

Nikita Lillak

Designing an Automated Sorting System
in Simulation Environment

Bachelor’s Thesis

Bachelor of Engineering

Electrical and Automation Engineering

2024

Degree title Bachelor of Engineering
Author (authors) Nikita Lillak
Thesis title Designing an Automated Sorting System in Simulation Environ-

ment
Commissioned by South-Eastern Finland University of Applied Sciences, XAMK
Time 2024
Pages 82 pages, 28 pages of appendices
Supervisor Teemu Manninen

ABSTRACT

The main objective of this thesis work was to design and implement an Auto-

mated sorting system in virtual simulation environment Simumatik. The thesis

work addresses establishing communication between Simumatik’s virtual con-

trollers and third-party software, plc programming of a stacker crane, and UR

5 robots programming with the help of Ursim robot’s programming environ-

ment.

The result of this thesis work is an assembled and operating automated sort-

ing system in Simumatik’s virtual environment. Two programs were devel-

oped: a PLC program and an Ursim program. An electrical drawing of a sys-

tem was created. Simulation works successfully. The UR5 robot sorts cans on

a pallet, the stacker crane then stores the pallet into a storage slot.

Keywords: PLC, Robot Arm, Digital Twin, Stacker Crane, Simulation

Tutkintonimike Insinööri (AMK)
Tekijä/Tekijät Nikita Lillak
Työn nimi Automatisoidun lajittelujärjestelmän suunnittelu virtuaaliseen si-

mulaatioympäristöön
Toimeksiantaja Kaakkois-Suomen ammattikorkeakoulu
Vuosi 2024
Sivut 82 sivua, liitteitä 28 sivua
Työn ohjaaja(t) Teemu Manninen

TIIVISTELMÄ

Tämän opinnäytetyön päätavoitteena oli suunnitella ja toteuttaa automatisoitu
lajittelujärjestelmä virtuaalisessa simulaatioympäristössä Simumatik. Opinnäy-
tetyö käsittelee Simumatikin virtuaalisten ohjainten ja kolmannen osapuolen
ohjelmiston välisen kommunikaation luomista, pinonosturin PLC-ohjelmointia
sekä UR5-robotin ohjelmointia Ursim-ohjelmointiympäristön avulla.

Tämän opinnäytetyön tuloksena on koottu ja toimiva automatisoitu lajittelujär-
jestelmä Simumatikin virtuaaliympäristössä. Kaksi ohjelmaa on kehitetty: PLC-
ohjelma ja Ursim-ohjelma. Järjestelmän sähkökuvia on luotu. Simulaatio toimii
onnistuneesti. UR5-robotti lajittelee tölkkejä lavalle, ja pinonosturi varastoi la-
van varastopaikan.

Asiasanat: PLC, Robot Arm, Digital Twin, Stacker Crane, Simulation

4

CONTENTS

1 INTRODUCTION .. 6

2 SIMULATION IN VIRTUAL ENVIROMENT .. 7

2.1 Digital twin and virtual commissioning .. 7

2.2 Advantages of Digital Twin and Simulation Environment in Education 7

2.3 Simumatik Gateway and Communication Drivers ... 8

2.4 PLC (Programmable Logic Controller) .. 8

3 OVERVIEW OF THE SOFTWARE USED IN THE PROJECT 9

3.1 Simumatik ... 9

3.2 Codesys and Ursim .. 9

4 SYSTEM DESIGN .. 10

5 IMPLEMENTATION .. 11

5.1 Establishing Gateway Connections in Simumatik ... 11

5.1.1 Gateway connection between Codesys and Simumatik 11

5.1.2 Gateway connection between URsim and Simumatik 18

5.2 System Configuration and Functionality Overview.. 20

5.2.1 Automated Storage and Retrieval System .. 20

5.2.2 Can Sorting System .. 24

5.3 Programming portion using PLC ... 26

5.3.1 I/O Mapping .. 26

5.3.2 Plc code development... 29

5.4 Programming portion using URsim ... 39

5.4.1 I/O Setup ... 39

5.4.2 Code ... 41

6 RESULTS ... 45

7 CONCLUSION .. 50

5

7.1 Drawbacks of the project .. 51

REFERENCES .. 52

LIST OF FIGURES .. 53

APPENDICES

 Appendix 1. Catalog of Components for the Automated Sorting System

 Appendix 2. Wiring diagrams of the Automated Sorting System

 Appendix 3. PLC Program for the Stacker Crane

 Appendix 4. Program for Universal Robot 5

6

1 INTRODUCTION

Industrial automation field is quickly catching up with software development field in terms

of accessibility. In software development only a computer is required to practice program-

ming, while to practice PLC programming, access to a physical machine is a requirement.

With development of Digital twins and virtual commissioning environments, the industrial

automation field became more accessible. Digital twins can be programmed, and the result

can be simulated within a virtual environment.

I have intentionally designed this project to be executed solely on a personal computer.

