

Oleg Mironov

DevOps Pipeline with Docker

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Thesis

15 April 2018

 Abstract

Author(s)
Title

Number of Pages
Date

Oleg Mironov
DevOps Pipeline with Docker

55 pages + 11 appendices
2 December 2017

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

Marko Klemetti, CTO
Erik Pätynen, Senior Lecturer

Software complexity and size are growing at the ever-increasing rate. This study
attempts to use modern DevOps practices and technologies to create a reusable
pipeline template capable of meeting the demands of modern software and
strengthen up the development practices. Such pipeline should largely be reusable
and flexible as well as being able to be scaled and maintained with high reliability.

Theoretical research on the topic of how DevOps came to be and what it means is
an important part of this project. Then a set of technologies that reflect the state of
DevOps today was carefully studied and analysed. Docker and its fast-growing
ecosystem is the core technology of this project. With Docker and some other
technologies, a set of configuration files could be used to run, develop, test and
deploy an application. Such approach allows maximum automation while ensuring
transparency of those automation processes.

The result of this project is a fully working pipeline setup that is fully automated and
is able to support a fast-paced software development. The pipeline is built against
a reference project. Most of the pipeline is configured with a set of different
configuration files meaning that from a fresh start it could be brought up with minimal
human interaction. It covers all parts of a reference application lifespan from a
development environment to a potential production deployment. There is a set of
technologies used in the pipeline such as Jenkins, Docker and container
orchestration with Rancher.

Keywords Docker, Jenkins, Rancher, DevOps, Pipeline, Automation,
Continuous Integration, Continuous Delivery

Contents

1 Introduction 1

2 Theoretical Background 3

2.1 Continuous Integration 3

2.2 Continuous Delivery and Continuous Deployment 5

2.3 DevOps 7

2.4 Virtualization 10

2.5 Docker 12

2.6 Container Orchestration 15

2.7 Container Management Software 17

3 Project Methods and Materials 19

3.1 Project Workflow and Methods 19

3.2 Requirements 19

3.3 Tools and Technologies 20

4 Pipeline Design and Implementation 22

4.1 Reference Project Description 22

4.2 Pipeline Flow 23

4.3 Implementation Plan 26

4.4 Dockerizing Voting App 27

4.5 Local Container Orchestration 30

4.6 Virtual Machines with Ansible and Vagrant 34

4.7 Configuring Rancher Environment 36

5 Results and Discussion 49

5.1 Summary of Results 49

5.2 Evaluation of Results 50

5.3 Project Challenges 52

6 Conclusions 55

References 56

Appendix 1. GitHub Web Links 60

Appendix 2. Voting App Interface Screenshots 61

Appendix 3. Rancher docker-compose.dev.yml. 63

Appendix 4. Rancher rancher-compose.dev.yml 65

Appendix 5. Rancher load balancer UI. 67

Appendix 6. Add Backend Webhook. 68

Appendix 7. Unlock Jenkins. 69

Appendix 8. Select Jenkins Plugins. 70

Appendix 9. Selecting Jenkins job type. 71

Appendix 10. Adding DockerHub credentials to Jenkins. 72

Appendix 11. Final Jenkinsfile. 73

Abbreviations

CD Continuous Delivery

CDt Continuous Deployment

CI Continuous Integration

DevOps Development Operations

OS Operating System

QA Quality Assurance

VM Virtual Machine

UI User Interface

1

1 Introduction

Throughout its lifetime any application would likely be run in many environments, such

as local, development and production. Today, there are a lot of different tools that are

claimed to optimise and simplify all stages of deployment and, especially, a production

deployment. With the recent introduction of Docker engine and an ever-growing

ecosystem around it, it is becoming increasingly important to find out a universal

deployment pattern that could be reliably used for modern web projects.

However, one will need to go more in the past to better understand the grounds for

modern accepted DevOps practices. The DevOps as a culture and concept will be

described in detail in later sections. Then, continuous integration is a concept that has

been around from 1991 when it was first introduced by Grady Booch [1] and which is at

the cornerstone of this thesis. Combined with newer concept of Continuous Delivery,

which was first acknowledged in 2011 after the publication of “Continuous Delivery:

Reliable Software Releases through Build, Test, and Deployment Automation” by Jez

Humble and David Farley [2], the grounds for building modern software pipeline are

being formed.

Then Docker has been introduced in March 2013 [3]. Since then, the adoption of the

technology has reached a pace that is uncommon for operations part of the industry.

May 2015 to May 2016 adoption of Docker has seen an increase of 30% that mostly

came from large enterprises [4]. Docker and the ecosystem around it bring significant

benefits to the users. These benefits will be discussed in further chapters. However,

being such a new trend means documentation is sparse and good practices are not so

immutable compared to more matured IT technologies and methodologies.

Such immaturity can result into using this, as it would first seem, beneficial technology

to cause more harm than good. Environments powered by Docker can become less

secure, harder to maintain and less reliable with lower uptime. As with any new

technology caution should be applied and new solid practices should be developed.

The main goal of this thesis is to deeply study and analyse the booming Docker

ecosystem, combine it with established Continuous Integration and Continuous Delivery

paradigms and come up with those very practices that could be safely used in software

pipelines to achieve solid efficiency, reliability and flexibility. The output of this project

https://paperpile.com/c/XKh4hv/WMkw
https://paperpile.com/c/XKh4hv/tKRb
https://paperpile.com/c/XKh4hv/Hhx3
https://paperpile.com/c/XKh4hv/ybgF

2

should be laid in a form of documentation, configuration files and scripts that together

would form a template for production ready environments from scratch for a typical web

project.

In the next section the theoretical background of the topic will be covered. Above

mentioned technologies and patterns are of the main focus. Then, the third section is

mainly targeted to tools and techniques used to achieve the goal of a stable environment

template.

Section 4 presents the result of work - this very environment setup, all the methodologies

and recommendation developed during this research. Following next the discussion

section will cover main use cases, advantages and disadvantages of developed

template. Finally, the conclusion section takes a challenge of summarising, analysing

and finishing this thesis.

3

2 Theoretical Background

2.1 Continuous Integration

Ever since the introduction of first computers and software, the development of those

was becoming a larger and larger process. Size and complexity of computer software

was growing leading to at least larger development teams and greater dependencies. As

it is seen from a Visual Capitalist graph, Windows NT 3.1 released in 1993 had about

4.5 million lines of code, whilst the latest 2017 Firefox has about 10 million lines of code

[5]. Even browsers of today are more complex than desktop operating systems of 25

years ago. Then, 2009 Windows 7 is estimated to 40 million lines - a growth of almost 9

times in just two and a half decades.

Such a rapid growth of complexity could not go unnoticed. Prior to Continuous Integration

(or CI) introduction, applications were built and integrated together at random moments,

often by the end of development cycles. This led to a variety of problems such as code

conflicts and dependency errors. Vivek Ganesan writes in his 2017 book that back in

times when Waterfall was the main software development methodology there was a

designated integration stage, where software written in different parts by many of

developers would be merged together [6]. Due to software design inconsistencies and

miscommunication it was common that integration would not go smoothly and cause

bugs and critical malfunctions, further adding to complexity and extending development

cycle.

CI introduction in 1991 is one of the first attempts to address the issue of integration

during a lifespan of the project. Continuous Integration is one of the initial 12 practices

of extreme programming [7]. In different use cases and organizations practices behind

CI may vary but it will still mainly consist of:

● Committing code changes to main repository at least once a day by every

contributor.

● Those changes usually are first verified by each team member in local

development environment.

● When pushed to code repository, new changes are verified by an automated build

that should contain tests.

● If any change causes a build or tests fail, then this should be immediately

addressed and fixed.

● Often today, if the build was successful new code will be deployed to staging

https://paperpile.com/c/XKh4hv/DYm4
https://paperpile.com/c/XKh4hv/lEml
https://paperpile.com/c/XKh4hv/TYu2

4

environment, which is a clone of production one.

Figure 1. Continuous Integration Flow. Modified from Pecanac [8].

The figure 1 above displays a typical flow of CI. Upon code being committed, the software

is usually built, then some local tests such as unit tests are run. If build and tests are had

been run successfully, then deployment to staging or test environment is performed

following by acceptance tests to verify that application including possible third-party

integrations is acting as expected. There are many different variations of this flow, but

the main idea would always be the same - integrate, build and test software.

Figure 1 also shows “auto” in between stages, which means that those stages should

run automatically without human intervention. However, nothing becomes automated by

itself. As CI has been around for a few decades, there are now dozens of automation

solutions that have been developed as proprietary or open source and meant to run as

a software as a service (SaaS) or on-premise software. This type of a software used in

support of CI workflow is called consistently and simple - Continuous Integration servers.

Figure 2 displays most popular CI servers in Java community in 2016:

● Jenkins with 60% is by far the most popular tool, which is open source and

distributed as an on-premise software. Initially forked from Hudson and then

developed by community and CloudBees company. [9]

● Bamboo, which is on the second place with just 9% is the closest competitor to

Jenkins. It is being developed by Atlassian and is both proprietary and needs to

be licensed per organization. It needs to be Installed on premises with SaaS

options available [10].

● Teamcity occupies 3rd place by usage number. It is similar to Bamboo being a

closed code software, which needs to be licensed and installed on premises [11].

https://paperpile.com/c/XKh4hv/CEQu
https://paperpile.com/c/XKh4hv/CzfX
https://paperpile.com/c/XKh4hv/SpZd
https://paperpile.com/c/XKh4hv/PBKO

5

Figure 2. Continuous Integration Server Usage. Reprinted from Maple [12].

Figure 2 displays that only 16% of respondents reported to not use any CI servers, while

60% prefers to use Jenkins. CI server is an important tool for building a valid CI workflow

allowing automation of builds, tests and deployments. Deployment automation is a whole

topic on its own that will be discussed next.

2.2 Continuous Delivery and Continuous Deployment

Automated deployment practices come under two terms of continuous delivery and

continuous deployment. These two will be referred as CD and CDt respectively.

First of all, what is the definition of CD and CDt and what is the difference between them?

According to Caum blog post for a major automation tool Puppet, Continuous Delivery is

a set of practices that ensure quick, constant and reliable delivery of latest code changes

to a production like environment. [13]

https://paperpile.com/c/XKh4hv/qAJ5
https://paperpile.com/c/XKh4hv/UUhK

6

Figure 3. Continuous Delivery and Continuous Deployment Structure. Reprinted from

Caum [13].

Analysing the figure 3, it is obvious that difference between the two is not a major one.

Continuous deployment simply adds one more layer of automation. Unlike continuous

delivery, where final decision of production deployment is manual, continuous

deployment is completely automated.

It is clearly seen from figure 1 and figure 3 display of “continuous” concepts that one

comes after another. And it is true that continuous delivery will not work without

implemented CI pipeline. Once CI is implemented it is within reason to upgrade a pipeline

to comply with continuous delivery definition. However, with introduction of continuous

deployment, upgrade does not seem to be that obvious.

In practice the definition of CD is implemented in the following way. When new code is

pushed to the main repository branch such as “master”, a new job is triggered in the CI

server. The code is build and tested similarly to continuous integration way. Then code

is deployed to staging environment and automated tests are run. It is followed by

manually triggering a production deploy, which is usually highly automated except for

triggering. The process as displayed on figure 3 is commonly finished with post

deployment tests to verify that production environment is healthy.

The only change that continuous deployment introduces is removing the manual

triggering of the production deployment step. Usually, production deployment step is

already automated as part of continuous delivery. Therefore, technical implementation

of completely automated production deployment is not difficult. The problems that appear

from continuous delivery are rather business related or come from the way the software

itself has been developed.

https://paperpile.com/c/XKh4hv/UUhK

7

One common business case when continuous deployment may contradict with business

goals is when a certain feature should only be released at some particular date [13] or

should there be a set of new features released. Generally, there could be dozens of

different business reasons why deployment should be human controlled.

Apart from business reasons there is whole set of technical ones regarding the software

itself. Software needs to adhere to a whole set of specifications to allow safe use of CDt.

