
	
 1	

Minxue Xia

BEHAVIOR DESIGN OF NAO ROBOT
PLAYING BLACKJACK	

	

	

Information Technology

2015

	

	
 2	

FOREWORD

The program presented in the thesis has been developed from June 2015 to October

2015.

In the first place, I would like to take this opportunity to express my deep gratitude to

my supervisor, Dr. Yang Liu, who has seen me through my journey in the department

of Information Technology, at Vaasan Ammattikorkeakoulu, Vaasa University of

Applied Sciences. Without his assistance and instructions, I would have hardly

competed my studies in this research. He has also given plenty of useful advice and

guidance in almost all my specialized courses, which at last embarked the program in

the field of Nao robot.

In the second place, special thanks to all the lectures, including Dr. Ghodrat

Moghadampour, Dr. Chao Gao, Dr. Smail Menani, Mr. Jani Ahvonen, Mr. Santiago

Chavez Vega, Mr. Antti Virtanen, Mr. Jukka Matila and all the colleagues who have

taught and helped me throughout my studies in the university.

In the third place, I would like to thank my family, especially my mother, Zeng Qiong,

for all the support and understanding given during my study.

Xia Minxue

Vaasa, 9th of October, 2015

	
 3	

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Program in Information Technology

ABSTRACT

Author Minxue Xia

Title Behavior Design of Nao Robot Playing Blackjack

Year 2015

Language English

Pages 70 + Appendices

Name of Supervisor Yang Liu

The principal objective of this thesis was to explore the possibility of applying Nao

robot in the gambling or gaming industry. In this thesis, Nao played Blackjack game as

a player and announced the result of each round. The thesis work was designed and

implemented by applying the combination of computer vision and behaviour design of

a Nao robot.

Python as well as OpenCV were used in Windows platform throughout the whole

project. As for the hardware, the robot is in the newest 5th generation and the NAoqi is

in the 2.1 version for programming. Moreover, software Choregraphe was regarded as

an alternative platform connecting Python with the Nao robot.

The application implementation method is typically software engineering approaches

including planning, developing, debugging and testing.

Finally, the goals of the application were overall achieved in both precision and timing.

	
 4	

CONTENT

ABSTRACT .. 3
LIST OF FIGURES AND TABLES .. 6

LIST OF APPENDICES ... 9
1. INTRODUCTION .. 10

2. OVERALL STRUCTURE.. 15
3. COMMUNICATION MODULE .. 17

3.1 Software Architecture ... 17
3.1.1 Python .. 17
3.1.2 OpenCV ... 19
3.1.3 NumPy&SciPy ... 21
3.1.4 Choregraphe ... 22