Tools used in this project are freely available for noncommercial and education purposes.

This is great for students who want to delve into industrial automation field and decide if it

suits them.

The main objective of this thesis work is to design and implement an Automated sorting

system in virtual simulation environment Simumatik. The System will be divided into two

parts: an automated storage system designed to store pallets in the storage, and a Sorting

system responsible for positioning the items on top of the pallet. The Automated storage

system utilizes a stacker crane controlled by Simumatik’s virtual PLC controller, and the

sorting system’s main component UR5 robot is controlled by Simumatik’s implementation

of the UR’s virtual controller. A PLC code was written in Codesys integrated development

environment, while UR’s virtual controller is programmed with Ursim.

7

2 SIMULATION IN VIRTUAL ENVIROMENT

2.1 Digital twin and virtual commissioning

Building and changing an existing physical automation system is expensive and time con-

suming. Digital twin represents a computer-generated replica of a real physical system.

The visuals that determine how the component looks is created by 3d software, and the

components’ functionality is determined by a computer code.

It is much cheaper to build a system in virtual environment first. Digital twin allows to test

and commission the system before building it. Commissioning is an important step in en-

suring that automated systems are installed, tested, and operating according to the system

design requirements.

Virtual commissioning significantly reduces the time required in commissioning. PLC pro-

gram can be designed and tested before the actual system is physically built. [1.]

2.2 Advantages of Digital Twin and Simulation Environment in Education

The application of digital twin and simulation environment is not only used in professional

industry, but in education as well. Education institutions can now enhance students’ practi-

cal training by incorporating Digital Twin and Simulation Technology into their curriculum,

making education more accessible. Previously time consuming and financially demanding

technical training, can now be easily arranged through always available simulation soft-

ware. Students can build, test, and experiment with automation systems as much as they

want, without the significant financial burden and risk of component damage. Additionally,

simulation software eliminates the risk of damaging components, reduces the costs of

physical systems, and minimizes the maintenance of those systems. [2.]

8

2.3 Simumatik Gateway and Communication Drivers

Simumatik Gateway is used to connect third-party software from different vendors to Si-

mumatik, by adding communication driver to a virtual component. Communication driver is

essentially a software configuration with a variety of parameters, and it is responsible for

the information flow between virtual component and the gateway. Simumatik Gateway

combined with a communication driver, acts as a bridge between Simumatik platform and

3d party software.

In Figure 1. Communication scheme between virtual controllers and third- party software is

depicted. The input signals received by virtual components are sent to the third-party soft-

ware. After receiving these signals, the application developed within the third-party soft-

ware processes them and sends the output signals back to the virtual component. [3.]

2.4 PLC (Programmable Logic Controller)

Programmable logic controller (PLC) is essential in industrial and automation processes. It

is a modern alternative to the older, physically wired relays-based control systems. PLC

significantly simplified the maintaining process by replacing relay-based systems. Instead

of manual rewire of the switchboard, switchboard logic can be implemented within a single

program. PLCs are utilized to control components of automation systems such as

switches, relays, buttons, actuators, and motors. These components typically fall into one

of two categories: input or output. For example, input devices include photoelectric sen-

sors or buttons, while output devices could range from actuators to relays. Such compo-

nents are then connected to a PLC by utilizing I/O modules. Because Industrial and auto-

mation systems frequently operate in harsh environment, PLCs are designed to withstand

harsh conditions, such as cold, humid, or dust. [4.]

Figure 1. Communication scheme between virtual controllers and third- party software

9

3 OVERVIEW OF THE SOFTWARE USED IN THE PROJECT

3.1 Simumatik

The Simumatik platform is a crucial part of this project. It is simulation software, where var-

ious digital twins can be built by combining physical, electrical, pneumatic, or mechatronic

components. The projects are stored in the cloud and can be accessed from anywhere.

Simulation can also run on a cloud-based server or locally on the user’s computer. Addi-

tionally, Simumatik is also platform independent. Simumatik’s Gateway supports many

third-party software and hardware, acting as a bridge between the model and third-party

hardware or software. There are four key elements of the components. The visual is re-

sponsible for the component’s appearance. Physics defines physical features of a compo-

nent, such as its material, collision shape, and kinematic properties. Interface determines

the component’s connection points. Connection points are used for linking components to-

gether. Lastly, the behavior element is responsible for the component’s functionality.

These elements can be edited with a component editor, while the component’s functional-

ity can be edited with Python programming language. [5.]

Simumatik also has a great resource Simumatik Academy. It provides excellent tutorials

and courses about Simumatik’s features, components, programming as well as 3d party

software integration courses. It has been great help with navigating the platform features

and integrating 3d party software into the Simumatik. [6.]

