba4d1c","type":"debug","z":"b6698309.ca1d","name":"","active":true,"tosidebar":true

,"console":false,"tostatus":false,"complete":"payload","targetType":"msg","x":530,"y":120,"wires":[]},{"id":"8d290548.087328","type":

"ui_chart","z":"b6698309.ca1d","name":"","group":"9eb59948.650c78","order":0,"width":0,"height":0,"label":"Temperature","chartTy

pe":"line","legend":"false","xformat":"HH:mm:ss","interpolate":"linear","nodata":"","dot":false,"ymin":"","ymax":"","removeOlder":1,"

removeOlderPoints":"","removeOlderUnit":"3600","cutout":0,"useOneColor":false,"colors":["#1f77b4","#aec7e8","#ff7f0e","#2ca02c

","#98df8a","#d62728","#ff9896","#9467bd","#c5b0d5"],"useOldStyle":false,"outputs":1,"x":530,"y":240,"wires":[[]]},{"id":"f78d98b.c

a4f668","type":"mqtt

in","z":"b6698309.ca1d","name":"","topic":"esp32/BME280Temp","qos":"2","datatype":"auto","broker":"d2bb4b5a.1802b8","x":750,"y

":420,"wires":[["13815ed3.c5c5f1"]]},{"id":"d048a320.b90ef","type":"debug","z":"b6698309.ca1d","name":"","active":true,"tosidebar":t

rue,"console":false,"tostatus":false,"complete":"payload","targetType":"msg","x":1250,"y":360,"wires":[]},{"id":"e58676f5.8f4f98","typ

e":"mqtt

in","z":"b6698309.ca1d","name":"","topic":"esp32/BME280Humid","qos":"2","datatype":"auto","broker":"d2bb4b5a.1802b8","x":740,"

y":200,"wires":[["f33fbfc4.bc3f6"]]},{"id":"c02303ec.1b76c","type":"debug","z":"b6698309.ca1d","name":"","active":true,"tosidebar":tr

ue,"console":false,"tostatus":false,"complete":"payload","targetType":"msg","x":1190,"y":200,"wires":[]},{"id":"93325f6d.9b3ec","type

":"ui_chart","z":"b6698309.ca1d","name":"","group":"700734d4.e0c7ac","order":0,"width":0,"height":0,"label":"Temperature","chartT

ype":"line","legend":"false","xformat":"HH:mm:ss","interpolate":"linear","nodata":"","dot":false,"ymin":"","ymax":"","removeOlder":1,

"removeOlderPoints":"","removeOlderUnit":"3600","cutout":0,"useOneColor":false,"colors":["#ff0000","#ff0000","#ff7f0e","#2ca02c

","#98df8a","#ff0000","#ff9896","#9467bd","#c5b0d5"],"useOldStyle":false,"outputs":1,"x":1250,"y":480,"wires":[[]]},{"id":"6a115f12.

49aa1","type":"wiotp

out","z":"b6698309.ca1d","authType":"d","qs":"false","qsDeviceId":"","deviceKey":"a3da4257.b2675","deviceType":"","deviceId":"","ev

ent":"event","format":"json","qos":"","name":"IBMTemp","x":1240,"y":420,"wires":[]},{"id":"60e10fcc.943dc","type":"ui_gauge","z":"b

6698309.ca1d","name":"","group":"700734d4.e0c7ac","order":0,"width":0,"height":0,"gtype":"gage","title":"Humidity","label":"%","for

mat":"{{value}}","min":0,"max":"100","colors":["#00b3d9","#0073e6","#001bd7"],"seg1":"33","seg2":"66","x":1180,"y":260,"wires":[]},{

"id":"c9daaad0.994618","type":"wiotp

out","z":"b6698309.ca1d","authType":"d","qs":"false","qsDeviceId":"","deviceKey":"15bcfec5.62efd1","deviceType":"","deviceId":"","e

vent":"event","format":"json","qos":"","name":"IBMhumid","x":1180,"y":140,"wires":[]},{"id":"7399a6cf.9f81b8","type":"wiotp

out","z":"b6698309.ca1d","authType":"d","qs":"false","qsDeviceId":"","deviceKey":"83ed13a.db70ef","deviceType":"","deviceId":"","ev

ent":"event","format":"json","qos":"","name":"IBMTemp","x":520,"y":180,"wires":[]},{"id":"13815ed3.c5c5f1","type":"delay","z":"b6698

309.ca1d","name":"","pauseType":"rate","timeout":"5","timeoutUnits":"seconds","rate":"1","nbRateUnits":"20","rateUnits":"second","

randomFirst":"1","randomLast":"5","randomUnits":"seconds","drop":true,"x":980,"y":420,"wires":[["d048a320.b90ef","6a115f12.49aa