3.2 Monitor ... 23
3.3 Webots .. 23
3.4 Naoqi ... 24

3.4.1Naoqi Framework ... 24
3.4.2 Naoqi Process ... 25

4. VISION MODULE ... 28
4.1 NAO Vision Introduction ... 29

4.1.1 Camera Specifications ... 29
4.1.2 Vision Range .. 31

4.2 Image Acquisition ... 33
4.2.1 Original Images .. 33
4.2.2 Head Adjustments .. 34
4.2.3 Image From Choregraphe .. 35

4.3 Pre-Processing ... 37
4.3.1 Change Color-spaces ... 37
4.3.2 Smoothing Images ... 38
4.3.3 Image Thresholding ... 39

4.4 Feature Extraction ... 40
4.4.1 Draw Contours ... 40
4.4.2 Find Edges ... 41
4.4.3 Perspective Transform ... 43

4.5 Recognizing Cards .. 45
4.6 Comparing Differences ... 47

5. NAO BEHAVIORS .. 50
5.1 Joints Introduction .. 50

5.1.1 Head Joints ... 50
5.1.2 Arm Joints .. 52

5.2 Nao Behaviors ... 54

	
 5	

5.2.1 Animation .. 54
5.2.2 Get Angles ... 57
5.2.3 Set Angles .. 58
5.2.4 Arm Move .. 58

5.3 Results Announcement ... 61

6. BLACKJACK ALGORITHMS .. 63
7. IMPROVEMENTS ... 64

8. CONCLUSION ... 66
REFERENCES ... 68

	
 6	

LIST OF FIGURES AND TABLES

Figure 1. Decreasing Profits of Casino in USA p. 10

Figure 2. Croupier Robot in Exhibition p. 11

Figure 3. Relations between Key Components p. 12

Figure 4. Nao Robot p. 13

Figure 5. Nao V5 Specifications p. 14

Figure 6. Nao Operating System Structure p. 15

Figure 7. Thesis Structure p. 16

Figure 8. Python Installation Page p. 17

Figure 9. Python Shell IDLE Window p. 18

Figure 10. PyDev Initial Window p. 19

Figure 11. OpenCv Packages p. 20

Figure 12. OpenCV Installation Path p. 20

Figure 13. Test on Python Successfully p. 21

Figure 14. Test on Python Unsuccessfully p. 21

Figure 15. Choregraphe Interface p. 22

Figure 16. Monitor Window p. 23

Figure 17. Webots Interface p. 24

Figure 18. Methods in Naoqi p. 25

	
 7	

Figure 19. Relations between Broker, modules and methods p. 26

Figure 20. relations between broker, libraries and modules p. 27

Figure 21. Vision Module Structure p. 29

Figure 22. Location of Nao Cameras p. 30

Figure 23. Camera Specifications p. 31

Figure 24. Vision Range p. 32

Figure 25. Horizontal Range p. 32

Figure 26. Initial Position p. 33

Figure 27. Initial View of Nao p. 34

Figure 28. Nao Vision Range p. 34

Figure 29. Nao’s View After Adjustments p. 35

Figure 30. Python Code p. 36

Figure 31. Nao Connection through Python p. 37

Figure 32. Gray Image p. 38

Figure 33. Blurring Image p. 39

Figure 34. Threshold Image p. 40

Figure 35. Contours of Cards p. 41

Figure 36. Find Areas of Cards p. 42

Figure 37. Edges of Cards p. 43

	
 8	

Figure 38. Perspective Transform p. 44

Figure 39. Separate Each Card p. 45

Figure 40. Four types of Cards p. 46

Figure 41. Representation of 52 Cards p. 46

Figure 42. Relations Between Card Numbers and File Names p. 47

Figure 43. Difference between Heart 2 and Heart 5 p. 48

Figure 44. The Similarity of Comparing Heart 2 with Itself p. 48

Figure 45. Original Cards p. 49

Figure 46. Python Results of Recognizing Cards p. 49

Figure 47. Nao Head Joints p. 51

Figure 48. Head Joints Movement p. 52

Figure 49. The Specifications of Right Arm p. 53

Figure 50. Animation Logo on Choregraphe p. 55

Figure 51. First Part of Animation p. 56

Figure 52. Second Part of Animation p. 57

Figure 53. Code for Nao Arm p. 61

Figure 54. Python Code for Saying p. 62

Figure 55. Artificial Neuron Network p. 64

Figure 56. Neuron Nodes p. 65

	
 9	

LIST OF ABBREVIATIONS

3D Three Dimension

V5 Version 5

CV Computer Vision

OpenCV Open Source Computer Vision Library

FSR Force Sensors Resistors

DCM Device Control Manager

IDLE Integrated Development Environment

BSD Berkeley Structure Distribution

PC Personal Computer

OS Operating System

VGA Video Graphics Array

RGB Combinational Color of Red, Green, Blue

BJ BlackJack

ANNs Artificial Neural Network

	
 10	

1. INTRODUCTION

The worldwide casino industry is faltering nowadays. While an increasing number of

them are commercial licensed, profits are sinking in a gradually saturating market. New

casinos are popping up but there are not enough matching profits. Figure 1 illustrates

the American gambling revenue in 2007 and 2013. Currently, casinos worldwide are

desperate to cut costs in order to save sinking profits.

Figure 1. Decreasing Profits of Casino in USA

Therefore, a robot croupier may help cut costs in the medium-term. When a human

being is hired, it always comes with high wages, break times, paid vacations as well as

health benefits while robots only require a purchase cost once and maintenance fees.

Cheaper and more sophisticated robots will definitely be welcomed in the not-so-

distant future. Figure 2 shows a robot in a technologic exhibition.

	
 11	

Figure 2. Croupier Robot in Exhibition

The thesis introduces the development in computer vision in detail for the Nao Robot

Team. The initial aim of this application is to raise efficiency and reduce labor costs in

the gambling industry. Nevertheless, this technology can be further expanded to be

applied in other relevant fields also.

1.1 Robotics

Robotics is a new field that emerged in recent decades, combining knowledge of

engineering with computer science in order to deal with the design, construction,

operation, and application of robots, as well as computer systems for their control,

sensory feedback and information processing. Also it is substantially different from

those of the original technologies used before.

Nowadays, higher level of mobility and dexterity are required in order to work in a

variety of ranges, access multiple places, handle different problems, and perform

flexible tasks. Therefore, a change to the structure of robots has merged, from original

mechanical design to assembling human structure.

Concretely, a robot is a programmable, multifunctional mechanical agent designed to

sense and exhibit intelligent behaviors based on various levels of technological

sophistication, ranging from a simple material handling device to a humanoid. It is

	
 12	

widely used in various industries today. The key components of a robot consist of

power, sensors, actuators, controller, user interface as well as a manipulator. The

relations between those components are presented in Figure 3.

Figure 3. Relations between Key Components

1.2 Computer Vision

Computer vision is to make computers understand and interpret images and video like

human beings do. The human vision system has definitely no problem perceiving the

three-dimensional structure of the surrounding world. Researchers in this field have

developed reliable techniques for computer vision system to make computers see just

like people do, for example, naming objects, identifying people, inferring 3D geometry

of things, tracking a person against a complex background, or understanding relations,

emotions, actions and intentions. However, despite all these advancements, having a

computer interpret an image still remains at the same level with a two-year old child.

This is because vision is an inverse problem and we need to model the visual world

	
 13	

with its rich complexity first, and then provide solutions to the computer.