3.2 Codesys and Ursim

This project involves Codesys integrated development environment for creating an appli-

cation for a virtual PLC controller which controls the stacker crane, and Codesys Control

WIN 3 runtime, which enables a windows-based machine to interpret and execute the ap-

plication developed with CODESYS IDE. Essentially the Codesys runtime turns any device

that meets the requirements into an IEC 61131-3 compatible controller. Codesys IDE uses

IEC 61131-3 standard program languages. IEC 61131-3 Standard encompasses several

programming languages such as Lader Logic, Structured Text, Instruction List, Function

Block Diagram, and Sequential Function Chart. [7.] In this project PLC will be programmed

with ladder logic, while structured text will be used to link I/O Variables.

Ursim will be used for developing an application for a virtual UR controller that controls the

UR 5 robot. Ursim is Linux software and will not run on windows operating system. To run

10

Ursim on Windows operating system, Universal Robots created a virtual machine that can

be run with the help of virtual machine software VMWARE. [8.]

4 SYSTEM DESIGN

To test if two different 3d- party software could work simultaneously in the Simumatik plat-

form,it was necessary to select such systems, each controlled by unique software. The

core of the project was formed by merging concepts from two separated Simumatik pro-

jects. The concept for the Automated Storage and Retrieval System was adopted from the

implementation showcased in Simumatik’s LIU Station 4 project. The concept for the Can

Sorting System was inspired by Simumatik’s “Showcase of Universal Robot” project.

Automated Storage and Retrieval System (ASRS) would be responsible for storing pallets

into the storage slots, utilizing a stacker crane. The stacker crane is the main material han-

dling component of the ASRS system. The stacker crane will be controlled by a PLC con-

troller (Appendix 1, PLC 16 DIO 4AIO) connected to its actuators. The limit switches (Ap-

pendix 1, Limit Switch) will enable the PLC controller to achieve precise positioning of the

stacker crane to the storage slots. Showcasing the programming of a complicated system

such as stacker crane would provide valuable insight into designing an automated sorting

system. In Appendix 1, Stacker Crane provides additional information about a stacker

crane’s functionality.

The can sorting system will sort cans on top of the pallet, which later would be stored in

ASRS system’s storage. As the material handling component, the can sorting system uti-

lizes a UR 5 robot arm (Appendix 1/ 4, UR5 Robot). The control of the UR 5 robot arm is

achieved via a virtual UR controller (Appendix 1/ 4, Universal Robots Controller), con-

nected to its input axis. The systems controller’s PLC and UR Controller will also control

conveyors (Appendix 1, Conveyor Belts) via motor contactors and relays (Appendix 1, Mo-

tor contactor and DC Relay), while also processing inputs from photoelectric sensors (Ap-

pendix 1, Photoelectric Sensor).

The initial operation sequence of the can sorting system was very simplistic. When a pallet

with a box on it arrives at a robot arm, the robot arm would place one can inside a box.

However, the programming of the robot turned out to be easier than initially expected. The

cans rack with 4 slots replaced the box, as it was a more appropriate item holder, enabling

11

this project to develop a more complex code and further differentiate from Simumatik’s

Showcase of Universal Robot” project.

5 IMPLEMENTATION

5.1 Establishing Gateway Connections in Simumatik

5.1.1 Gateway connection between Codesys and Simumatik

In the virtual plc setting, opcua_client is selected as a driver type (Figure 3.) and the

setup_params will include URL address of opcua server. OPC UA is a protocol integrated

in some plc. It allows plc devices from different manufacturers to communicate with each

other. Figure 2 illustrates the parameters of OPC UA URL address.

Next in the Codesys a software project must be created, and CODESYS Control Win

V3(3S- Smart Software Solutions GmbH) is selected as a device (Figure 4). CODESYS

Control Win V3 is a software-based PLC with built-in OPC UA Server. It runs on a regular

computer and serves as a PLC controller that can be programmed with IEC 61131-3 pro-

gramming languages. [9.]

Figure 2. OPC UA IP adress

Figure 3. Simumatik's PLC controller's configuration panel

12

After Global Variable List (GVL) must be added (Figure 6.), and in GVL options window,

under build tab, link always option must be selected (Figure 5.), to appear in the symbol

configuration panel later. Global variables can be accessed from anywhere in our program.

[10.]

Afterwards symbol configuration must be created, and OPC UA features (Figure 7.). This

allows the OPC server to access the variables. [10.]

Figure 4. Codesys Project creation window

Figure 5. GVL's properties tab Figure 6. Codesys project explorer

13

In symbol configuration object GVL variables must be selected and build process initiated

(Figure 8). [10.]

Next In the virtual plc setting, Input, and output variables var_DI1, var_DI2, var_DO1 and

var_DO2 (Figure 9) must be defined in Codesys as specified in Figure 10. Since

Figure 7. Codesys add symbol configuration window

Figure 8. Codesys symbol configuration tab

14

PLC_16DIO_4AIO supports 16 inputs and 16 outputs, in Codesys Globa Variable List

(GVL) the same variables must be defined as BYTE. Each input and output variable

equals 8 bits, and BYTE consists of 8 bits. Future Boolean variables will be linked to a

global variable.