1","93325f6d.9b3ec"]]},{"id":"f33fbfc4.bc3f6","type":"delay","z":"b6698309.ca1d","name":"","pauseType":"rate","timeout":"5","timeou

tUnits":"seconds","rate":"1","nbRateUnits":"20","rateUnits":"second","randomFirst":"1","randomLast":"5","randomUnits":"seconds","

drop":true,"x":960,"y":200,"wires":[["c9daaad0.994618","c02303ec.1b76c","60e10fcc.943dc"]]},{"id":"3c351fa.68404e","type":"delay","

z":"b6698309.ca1d","name":"","pauseType":"rate","timeout":"5","timeoutUnits":"seconds","rate":"1","nbRateUnits":"40","rateUnits":"

second","randomFirst":"1","randomLast":"5","randomUnits":"seconds","drop":true,"x":300,"y":180,"wires":[["394ad3b0.ba4d1c","7399

a6cf.9f81b8","8d290548.087328"]]},{"id":"4a72d12c.78db2","type":"comment","z":"b6698309.ca1d","name":"Temperature node flow

for MAX6675ESP32 --> IBM

Cloud/Chart/Debug","info":"ssda","x":270,"y":80,"wires":[]},{"id":"f325e515.132e38","type":"comment","z":"b6698309.ca1d","name":"

Humid node flow for BME280ESP32 --> IBM

Cloud/Chart/Debug","info":"","x":950,"y":100,"wires":[]},{"id":"5abf0113.bfa9a","type":"comment","z":"b6698309.ca1d","name":"Tem

perature node flow for BME280, ESP32 --> IBM

Cloud/Chart/Debug","info":"","x":850,"y":360,"wires":[]},{"id":"d2bb4b5a.1802b8","type":"mqtt-

broker","z":"","name":"","broker":"localhost","port":"1883","clientid":"","usetls":false,"compatmode":true,"keepalive":"60","cleansessi

on":true,"birthTopic":"","birthQos":"0","birthPayload":"","closeTopic":"","closeQos":"0","closePayload":"","willTopic":"","willQos":"0",

"willPayload":""},{"id":"9eb59948.650c78","type":"ui_group","z":"","name":"Main","tab":"e2a4f55d.715dd8","disp":true,"width":"6","co

 55

llapse":false},{"id":"700734d4.e0c7ac","type":"ui_group","z":"","name":"main

2","tab":"e2a4f55d.715dd8","disp":true,"width":"6","collapse":false},{"id":"a3da4257.b2675","type":"wiotp-

credentials","z":"","name":"TempBME280","org":"u45len","serverName":"","devType":"ESP32","devId":"BME280Temp","keepalive":"

60","cleansession":true,"tls":"","usetls":false},{"id":"15bcfec5.62efd1","type":"wiotp-

credentials","z":"","name":"HumidBME280","org":"u45len","serverName":"","devType":"ESP32","devId":"BME280Humid","keepalive"

:"60","cleansession":true,"tls":"","usetls":false},{"id":"83ed13a.db70ef","type":"wiotp-

credentials","z":"","name":"D1Temp","org":"u45len","serverName":"","devType":"ESP32","devId":"MAX6675","keepalive":"60","clean

session":true,"tls":"","usetls":false},{"id":"e2a4f55d.715dd8","type":"ui_tab","z":"","name":"test","icon":"test","disabled":false,"hidden"

:false}]

 56

6.3 Appendix-2 Exported Node-Red configuration on IBM cloud

[{"id":"206926d6.abaa5a","type":"ui_button","z":"7e42a0c6.b8b84","name":"","group":"3cd36509.dfe61a","order":3,"width":0,"height

":0,"passthru":false,"label":"Load ESP32 Temperature

Data","tooltip":"","color":"","bgcolor":"","icon":"","payload":"","payloadType":"str","topic":"","x":310,"y":620,"wires":[["9e581429.6de8

a8"]]},{"id":"3cd36509.dfe61a","type":"ui_group","z":"","name":"Chart

Controls","tab":"f5bf89a9.d50d78","order":2,"disp":true,"width":"6"},{"id":"f5bf89a9.d50d78","type":"ui_tab","z":"","name":"Historical

Data","icon":"fa-area-chart","order":5}]

 57

6.4 Appendix-3 Arduino code for ESP32-2 MAX6675

#include <WiFi.h>

#include <PubSubClient.h>

#include <Wire.h>

#include <ESPmDNS.h>

#include <WiFiUdp.h>

#include <ArduinoOTA.h>

#include <max6675.h>

int ktcSO = 19;

int ktcCS = 23;

int ktcCLK = 5;

MAX6675 ktc(ktcCLK, ktcCS, ktcSO);

const char* ssid = "ASUS";

const char* password = "mashedpotatoes";

const char *ID = "MAX6675";

const char* mqtt_server = "192.168.1.143";

WiFiClient espClient;

PubSubClient client(espClient);

long lastMsg = 0;

char msg[50];

int value = 0;

float temperature = 0;

void setup() {

Serial.begin(115200);

 client.setServer(mqtt_server, 1883);

 setup_wifi();

 ArduinoOTA

 .onStart([]() {

 String type;

 if (ArduinoOTA.getCommand() == U_FLASH)

 type = "sketch";

 else

 type = "filesystem";

 Serial.println("Start updating " + type);

 })

 .onEnd([]() {

 Serial.println("\nEnd");