1.3 Nao Robot Overview

Nao Robot is an autonomous, programmable humanoid robot developed by Aldebaran

Robotics, a French robotics company headquartered in Paris. He is 58-cm tall and born

in 2006, is able to move, recognize, hear and even talk to human beings. Nao robot is

a platform of Two-Legged Standard League.

Figure 4. Nao Robot

Below Figure 5 shows the specifications of Nao V5 Evolution:

	
 14	

Figure 5. Nao V5 Specifications

Nao is equipped with many sensors in order to receive information from its

surroundings:

Ultrasound Providing space distance in the range of 1 meter and below 30

degrees of the robot chest.

Cameras There are two cameras acting as Nao’s eyes. One is located in the

forehead and the other is in the lip level.

Bumper Situated in front of each foot, bumpers act like an alarm if Nao

touched obstacles.

	
 15	

Force Sensors Nao has 8 Force Sensors Resistors (FSR) located in its two feet

respectively. It is usually related to the distance of movements.

Inertial Sensors Always checking whether Nao is in a stable position.

The major operating system is NaoQi designed as a distributed system with three parts

of NaoQi Operating System, NaoQi Library and Device Control Manager (DCM).

Figure 6. Nao Operating System Structure

	

	

	

	
 16	

2. OVERALL STRUCTURE

This whole program mainly consists of five modules connecting the Nao robot with PC

(Figure 7). Computer vision module as well as motion module happens on Nao robot

taking care of information collection. PC controller and algorithms decide the strategy

of the game while communication module relates these two parts together. To be

specific, the five modules are divided into 8 chapters to be explained in the thesis work.

Figure 7. Thesis Structure

Nao Robot Connection

Computer Vision

Motion Module

Communication Module

PC Controller Algorithms

PC

	
 17	

3. COMMUNICATION MODULE

3.1 Software Architecture

3.1.1 Python

Due to its simplified syntax and design philosophy, Python makes concepts expressed

simpler and more clearly than any other programming languages such as C++ or Java.

• Installation

Go to the webpage of Python https://www.python.org/ . And choose the suitable

package to download (Figure 8).

Figure 8. Python Installation Page

• Python Interface

There are numerous interfaces that can build and execute Python, for instance,

IDLE and Eclipse. In this project, Python IDLE was used to launch different Python

tasks.

Ø IDLE

IDLE (Integrated Development Environment) is an integrated development

environment for Python, which has been bundled with the default

	
 18	

implementation of the language. It is packaged as an optional part of the Python

packaging with many Linux distributions. (Figure 9)

Figure 9. Python Shell IDLE Window

Ø Eclipse

Eclipse is an integrated development environment for various programming

languages. Written mostly in Java, Eclipse can be used to develop applications

in C, C++, Python, PHP and so on, based on its means of plug-ins. PyDev is a

Python IDE for Eclipse which may be used in Pyhon, Jython and IronPython

development (Figure 10).

	
 19	

Figure 10. PyDev Initial Window

3.1.2 OpenCV

OpenCV is a programming library mainly designed for computational efficiency and

aimed at real-time computer vision applications. It is under a BSD license and supports

C, C++, Python as well as Java languages.

• Installation

Ø Find the suitable package for the python vision you installed from the

Sourceforge of OpenCV. Remember to choose the corresponding Python

installation package!

(http://sourceforge.net/projects/opencvlibrary/files/opencv-win/)

	
 20	

Figure 11. OpenCv Packages

Ø Unpack the self-extracting archive.

Ø Check the installation at the chosen path coordinates with your Python

installation path. Add cv2.pyd file to the following directory:

Figure 12. OpenCV Installation Path

	
 21	

3.1.3 NumPy&SciPy

NumPy and SciPy are open-source add-on modules to Python that provide common

mathematical and numerical routines in pre-compiled, fast functions.

• Installation

Ø Download a suitable package for Python version (Python 2.7 in my case)

and unpack the self-extracting archive.

Ø Test on Python

Enter following lines shown in Figure 13 on Python 2.7.10 Shell:

Figure 13. Test on Python Successfully

If installed unsuccessfully, Python will show the following lines like Figure 14

shown below:

Figure 14. Test on Python Unsuccessfully

	
 22	

3.1.4 Choregraphe

Choregraphe is a multi-platform desktop application which allows you to create

animations, test them and monitor Nao through programming or just simply through

the various behavior boxes.

• Installation

Ø Make sure you have logged on as “administrator” or a user with

“administrator” privileges to download and install the software.

Ø Download the recent release from the Aldebaran Community Website

https://community.aldebaran.com/ .

Ø Choose “Resources”, “Software”.

Ø Then follow the steps on the page, first create an account and sign in.

Ø Next, find the suitable package for yourself and install. In addition,

remember to install “Bonjour” as well in the installation process of

Choregraphe.

• Interface

Figure 15 shows the initial Choregraphe interface.

Figure 15. Choregraphe Interface

	
 23	

3.2 Monitor

Monitor is a desktop application which gives feedbacks of what Nao is seeing and

feeling to users. With the Camera module, data from the camera will be received. With

the Memory module, data from the robot’s sensors will be accessed in an ergonomic

approach. Moreover, it also gives the possibility to test vision algorithms on recorded

excerpts.