The most important one is that application needs to be highly testable and largely

covered with tests. All new functionality must be covered with tests prior to publishing

code to main branch. Human factor should be excluded - all members of a team should

obey this rule. Another important issue is that reliability of CI plus CDt pipeline should be

higher as what happens in the pipeline is not directly monitored. [14] All this leads to a

conclusion, that continuous deployment, while being a valid option, is not an obvious

improvement on top of continuous delivery.

There is still one major question that needs to be resolved about Continuous Delivery.

Where did it come from and what is its relation to DevOps? The origin of this term is from

Agile Manifesto of 2001, first principle of which states: “Our highest priority is to satisfy

the customer through early and continuous delivery of valuable software.” [15] A few

years later DevOps is being introduced by Patrick Debois at an Agile Conference [16].

The question of relation between Continuous Delivery (deployment was not around at

that point yet) simultaneously arises as soon as one is introduced to DevOps, which at

first glance may look very similar. Next section will look at this relation and define the

DevOps itself.

2.3 DevOps

“Agile Infrastructure & Operations” was the original name of a methodology that was

presented by Patrick Debois in 2008 [16]. Then, a new term for this very idea was

introduced at Devopsdays 2009 conference in Belgium - DevOps, which stands for

development operations [17]. Initial 2008 presentation addressed 2 main issues. First,

even though back in 2008 Agile was an established concept, it was only applied to

developers. Operations and IT parts of the companies were not part of the Agile

workflows. Then, the second issue that is closely related to first one is the fact that these

3 teams are separated from each other. On the contrary, their actual work is directly

dependent on each other and interconnected. The proposition was to include

https://paperpile.com/c/XKh4hv/UUhK
https://paperpile.com/c/XKh4hv/RxF6
https://paperpile.com/c/XKh4hv/JA0n
https://paperpile.com/c/XKh4hv/fe74
https://paperpile.com/c/XKh4hv/Uevc
https://paperpile.com/c/XKh4hv/7aH4

8

infrastructure personnel to development teams and make them interact as well as

introduce frequent, for example nightly builds.

Over the years DevOps methodology emerged dramatically and it is now much larger

than it was initially presented in 2008. DevOps today combines a company culture,

different workflows and technologies. What crucial here is that culture is, probably, more

important among others.

“Even with the best tools, DevOps is just another buzzword if you don't have the right

culture.” as written by Wilsenach [18]. The underlying goal of DevOps is plain and simple

- remove the boundaries between different departments involved into software

development process. Shared responsibility and close collaboration are the two main

factors that drive DevOps culture. If application is to be transferred at some point of

development to another department for deployment and maintenance the sense of

ownership and responsibility is lost. On the other hand, introducing autonomous teams,

where each team member is responsible for the whole application might just be a trigger

to empower personnel for better quality of both software itself and deployment practices.

[18] As seen in previous sections, automation is a major part of efficient development

and running of the applications, and integrated teams would know best how to implement

automation as much as possible as it will directly affect their daily working routine.

Initially, DevOps main goal, as its very name suggests (development operations), was to

link applications developers and IT personnel responsible for actual running the

application and maintenance. However, a by-product of DevOps turned out to be that,

effectively, a traditional quality assurance (or QA) methods, which required a lot of

repetitive manual labour, also started to fade away. Essentially, this leads to the fact that

organizations, which have adopted DevOps, do no longer require traditional QA

according to Yigal [19]. Yigal’s article states that using DevOps implies using CI and CD,

hence tests automation should already be implemented. Figure 4 below illustrates that

today DevOps is at the very centre of the three: development, operations and quality

assurance.

https://paperpile.com/c/XKh4hv/DzE8
https://paperpile.com/c/XKh4hv/DzE8
https://paperpile.com/c/XKh4hv/dlta

9

Figure 4. DevOps diagram. Reprinted from Soapui [20].

After looking at the figure 4, it is reasonable to come back to the question of relation

between DevOps and CD. When technically implemented, the output of both may look

similar - output is software development process, where building, deployment and testing

is automated. However, the key difference between the two is that DevOps is more of a

philosophy, while CD consists of concrete practices and has a much more tangible

outcome. DevOps is very unlikely to be embraced by the company without implementing

CD. On other hand CD could be used by traditional hierarchical organization without

major challenges. [21] In the essence, DevOps affects a whole company culture by

forcing automation, common responsibility and optimising most of software development

processes, while CD just solves one particular problem of software deployability.

A recent 2017 DevOps report by Puppet has a few important numbers backing up the

advantages of DevOps. According the figure 5 below, high DevOps performers have

seen a 440 times growth in lead time for changes and 96 times decrease in mean time

to recover. This means that product deployments could be made on demand as current

high performers can achieve multiple deploys per day. On the other hand, recovery time

has decreased to less than an hour on average. [22]

https://paperpile.com/c/XKh4hv/VFLR
https://paperpile.com/c/XKh4hv/Zppy
https://paperpile.com/c/XKh4hv/ZSHP

10

Figure 5. Changes in IT performance of high performers. Reprinted from Forsgren et. al.

[22]

The metrics above clearly show that DevOps brings a lot of agility to software

development processes while improving overall reliability. However, DevOps is just a

methodology, which implies heavy use of certain tools some of which are modern while

others have been known in the industry for decades. Next subsections of theoretical

background will mainly focus on those technologies.

2.4 Virtualization

In the 1960s computers were very expensive while operating systems were complex to

use and not scalable. This resulted into the problem that allowing multiple users to use

the same computer at the same time was not possible. The solution to this problem was

called a time-sharing system at a time. The implementation of such system was difficult,

and IBM addressed it by inventing of what would become the first virtualization tool and

virtualization as a concept. IBM took a novel approach of creating virtual machines - VM

per each user. [23]

The underlying software that enables virtualization and VMs is called hypervisor. The

hypervisor is a middle layer between VMs and available computer resources such as

CPU, GPU etc. It allocates resources to VMs that are running on the computer, but it

also isolates one VM from another allowing them to exist independently of each other.

[24] There are two types of hypervisors that are displayed on figure 6.

https://paperpile.com/c/XKh4hv/RpIX
https://paperpile.com/c/XKh4hv/9vaB
https://paperpile.com/c/XKh4hv/kYns

11

Figure 6. Type 1 and type 2 hypervisors. Reprinted from Tholeti [25].

Hypervisors from diagram above look very similar with the exception of operating system

layer present in type 2 hypervisor. The first hypervisors developed by IBM were Type 1

hypervisors [26].

Type 1 hypervisors are so called bare metal. They are low level and often are a part of

hardware itself. These hypervisors are very efficient as there is no host operating system

overhead. Stability is also very high for computers that run type 1 hypervisor. The main

disadvantage of such hypervisors is their complexity, they are difficult to start using and

mainly matter when performance is of utmost importance. On the contrary, type 2

hypervisors need a host operating system (or OS) to run. They are essentially just

another software that is running under OS. The main advantage of type 2 over type 1 is

ease of use - user with basic computer skills can install a software based on type 2

hypervisors, one of which could be VirtualBox. Type 2 hypervisors are significantly

slower due to the host OS and are not as reliable because if host OS fails all the running

VMs will fail too. [24]

Back to the topic of general description of virtualization, its classification varies a lot

depending on the source. One of the possible classifications is displayed below in figure

7. The initial virtualization developed by IBM and described above falls into hardware

virtualization. As listed on the figure below, there are at least 7 common types of

virtualization that all have common grounds in that first one developed by IBM.

Nevertheless, the other virtualization types will not be discussed further as they are out

of scope of this thesis. However, the two subtypes of hardware virtualization will be.

Those are full virtualization and operating-system-level virtualization.

https://paperpile.com/c/XKh4hv/tyha
https://paperpile.com/c/XKh4hv/34m3
https://paperpile.com/c/XKh4hv/kYns

12

Figure 7. Classification of virtualization. Reprinted from Bhupender [27].

Full hardware virtualization is what makes possible virtual machines powered by

software like VirtualBox that is very commonly used today. It is a cornerstone of today's

cloud computing ever increasing server utilization and flexibility [28]. It is also popular

among software developers themselves allowing them to run software in virtual

machines, while keeping the host OS clean and giving a possibility to switch between

very different projects many times a day [29]. However, a full virtualization is a resource

heavy tool which basically leads to running multiple operating systems simultaneously

on the same computer. This is where operating-system-level virtualization comes in with

tools like Docker. This type of virtualization and its key representative Docker will be

discussed in the next section.

2.5 Docker

Operating-system-level virtualization, or as it is also called, container-based

virtualization, is a lightweight version of full virtualization. It does not imply running the

full VM unlike full virtualization. Hypervisors are not used for providing resources to VMs.

In fact, a VM in context of operating-system-level virtualization is called a container,

which is this very virtual environment. With the absence of hypervisors, resource sharing

is implemented differently - via host OS kernel. Kernel itself is providing process isolation

and management of resources. Therefore, container from the inside looks very much like

a normal operating system with file system, processes, memory and etc. [30]

https://paperpile.com/c/XKh4hv/gjHs
https://paperpile.com/c/XKh4hv/bw1v
https://paperpile.com/c/XKh4hv/86hv
https://paperpile.com/c/XKh4hv/lva2

13

Figure 8. Containers compared to VMs. Reprinted from O’Reilly [31].

The figure 8 above displays the operating principle of container virtualization compared

to traditional full virtualization used with Hypervisor 2. It is clearly seen that containers

displayed on the right are more lightweight and do not require running the full OS. Hence,

the main advantage of containers is their sheer performance. The performance is

explained by no need to wait for resources allocation from hypervisor as well as by the

simple fact that less software is run in order to make container work. More importantly,

such virtualization causes less overhead on the increase of scale. [31]

Coming back to the heading of this subsection, Docker, there have been developments

of operating-system-level virtualization from as early as 1979. Then in the 2000s

containers were slowly growing in popularity. There are 3 events that lead to containers

growing so popular. First, introduction of control groups and merging them into Linux

kernel, which allowed Linux native containers in the first place. Then, in 2008, Linux

Containers or LXC are created, which is a first complete implementation of container

management for Linux. All of this laid ground for a first Docker release in 2013, which

was initially based on LXC. [32]

In 2016, 460 thousand applications were hosted with Docker, while in 2014 the figure

was only 3100 [33]. So, what differs Docker from all the other tools that were available

prior and why it became so popular so quickly and widely accepted in the industry? The

time of first release is an important reason in its own right. Back in 2013 cloud computing

trend was gaining momentum, so Docker got introduced just at the right time to get into

https://paperpile.com/c/XKh4hv/RwiJ
https://paperpile.com/c/XKh4hv/RwiJ
https://paperpile.com/c/XKh4hv/4QGn
https://paperpile.com/c/XKh4hv/aTR8

14

the flow of success. Old container tools were already on the market but none of them

were industry standard, therefore, Docker, which was a newer technology had got a

chance for attention. [33]

Nevertheless, right time is not the only reason why Docker is the container technology

of choice for building a modern DevOps pipeline. First of all, Docker is significantly easier

to use than its older counterparts. One of the complications of operating-system-level

virtualization, which Docker represents, is the fact that base images used for running

containers need to be built in a specific way that container vendor supports. Docker

addresses this problem by bringing DockerHub - a central repository that contains those

very images. In autumn 2016, there were already around 400 thousand public images

[34].

This abundance of pre-built images allows commands like the one above. The command

displayed in listing would pull an nginx image from DockerHub and start a container.

Then it will map port 80 in the container to port 80 on the host. Depending on the speed

of internet connection setting up basic nginx takes just seconds.

docker run -p 80:80 nginx

Listing 1. Running nginx with Docker.

This functionality brings benefits not only to deployment but to a local development as

well. With just one command similar to the one above, a full on isolated container can be

started with an application already running. But Docker would not be complete without a

whole set of different viable tools for local use or production. For example, a Dockerfile,

which contain instructions to how an application should be built to run in Docker. More

importantly, Docker tackles the issue of container orchestration that allows running a

whole set of supporting software like database, backend and frontend that together

combine into one application. A more detailed overview and use of these tools will be

discussed in the next sections.