Next Codesys Control Win is launched (Figure 11). The free version has a runtime limit

and must be reset every 2 hours.

Next in Codesys device configuration menu network scanning is performed (Figure 13),

and soft plc selected (Figure 12).

Figure 9. Simumatik’s PLC 16DIO4AIO config-

uration window
Figure 10. Global variable declaration in

codesys

Figure 11. Codesys control WIN V3 console

15

Figure 13. Codesys device configuration menu

Figure 12. Codesys device configuration, select device window

16

Then in the device configuration setting in tab Runtime Security Policy (Figure 14), “Allow

anonymous login” option must be selected to establish a connection without providing cre-

dentials (Figure 15).

To test the connection and download code to the Codesys runtime, the user is required to

log into a device in the Codesys development environment,and then establishing a gate-

way connection in Simumatic by selecting the gateway icon and starting the emulation.

Figure 14. Location of the Codesys runtime security policy tab

Figure 15. Codesys runtime security policy tab

17

When emulation is running, if status message RUNNING (Figure 16) appears in the PLC

view window, then connection is successful. [10.]

Figure 16. Simumatik's PLC16DIO4AIO configuration panel

18

5.1.2 Gateway connection between URsim and Simumatik

URsim is unable to run directly on windows operating system due to its reliance on the

Linux operating system. Therefore, Ursim will be opened on a virtual machine (Figure 17).

The manufacturer of Universal Robots has developed a virtual machine, that already con-

tains all the necessary tools. VMware Player was selected as the virtual machine software.

[8; 11.]

It is important to have selected NAT as a network connection in Virtual machine settings.

This will share the host’s Ip address. [11.]

Figure 17. VMware Workstation Player with URsim virtual machine

19

To determine the IP address of Ursim virtual machine’s, Linux terminal tool XTerm is

launched with ifconfig command (Figure 18).

This IP address is used to connect to Simumatik implementation of the UR Controller.

Connection is successful if in the status field appears message RUNNING (Figure 19).

Figure 18. Linux terminal window in URsim virtual machine

Figure 19. Simumatik's UR controller configuration panel

20

5.2 System Configuration and Functionality Overview

5.2.1 Automated Storage and Retrieval System

ASRS system (Figure 20) consists of Storage part, stacker crane, 10 limit switches, 2 con-

veyor belts, photoelectric sensor, and AC motor. The storage has 9 slots (Figure 21). The

sacker crane lifts items coming from the conveyor and places them in the appropriate slots

with the help of limit switches. The limit switches Y (Figure 20) are responsible for vertical

positioning, while the limit switches X (Figure 20) are responsible for horizontal position-

ing. When the crane reaches the limit switch, the stacker crane’s lever (Figure 21) trigger

limit switch’s actuator. Afterwards, the limit switch sends a signal to a PLC, thus stopping

the motor. To set the stacker crane into its initial position, an initial position limit switch has

been added. Limit switch wiring to a PLC can be seen in Appendix 2, page 2 of Wiring dia-

grams of the Automated Sorting System.

Figure 20. Location of the limit switches in the automated storage and retrieval system in Simumatik

21

During unloading operation, to ensure that the object stays in the desired slot, the stacker

crane must descend lower that the Y limit switch. To achieve this, bottom limit switches

have been added (Figure 20). The bottom limit switches are responsible for preventing the

crane from descending further after placing an object into the slot.

Figure 21. Location of the levers and slots in the automated storage and retrieval system in Simumatik

22

ASRS system is controlled by Simumatik virtual PLC controller. Additionally, is has essen-

tial components like a three-phase socket to provide power for an AC motor and DC power

supply. The DC power supply supplies power to DC components such as limit switches,

PLC, and photoelectric sensor. An AC motor axis is connected to both conveyors’ motor

ports, initiating conveyor operation. The limit switches, motor contactor, stacker crane’s ac-

tuators and photoelectric sensor are all connected to a PLC. The PLC responsible for con-

trolling the whole system. The motor contactor provides the PLC with capability to control

an AC motor. The circuit breaker protects the AC motor from overcurrent.

The photoelectric sensor sends a signal to a PLC upon the arrival of a box. The photoelec-

tric sensor located on a stacker crane’s platform (Figure 23), sends a signal to a PLC

when the box reaches the center of the stacker’s crane platform. Each of the components

previously described is illustrated in Figure 22. and the connections between components

can be viewed in the wiring diagram (Appendix 2, page 1 and 2).

The stacker crane is an autonomous component and does not require a power source in

this simulation and only has actuator inputs.

Figure 22. Locations of the electric components in the automated storage and retrieval system in

Simumatik

23

Figure 23. The photoelectric sensor located on a stacker crane’s platform in Si-

mumatik

24

5.2.2 Can Sorting System

The can sorting system consists of a UR 5 robot, 3 photoelectric sensors, vacuum gripper,

4 large conveyor belts and 2 AC motors. Additionally, it includes components such as mini

conveyor belts powered by 2 DC motors, a DC Relay, a DC power supply, 2 circuit break-

ers, 2 motor contacts for AC motor functionality, three-phase socket, pneumatic compres-

sor, and UR Controller.