Figure 16. Monitor Window

3.3 Webots

The simulator Webots allows users test the algorithms in a virtual world governed by

real physics. It is a perfect software together Monitor as well as Choregraphe with to

test behaviors before playing on the real Nao robot.

	
 24	

Figure 17. Webots Interface

3.4 Naoqi

3.4.1Naoqi Framework

Naoqi is the main software to control the Nao robot. The framework provides the basic

needs of Nao, including parallelism, resources, synchronization as well as events. It

allows homogeneous communication between various modules, such as motion, audio

and video. Meanwhile, the main characteristics of Naoqi framework are cross platform

and cross language.

• Cross Platform

Three platform support Naoqi framework: Linux, Windows as well as MacOS. It

is possible to develop by the following two languages:

Ø Using Python

Code can be run easily both on personal computers or directly on a robot.

Ø Using C++

In the first place, code need to be compiled for the targeted operating system

	
 25	

since it is a compiled language. It is essential to install a cross-compile tool

in order to run C++ on the robot operating system Naoqi OS.

• Cross Language

Both Pyhton and C++ can be used to develop software, moreover, the methods in

Naoqi framework are almost the same.

Figure 18. Methods in Naoqi

3.4.2 Naoqi Process

• Broker

A broker is an object which provides:

Ø Directory services

Any method that has been advertised can be found by any module in the

network. Loading modules constitutes a group of methods related to

	
 26	

modules, meanwhile, modules attached to a broker.

Figure 19. Relations between Broker, modules and methods

Ø Network access

Allowing the methods of attached modules to be called from outside the

process. Once it starts, it loads a preferences file called autoload.ini that

defines which libraries it should load. Figure 20 shows the relations

between broker, libraries and modules.

	
 27	

Figure 20. Relations between broker, libraries and modules

• Proxy

A proxy is an object that will behave as the module it represents. For example, if

you create a proxy to the ALMotion module, you will get an object including all

the ALMotion methods.

There are two options to create a proxy to a module:

Ø Local call

Using the name of the module. Current code and the targeted module must

be in the same module.

Ø Remote call

Using the name of the module, the IP and port of a broker. The module must

be in the corresponding broker.

	
 28	

4. VISION MODULE

In order to let Nao playing cards successfully, it is necessary to make Nao understand

information on each card like a human being. Therefore, computer vision technology

was used in this section for information extracting.

Computer vision, in general, is a field that includes methods for transferring high-

dimensional data from the real world to numerical or symbolic information.

Information from images will be determined whether or not the image contains some

specific feature that can be extracted and transferred into a language that a computer

can be understood. The whole vision module was divided into five parts: pre-

processing, feature extraction(segmentation), recognition, comparing as well as

decision making.

In details, Nao will acquire images through two identical video cameras located in the

forehead. And software Choregraphe will be used to select cameras so that Nao could

see the cards on the desk by the bottom view. In the next step, OpenCV as well as

Python language were used to further process, analyze, and understand images.

Image	
 Acquisition	

Pre-­‐Processing	

Nao	
 Cameras	

Position	
 Adjustments	

Gray	
 Scale	

Blur	

Threshold	

	
 29	

Figure 21. Vision Module Structure

4.1 NAO Vision Introduction

4.1.1 Camera Specifications

There are two identical cameras in Nao head, one is located in the forehead while

another one is just inside the mouth. Both of the cameras are providing resolution up

to 1280×960 at 30 frames per second. In general, these two cameras are used for image

processing like recognizing balls, identifying people, etc.

Feature	
 Extraction	

Recognition	

Comparing	

Decision	

Making	

Draw	
 Contours	

Find	
 Edges	

Perspective	

Transform	

	
 30	

Figure 22. Location of Nao Cameras

	
 31	

Figure 23. Camera Specifications

4.1.2 Vision Range

Each Nao camera provides a vertical vision range of 47.64 degrees as well as a

horizontal vision range of 60.97 degrees. Two Figures shown below illustrate the vision

range of two cameras.

	
 32	

Figure 24. Vision Range

Figure 25. Horizontal Range

	
 33	

4.2 Image Acquisition

4.2.1 Original Images

To start with, Nao will sit behind the desk with the safety posture “REST” like follows.

Figure 26. Initial Position

The initial view of Nao is shown in Figure 27. It can be seen from the display window

that Nao cannot capture card images due to the limited vision ranges.

	
 34	

Figure 27. Initial View of Nao

4.2.2 Head Adjustments

To achieve our goals, the relations between angles and distances have been calculated

as below. Through Figure 28, we can assume that Nao can see a distance range from

20 at least to 120 centimeters with the bottom camera if Nao head stand vertically.

Figure 28. Nao Vision Range

	
 35	

Therefore, the angle of Nao HeadPitch has been modified as follows. Figure 24 shows

the final view after modification.

Figure 29. Nao’s View After Adjustments

4.2.3 Image From Choregraphe

In this section, camProxy, an object, was created for image acquisition by connecting

ALProxy module with Nao IP and Port. The initial image received from the camera

was VGA (Video Graphics Array) and RGB(combinational color of Red, Green, Blue).