In the scope of this thesis, container orchestration is the last piece of a puzzle that is

missing from starting to build a DevOps pipeline. Therefore, the next subsection will

discuss the topic of orchestrating the containers.

https://paperpile.com/c/XKh4hv/Nlgy
https://paperpile.com/c/XKh4hv/IwpR

15

2.6 Container Orchestration

Container orchestration is a major part of Docker ecosystem. Orchestration and how

accessible it has become is one of the reasons for this thesis in the first place. It

addresses multiple issues from being a means of documentation to providing a way to

running applications across multiple servers in a more manageable way than traditional

container free environment.

So, what does container orchestration stand for? Container orchestration manages how

containers are created, updated and it controls their reliability. The control of container

communication is also handled by an orchestration tool. [35] This kind of features

becomes needed along with growing loads to servers where application is running. At a

certain load point a single server will not be able to sustain to an application. At this point

application will have to become distributed across more than one server. This is where

a list of challenges like load balancing, health checks and zero-downtime deployment

comes into the scene and container orchestration addresses all of them [36].

The architecture overview displayed below in figure 9 is an example of Kubernetes

cluster, which is a typical example of container orchestrated environment. If such an

environment is to be built without a container orchestration tool, then the challenges

mentioned in previous paragraph need to be tackled. Figure 9 uses 3 worker hosts called

Kubernetes nodes and a master server node, which controls the whole setup. In an

orchestration free environment, the very first problem that one will have to solve, is how

those independent containers communicate. Orchestration tools usually solve those

problems via running an orchestrated environment in one private network that the

orchestration tool helps to set up, which is much less time consuming that doing such a

network configuration manually via native Linux tools.

https://paperpile.com/c/XKh4hv/kuVL
https://paperpile.com/c/XKh4hv/OQAE

16

Figure 9. Kubernetes Architecture Overview. Reprinted from Schroder [37].

The second large challenge is the maintenance of a multi-server container environment.

Container orchestration tool on figure 9 has a master server that provides a set of APIs

that could be used to control the whole environment just like it was running on a single

server. Deployment, load-balancing, monitoring and health-checks are usually either

built-in into container orchestration tool or easier to implement compared to manual

approach.

As container orchestration has been developing rapidly last few years, there are now

tools available and all of them are built with Docker in mind. The major tools are:

● Kubernetes - Developed by Google Kubernetes is very popular with a share of

32% in 2016 [38]. Google Cloud platform, a major cloud platform, implements

Kubernetes as a container service [39] but it could also be run standalone.

● Amazon EC2 Container Service (ECS) - with a share of 29% in 2016 ECS is

another key player on container orchestration market [38]. It has many built-in

features and largely benefits from being a part of Amazon infrastructure. Those

features include identity and access management, auto scaling, load balancing,

Docker images repository and etc. [40].

● Docker Swarm - this tool is native to Docker with a share of 34% in 2016 [38]. It

is one of the easiest orchestration tools to start with possessing good quality

documentation.

https://paperpile.com/c/XKh4hv/qHrb
https://paperpile.com/c/XKh4hv/ubfj
https://paperpile.com/c/XKh4hv/89n2
https://paperpile.com/c/XKh4hv/ubfj
https://paperpile.com/c/XKh4hv/SLHE
https://paperpile.com/c/XKh4hv/ubfj

17

● Cattle - developed by Rancher Labs and is highly integrated with native Docker

methodology. It is a base orchestration for Rancher container management

server. [41]

Container orchestration offers significant advantages to adopters. However, there is a

major issue that they require a steep learning curve. This could be addressed by

adopting a container management server or running orchestration at a cloud platform

like Google Cloud Platform. Such an orchestration platform allows to abstract large parts

of tedious setup work. The next subsection researchers such platforms.

2.7 Container Management Software

Although orchestration tools provide highly transparent APIs and are already a step

forward compared to traditional deployments, there is still a sizable level of complexity.

Therefore, there is another layer that has recently been introduced called container

management software. It stands for simplifying administration of a containerized

environment providing means of creating, destructing, deploying and scaling of

containers [42].

As the container and server count in an orchestrated environment grows, the

management tools of Kubernetes and Docker Swarm are becoming insufficient.

Understanding and managing relationships between clusters of serves and containers

becomes error prone. In addition to, each of the applications running in the environment

can have dozens of different settings. Hence, it becomes clear that container

management software is the required addition for an efficient and reliable container

orchestration. [42]

This management software can be categorised into 2 types, where one is a part of cloud

infrastructure like AWS ECS or Google Container Engine and the second are standalone

applications like Rancher or OpenShift [42]. Both types have considerable advantages

and disadvantages. Container platform as a part of a large cloud provider has many

features such as auto-scaling. However, if there is a need to change a cloud provider,

such a migration could be both costly and time consuming. The infrastructure will have

to be rebuilt with a whole different container management software. On the other hand,

the second type, which is a self-hosted container management server does not lock a

user to a particular cloud. Such management software could be installed at any server

https://paperpile.com/c/XKh4hv/fi0Z
https://paperpile.com/c/XKh4hv/sVq1
https://paperpile.com/c/XKh4hv/sVq1
https://paperpile.com/c/XKh4hv/sVq1

18

or even on the local virtual machine. The main disadvantage of this approach is that

depending on the container management software, some advanced features like auto-

scaling could be limited, as there is no direct connection to cloud infrastructure.

Additionally, self-hosted management software has one more advantage - it requires

less prior knowledge unlike cloud provider one where knowledge of provider’s

infrastructure is required.

According to Rancher’s own documentation, there are just a few steps that need to be

performed in order to start with a basic container orchestrated environment. One would

need an Ubuntu server, which has Docker running. Then, run Rancher server, which is

shipped as Docker image. After that a Rancher agent would need to be started on the

server and right after that environment is ready for adding applications to environments.

[43]

Container management software is the last piece of a puzzle required for building a

reusable template for a DevOps pipeline. The next sections will focus of work methods

used in producing such a template and a description of actual project output.

https://paperpile.com/c/XKh4hv/J7l8

19

3 Project Methods and Materials

3.1 Project Workflow and Methods

This project workflow consists of 6 stages displayed on figure 10 below.

Figure 10. Project workflow.

The first stage is gathering the requirements, which are the base for the whole project.

The main requirement of this project that was briefly mentioned in introduction section is

to build a template for a DevOps pipeline implementing Docker. This led to a

comprehensive analysis of available information on modern practices for automation of

software development processes. Stage 2 - studying the background information,

extensively affects the requirements for a template pipeline. As it is clearly seen from

previous section there are a lot of options for building a pipeline, therefore the

requirements are re-evaluated in stage 3 according to analysed background

implementation with the main goal of maximum reusability.

After the requirements are updated, a high-level plan of implementation should be

developed. This plan will contain diagrams and flows of pipeline demonstrating and

describing purposes for all methodologies and technologies. Once the plan is ready, the

actual implementation should start that would represent the end output of this project.

The final 6th stage will conclude and analyse the results of this project providing a

discussion for project strong and weak spots as well as proposing future updates and

improvements.

3.2 Requirements

The main two requirements proposed in introduction remain the same - resulting pipeline

should be reusable as much as possible as well as use Docker. The latter requirements

are based on theoretical overview conducted in previous section.

20

First of all, pipeline should be built primarily via open source or free software where

applicable. Therefore, the technologies selection listed in the next subsection should

mostly consist of those software.

Then the pipeline should be built according to latest CI, CDt and DevOps trends and be

automated. When pipeline is configured, the only action required from the developers

should be to push code to version control, while the rest should be handled by pipeline.

As Docker containers are the cornerstone of this project, all the latest tools such as

container orchestration and container management software should be implemented as

part of the pipeline. This would also allow scalability, which is another requirement.

Pipeline should be easily adjusted to support environments both small and large,

therefore the use of container orchestration is essential. Container orchestration will also

bring in such features as load balancing and zero-downtime deployments.

Finally, a non-directly related pipeline requirement is that it should be possible to run all

components of the pipeline locally via the means of virtual machines. This will enable

quick testing without the need of running actual servers and will be a medium for an

actual pipeline display.

3.3 Tools and Technologies

To begin with, in order to start building a pipeline, a reference project is required, against

which, the pipeline will be built. Such project is provided by Eficode Oy and it will be

described in better detail in the next section. Nevertheless, the project will be put in Git

version control. In addition to, the project will have to be containerized and this is where

Docker will be used.

Jenkins server will be used for implementing CI and CDt . It is a popular open-source

solution for automation of software development that has a wide functionality and goes

hand in hand with modern DevOps agenda.

Container management software will be Rancher server. Rancher has multiple

advantages such as being free and open-source as well as good documentation and

moderate learning curve. Rancher supports all the needed features such load-balancing

and extensive management capabilities.

21

One of the requirements of orchestrated container environment is that Docker images

need to be stored at some repository and be available for pulling on demand. DockerHub

provides unlimited amount of storage of Docker images as far as they remain publicly

accessible. Therefore, DockerHub will be the default repository for storing application

images.

Lastly, there is a need for servers, where the pipeline infrastructure will run. VirtualBox

and Vagrant paired with Ansible provisioning tool will be used for this purpose. VirtualBox

is a widely-known free to use software for running full desktop virtualization. Vagrant, on

the other hand, is a popular set of APIs that allows create and manage virtual machines

from command line. Ansible is software that allows storing OS provision information in a

form of configuration files, which can be reused or extended as many times as needed.

The tools that were introduced here should allow building this very pipeline with Docker

that meets the requirements of a modern DevOps pipeline. The next section will describe

the pipeline and how it was built.

22

4 Pipeline Design and Implementation

This section of this paper is where the actual description of pipeline design and

implementation will take place. First, the architecture of reference web project and its

architecture will be discussed. Next, high level pipeline architecture will be presented,

following with implementation plan. Lastly, the actual implemented pipeline will be

presented and explained. Both, pipeline template and Voting App are stored on GitHub

and web links to them can be obtained from appendix 1.

4.1 Reference Project Description

The reference project is provided by Eficode Oy. The name of the project is Voting App.

The main use case behind this project is deciding a winner project in a competition like

a hackathon. Application is very minimalistic and has just 3 views.

The views of Voting App are as following, and the screenshots can be seen from

appendix 2:

● /new.html - This is where a new project can be created by submitting project

name and project team.

● / - The main voting view. Voter needs to first select three projects of preference,

which will get 5, 3 and 1 points respectively, then enter the email and submit. One

voter is only allowed to vote once.

● results.html/ - The results view, where the list of projects with corresponding

points can be seen.

The high-level architecture of Voting App is presented on figure 11 and is very typical for

a web project. There is a frontend that makes API requests to a backend, which stores

information in the database.

Figure 11. Voting App high level architecture.

There is a following technology stack used in this web project:

● Frontend - JavaScript with Riot.js and Express.js.

● Backend - Node.js with Koa framework and Sequelize for object-relational

23

mapping or ORM.

● Database - PostgreSQL, which is a popular SQL database engine.

Voting app is a small project with just a few hundred lines of code. However, the size of

the project is irrelevant for the end goal of this thesis - a reusable pipeline template.

Voting App has all the components that are making up a typical web project. Therefore,

the next subsection will discuss a pipeline high level architecture and pinpoint the exact

purposes for its every component and technology.

4.2 Pipeline Flow

The final pipeline should follow a set of criteria, where the main one is automation. Once

developer has delivered new code to version control, the pipeline should automatically

handle the update accordingly. On high level, pipeline will follow continuous deployment

pattern described on figure 3. Continuous deployment is selected to achieve the

maximum level of automation maturity.

The general flow of the diagram can be observed below in figure 12. First, developer

uploads new code to version control. Then, the CI server or Jenkins server, in case of

this pipeline implementation, will see the new change in version control and will start a

new build. All branches of the version control will be covered by Jenkins server and

change in any of them will be triggering the pipeline job.

After the build has started, the CI server will build Voting App, which is the reference

project for this pipeline. Then, if build is successful, the pipeline will continue to run tests,

or in case of build failing, the pipeline will finish with error. Running tests against Voting

App is the next stage. The pipeline will continue or finish with error depending on the

results of the tests.