UR5 robot is responsible for the sorting operation. It handles the lifting and placing of the

can rack on top of the wooden pallet and inserting cans into the can rack’s slot. Photoelec-

tric sensors send signals to the UR controller upon detecting an item, causing the con-

veyor to stop. Powered by a pneumatic compressor, a vacuum gripper is mounted on the

UR5 Robot, and it is responsible for gripping objects.

Powered by an AC motor, large size conveyors 1 and 2 transport the can’s rack, while

Conveyors 3 and 4 transport the wooden pallet. Mini conveyors are powered by DC mo-

tors, and they are used to transport cans. UR 5 controller controls DC motors with the help

of DC Relay and AC motors with the help of motor contactors. A three-phase socket pow-

ers up the AC motors, the UR5 Robot and the DC power supply. Each of these compo-

nent’s locations are illustrated in Figure 24, Figure 25 and Figure 26 and the connections

between components can be viewed in the wiring diagram (Appendix 2, page 3 and 4) .

Figure 24. Locations of the can sorting system components in Simumatik, part1

25

Figure 25. Locations of the can sorting system components in Simumatik, part3

Figure 26. Locations of the can sorting system components in Simumatik, part2

26

5.3 Programming portion using PLC

5.3.1 I/O Mapping

I/O Mapping is a process of linking application variables with actual inputs and outputs of

the PLC. First Global Variable List (GVL) must be created, and global variables defined as

a BYTE. Simumatik virtual PLC has 16 inputs and 16 outputs. Four global variables are

created: “inputs”, “inputs2”, “outputs” and “outputs2”. Each global variable is defined as a

BYTE, as a BYTE consists of 8 bits (Figure 27). Each bit will be linked to each I/O applica-

tion variable. For this purpose, inputs and outputs functions are created. [12;13.]

Function inputs mapping input variables to application variables, as illustrated in Figure 29,

and function outputs mapping output variables to application variables as shown in Figure

28.

Figure 27. Structure of a byte

27

Figure 29.Function inputs, mapping global variables inputs and inputs2 to application variables in

Codesys

Figure 28. Function outputs, mapping global variables outputs2 to application varia-

bles in Codesys

28

To simplify above I/O mapping, Figure 30 illustrates I/O mapping process to a Simumatik’s

virtual PLC16DIO4AIO controller’s input and output ports.

Figure 30. Simumatik's PLC16DIO4AIO controller, mapping process to a GVL variables

29

5.3.2 Plc code development

The development of plc application for a stacker crane was particularly difficult. There is

very limited amount of information available on the internet about programming stacker

cranes. As a result, only a basic sorting application was developed. This application sorts

pallets into the stacker crane’s storage, arranging them from left to right, switching to the

next row once the current row is filled.

The complete plc program contains Main_program, inputs, outputs and the Auto-

mated_Storage_System (Figure 31) where all logic is executed. The main program func-

tionality involves executing the inputs’ function, where it reads the inputs. Afterwards Auto-

mated_Storage_System program is executed, later, the outputs’ function writes the out-

puts (Figure 32).

Figure 31. Structure of the Codesys project

Figure 32. Contents of the main program in Codesys

30

Automated_Storage_System is the main logic program responsible for the behavior of the

storage system part of the project. Presented below in Figure 33, are the variables of the

Automated_Storage_System program.

Variables step, slot, X_Move_Step and row_Y are defined as DINT. DINT has 32 bits.[9]

Each bit can be set on and off. The main idea is to use just one variable instead of many.

A variable step is used to count steps. A variable slot is used to count items and arrange

them into correct slot. X_Move_Step is supplementary variable, utilized within the

Crane_X_Move contact as a counter for tracking at which horizontal sensor the crane

should stop, while moving along the X axis.

Figure 33. Code snipped of the Automated_Storage_System's variables

31

The program utilizes various timers to determine when to cease operations of the compo-

nent that does not rely on any sensors. Input variables represent variables that are linked

to the PLC’s input components, such as sensors. Output variables are linked to PLC actu-

ators, such as motor contacts and crane actuators.

Below is the first network of the Automated_Storage_System program (Figure 34). Initial-

ize_Lift is responsible for initiating the stacker crane’s lifting sequence. In this network

when Initialize_Lift sequence is activated, Conveyor_Running coil is reset.

Timer_Conv_Reset provides a 5 second delay before executing the reset operation.

The second network of the program (Figure 35) is responsible for counting incoming items.

Box_Waiting_For_Pickup variable is connected to a photoelectric sensor (Sen-

sor_Last_Belt) which is located at the last conveyor. The contact provides a rising edge

pulse rather than just activating the contact.