Besides, the resolution of the original image is 1280×960 pixels. In other words, the

image captured from Nao camera first became a two dimensional array, then through

inside functions from Naoqi, the image data is passed as an array of ASCII chars.

Moreover, the time for image transfer was shown to record the delay.

	
 36	

Figure 30. Python Code

In the next step, we got the image size with height and width, as well as the pixel from

the ASCII array returned from last step. Through the size and pixel, the initial RGB

image could be transferred to a PIL image and finally converted into the BGR image

through OpenCV function cv2.cvtColor. The reason behind this scene is that many

manipulations will rely on a RGB image and a RGB image are easier for computers to

manipulate.

	
 37	

Figure 31. Nao Connection through Python

4.3 Pre-Processing

Before we really extract the features on each card, pre-processed each image would be

necessary. This is because the majority of noises can be removed.

4.3.1 Change Color-spaces

There are more than 150 color-space conversion methods available in OpenCV.

However, in this thesis, the most widely used one is BGR to Gray since cards are not

identified by color.

	
 38	

Figure 32. Gray Image

4.3.2 Smoothing Images

Aiming at blurring the images with various low pass filters and applying filters further

to images, image blurring function was used to remove most of the high frequency

noises. There are four types of blurring techniques in OpenCV --- Averaging, Gaussian

Blurring, Median Blurring, as well as Bilateral Filtering. Here we will introduce the

two mainly used ones:

• Averaging

This method simply takes the average of all the pixels convolving the image with

a normalized box filter. A 3×3 normalized box filter would like this:

• Gaussian Blurring

Instead of a box filter, Gaussian blur allows customize:

	
 39	

Ø The width and height of the kernel which should be positive and odd.

Ø Standard deviation in X and Y direction, sigmaX and sigmaY respectively.

Since this method is highly effective in removing Gaussian noise, it is used for

noise filtering in our case.

Figure 33. Blurring Image

4.3.3 Image Thresholding

In order to focus on the surface of cards, artifacts were gotten rid of through the simplest

segmentation method in OpenCV --- image thresholding.

The basic design is straight forward. If the pixel value is greater than the threshold

value, it is assigned to black in our case, otherwise it will appear white. OpenCV

provides five different styles of thresholding:

• cv2. THRESH_BINARY,

• cv2.THRESH_BINARY_INV,

• cv2.THRESH_TRUNC,

• cv2.THRESH_TOZERO,

• cv2.THRESH_TOZERO_INV

	
 40	

In this case, cv2.THRESH_BINARY was used. Moreover, the source image should be

a gray scale image. As we can see from figure 34 shown below, most of the features

were separated from the rest region.

Figure 34. Threshold Image

4.4 Feature Extraction

4.4.1 Draw Contours

To be more specific and clear, we continued to draw all the contours in the image

including the edges as well as the content shown on the cards. Thus, it can be clearly

seen from Figure 33 that all features of the cards have been separated from the rest

areas. Most importantly, after the manipulation, it can be clearly estimated from the

picture that four rectangular edge regions correspond to the surface of the cards.

	
 41	

Figure 35. Contours of Cards

First, the preprocessed image is passed to OpenCV contour methods to calculate the

hierarchy between contours and return a list of contours that has been found.

4.4.2 Find Edges

In order to find each card, the edge of each card was detected so that the size of card

can be identified, thus Nao can recognize it.

In the first place, the numbers of contours are declared that need to be detected. As

known, the surface of each card is relatively large compared to the rest regions. So the

contours received from previous step can be sorted by calculating the area of each

contour from the largest to the smallest. Then the four cards in the image can be

estimated by finding the largest four contours (Figure 36).

	
 42	

Figure 36. Find Areas of Cards

Next, those four largest contours are looped over to find the exact edges of the four

cards. In order to approximate each contour, the polygonal curves of a contour are

estimated by applying an approximation precision of each card edge. In this project,

2% of the perimeter of the contour are used. Moreover, four points are used to identify

the edges. This is because only four points in the corner are needed to determine a

rectangular which can greatly reduce the numerical calculation.

	
 43	

Figure 37. Edges of Cards

4.4.3 Perspective Transform

The basic algorithm for object detection is creating a model to teach computers learning

from those images. Each image is represented as a two dimensional array known as

pixels, therefore, every single difference of lights or positions would be identified as a

totally different array. From the Figure 37, we can see that each card is not in the top-

down view of the image because of perspective problems.

To solve this problem, for each rectangle, we performed a perspective transform. As a

result, each cards on the image could be covered and segmented individually for card

recognition. Then each card will be registered into a rectangular representation before

further processing.

	
 44	

In previous section, a polynomial from the contour was approximated and a bounding

box was found, moreover, a list of four points of each rectangular was returned. In this

section, those (x, y) coordinates were sorted in a top-left, top-right, bottom-right as well

as bottom-left order. The reason behind this scene is that the top-left point has the

smallest sum of x+y while the bottom-right point associates with the largest sum. As

for the other two points, it is found that the top-right points has the smallest difference

which is x-y, with the bottom-left point relating to the largest difference. By performing

above NumPy numerical processing, a consistent ordering of points is gained,

otherwise the perspective image may be twisted.