If tests were run successfully the pipeline should check the branch of the current job. If

current branch is designated for deploying, then Jenkins will continue to upload of

resulting Docker images from build step. If not, then the pipeline will finish with success

status.

If upload of Docker images is needed, then Jenkins will try to send those images to a

corresponding DockerHub repository that would require authentication. On upload fail

24

the build will finish with error, while on success Jenkins will send a command to Rancher

server, which will automatically do everything necessary to update Voting App running

environments according to new Docker images.

On receiving the command from Jenkins, Rancher will pull new images from DockerHub

and update the running Voting App accordingly. The application should experience zero

or close to zero downtime.

Finally, the pipeline will be finished for all possible build scenarios.

25

Figure 12. Pipeline Flow.

26

4.3 Implementation Plan

As seen from diagram above, resulting pipeline will be of noticeable complexity and will

consist of multiple components. Hence, in this subsection the order of implementation

covering all parts of pipeline will be discussed.

At first, Voting App will need to be dockerized. This means that configurations for building

project components, such as frontend, backend and database will have to be made.

Then Voting App will need to be prepared for local orchestration that will be needed for

building Docker images and running tests in Jenkins. Local orchestration will also serve

as a starting point for a creating a one with Rancher.

The next step would be setting up Rancher environment for the project. This will include

installing Rancher server and starting application environment, uploading Docker images

to DockerHub and making a configuration to enable Rancher to run Voting App.

After the Rancher environment and the project are ready, the next step would be

automating the process of deployment. This would mean that Jenkins server will need to

be installed and configured. Then Jenkins job will need to be created for Voting App. This

job will behave according to figure 12 in the previous subsection. This is the last step to

making the pipeline operational.

The pipeline infrastructure from the user point of view should look like it is displayed on

figure 13. There will be a virtual machine running Jenkins Server, a main Rancher node

and an n number of Rancher nodes, where the n could be changed dynamically on user

preference.

Figure 13. Pipeline Infrastructure.

27

4.4 Dockerizing Voting App

4.4.1 Docker Glossary

The two main building blocks of an application powered by Docker are images and

containers.

Docker images are the base for containers. According to Docker’s own documentation,

an image can be reduced to a set of layered filesystems that are stacked on top of other,

which together make up the combined content of an image [44]. On the other hand, the

second building block - container, is a runtime instance of a Docker image. Container

consists of a Docker image, an execution environment and a standard set of instructions.

[44]

The first step then, to dockerize the project, would be to build Docker images for all the

components: frontend, backend and database. The instructions for making images are

stored in a so called Dockerfile [45]. Dockerfile is a text file that contains all commands

that user needs to run in order to build the image. The instruction structure goes as

displayed below in listing 2.

Comment

INSTRUCTION arguments

Listing 2. Dockerfile instruction structure.

First goes the instruction to execute and then the arguments that need to be passed to

the instruction. Some of the more important commands are listed in the table below:

Instruction Example Argument Description

FROM nginx The base image for the image that is
being build.

RUN apt-get update A command that needs to run on image
file system that results into some changes
in the file system. Installing application
dependencies as an example.

WORKDIR /home/user/project The working directory of the image.
Basically, it sets a root directory for the
image.

https://paperpile.com/c/XKh4hv/IyvC
https://paperpile.com/c/XKh4hv/1ZSD
https://paperpile.com/c/XKh4hv/iq4H

28

COPY . /home/user/project Allows copying files and directories from
host filesystem into image filesystem.

EXPOSE 3000 The port that should be exposed in the
container when it is running the image.

CMD ./start_project.sh Allows to specify the default application
that will be running in the container when it
is using the image. If default application is
crushed of finished executing the
container will stop.

Table 1. Dockerfile basic instructions overview. Data gathered from Dockerfile reference

[45].

It is clearly seen from the table above that Docker images and containers have a very

close relationship as they are a part of a single workflow - preparing and running an

application as a Docker container. Nevertheless, it is time to come back to Voting App

and prepare it for running with Docker, which is the topic of next subsection.

4.4.2 Dockerizing Voting App

Both frontend and backend of Voting App are Node.js applications. The typical

installation for such applications looks the following way:

● Install Node.js runtime environment.

● Use Node.js native package manager npm and run npm install in the root of the

project.

● Run npm start command that will start the application.

The listing 3 below displays a Dockerfile definition that was developed to build Docker

image for backend. First, the base image is selected with FROM instruction and

node:argon argument. DockerHub provides many preset images from Nginx and Jenkins

to Python and Node.js. node:argon here stands for the name of the image and tag on

DockerHub, where is node is the name and argon is a tag (of version) of this node image.

Argon tag is selected as this is the node version that satisfies the dependencies of Voting

App backend.

https://paperpile.com/c/XKh4hv/Xyr1

29

FROM node:argon

Create app directory

RUN mkdir -p /usr/src/app

WORKDIR /usr/src/app

Install app dependencies

COPY package.json /usr/src/app/

RUN npm install

Bundle app source

COPY . /usr/src/app

EXPOSE 8080

CMD ["npm", "start"]

Listing 3. Voting App Backend Dockerfile.

The second block in developed Dockerfile starts from comment “Create app directory”.

This is where RUN instruction is used to run Linux shell command to create a directory

path /usr/src/app, where the application is going to be stored. It is followed with

WORKDIR command that sets the working directory of an image to the newly created

application path.

The third block is responsible for installing application dependencies. A typical place for

storing dependencies definitions in Node.js projects is a package.json file. It is copied

from host to image application path with a COPY instruction as seen above. Then, RUN

instruction will execute npm install in image to install the required packages according to

package.json file.

Last 3 sections are finishing up the preparation of the image. First, the application source

code is copied from host to image application directory. Then port 8080 will be exposed,

which is an application public port defined in a source code. Finally, a command to

execute on container startup is defined, which is npm start.

The listing above is for a backend image. However, the frontend image is almost exactly

the same with a different exposed port (3000).

30

In order to build and test the images only two commands are required. These commands

are shown in listing 4. First command will build the image according to instructions in

Dockerfile. The -t parameter stands for defining the image name. In case shown in listing

4, the image name would be votingapp_backend. Then, with the second command, the

container from this image would be run. In this command -p stands for port mapping in

format host:container and the votingapp_backend stands for the name of the image to

run.

docker build -t votingapp_backend .

docker run -p 3000:3000 votingapp_backend

Listing 4. Build and run Voting App frontend with Docker.

With the approach described in previous paragraph, the whole Voting App or any

application can be assembled. However, it will require tedious work on building and

managing container/images individually. Then the communication between containers

would be another issue that would need to be solved. The database building and creating

is not specified in this part of the implementation on purpose. The reason for this is that

all these issues will be addressed in the next subsection covering local container

orchestration.

4.5 Local Container Orchestration

Docker Compose is a native Docker tool that was built just for the purpose of building

and running Docker images on a single host. It covers many aspects of an application

from ports mapping and injection of environment variables to defining dependent

services. The configuration for building the environment is stored in YAML files. It is

important to note that for the most part it is possible to configure container environment

without Docker Compose but it largely simplifies this process, therefore it is used in this

pipeline. [46]

Docker Compose has a large number of features allowing to create the environments of

great complexity. However, as Voting App is a very simple project and the goal of this

thesis is to produce a reusable base template for DevOps pipeline, only the features that

are actually used in this project will be described. The listing 5 below displays the end

result docker-compose yml file that was produced for Voting App.

version: '3'

https://paperpile.com/c/XKh4hv/T6Bs

31

services:

 backend:

 build: backend

 command: npm start

 entrypoint: ./wait-for-db.sh

 environment:

 - DATABASE_URL=postgres://votingapp:votingapp@db/votingapp

 depends_on:

 - db

 ports:

 - "8080:8080"

 frontend:

 build: frontend

 ports:

 - "3000:3000"

 db:

 image: postgres:9.4

 environment:

 - POSTGRES_USER=votingapp

 - POSTGRES_PASSWORD=votingapp

 - POSTGRES_DB=votingapp

 volumes:

 - db_data:/var/lib/postgresql/data

volumes:

 db_data:

Listing 5. Voting App docker-compose.yml.

Docker-compose.yml always starts with version. Depending on the specified version a

different set of options will be available to the user. Then, there are services and volumes.

Services are, essentially, a set of definitions that are applied to containers when they

start. In the example above, there are 3 services that will respectively correspond to 3

containers. The high-level volumes definition declares different types of persistent data

volumes that could be reused by different services. [47]

Going deeper into services, each of them has at least an image or build tag. In the

example above build: backend and build: frontend tell Docker Compose to build

Dockerfiles in the project_root/backend and project_root/frontend directories

respectively, while docker-compose.yml is located in the root of the project. The image

https://paperpile.com/c/XKh4hv/Glia

32

key, like the one in the db service, is set to postgres:9.4. This means that in order to

create db service Docker Compose will download PostgreSQL with 9.4 tag from

DockerHub. Therefore, db service in this implementation does not require a Dockerfile,

instead, a prebuilt image from Docker library is used.

Next, the backend has two keys of command and entrypoint but those will be addressed

in the next paragraphs. Environment keys present in backend and db services

correspond to the environment variables that need to be passed to the containers. The

DATABASE_URL variable tells backend the address of the database container. Figure

14 displays the structure of this URL. The beginning of it is typical, containing protocol

and username/password pair. The host address, db/votingapp, however is the point of

interest. “db” part referrers to the name of the database service in docker-compose.yml.

This means that all the containers in the Docker Compose orchestrated environment can

refer to each other by the name of the service defined in the docker-compose.yml. Such

service discovery is implemented through a default overlay network, which also contains

a DNS server. This network is automatically created by Docker Compose for all

orchestrated environments.

Figure 14. PostgreSQL URL structure.

Next key is only present in backend service and it is depends_on. The value of this key

is db. This tells Docker Compose to start backend container only after db container has

been started. This is implemented due to the fact that backend service depends on the

database already running or otherwise the backend will crash. Following ports key that

also present in the frontend service is similar to the normal Docker port mapping. The

same format host:container is preserved.

33

Lastly, the volumes key in the services. Database service has it with this value

db_data:/var/lib/postgresql/data. On the left-hand side is the db_data named volume

defined in global volumes key. Named volume work the way that Docker Compose will

reserve a directory somewhere on the host machine and store persistent data there. On

the right-hand side of the expression is the path in the container where to make the

mapping to. It is important to note that the mapping is a two-way mapping.

It is now time to come back to explaining command and entrypoint keys present in the

backend service. One important concept about Docker is that it is not aware of what is

going on inside the container processes. It is important here because backend container

depends on the database one and even if deprends_on key is set, there is still a

possibility that the backend Node.js server will start before the PostgreSQL will be fully

initialized and ready to accept requests. This is where entrypoint paired with command

becomes highly useful. Entrypoint behaves as an enter script and in this case a shell

script runs a netcat command in a loop with delay, waiting for a database port to open.

When it is opened a command, key will be run, and the container will start. By default,

Docker Compose does not run the entrypoint, therefore if it is set, then command needs

to be set too, and these two keys behave like an override for the CMD instruction set in

the original backend Dockerfile. The updated Dockerfile for the backend with installation

of netcat and the content of wait-for-db.sh script could be found in Voting App repository,

links to which could be found from appendix 1.

In order to start the resulting Docker Compose environment it is enough to run just one

command in the root directory of Voting App. This command is displayed in a listing 6.

docker-compose up --build

Listing 6. Docker Compose build and start command.

The --build parameter in this command tells Docker Compose to rebuild Docker images

and update containers if they are already running and there have been changes detected

in the underlying Docker Images. The result of this command is three containers running

in one Docker Compose environment. The next subsection will discuss the preparing for

running Rancher environment and Jenkins Server in the previously discussed local

environment based on virtual machines.

34

4.6 Virtual Machines with Ansible and Vagrant

To enable an easy access to the end result pipeline, 3 virtual machines will be created.

Those virtual machines will be made with Ansible and Vagrant.