 })

 .onProgress([](unsigned int progress, unsigned int total) {

 Serial.printf("Progress: %u%%\r", (progress / (total / 100)));

 })

 .onError([](ota_error_t error) {

 Serial.printf("Error[%u]: ", error);

 if (error == OTA_AUTH_ERROR) Serial.println("Auth Failed");

 else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");

 else if (error == OTA_CONNECT_ERROR) Serial.println("Connect

Failed");

 else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive

Failed");

 else if (error == OTA_END_ERROR) Serial.println("End Failed");

 });

 ArduinoOTA.begin();

 58

 Serial.println("Ready");

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

}

void setup_wifi() {

 delay(10);

 // We start by connecting to a WiFi network

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

}

void reconnect() {

 // Loop until we're reconnected

 while (!client.connected()) {

 Serial.print("Attempting MQTT connection...");

 // Attempt to connect

 if (client.connect("MAX6675")) {

 Serial.println("connected");

 } else {

 Serial.print("failed, rc=");

 Serial.print(client.state());

 Serial.println(" try again in 5 seconds");

 // Wait 5 seconds before retrying

 delay(5000);

 }

 }

}

void loop() {

 if (!client.connected()) {

 reconnect();

 }

 client.loop();

 long now = millis();

 if (now - lastMsg > 10000) {

 lastMsg = now;

 temperature = ktc.readCelsius();

 // Convert the value to a char array

 char tempString[8];

 dtostrf(temperature, 1, 2, tempString);

 Serial.print("Temperature: ");

 Serial.println(tempString);

 client.publish("esp32/MAX6675", tempString);

 }

 ArduinoOTA.handle();

}

 59

6.5 Appendix-4 Arduino code for ESP32-1 BME280 sensor

#include <WiFi.h>

#include <PubSubClient.h>

#include <Wire.h>

#include <Adafruit_BME280.h>

#include <Adafruit_Sensor.h>

#include <ESPmDNS.h>

#include <WiFiUdp.h>

#include <ArduinoOTA.h>

const char* ssid = "ASUS";

const char* password = "mashedpotatoes";

const char* ID = "BME280";

const char* mqtt_server = "192.168.1.143";

WiFiClient espClient;

PubSubClient client(espClient);

long lastMsg = 0;

char msg[50];

int value = 0;

Adafruit_BME280 bme; // I2C

float temperature = 0;

float humidity = 0;

void setup() {

 Serial.begin(115200);

 if (!bme.begin(0x76)) {

 Serial.println("Could not find a valid BME280 sensor, check

wiring!");

 while (1);

 }

 client.setServer(mqtt_server, 1883);

 setup_wifi();

 ArduinoOTA

 .onStart([]() {

 String type;

 if (ArduinoOTA.getCommand() == U_FLASH)

 type = "sketch";

 else

 type = "filesystem";

 Serial.println("Start updating " + type);

 })

 .onEnd([]() {

 Serial.println("\nEnd");

 })

 .onProgress([](unsigned int progress, unsigned int total) {

 Serial.printf("Progress: %u%%\r", (progress / (total / 100)));

 })

 .onError([](ota_error_t error) {

 Serial.printf("Error[%u]: ", error);

 if (error == OTA_AUTH_ERROR) Serial.println("Auth Failed");

 else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");

 else if (error == OTA_CONNECT_ERROR) Serial.println("Connect

 Failed");

 else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive

 Failed");

 else if (error == OTA_END_ERROR) Serial.println("End Failed");

 });

 ArduinoOTA.begin();

 Serial.println("Ready");

 60

 Serial.print("IP address: ");

 Serial.println(WiFi.localIP());

}

void setup_wifi() {

 delay(10);

 // We start by connecting to a WiFi network

 Serial.println();

 Serial.print("Connecting to ");

 Serial.println(ssid);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.println("IP address: ");

 Serial.println(WiFi.localIP());

}

void reconnect() {

 // Loop until we're reconnected

 while (!client.connected()) {

 Serial.print("Attempting MQTT connection...");

 // Attempt to connect

 if (client.connect("BME280")) {

 Serial.println("connected");

 } else {

 Serial.print("failed, rc=");

 Serial.print(client.state());

 Serial.println(" try again in 5 seconds");

 // Wait 5 seconds before retrying

 delay(5000);

 }

 }

}

void loop() {

 if (!client.connected()) {

 reconnect();

 }

 client.loop();

 long now = millis();

 if (now - lastMsg > 10000) {

 lastMsg = now;

 temperature = bme.readTemperature();

 // Convert the value to a char array

 char tempString[8];

 dtostrf(temperature, 1, 2, tempString);

 Serial.print("Temperature: ");

 Serial.println(tempString);

 client.publish("esp32/BME280Temp", tempString);

 humidity = bme.readHumidity();

 // Convert the value to a char array

 char humString[8];

 dtostrf(humidity, 1, 2, humString);

 Serial.print("Humidity: ");

 Serial.println(humString);

 client.publish("esp32/BME280Humid", humString);

 }

 ArduinoOTA.handle();

}