In the last step, the dimension of the new warped image was specified. The width of

each card is the largest distance of x-coordinates between the bottom-right and bottom-

left or top-right and top-left. Similarly, the height of each card is the largest distance of

the y-coordinates between top-right and bottom right or the top-left and the bottom-

left.

Therefore, each points are picked in order to obtain a perspective image of each card.

The following figures 38 and 39 show the results:

Figure 38. Perspective Transform

	
 45	

Figure 39. Separate Each Card

4.5 Recognizing Cards

There are 52 cards in total except for the two joker cards. After having cropped

registered representations of each card, each cropped image was saved into the

directory in order.

An approach was used in this part that connects the digits of each card with the file

names. To be specific, there are four different card suits in total: Spades, Hearts,

Diamonds and Clubs respectively (Figure 40). Each suit contains the same number of

cards, which is 13 cards each and 52 cards in total (Figure 41). Cards of the same suit

were saved together in the order of 0 to 12 with the corresponding file names like Figure

42 below shows. For instance, if a card is Heart 1, its file name would be “13.jpg”. If

a card is Spades 3, its file name would be “2.jpg”.

	
 46	

Figure 40. Four types of Cards

Figure 41. Representation of 52 Cards

	
 47	

Figure 42. Relations Between Card Numbers and File Names

4.6 Comparing Differences

Now that Nao knows what a single card looks like, how does Nao specify the card

number with the incoming candidate card?

In the thesis, the candidate card is matched with every recognized card by simply

comparing two cards through previous contours. To be specific, all the input images,

are firstly going to be preprocessed to have a final contour look. Noises as well as

artifacts are gotten rid of in this process. Secondly, and most importantly, an absolute

difference of one image from another will be performed as Figure 43 shows. Finally,

the sum of intensity of each pixel which is not the same is returned.

Figure 43 shows the difference when matching Heart 2 with Heart 5.

Card Suits Corresponding File Names Corresponding Card Numbers

Spade From 0 to 12 From 1 to 13

Heart From 13 to 25 From 13 to 26

Diamond From 26 to 38 From 27 to 39

Club From 39 to 51 From 40 to 52

	
 48	

Figure 43. Difference between Heart 2 and Heart 5.

Figure 44 shows the similarity when matching Heart 2 with itself.

Figure 44. The Similarity of Comparing Heart 2 with Itself

	
 49	

Therefore, matching each card becomes a simple process of comparing the incoming

card against the recognized cards, and looping over it to find the minimum difference.

Once the minimum difference was found, the corresponding filename of that card can

be easily accessed. Because the looping time will be recorded and the filename is same

with the looping time based on the naming rule in Section 4.5 “Recognize Cards”.

Figure 46 shows the final results of recognizing cards after comparing differences with

the database:

The original cards are Heart 2, Heart 3, Spades 11, Spades 12.

Figure 45. Original Cards

Figure 46. Python Results of Recognizing Cards

	
 50	

5. NAO BEHAVIORS

In the beginning, Nao will take a card from the dealer and put in the front desk with his

right arm. After he receives two cards, object recognition will be started and the result

is announced.

5.1 Joints Introduction

Nao body is assembled with several pieces of joints which link the body parts of the

robot together. To perform the rotation of the body parts, a frame was placed at each

joint as shown in Figure 47. The X axis takes charge of roll movements while pitch

rotations take place around the Y axis and yaw rotations around the Z axis.

Figure 47. Nao joint rotation frame

5.1.1 Head Joints

Two joints are controlling Nao’s head movement, HeadYaw and HeadPitch

respectively. HeadYaw is in charge of moving left and right from 119.5 to -119.5

degrees while HeadPitch takes care of moving Nao’s head forward and backward from

29.5 to -38.5 degrees. The actual value can be received from the sensor by using

ALMemory key name. Figure 44 shows the basic information about these two joints.

	
 51	

Joint name Motion
Range

(degrees)
Range (radians)

HeadYaw
Head joint twist

(Z)

-119.5 to

119.5
-2.0857 to 2.0857

HeadPitch
Head joint front

and back (Y)
-38.5 to 29.5 -0.6720 to 0.5149

Figure 48. Nao Head Joints

And Figure 49 illustrates the range these two joints enjoy.

Figure 49. Head Joints Movement

	
 52	

5.1.2 Arm Joints

There are two arms installed on Nao assembled human arms---left arm and right arm.

Each arm has five actuators, ShoulderPitch, ShoulderRoll, ElbowYaw, ElbowRoll,

WristYaw respectively. The actual value can be received from the sensor by using

ALMemory key name.

For each joint, the ShoulderRoll controls move shoulder to its side, and the ElbowRoll

take charge of lifting the elbow in the vertical direction while the ElbowYaw as well

as the WristYaw moves in X direction. Moverover, the ShoulderPitch take care of

shoulder movements in Y direction.

The following figure 50 shows the basic information about the right arm joints.