Vagrant is a tool for creating and managing virtual machines. It behaves as a wrapper

on top of the standard virtual machine providers such as VirtualBox. If fact, Vagrant does

not provide any built-in virtual machine implementation. In order to utilize Vagrant, one

or many virtual machine providers need to be installed. [48] In case of this project,

VirtualBox will be the provider of virtual machines.

Vagrant environments are defined with Vagrantfile, which contains instructions to

creating virtual machines. Below is the Vagrantfile that will be used for all 3 virtual

machines. The only part that will differ between environments is the IP address defined

on the 3rd line.

Vagrant.configure("2") do |config|

 config.vm.box = "ubuntu/trusty64"

 config.vm.network "private_network", ip: "192.168.50.5"

 config.vm.provision :ansible do |ansible|

 ansible.playbook = "ansible/provision.yml"

 ansible.host_key_checking = false

 end

 config.vm.provider "virtualbox" do |v|

 v.memory = 1024

 v.cpus = 2

 end

end

Listing 7. Vagrantfile.

The Vagrantfile above defines the virtual machine image that will be downloaded from

Vagrant repository and sets the default network. Then, Ansible block tells Vagrant to use

Ansible as a provision tool. Last block defines VirtualBox as the provider and sets virtual

memory to 1024 MB and CPU to 2 virtual cores.

Ansible is a provisioning tool, which works according to infrastructure-as-a-code

principle. This principle means that server configuration needs to be developed once and

https://paperpile.com/c/XKh4hv/8MH7

35

put into Ansible configuration files. Then Ansible can be used to provision remote or local

servers any number of times from the single set of configuration files. [49] This gradually

decreases server setup time and provides a documentation close to human readable

format. The major advantage of Ansible to competitors is the fact that end servers do not

need any special agents installed. Ansible will push its modules to the server on demand

depending on type of provisioning required. [49]

- hosts: all

 become: yes

 become_method: sudo

 roles:

 - common

 - jenkins

 - docker

 - swap

 - finishing

Listing 8. Jenkins Node provision.yml.

The code above displays Ansible entrypoint YAML file - provision.yml. This file tells

Ansible to provision all available hosts, which are the virtual machines in this particular

case. It also gives an instruction to run all commands as root user and then there is list

of roles that Ansible should execute. Roles are a key concept of Ansible. Each role

usually corresponds to one piece of software or a task that needs to be run. In this case

common dependencies will be installed, following with Jenkins Server and Docker. Then

swap file will be added for better virtual machine performance and lastly the finishing role

will trigger a virtual machine reboot.

Below is the role that will provision the Jenkins Server. apt, apt_repository and others

are the examples of Ansible modules that will handle the installation. According to the

YAML file above, a daemon dependency will be installed, which is required by Jenkins

server. Then Java 8 is installed from official repository. It is followed by the installation of

Jenkins Server 2.79 from a .deb package. The last command will start Jenkins.

- name: Install daemon

 apt: name=daemon update_cache=yes state=latest

- name: Add Official Java Repository

 apt_repository:

 repo: ppa:webupd8team/java

https://paperpile.com/c/XKh4hv/eKmm
https://paperpile.com/c/XKh4hv/eKmm

36

 state: present

- name: Accept Java 8 License

 become: yes

 debconf: name='oracle-java8-installer' question='shared/accepted-oracle-license-v1-

1' value='true' vtype='select'

- name: Install Java 8

 apt: name=oracle-java8-installer update_cache=yes state=latest

- name: Get Jenkins Deb Package

 get_url:

 url: http://pkg.jenkins-ci.org/debian/binary/jenkins_2.79_all.deb

 dest: /opt/jenkins_2.79_all.deb

- name: Install Jenkins

 apt: deb="/opt/jenkins_2.79_all.deb"

- name: Start Jenkins

 command: /etc/init.d/jenkins start

Listing 9. Jenkins Ansible role.

All it takes to start an Ansible provisioned Vagrant host is a command that is displayed

in listing 10. This will bring up a virtual machine and then Ansible will provision according

to provision.yml file and selected roles. All 3 resulting virtual machines will be configured

the same way. Web link to the pipeline repository containing the rest of Ansible and

Vagrant configuration for all 3 hosts can be found from appendix 1.

vagrant up

Listing 10. Vagrant command to start virtual machine.

4.7 Configuring Rancher Environment

In this subsection Rancher server will be installed and configured. After it is done Voting

App configuration will be developed to make it run with Rancher.

4.7.1 Configuring Rancher Server

Rancher is shipped in the form of a Docker image [43]. The command used in Ansible to

https://paperpile.com/c/XKh4hv/J7l8

37

provision Rancher Server could be seen below in listing 11. This command will start

container with the name “rancher” from the image rancher/server:v1.6.10. The MySQL

data from Rancher will be stored in /opt/rancher/mysql on virtual machine file system. In

case if container crashes, Docker is instructed to restart it right away. Public port 8080

is mapped to the container. Lastly, the -d option stands for running the container in a

detached or, in other words, background mode.

docker run -d --name rancher -v /opt/rancher/mysql/:/var/lib/mysql --restart=always -p

8080:8080 rancher/server:v1.6.10

Listing 11. Jenkins Ansible role.

When server, starts it is available on http://192.168.50.4:8080. First of all, a host

registration URL is required. The default value provided by Rancher will be used for

registration URL. The screen demonstrating the Rancher UI could be seen on figure 15

below.

Figure 15. Selecting host registration URL in Rancher.

The following screenshot below displays a screen where Rancher first host should be

added. On the top of the screen there are presets for adding hosts in different cloud

computing providers and a “Custom” preset that would work for any Linux server and it

38

is the one used here. In the list below under number 2, there is a message specifying

that in order for Rancher hosts to work correctly, UDP ports 500 and 4500 need to be

open. Configuration option number 4 allows to enter a custom public IP address that

should be assigned to the host. Finally, under number 5 there is a command that needs

to be copied and executed on the target host, which will start the Rancher agent and add

the host into the environment. The operation of adding hosts will be repeated twice to

add both of the hosts.

Figure 16. Selecting host registration in Rancher.

By the completion of adding hosts, Rancher environment will be almost ready for adding

a real project, which is Voting App in case of this thesis. The screenshot below on figure

39

17 displays the two resulting hosts running on two virtual machines as part of one virtual

environment. So far, the orchestration tool that will be used in the environment was not

mentioned. By default, Rancher uses its own native Cattle orchestration and this is the

one that is used in the environment that have just been created. Nevertheless, the next

step is to prepare Voting App project for running in a Rancher environment.

Figure 17. Two resulting hosts in Rancher environment.

4.7.2 Preparing and Running Voting App in Rancher

The first step to prepare Voting App for deployment with Rancher is to push the

corresponding images to repository. DockerHub conveniently provides free of charge

unlimited storage for public images. Two Docker repositories were created for this

purpose. They are:

● allhaker/votingapp_backend - for Voting App backend.

● /allhaker/votingapp_frontend - for Voting App frontend

As Jenkins server is not yet running, the Docker images were pushed manually using

Docker CLI. First docker login command, displayed on listing 12, was used to login to

DockerHub. Then, the resulting images from Docker Compose build were each tagged

with new image repository and then pushed. Docker tag and push for Voting App

frontend could be seen below on the listing 12.

docker login

40

docker tag devopspipelinedemoproject_frontend allhaker/votingapp_frontend

docker push allhaker/votingapp_frontend

Listing 12. Tagging and pushing Voting App frontend.

After the images are in the DockerHub, the next step takes place in Rancher. Under the

“Infrastructure” menu there is an item “Registres”, which links to the page where

registries can be added to Rancher. A DockerHub registry for Voting App repository is

added there with corresponding credentials.

The Rancher orchestrated environment is now ready for adding a stack. A stack in

Rancher terminology is an application that is run and managed by Rancher. Rancher

stacks are configured with docker-compose.yml and rancher-compose.yml. The docker-

compose.yml is very similar to the original implementation by Docker Compose with

some Rancher specific modifications. rancher-compose.yml on the other hand is

Rancher’s own configuration file that allows specifying extra parameters like health-

checks, load balancers and etc.

Full versions of Voting App YAML files could be found in the appendixes 3 and 4. Here,

only the most important differences from original docker-compose.yml file will be

covered. First of all, image keys for frontend and backend are replaced with

corresponding paths for Docker images on DockerHub.

Then, there is a new key labels. Labels are used to pass some specific parameters to

Rancher about how to orchestrate a stack. For example,

io.rancher.container.pull_image: always and io.rancher.scheduler.global: 'true' stand for

always downloading new Docker image from the image registry and running the

container globally with one instance on each of the available hosts respectively. The

database service also has the labels, which tells Rancher to start database container

only on a host that is labelled Database=true. The database host is Host 2 with IP

address of 192.168.50.5. This is done due to the fact that database needs a volume and

therefore it should always be started only on a host where this volume will be preserved.

There are also two brand new services in the YAML file. They correspond to a load-

balancer and a special instance of the backend that will execute a script on the backend

that will in turn initialize the database with default values and shutdown.

The relation between containers could be observed on figure 18 below. backend and

41

seed-db services depend on and link to the database. The balancer service, which

corresponds to load-balancer, links to both frontend and backend services. In this

application load-balancer serves two main purposes - it provides a single public endpoint

for frontend and backend and directs traffic equally to containers. As it is seen from figure

18, there are two instances of frontend and backend, therefore they need special

software in front of them to coordinate where traffic goes, and the load-balancer solves

this issue.

Figure 18. Voting App Rancher link graph.

Generally, load balancers are a difficult software to configure correctly. However,

Rancher uses its own implementation of HAProxy load-balancer. This means that

Rancher has a special UI that can be used for configuring the load-balancer. This UI is

displayed on appendix 5. Load-balancer in configured with this UI. Public port is set to

HTTP port 80 for both frontend and backend. Then, the backend URL starts from /api/v1

and frontend with just /. Target containers are set to backend and frontend respectively

followed with corresponding port numbers of the running applications in those containers.

Before continuing to the next section one more piece of configuration is required. When

Jenkins server is up and running, it would require a medium for triggering Rancher

environment upgrade. For this very purpose Rancher has got an implementation of

42

webhooks. First, labels service: backend and service: frontend need to be assigned to

backend and frontend respectively. Then, under “API” tab, “Webhooks” menu item

should be selected in Rancher UI. After that a new webhook could be created. The

screenshot of creating a webhook for backend service could be seen in appendix 6. First,

webhook name is supplied. Then a kind of webhook is selected, which in this case is

“Upgrade a Service”. Next, image tag of target service is set. The following “Service

Selector” section is where previously mentioned labels are utilized. This is needed in

order to enable Rancher to find the right service to upgrade. Last three options are

specifying the exact procedure of an upgrade and they are left to default settings. After

all these settings are specified a webhook can be created. The same webhook creation

procedure was repeated with corresponding settings for the frontend service.

The Rancher is now fully configured to ensure the needs of the pipeline. Next subsection

will present a short overview of the resulting Rancher environment.

4.7.3 Environment Overview

The resulting environment overview is displayed on the figure 19 below. There are 3

virtual machines which are Jenkins Server as well as Host 1 and Host 2 of Rancher

environment. The IP addresses are displayed on the diagram as well.

43

Figure 19. Resulting environment architecture.

Rancher server is running on Host 1 alongside with Rancher agent and one instance of

each frontend and backend. Host 2 has database and load-balancer labels that allow

scheduling database and load-balancer containers only to Host 2. Load-balancer

presence on Host 2 means that it behaves as a public endpoint for users. Host 2 also

has Rancher agent and instances of frontend and backend.

The communication of containers between each other is also displayed on the diagram.

When requests reach load-balancer, they are directed to one of the frontend or backend

containers. Both backend instances, if needed, can call the single database instance on

Host 2.

Rancher agent containers on both hosts manage application containers. If container

44

upgrade is requested, agents will take care of downloading corresponding images from

DockerHub and start new containers accordingly. Adding DockerHub credentials to

Rancher was described in previous subsection.

The last missing part of the environment is the delivery automation of the Voting App

new versions. Hence, the next subsection will describe the configuration of Jenkins to

enable continuous integration and continuous deployment functionality for the pipeline.