The third network of the program (Figure 36) is responsible for determining the appropriate

Y-axis row assignment. The storage has 3 slots horizontally. Slot 4 indicates that the crane

Figure 34. Automated_Storage_System ladder logic first network

Figure 35. Automated_Storage_System Lader logic second net-

work

32

should fill slots in the second row, while slot 7 indicates that the crane should fill slots in

the third row. When row_Y.3 activated, row_Y.2 deactivated.

The fourth network (Figure 37) upon detecting item sends a rising edge pulse to set Initial-

ize_Lift sequence.

The fifth network (Appendix 3, network 5) is a complete 12 step lifting and storing item se-

quence. I decided that using graphs to describe the program functionality would be the

best approach. The graph is illustrated below in Figure 38 and Figure 39.

Figure 36. The third network of the Automated_Storage_System's ladder logic

Figure 37. The third network of the Automated_Storage_System's ladder

logic

33

Figure 38. Graph of the 12-step lifting and storing item sequence part 1

34

Figure 39. Graph of the 12-step lifting and storing item sequence part 2

35

Contacts Crane_At_Default_X, Crane_At_Default_Y, Crane_Z_Move, Crane_X_Move and

Crane_Y_Move have functionality to determine the crane’s movement direction, based on

the current step in the fifth network.

The sixth network (Figure 40) is responsible for moving the crane to the left, its default po-

sition along the X axis. It also sets contact Crane_Ready_To_Load_X, so the program

knows that the crane is at its default position along the X axis.

The seventh network (Figure 41) is responsible for moving the crane down, its default po-

sition along the Y axis. When the action is complete contact Crane_Ready_To_Load_Y is

set. When both Crane_Ready_To_Load_X and Crane_Ready_To_Load_Y are set, The

crane is ready to initiate pickup operation.

Figure 40. The sixth network of the Automated_Storage_System's ladder logic

36

Figure 41. The seventh network of the Automated_Storage_System's ladder logic

The eighth network (Figure 42) is responsible for the crane’s rail, extension, and retraction.

The rail does not have any sensors, therefore timers are used to determine the appropriate

length of extension or retraction.

Figure 42. The eighth network of the Automated_Storage_System's ladder logic

37

The ninth network (Figure 43) is responsible for crane movement to the right. Supplemen-

tary variable X_Move_Step helps to determine at which horizontal sensor the crane stops.

Figure 43. The ninth network of the Automated_Storage_System's ladder logic

38

The final tenth network (Figure 44) is responsible for the crane’s upward movement. Varia-

ble row_Y helps to determine the current row within the sequence.

Figure 44. The tenth network of the Automated_Storage_System's lader logic

39

5.4 Programming portion using URsim

5.4.1 I/O Setup

The virtual implementation of the UR_controller is able to utilize input and output

registers exposed to the external devices from Ursim. Reading of registers begins

with value specified in initial_in_register and initial_out_register, which is 64 (Figure

45). [13]

Figure 45. Simumatik's UR controller configuration

panel

40

The register “conveyour” activates a small conveyor that is transporting cans, while “con-

veyor2” is responsible for transporting the can’s rack. The register “conveyour3” is respon-

sible for the main conveyor transporting a wooden pallet. The register “sensor” reads the

output from a sensor that is located at the end of the conveyor which is transporting cans.

Meanwhile, the register “sensorBelt2” reads the output from a sensor that is located at the

end of the conveyor which is transporting the can’s rack. Finally, the register “sensor3”

reads the output from a sensor that is located at the end of the conveyor which is trans-

porting the wooden pallet. All the above registers are illustrated in Figure 46. The registers

are assigned to UR controller’s input and output ports (Figure 47).

Figure 46. Universal Robots graphical programming environment

41

.

5.4.2 Code

The UR 5 robot’s program consists of five parts. Part “BeforeStart” (Figure 48) runs at the

beginning of the code. This part resets supplementary variables, that used to identify

which step the program must execute.

The program also has 3 threads (Figure 49). These threads run alongside the robot’s main

program, allowing it to control conveyors while simultaneously operating the robot arm.

Figure 47. UR controller's ports configuration panel in Simumatik

Figure 48. Code snipped of UR 5 robot program

from URsim

42

When an item triggers a sensor, Ursim deactivates the relay or contactor, therefore stop-

ping the conveyor. The sensor also triggers the robot’s main program sorting sequence

that lifts the items. Once the item has been lifted, the conveyor resumes operation until the

sensor is triggered again. The Ursim program threads control three conveyors.

The main program consists of two pickup sequences for handling materials. The first

pickup sequence is responsible for lifting a can’s rack and securely placing it on a wooden

pallet. To begin the first pick up sequence the following conditions must be met. A wooden

pallet triggers the sensor 3 and the can’s rack triggers sensor 2, stopping both conveyors.