Joint name Motion
Range

(degrees)
Range (radians)

RShoulderPitch
Right shoulder joint

front and back (Y)

-119.5 to

119.5
-2.0857 to 2.0857

RShoulderRoll
Right shoulder joint

right and left (Z)
-76 to 18 -1.3265 to 0.3142

RElbowYaw
Right shoulder joint

twist (X)

-119.5 to

119.5
-2.0857 to 2.0857

RElbowRoll Right elbow joint (Z) 2 to 88.5 0.0349 to 1.5446

RWristYaw Right wrist joint (X)
-104.5 to

104.5
-1.8238 to 1.8238

	
 53	

Joint name Motion
Range

(degrees)
Range (radians)

RHand Right hand
Open and

Close
Open and Close

Figure 50. The Specifications of Right Arm

Figure 51 illustrates the range these joints enjoy.

	
 54	

Figure 51. Arm Joints Movements

5.2 Nao Behaviors

In this section, inverse kinematics and Naoqi functions from Proxy are used to

implement Nao’s right arm control.

5.2.1 Animation

First, a series of movement through “Animation mode” are designed inside

Choregraphe software.

	
 55	

Figure 52. Animation Logo on Choregraphe

The whole animation is divided into two sections:

Ø Waiting for a card

Step 1: Nao starts with a rest position and set relative stiffness on.

Step 2: Lift right arm to the middle length of the body. The reason behind this

motion is that Nao can not move the arm directly to the front position because the

table in the front might hit Nao’s arm. Then, from the middle length of the body

move horizontally to the front of the body.

	
 56	

Step 3: With the splayed fingers, Nao asking for a card from the dealer.

Step 4: Close the fingers and hold the incoming card tightly.

	
 	

	
 	

Figure 53. First Part of Animation

Ø Put it on the table

Step 1: Arrive the targeted position and rotate the wrist while still holding the card.

Step 2: Open the fingers and let the card lay on the table.

	
 57	

Step 3: Lift the right arm to the middle length of the body and back forward to the

safety position.

	
 	

	

Figure 54. Second Part of Animation

5.2.2 Get Angles

Next, angles of Nao joints at desired positions are gained through getAngles function.

For the purpose of accuracy, two angles---sensor angles and command angles---were

compared and shown errors on an IDLE screen.

	
 58	

5.2.3 Set Angles

Then, angles of the joints are set through function setAngles from

motionProxy. There are three parameters in the function:

• Name

The name or names of joints, chains, “Body”, “JointActuators”, “Joints” or

“Actuators”.

• Angles

One or more angles in radians.

• FractionMaxSpeed

The fraction of maximum speed to use.

5.2.4 Arm Move

In order to control Nao’s arm, Function positionInterpolation moves an end-effector to

the given position and orientation over time. This function includes six parameters:

• Space

When executing a task, the space is determined when the task begins, and remains

constant throughout the rest of the interpolation.

There are three task spaces, FRAME_TORSO = 0, FRAME_WORLD = 1,

FRAME_ROBOT = 2

FRAME_TORSO: this is attached to NAO’s torso reference, and it moves with

NAO as he walks and changes orientation as he leans. This space is useful when

there are very local tasks that make sense in the orientation of the torso frame.

FRAME_WORLD: this is a fixed origin that is never altered. It is left behind when

	
 59	

NAO walks, and will be different in z rotation after NAO has turned. This space is

useful for calculations which require an external, absolute frame of reference.

FRAME_ROBOT: this is average of the two feet positions projected around a

vertical z axis. This space is useful, because the x axis is always forwards, and it

provides a natural ego-centric reference.

• Effector Name

• Path

Vector of 6D position arrays (x,y,z,wx,wy,wz) in meters and radians. x is to the

front of the robot, y to its side while z is the elevation. Then comes the rotation:

rotation around the x-axis, rotation around the y-axis and z-axis.

Effector

name
Position End transform

“Head” At the neck joint Position3D(0.0, 0.0, 0.0)

“LArm” Inside the hand
Position3D(HandOffsetX, 0.0, -

HandOffsetZ)

“LLeg” Below the ankle Position3D(0.0, 0.0, -FootHeight)

“RLeg” Below the ankle Position3D(0.0, 0.0, -FootHeight)

“RArm” Inside the hand
Position3D(HandOffsetX, 0.0, -

HandOffsetZ)

“Torso”
A reference point

in the torso
Position3D(0.0, 0.0, 0.0)

	
 60	

• AxisMask

It can be defined which axis to use by an Axis Mask. For example, 7 for position

only, 56 for rotation only and 63 for both.

Figure 55. AxisMask Specifications

• Durations

Vector of times in seconds corresponding to the path points.

• IsAbsolute

If true, the movement is absolute otherwise it is relative.

By function positionInterpolation, most of the arm movements can be achieved. 3D

space is used for positions instead of 6D since it is enough for the thesis. The time

interval is one second for each movement. A piece of code is shown below in Figure

47.

	
 61	

Figure 56. Code for Nao Arm

5.3 Results Announcement

After Nao puts cards in a desired position and recognizes the cards, Nao speaks out

results when a round comes to an end using a proxy.

ALProxy is an object that can connect to all methods. There are three parameters in

ALProxy class.

• Name --- name of the module

• IP --- IP of the robot

• Port --- the port on which NAOqi listens (9559 by default)

A piece of code is shown in Figure 48:

	
 62	

Figure 57. Python Code for Saying

	
 63	

6. BLACKJACK ALGORITHMS

In previous sections, Nao could compare the coming card with the database and figure

out what digit the card represents for. In this section, the Blackjack game strategy is

introduced.