4.8 Implementing Jenkins Pipeline

Implementing the CI and CD flows with Jenkins server is the last missing piece of this

DevOps pipeline template. This was being completed in two steps. First, Jenkins was

configured and then a Jenkins job was developed according to figure 12 described in

section 4.2

4.8.1 Configuring Jenkins

Jenkins virtual machine is created the same way as Rancher hosts, via Vagrant and

Ansible. When virtual machine is started, Jenkins would be available on

http://192.168.50.3:8080/. To begin with, it has to be unlocked. According to the

instructions on Jenkins unlock screen that are presented in appendix 7, there is a special

file in Jenkins directory that contains a default unlock password. Commands in the listing

below were executed in order to fetch the password. First command prints the list of

virtual machines including their identifiers (ids). The second command connects via SSH

to a virtual machine with id of 3e7ecc2 that corresponds to Jenkins server VM and then

a cat command is run on a virtual machine to print password to host computer terminal.

vagrant global-status

vagrant ssh 3e7ecc2 -c "sudo cat /var/lib/jenkins/secrets/initialAdminPassword"

Listing 13. Unlocking Jenkins Server.

Once Jenkins is unlocked, it prompts the initial plugin installation screen that could be

observed on the appendix 8. Jenkins is a very modular software and without plugins it

loses most of the functionality. Therefore, a default offered set of plugins is installed.

Jenkins can run tasks for a multitude of projects. For every set of tasks Jenkins has a

45

job. Therefore, Voting App needs a job in Jenkins. The job creation screen could be seen

in appendix 9. There are several types of available jobs. However, multibranch pipeline

would suit best for purposes of this thesis. This job type requires access to the repository

of project of interest and the instructions for how Jenkins should run the job are taken

from special Jenkinsfile configuration file.

There are two main advantages that multibranch pipeline job type has. First, Jenkinsfile

have to be stored in the project source itself, therefore it is easily accessible by project

developers, and this complies with DevOps flow described earlier. Second, all project

branches that have Jenkinsfile present are automatically covered by Jenkins job, which,

in turn if automated tests coverage is extensive can help to find bugs on the earlier stage.

After the job type and name defined, Jenkins would offer to enter some settings for the

job. In this case only the source of the project need to be configured. One of the default

Jenkins plugins was the GitHub plugin, which is pulling Voting App source code.

Therefore, under the branch sources, a GitHub source is selected in the UI. Then, owner

is set to allhaker (this is a GitHub username of the researcher) and Voting App is selected

from the list. The result of this could be seen on the screenshot below. The rest of the

job settings are left as default.

Figure 20. Selecting Jenkins project source.

On submit event, Jenkins will pull the repository and finish with message that no

Jenkinsfile is found in any of Voting App branches. Hence, this Jenkinsfile will need to

be implemented and it will contain the definition of the pipeline. However, before

proceeding one more piece of configuration is required. Jenkins job will be pushing

Docker images to DockerHub registry. This means that Jenkins will need to store the

credentials for this registry.

46

Jenkins offers a built-in credentials storage. The new credential screen could be

accessed navigating in the UI. First, “Credentials” menu item from Jenkins menu on the

main page needs to be selected. Then, “Jenkins” credentials need to be selected

following by selecting “Global credentials (unrestricted)” domain on the next screen.

Lastly, “Add Credentials” would need to be selected from the menu on the left of the

screen. New credentials screen could be observed on appendix 10. Username and

password that are typed in are the same as the ones in Rancher. “ID” field provides a

way to access credentials in the Jenkins job and is set to “docker-login”.

With Jenkins job configured and DockerHub credentials being prepared it is now time to

continue to the next step - implementing a Jenkinsfile.

4.8.2 Developing Jenkinsfile

Jenkinsfile is a text file that contains instructions to how Jenkins should execute a

pipeline build. Jenkinsfile uses Groovy programming language as a base. There are two

main ways in which Jenkinsfile can be written: declarative and scripted. Declarative

option is a newer one and has higher readability. On the contrary, a scripted one allows

more freedom in running custom commands as part of the build. [50] This thesis

implements declarative Jenkinsfile for the reason of simplicity and better readability. The

full version of the Jenkinsfile could be observed in the appendix 11.

The very first line of the file defines a global compose variable that helps to reduce the

unnecessary use of the repeating plain text. After that, the actual pipeline starts with

pipeline directive that wraps the whole code. On the next level there are 4 directives.

First directive, agent, specifies on which Jenkins agent the build should be executed. In

case of this pipeline there is only one agent - the default built-in Jenkins agent. That is

why the value of the directive is any. options can have a large number of different settings

defined for this pipeline, for instance, a build timeout. The next directive is the one where

the actual build stages are defined and where the pipeline code is located. Last directive,

post, is similar to stages, except it is triggered only after all build stages are complete

and where errors could be caught or clean up operations could be performed.

Going one level deeper into stages directive, there are multiple stage directives that take

stage name as an argument. Each stage has steps directive which is where the actual

pipeline commands are located. First stage checks out the code from version control.

https://paperpile.com/c/XKh4hv/6OLD

47

Checkout stage is standard and usually present in most Jenkinsfiles. The actual build

starts from “Build” stage.

In the steps directive of “Build” stage there is a sh directive with a string argument. sh

directive will tell Jenkins to run the argument script as shell script on the server, where

Jenkins is running. In this case it will trigger a Docker Compose to build Docker images.

The next stage will run mocha tests that are a part of Voting App backend. If tests fail or

if any other stage in the pipeline will finish with error result, Jenkins server will abort the

build and finish with error.

“Tag and Push Docker Images to DockerHub” stage introduces a new directive when.

This allows making some stages optional. The use case for this is that Jenkins job was

configured so that any branch of Voting App, if it has the Jenkinsfile and commits are

being made there, will be covered by pipeline and Jenkins will be executing builds.

However, the desired behaviour is to have built and test stages present in all branches

but deployment only for master branch. Hence, optional pipeline stages serve this

purpose. The expression directive inside when will evaluate Jenkins environment

variable that contains current branch name against “master” and the stage will only be

run if job branch is master.

Inside already discussed steps directive lies withCredentials directive. Its purpose is to

fetch credentials from Jenkins local storage of available credentials and inject them into

usable variables. The credentials in question are the ones for DockerHub repository of

Voting App and they were added in the previous section. Credentials are then used in

headless Docker login command. The rest of the stage consists of already described sh

directives that will tag and push Docker images of Voting App to repository and the stage

will be finished with a logout command.

The next stage “Upgrade Rancher Environment” just as previous one runs on the master

branch only. This is where webhook configured in Rancher will be utilised. There is a

new script directive here. It allows running Groovy code and defining variables. There

were two webhooks established in Rancher. Therefore, there are two curl shell

commands in this stage executing curl to trigger webhooks. First, http headers and http

method are supplied to curl. Then goes the payload that specifies image tags that

correspond to target containers and repository name of the image to update previous

one to. Lastly, the curl contains the webhook URL provided by Rancher. After the two

webhooks are executed, Rancher will start an upgrade procedure. There is a

48

disadvantage here caused by the very nature of webhooks. Jenkins pipeline will have no

means of knowing whether the Rancher Voting App environment deployment went

successful or not.

After all stages are complete, the pipeline will finish with success status and Jenkins will

trigger a post step, which is in this case will bring down Docker containers and their

corresponding images.

Installing and configuring Jenkins server and implementing Jenkinsfile was the last step

to finalise the pipeline. The next section will present the results and their analysis.

49

5 Results and Discussion

5.1 Summary of Results

The resulting pipeline, first of all, follows the principles of DevOps, which, as the title of

this thesis suggests, was one of the main goals. It covers all the parts of an application

lifecycle. Voting App was fully dockerized and full local development environment could

be started with just one Docker Compose command. If Docker is used by a whole

development team of a project dockerized in this way, then each team member will have

exactly the same environment, which mitigates the chances for random dependencies

or underlying programming language versions conflicts.

There is a full CI and CD workflow built as part of a pipeline. Jenkins job covers builds,

tests and deployments. It is completely automated and does not require special attention.

On the other hand, Rancher server handles the live environment of the application. With

the container orchestration application could be easily scaled on demand. The main

advantage of Docker here is that it still remains the single software shipment medium.

Docker images that run by developers are the same as those run in Jenkins or Rancher.

The demo setup which consists of 3 virtual machines is built with Vagrant and Ansible.

Those could be started in just minutes. Having all configuration files of a pipeline already

in place, it takes less than an hour to configure Jenkins and Rancher with their graphical

user interfaces. Therefore, pipeline is very portable and environment agnostic, meaning

that it can be hosted locally, on bare metal servers or in a cloud provider infrastructure.

The second main goal of creating the pipeline template that could be reused in the future

is achieved. Docker, Docker Compose, Jenkins, Rancher, Ansible and Vagrant

configuration files can, to a large extent, be reused. If a new project needs a pipeline and

this project is a Node.js one, then all the files are almost 100% reusable. More than that,

Jenkins and Rancher can host as many projects as one would like if there is enough

computing power. This brings reusability to an even higher level.

Another result, which was not initially at the core of the pipeline, is that with such an

abundance of configuration files that cover all the major parts of an application, they work

as a self-documentation. If one is familiar with core technologies used in this pipeline,

then, by exploring the configuration files, it is possible to deconstruct how all the parts of

50

the pipeline work to the very root of it.

5.2 Evaluation of Results

The evaluation needs to be started from analysis of to which extent DevOps principles

are followed by the pipeline. The culture of DevOps, essentially, is about centralising

development, operations and quality assurance as one concept. All of those are covered

by the different parts of the pipeline. Most importantly, there is no physical division of

what potential developers are able to do with the pipeline. All the application specific

YAML files are in the repository and directly accessible by developers.

If there is a part of the pipeline that might need to be handled by the operations

personnel, then this is infrastructure. The server infrastructure is implemented via VMs

created and managed by a Vagrant and Ansible pair. However, this is far from being the

most important part of the project, but rather a way to provide infrastructure. Rancher

and Jenkins, that are running in the infrastructure, need to be configured only once and

then any multitude of projects can be run on this infrastructure.

On the contrary, application specific configuration files are located in the repository.

Developers will be the ones, who are managing them. There is no need to contact

operations staff in order to configure the new application in server environment.

Dockerfiles and Docker Compose YAML files contain all the required instructions to

prepare an application and then ship it in the form of Docker images via the pipeline. The

possibility of misunderstanding between different teams resulting in overhead is highly

reduced.

There is a total of 269 lines of Dockerfiles, Docker Compose, Rancher and Jenkins

configuration files in the pipeline. In case if a similar Node.js project would need to be

converted to the developed pipeline, in the best-case scenario, 191 lines of configuration

files will remain the same. This is the rate of 71% of configuration being completely

reusable. The Dockerfiles can be copied into a new project without changes. In the worst-

case scenario, only about a half of the configuration will have to be removed, being the

worst-case scenario is a project based on a completely different programming language

and architecture.

The average time for Jenkins pipeline job to finish all the stages is 47.5 seconds

51

calculated from 4 consecutive builds. In case if unexpected slowdown occurs, this figure

is rounded up to 60 seconds. The Rancher takes about 30 seconds to update all the

containers. However, new Jenkins build can be started before Rancher will finish

environment upgrade. If there are 7.5 hours in a typical working day, which corresponds

to 450 minutes, then 450 deployments could be made in a single day. Such frequent

deployments are, probably, not business viable but it shows that the achieved pipeline

is very flexible for any kind of deployment schedule.

During the upgrade of Voting App the total downtime is equal to zero. There is noticeable

delay in getting requests from both frontend and backend if the requests are being made

at exactly the moment, when one of the containers is being shut and another one is being

started. Nonetheless, all the requests are reaching the end user, which, everything

considered, can be called a zero downtime deployment.

There was also a critical error test conducted. Voting App runs on 2 servers in Rancher

environment, which are Host 1 and 2. Host 2 houses load-balancer and database. This

is a single point of failure. If Host 2 goes down, then Voting App will no longer be

accessible. However, in case if Host 1 goes down, which was simulated by powering

down the virtual machine, the application will remain operational. There was a noticeable

slowdown in time of reply from the application in the first 30 seconds after Host 1 was

brought down. Yet, application remained operational and stabilised after these 30

seconds. Therefore, resulting environment can be called reliable.