Variable i_var_2 value must be one. After that the UR robot initiates the first pickup se-

quence. In this sequence the robot picks up the can’s rack and places it on the wooden

pallet. In Figure 50 in stage one (1.) the robot moves to its default position, followed by a

shift to the pickup position. The vacuum gripper then activates, clamping onto the rack. At

stage two (2.), the robot returns to its default stance, lifting the rack. This is followed by a

move to the drop position and, the final drop position where deactivating the vacuum grip-

per releases the item, allowing it to fall on the wooden pallet. At the end of the code block

variable i_var_2 value is changed to two. This allows the second sequence to proceed.

Figure 49. Code snipped of UR 5 robot program’s

threads from URsim

43

Figure 50. Code snipped of UR 5 robot is main program from UR-sim

The following conditions initiate the second sequence. Approaching Can triggers the sen-

sor, located at the end of the conveyor that transports the cans, and variable i_var_2 value

must be equal to two after completing the first sequence. In Figure 50 in the stage one (1.)

the robot moves to the default can retrieval position, designed for picking up cans, followed

by a shift to the pickup position. At the stage two (2.), (Figure 50), The Vacuum gripper

then activates, clamping onto the can, and moving into the default can retrieval position,

lifting a can. At the stage three (3.), (Figure 51) robot moves to the drop position and

places the can into the rack. Stages four (4.), five (5.), and six (6.), (Figure 51) follow the

same procedure as stage three (3.), but with adjustments to both, drop and final drop posi-

tions, to place cans into appropriate slots on the can rack.

Also, at the stage six (6.), (Figure 51) all variables are reset to ensure that the program

can start the next cycle from the beginning. The variable’s i_var_3 value is set to 2 for 4

seconds, ensuring that the wooden pallet moves further into a storage slot.

At the stage seven (7.), (Figure 51) the robot lifts, providing the space for leaving the

wooden pallet.

44

Figure 51. Code snipped of UR 5 robot is main program from UR-sim

45

6 RESULTS

At the beginning all the necessary software must be launched. In Simumatik, emulation

process is initiated by pressing Start the emulation button (Figure 52) To connect to both

Ursim and Codesys Control Win V3 soft plc, Simumatik’s gateway is launched (Figure 52)

At the beginning all the necessary software must be launched. Ursim is launched through

VMware. In Ursim’s Linux operating system, UR 5 application must be launched (Figure

53) stage (1.) and the program loaded stage (2.). Then the robot must be powered on fol-

lowed by the break release stage (3.). Finally, the program is initiated, and the robot

moved to its default position stage (4.).

Figure 52. Simumatik’s emulation interface

Figure 53. Universal Robot’s graphical programming environment, loading a program and starting the ro-

bot

46

Before launching Codesys, Soft PLC Codesys Control Win V3 is launched (Figure 54)

stage 1. The Application is then downloaded and launched by logging into the Device,

stage (2.) and (3.)

Figure 54. Codesys download and launch of the PLC application to a Codesys Control runtime

47

The UR robot can be precisely programmed to perform different actions. However, it is im-

portant that the item must be placed in a consistent position. The spawn point that gener-

ates the items lacks consistency. Conveyor guides were installed (Figure 55) to ensure

that the item is in the exact same spot every time, for the robot’s pickup.

Figure 55. Automated Sorting System in full operation

48

When emulation begins items appear at the blue spawn points sensor (Figure 55) stages

1., 2., 3. Wooden pallet appears at spawn point 1, the can’s rack appears at the second

(2.) spawn point and blue cans appear at the third (3.) spawn point. Items then move to-

wards photoelectric sensors and upon triggering them the conveyor stops. Once both the

wooden pallet and the can’s rack are in place, the UR robot lifts the can’s rack and places

it on top of the wooden pallet (Figure 56).

After that the UR 5 Robot initiates the can’s sorting sequence (Figure 57). In the Can sort-

ing sequence, the robot lifts a can and inserts it in the appropriate slot of the can’s rack.

Once the rack is full, the wooden pallet continues to move towards the stacker crane.

Figure 56. UR 5 robot lifting can’s rack in Simumatik

49

The Triggering sensor (“Sensor_Last_belt”, Figure 55) near the stacker crane initiates the

Stacker crane’s pickup and loading sequence. In the pickup and loading sequence the

stacker crane lifts the wooden pallet and loads it into the appropriate slot. During the simu-

lation a total of 9 wooden pallets, 9 can’s racks and 36 cans are spawned and go through

the sorting process. The stacker crane’s storage is 9 slots in total. The result is success-

ful. Both the UR5 robot’s program and the stacker crane’s PLC program work as intended,

effectively sorting the items at the conveyor, and placing them into the storage slots. The

result can be seen in Figure 55.

Figure 57. UR 5 inserting cans into the slots of the can’s rack

50

7 CONCLUSION

The automated sorting system was successfully completed, integrating two different third-

party software, Codesys Control Win V3 and URsim into a Simumatik. The system was as-

sembled in a virtual environment. Both the UR5 robot’s and the Stacker crane’s plc pro-

grams were implemented. Electrical drawings of the system were created using Simumatik

2 D view feature.

During the project I delved into various automation technology topics. This project broad-

ened my understanding of these technologies, as well as demonstrated the practical appli-

cation and effectiveness of a virtual simulation environment in the development of auto-

mated systems.