Balckjack(BJ), also known as twenty-one, is the most popular gambling game

throughout world. It is made up of 22 cards except 2 joker cards. The basic rule of BJ

is that Nao comparing the sum value of two incoming cards with 21. If Nao gets 21

points directly (called BJ), Nao will win the round. Otherwise, Nao will lose the round.

	
 64	

7. IMPROVEMENTS

As for further improvements, comparing the coming cards with the database could be

replaced by Artificial Neural Network (ANNs).

ANNs is a computational or mathematical model that simulates the structures and

functions of biological neural networks, particularly the brain of animals. It is used to

estimate functions through amounts of unknown inputs.

Figure 58. Artificial Neuron Network

The mechanism of ANNs is exchanging information between each other through large

number of interconnected “neurons” as figure 50 shows. Each node (neurons)

represents a specific output function with its value “1” or “0” called Activation

Function. And each connection between two nodes stands for a weighted value for the

connection signal called Weight. Weight is equivalent to the artificial neural network

	
 65	

memory. The output of the network gains different Weights and Activation Functions

according to various network connections. The network itself represents the

approximation of some algorithms in the nature or some expression of a logical

strategy.

Figure 59. Neuron Nodes

So far, the computer still has not matched or even surpassed human capabilities, we

have just made some progress in teaching the computer to see objects. This is like a

small child learning to utter a few nouns. It is an incredible accomplishment, but it is

only the first step. Soon, another developmental milestone will be hit, to teach a

computer to see a picture and generate sentences, then the marriage between big data

and machine learning algorithm has to take another step. Now, the computer has to

learn from both pictures as well as natural language sentences generated by humans.

Just like the brain integrates vision and language, in this thesis a model was developed

that connects parts of visual things like visual snippets with words and phrases in

sentences.

However, progress is made little by little as giving sight to the machines. First, we teach

them to see. Then, they help us to see better. For the first time, human eyes won't be

the only ones pondering and exploring our world. We will not only use the machines

for their intelligence, we will also collaborate with them in ways that we cannot even

imagine.

	
 66	

8. CONCLUSION

This thesis introduces computer vision as well as the behavior design of a humanoid

Nao robot mainly based on OpenCV and Python language: Nao playing Blackjack.

To begin with, the whole process is basically divided into three parts: receiving cards,

recognizing cards and making decisions. In the first part, Nao will receive cards from

the rack and put it in the front. After finding locations, function positionInterpolation

was used for controlling Nao’s arm to specific positions. The initial position of the

arm was obtained by function getAngles mainly, and the latter positions were gained

through the first position relatively.

In the second part, Nao processes the image of the cards and tries to recognize these

cards. OpenCV first preprocesses the image received, then draws contours of cards and

sorts those points by areas. Thus four cards on the image are found through detecting

edges. Next, a “bird-eye view” will be applied to each card. This is because the

positions of each card are different and those cards may be placed in different angles

or directions, definitely not just in a rectangle in front of Nao’s eyes. After detected

edges of each card, Perspective Transform is performed on each card. Therefore, the

real information on each cards are processed without other useless information. Finally,

Nao compares the processed image with the database, finds the most similar card

together with its file name. Then through an algorithm, Nao knows the number of the

cards.

In the last part, Nao makes decisions based on Blackjack rules. Three options, hit,

stand, split will be performed and Nao will speak out the results loudly after each round.

After completing this thesis, my ability of self-learning improved very much since

everything was totally new for me, especially the computer vision part, OpenCV.

However, this is what life calls for. Different approaches have been made, such as

	
 67	

reading documentation, consulting experts, etc. A good point is how important

planning a big task into small chapters. By following a schedule, a big task can be

divided into small simplifier tasks and after persistent work on them, the goal is finally

achieved!

	
 68	

REFERENCES

1. Computer vision from Wikipedia

https://en.wikipedia.org/wiki/Computer_vision

2. Nao- Video camera from documentation

http://doc.aldebaran.com/2-1/family/robots/video_robot.html#robot-video

3. OpenCV website

http://opencv.org/

4. Choregraphe website

https://community.aldebaran.com/

5. Numpy&SciPy explanation

http://www.engr.ucsb.edu/~shell/che210d/numpy.pdf

6. Smoothing Images documentation from OpenCV

http://docs.opencv.org/3.0beta/doc/py_tutorials/py_imgproc/py_filtering/py_fi

ltering.html#filtering

7. Image processing documentation from OpenCV

http://doc.aldebaran.com/2-1/family/robots/bodyparts.html

8. Balckjack rules

https://en.wikipedia.org/wiki/Blackjack

9. Artificial Neuron Network

https://zh.wikipedia.org/wiki/%E4%BA%BA%E5%B7%A5%E7%A5%9E%

E7%BB%8F%E7%BD%91%E7%BB%9C#.E5.9F.BA.E6.9C.AC.E7.B5.90.E

6.A7.8B

10. Computer Vision

https://en.wikipedia.org/wiki/Computer_vision

	