Despite all the benefits, pipeline possess a set of disadvantages. First of all, it is the very

complexity of the pipeline. There are a lot of different technologies used, which all require

corresponding configuration files. One will need to spend a considerable amount of time

to figure out, how all of these technologies work together and form a pipeline. However,

this flow would need to be learnt just once and there is fair amount of abstraction

available to the pipeline user. Those mainly come from running the whole environment

locally with Docker Compose and Rancher. Both of them automatically create application

network with Rancher also allowing to configure complex load-balancing and health

checks from the graphical user interface.

Another limitation of this pipeline is the reference project - Voting App. It is a small and

limited project. Additional studies are needed in order to make pipeline more usable for

larger projects. There is also a fairly new microservice architecture, which requires a

completely different treatment by the pipeline. This issue is unresolved in this pipeline.

http://www.thesaurus.com/browse/nonetheless

52

5.3 Project Challenges

There have been a set of challenges during the pipeline planning and implementation.

The most important one is the pipeline complexity itself. Pipeline uses many different

technologies from Docker to Jenkins. All of these technologies have their own specifics

that needed to have been learnt before actual planning and implementation. There was

a steep learning curve for the researcher of this thesis. Even when a familiarity with

technologies was acquired, it was still challenging to put all this knowledge together into

one solid pipeline.

Theoretical research had its difficulties as well. Definitions for CI, CD and DevOps, which

serve as the starting point for the pipeline, are vague, and interpretation depends on the

source. These methodologies are changing the software development processes, while

changes in the processes affects the definition of these methodologies. It is an infinite

loop, where there are constant changes. Therefore, for the most accurate and up to date

definitions of CI, CD and DevOps, technical blogs of major companies working with the

three, such as Ansible and Puppet, were used.

Best practices for using Docker or Rancher are also difficult to come by. These tools are

less than a decade old, hence by the book practices simply do not exist. Furthermore,

Docker ecosystem is changing at a very fast pace, which leads to additional challenges.

An article from 2 years ago can be very far away from the implementation of today. This

problem was resolved by trial and error, where different options from varying sources

and own attempts were tried.

Jenkins, even though an established software, is changing all the time. The Jenkins

Multibranch Pipeline that is used in this project was dramatically changed during the

implementation of this project. First research on building of the pipeline was started by

the researcher in late 2016. When a first draft of Jenkinsfile had already been ready, a

new version of Pipeline Plugin was released. The released 2.5 version carried a whole

set of changes implementing two new syntaxes for Jenkinsfile, which are declarative and

scripted. Old syntax was not deprecated right away but Jenkins log was prompting

messages informing that the old syntax will be deprecated in newer versions. This

required a complete rewrite of Jenkinsfile and an additional learning.

53

Outlining this subsection, it is worth to mention that there was not a single challenge that

would cause long-term delays. Taking into account that pipeline consists of many

technologies, each of them individually is not that difficult. In addition to, the reference

project is small and there are still hundreds of more features that the pipeline can

implement. Further development, however, is the topic of the next subsection.

5.4 Further Development

Without changing the structure of a pipeline, a whole set of improvements could be

conducted. First of all, a history of Docker images. As of now, Voting App images are

always pushed with the latest tag. A history of images could be useful for rollbacks, for

example. Currently this is not supported. Such history could be implemented with, for

example, adding a git commit hash to the image tag.

An additional stage of post deployment tests could also be implemented. There are

currently no means to automatically verify if the deployment was successful. For a real

production environment this feature need to be present to ensure reliability of

deployments. Even a few post-deployment smoke tests against the updated environment

could largely decrease the chance from fatal failure going unnoticed after deployment.

Usually, highly automated environments, like the one presented in this thesis, require a

solid layer of monitoring. Software monitoring is a large topic on its own and therefore

would need to be researched to bring improvements to the pipeline. There dozens of

available tools that can monitor the health of an application and report problems online

so that they can be immediately fixed.

Rancher environment, even though quite reliable, as it was seen from a test when one

host was artificially brought down, still contains a fatal flaw. There is a single point of

failure on the host 2, which contains load-balancer and database. Eliminating this flaw

would require additional research. Netflix, which has a very large infrastructure, even

introduced a concept of “Chaos Monkey”, that would be randomly attacking different

parts of the infrastructure trying to cause a fatal failure [51]. This case could be used as

a reference for improving reliability of this pipeline.

Last major improvement that could be made is running the pipeline in an auto-scaling

cluster. However, this will require remaking most of the pipeline and ultimately result in

https://paperpile.com/c/XKh4hv/li6Y

54

a different project. Nevertheless, having a second template targeted for Amazon or

Google cloud could be a worthwhile addition. Implementing such cluster without the

cloud providers would be a costly venture as it would require a large number of servers

and a lot of complex configuration. With cloud, however, such an implementation should

be viable and, in the end, would, most likely, result in better efficiency and reliability.

There is, of course, a disadvantage that such pipeline would require choosing a specific

target cloud platform, which will make the pipeline less reliable. Nonetheless, the benefits

may overweight this, but this is a topic for additional research.

55

6 Conclusions

Designing and implementing a reusable DevOps pipeline that takes full advantage of the

Docker ecosystem was the main goal of this thesis. During the project, a comprehensive

research was conducted starting from the very root of this project, the concepts of CI,

CD and CDt. The relation between those and DevOps as well as the origin of the DevOps

itself were studied. It was followed by an overview of virtualization and Docker with its

ecosystem as a representative of virtualization.

The final implementation fulfils the main goal of reusability. Some parts of the pipeline

are 100% reusable, while others could have a reusability rate of up to 71%. Pipeline

follows the DevOps culture of automation and collaboration. The structure of the pipeline

is very rigid and specific providing a solid support for a reference project. Most of the

configuration for the pipeline is stored in a clearly defined configuration files.

If the pipeline is to be used for real life projects, it could largely improve software

development processes. Whether it is local, development or production environment,

pipeline takes it all into account. Deployments could be as frequent as needed.

Additionally, Rancher environment could be easily scaled up by adding more servers to

reply to a growth in the application loads.

The resulting pipeline fulfils all the requirements defined within Requirements

subsection. There are noticeable disadvantages, like an already mentioned single point

of failure, as well as an overall application complexity. However, the benefits of pipeline

flexibility and transparency outweigh these disadvantages. Pipeline could likely be

simplified, and the single point of failure could be addressed and improved. Apart from

these, there are other minor and major improvements that could increase pipeline

viability such as post-deployment testing and auto-scaling pipeline in the infrastructure

of the cloud provider.

Finally, DevOps and the technologies around it are all very young. There are new

technologies and approaches appearing regularly. Therefore, there will always be a room

for improvement and additional research to support this pipeline as a universal reusable

template.

56

References

1. Booch G. Object Oriented Design: With Applications. Benjamin-Cummings
Publishing Company; 1991. 209 p.

2. Smith S. Introducing Continuous Delivery - DZone DevOps [Internet]. dzone.com.
2014 [cited 2017 Aug 24]. Available from: https://dzone.com/articles/introducing-
continuous

3. Avram A. Docker: Automated and Consistent Software Deployments [Internet].
InfoQ. [cited 2017 Mar 30]. Available from:
https://www.infoq.com/news/2013/03/Docker

4. Arijs P. Docker Usage Stats: Adoption Up in the Enterprise and Production -
DZone Cloud [Internet]. dzone.com. 2016 [cited 2017 Aug 24]. Available from:
https://dzone.com/articles/docker-usage-statistics-increased-adoption-by-ente

5. Desjardins J. Infographic: How Many Millions of Lines of Code Does It Take?
[Internet]. Visual Capitalist. 2017 [cited 2017 Aug 26]. Available from:
http://www.visualcapitalist.com/millions-lines-of-code/

6. Ganesan V. Blameless Continuous Integration: A Small Step Towards
Psychological Safety of Agile Teams. Partridge Publishing; 2017. 5 p.

7. Fowler M. Continuous Integration [Internet]. martinfowler.com. [cited 2017 Aug 27].
Available from: https://martinfowler.com/articles/continuousIntegration.html

8. Pecanac V. What is Continuous Integration and why do you need it? - Code Maze
[Internet]. Code Maze. 2016 [cited 2017 Oct 8]. Available from: https://www.code-
maze.com/what-is-continuous-integration/

9. About Jenkins [Internet]. CloudBees. 2014 [cited 2017 Aug 27]. Available from:
https://www.cloudbees.com/jenkins/about

10. Atlassian. Bamboo - Continuous integration, deployment & release management |
Atlassian [Internet]. Atlassian. [cited 2017 Aug 27]. Available from:
https://www.atlassian.com/software/bamboo

11. TeamCity: Distributed Build Management and CI Server by JetBrains [Internet].
JetBrains. [cited 2017 Aug 27]. Available from: https://www.jetbrains.com/teamcity/

12. Maple S, Simon Mapledirector of, Advocate OS. Java Tools and Technologies
Landscape Report 2016 | [Internet]. zeroturnaround.com. 2016 [cited 2017 Aug
27]. Available from: https://zeroturnaround.com/rebellabs/java-tools-and-
technologies-landscape-2016/

13. Caum C. Continuous Delivery Vs. Continuous Deployment: What’s the Diff?
[Internet]. Puppet. [cited 2017 Aug 29]. Available from:
https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff

14. Butterly J. 8 Principles of Continuous Delivery [Internet]. DevOpsNet. 2011 [cited
2017 Oct 8]. Available from: https://devopsnet.com/2011/08/04/continuous-
delivery/

57

15. van Bennekum Alistair Cockburn Ward Cunningham Martin Fowler James
Grenning Jim Highsmith Andrew Hunt Ron Jeffries Jon Kern Brian Marick Robert
C. Martin Steve Mellor Ken Schwaber Jeff Sutherland Dave Thomas KBMBA.
Principles behind the Agile Manifesto [Internet]. 2001 [cited 2017 Aug 30].
Available from: http://agilemanifesto.org/iso/en/principles.html

16. Debois P. Agile Infrastructure & Operations [Internet]. 2008 [cited 2017 Aug 30].
Available from: http://www.jedi.be/presentations/agile-infrastructure-agile-2008.pdf

17. DevOps dictionary definition | DevOps defined [Internet]. [cited 2017 Aug 30].
Available from: http://www.yourdictionary.com/devops

18. Wilsenach R. bliki: DevOpsCulture [Internet]. martinfowler.com. 2015 [cited 2017
Oct 8]. Available from: https://martinfowler.com/bliki/DevOpsCulture.html

19. Yigal A. How DevOps is Killing QA - DevOps.com [Internet]. DevOps.com. 2016
[cited 2017 Oct 11]. Available from: https://devops.com/devops-killed-qa/

20. DevOps Growth and the Affect on Testing | SoapUI Testing Dojo [Internet].
Soapui. [cited 2017 Oct 12]. Available from: https://www.soapui.org/testing-
dojo/world-of-api-testing/dev-ops-trends.html

21. Yehuda Y. What’s the relationship between DevOps and Continuous Delivery?
[Internet]. IT Pro Portal. 2015 [cited 2017 Oct 12]. Available from:
https://www.itproportal.com/2015/06/09/whats-relationship-between-devops-and-
continuous-delivery/

22. 2017 State of DevOps Report [Internet]. Puppet. 2017 [cited 2017 Oct 16].
Available from: https://puppet.com/resources/whitepaper/state-of-devops-report

23. Brodkin J. With long history of virtualization behind it, IBM looks to the future
[Internet]. Network World. 2009 [cited 2017 Oct 22]. Available from:
https://www.networkworld.com/article/2254433/virtualization/with-long-history-of-
virtualization-behind-it--ibm-looks-to-the-future.html

24. Garrison J. What Is a Virtual Machine Hypervisor? [Internet]. How-To Geek. 2016
[cited 2017 Oct 22]. Available from: https://www.howtogeek.com/66734/htg-
explains-what-is-a-hypervisor/

25. Tholeti BP. Learn about hypervisors, system virtualization, and how it works in a
cloud environment [Internet]. 2011 [cited 2017 Oct 22]. Available from:
https://www.ibm.com/developerworks/cloud/library/cl-
hypervisorcompare/index.html

26. Meier S. IBM Redbooks | IBM Systems Virtualization: Servers, Storage, and
Software [Internet]. 2008 [cited 2017 Oct 22]. Available from:
http://www.redbooks.ibm.com/abstracts/redp4396.html?Open

27. Bhupender. Types of Virtualization in Cloud Computing- An Overview [Internet].
ZNetLive Blog - A Guide to Domains, Web Hosting & Cloud. 2016 [cited 2017 Oct
22]. Available from: https://www.znetlive.com/blog/virtualization-in-cloud-
computing/

28. Vaughan-Nichols SJ. Amazon EC2 cloud is made up of almost half-a-million Linux
servers | ZDNet [Internet]. ZDNet. 2012 [cited 2017 Nov 12]. Available from:
http://www.zdnet.com/article/amazon-ec2-cloud-is-made-up-of-almost-half-a-
million-linux-servers/

58

29. Olson N. Tips for a Virtual Development Environment - Intertech Blog [Internet].
Intertech Blog. 2016 [cited 2017 Nov 12]. Available from:
https://www.intertech.com/Blog/tips-for-a-virtual-development-environment/

30. Brockmeier J. Containers vs. Hypervisors: Choosing the Best Virtualization
Technology [Internet]. Linux.com | The source for Linux information. 2010 [cited
2017 Oct 23]. Available from: https://www.linux.com/news/containers-vs-
hypervisors-choosing-best-virtualization-technology

31. O’Reilly D. The Drawbacks of Running Containers on Bare Metal Servers
[Internet]. Morpheus. Morpheus Data, LLC; 2017 [cited 2017 Oct 23]. Available
from: https://www.morpheusdata.com/blog/2017-04-28-the-drawbacks-of-running-
containers-on-bare-metal-servers

32. Strotmann J. Free Infographic: A history of #containerization technology! [Internet].
Plesk. Plesk; 2016 [cited 2017 Oct 23]. Available from:
https://www.plesk.com/blog/business-industry/infographic-brief-history-linux-
containerization/

33. Tozzi C. What’s Docker's Market Share Today? Good Question - Container
Journal [Internet]. Container Journal. 2017 [cited 2017 Oct 26]. Available from:
https://containerjournal.com/2017/06/01/whats-dockers-market-share-today-good-
question/

34. Currie A. How Many Public Images are there on Docker Hub? – Microscaling
Systems – Medium [Internet]. Medium. Microscaling Systems; 2016 [cited 2017
Nov 12]. Available from: https://medium.com/microscaling-systems/how-many-
public-images-are-there-on-docker-hub-bcdd2f7d6100

35. Containers and Orchestration Explained [Internet]. MongoDB. [cited 2017 Oct 26].
Available from: https://www.mongodb.com/containers-and-orchestration-explained

36. Chifor A. Container Orchestration with Kubernetes: An Overview [Internet].
Medium. Onfido Tech; 2017 [cited 2017 Oct 26]. Available from:
https://medium.com/onfido-tech/container-orchestration-with-kubernetes-an-
overview-da1d39ff2f91

37. Schroder C. What Makes Up a Kubernetes Cluster? [Internet]. Linux.com | The
source for Linux information. 2017 [cited 2017 Oct 26]. Available from:
https://www.linux.com/news/learn/chapter/intro-to-kubernetes/2017/4/what-makes-
kubernetes-cluster

38. The Evolution of the Modern Software Supply Chain - The Docker Survey, 2016
[Internet]. Docker. 2016 [cited 2017 Oct 28]. Available from:
https://www.docker.com/survey-2016

39. Google Container Engine Documentation | Container Engine | Google Cloud
Platform [Internet]. Google Cloud Platform. [cited 2017 Oct 28]. Available from:
https://cloud.google.com/container-engine/docs/

40. What is Amazon EC2 Container Service? - Amazon EC2 Container Service
[Internet]. [cited 2017 Oct 28]. Available from:
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html

41. Oliver K. Unleash the Cattle: The Rancher Container Orchestration Platform Now
Generally Available - The New Stack [Internet]. The New Stack. 2016 [cited 2017

59

Oct 28]. Available from: https://thenewstack.io/unleash-cattle-rancher-container-
platform-reaches-general-availability/

42. What is container management software? - Definition from WhatIs.com [Internet].
SearchITOperations. [cited 2017 Oct 28]. Available from:
http://searchitoperations.techtarget.com/definition/container-management-software

43. Quick Start Guide [Internet]. [cited 2017 Oct 28]. Available from:
http://rancher.com/docs/rancher/latest/en/quick-start-guide/

44. Docker glossary [Internet]. Docker Documentation. 2017 [cited 2017 Nov 2].
Available from: https://docs.docker.com/glossary/

45. Dockerfile reference [Internet]. Docker Documentation. 2017 [cited 2017 Nov 28].
Available from: https://docs.docker.com/engine/reference/builder/

46. Overview of Docker Compose [Internet]. Docker Documentation. 2017 [cited 2017
Nov 3]. Available from: https://docs.docker.com/compose/overview/

47. Compose file version 3 reference [Internet]. Docker Documentation. 2017 [cited
2017 Nov 3]. Available from: https://docs.docker.com/compose/compose-file/

48. Introduction - Vagrant by HashiCorp [Internet]. Vagrant by HashiCorp. [cited 2017
Nov 4]. Available from: https://www.vagrantup.com/intro/index.html

49. How Ansible Works | Ansible.com [Internet]. [cited 2017 Nov 4]. Available from:
https://www.ansible.com/how-ansible-works

50. Using a Jenkinsfile [Internet]. Using a Jenkinsfile. [cited 2017 Nov 7]. Available
from: https://jenkins.io/doc/book/pipeline/jenkinsfile/index.html

51. Brodkin J. Netflix attacks own network with “Chaos Monkey”—and now you can
too [Internet]. Ars Technica. 2012 [cited 2017 Nov 16]. Available from:
https://arstechnica.com/information-technology/2012/07/netflix-attacks-own-
network-with-chaos-monkey-and-now-you-can-too/

60

Appendix 1. GitHub Web Links

Pipeline Teamplate - https://github.com/allhaker/devops-pipeline-ansible-template

Voting App - https://github.com/allhaker/devops-pipeline-demo-project

https://github.com/allhaker/devops-pipeline-ansible-template
https://github.com/allhaker/devops-pipeline-demo-project

61

Appendix 2. Voting App Interface Screenshots

62

63

Appendix 3. Rancher docker-compose.dev.yml.

version: '2'

services:

 balancer:

 image: rancher/lb-service-haproxy:v0.7.9

 ports:

 - 80:80/tcp

 labels:

 io.rancher.container.agent.role: environmentAdmin

 io.rancher.container.create_agent: 'true'

 io.rancher.scheduler.affinity:host_label: balancer=true

 seed-db:

 image: allhaker/votingapp_backend:development

 environment:

 DATABASE_URL: postgres://votingapp:votingapp@db/votingapp

 links:

 - db:db

 command:

 - node

 - db/seeds.js

 labels:

 io.rancher.container.start_once: 'true'

 backend:

 image: allhaker/votingapp_backend:development

 environment:

 DATABASE_URL: postgres://votingapp:votingapp@db/votingapp

 links:

 - db:db

 labels:

 io.rancher.container.pull_image: always

 io.rancher.scheduler.global: 'true'

 service: backend

 frontend:

 image: allhaker/votingapp_frontend:development

 command:

 - npm

 - run

 - serve

 labels:

 io.rancher.container.pull_image: always

 io.rancher.scheduler.global: 'true'

 service: backend

 db:

64

 image: postgres:9.4

 environment:

 POSTGRES_DB: votingapp

 POSTGRES_PASSWORD: votingapp

 POSTGRES_USER: votingapp

 volumes:

 - /opt/docker/votingapp_data:/var/lib/postgresql/data

 labels:

 io.rancher.scheduler.affinity:host_label: Database=true

65

Appendix 4. Rancher rancher-compose.dev.yml

version: '2'

services:

 balancer:

 scale: 1

 start_on_create: true

 lb_config:

 certs: []

 port_rules:

 - path: /api/v1

 priority: 1

 protocol: http

 service: backend

 source_port: 80

 target_port: 8080

 - path: /

 priority: 2

 protocol: http

 service: frontend

 source_port: 80

 target_port: 3000

 health_check:

 healthy_threshold: 2

 response_timeout: 2000

 port: 42

 unhealthy_threshold: 3

 interval: 2000

 strategy: recreate

 seed-db:

 scale: 1

 start_on_create: true

 backend:

 start_on_create: true

 health_check:

 healthy_threshold: 2

 response_timeout: 2000

 port: 8080

 unhealthy_threshold: 3

 initializing_timeout: 20000

 interval: 2000

 strategy: recreate

 reinitializing_timeout: 60000

 frontend:

66

 start_on_create: true

 health_check:

 healthy_threshold: 2

 response_timeout: 2000

 port: 3000

 unhealthy_threshold: 3

 initializing_timeout: 10000

 interval: 2000

 strategy: recreate

 reinitializing_timeout: 60000

 db:

 scale: 1

 start_on_create: true

67

Appendix 5. Rancher load balancer UI.

68

Appendix 6. Add Backend Webhook.

69

Appendix 7. Unlock Jenkins.

70

Appendix 8. Select Jenkins Plugins.

71

Appendix 9. Selecting Jenkins job type.

72

Appendix 10. Adding DockerHub credentials to Jenkins.

73

Appendix 11. Final Jenkinsfile.

def compose = "docker-compose -f docker-compose.yml -f docker-compose.test.yml -p
votingapp"

pipeline {
 agent any
 options {
 timeout(time: 20, unit: 'MINUTES')
 }

 stages {
 stage('Checkout') {
 steps {
 checkout scm
 }
 }

 stage('Build') {
 steps {
 sh "${compose} build --pull"
 }
 }

 stage('Test Backend (Mocha)') {
 steps {
 sh "${compose} run mocha"
 }
 }

 stage('Tag and Push Docker Images to DockerHub') {
 when {
 expression { env.BRANCH_NAME == 'master' }
 }

 steps {
 withCredentials([[$class: 'UsernamePasswordMultiBinding', credentialsId:
'docker-login',
 usernameVariable: 'USERNAME', passwordVariable: 'PASSWORD']]) {
 // Login to Docker Registry
 sh "docker login -u ${USERNAME} -p ${PASSWORD}"
 }

 // Tag Docker Images
 sh "docker tag votingapp_frontend allhaker/votingapp_frontend"
 sh "docker tag votingapp_backend allhaker/votingapp_backend"

 // Push Docker Images
 sh "docker push allhaker/votingapp_frontend"
 sh "docker push allhaker/votingapp_backend"

 // Logout from Docker Registry
 sh "docker logout"
 }
 }

 stage('Upgrade Rancher Environment') {
 when {
 expression { env.BRANCH_NAME == 'master' }
 }

 steps {
 script {
 env.rancherHeaders = '-H "Content-Type: application/json" -X POST'

74

 env.rancherJSONFrontend =
'{"push_data":{"tag":"development"},"repository":{"repo_name":"allhaker/votingapp_fro
ntend"}}'
 env.rancherURLFrontend = 'http://192.168.50.4:8080/v1-
webhooks/endpoint?key=APIKEY '

 env.rancherJSONBackend =
'{"push_data":{"tag":"development"},"repository":{"repo_name":"allhaker/votingapp_bac
kend"}}'
 env.rancherURLBackend = 'http://192.168.50.4:8080/v1-
webhooks/endpoint?key=APIKEY '
 }

 sh "curl ${env.rancherHeaders} -d '${env.rancherJSONFrontend}'
'${env.rancherURLFrontend}'"
 sh "curl ${env.rancherHeaders} -d '${env.rancherJSONBackend}'
'${env.rancherURLBackend}'"
 }
 }
 }

 post {
 always {
 sh "${compose} down -v"
 }
 }
}