This thesis highlights the important role of virtual simulation in education. Physical ma-

chines are expensive, and their assembly takes a long time. The components also wear

out and have reliability issues. During education students may accidentally damage the

components or devices. Virtual simulation software provides the solution to this issue. Stu-

dents can experiment, make mistakes and learn, without the risk of damaging expensive

components or devices. Without the simulation software, I would not have been able to im-

plement such a complex project. The cost of the components would be too high for any in-

dividual.

51

7.1 Drawbacks of the project

The project complexity went beyond my capabilities, affecting the PLC program of the

stacker crane. The retrieval feature of the stacker crane, which retrieves pallets back at the

conveyor, was not implemented. Moreover, the stacker crane’s program fails to identify

which slots are occupied and which are empty. It sorts items from left to right and from the

bottom row upward.

The automated sorting system also lacks important features such as safety mechanisms

and control panel with start and stop buttons. The PLC code would benefit from improved

readability and modularity. The primary logic is concentrated in the Automated_Stor-

age_System program. Improving code readability and modularity could be achieved by

breaking down the logic program into separate programs. Additionally, ladder logic code

could be rewritten in a structured text plc programming language, which is more suited for

programming a complex automation device, such as a stacker crane.

The items that the system sorts were reused from other projects and not designed well for

the stacker crane. The wooden pallet occasionally slides off and falls when being unloaded

into the storage slots. This issue is caused by the can’s rack, where uneven weight distri-

bution leads to the rack sliding off during the unloading process. The results were better

with boxes or wooden pallets loaded individually. Another issue arises when, despite the

installation of conveyor guides on some conveyors, items placed at the pickup position are

slightly misaligned. This misalignment causes UR 5 robot failing to fit cans properly into

the slots of the can’s rack.

 52

REFERENCES

1. Digital Twins and Virtual Commissioning in the Manufacturing Industry. Vis-
ual Components. WWW page. Available from: https://www.visualcompo-
nents.com/resources/blog/digital-twins-and-virtual-commissioning-in-industry-
4-0/ [Accessed 2023 Dec 5].

2. The Important Use of Simulation Software in Education. Bin95. WWW
page. Available from: https://bin95.com/articles/electrical/engineering/discrete-
event-plc-simulation.htm [Accessed 2024 Mar 14].

3. Gateway and Integration, Introduction to Gateway and Communication
Driver. Simumatik. Video. Available from: https://academy.si-
mumatik.com/path-player?courseid=gateway-and-integra-
tion&unit=63e519dcda193461b7026a2eUnit [Accessed 2024 Mar 16].

4. What is a PLC? Definition and Details. Paessler. WWW page. Available
from: https://www.paessler.com/it-explained/plc [Accessed 2024 Feb 25].

5. Open Emulation Platform - User Manual. Simumatik. WWW page. Available
from: https://simumatik.com/learn/open_emulation_platform/ [Accessed 2023
Dec 5].

6. Launch of the Simumatik Academy. Simumatik. WWW page. Available
from: https://simumatik.com/launch-of-simumatik-academy/ [Accessed 2024
Mar 13].

7. CODESYS Runtime. Clarify. WWW page. Available from: https://www.clar-
ify.io/integrations-browse/codesys-runtime [Accessed 2024 Mar 4].

8. Universal Robots - Offline Simulator - CB-Series - Non-Linux - URSim
3.15.8. Universal Robots. WWW page. Available from: https://www.universal-
robots.com/download/software-cb-series/simulator-non-linux/offline-simulator-
cb-series-non-linux-ursim-3158/ [Accessed 2024 Mar 4].

9. Control. CODESYS. WWW page. Available from:
https://www.codesys.com/products/codesys-runtime/control.html [Accessed
2024 Feb 6].

10. Codesys Tutorial - Simumatik. YouTube. Video. Available from:
https://www.youtube.com/watch?v=SBspYJM7tB0 [Accessed 2023 Nov 25].

11. UR SIM Integration- Simumatik. YouTube. Video. Available from:
https://www.youtube.com/watch?v=GvUhSvtKh5A [Accessed 2023 Dec 5].

12. Configuring Devices and I/O Mapping. CODESYS. WWW page. Available
from: https://help.codesys.com/api-content/2/codesys/3.5.14.0/en/_cds_con-
figuring_devices_mapping_ios/#id3 [Accessed 2024 Jan 3].

13. Advanced Simulation, Digital Twin Technology - the Simumatik Platform.
Simumatik. WWW page. Available from: https://academy.simumatik.com/path-

 53

player?courseid=gateway-and-integra-
tion&unit=63e51e5cf00b138791014b8fUnit [Accessed 2024 Jan 10].

LIST OF FIGURES

Figure 1. Communication scheme between virtual controllers and third- party

software .. 8

Figure 2. OPC UA IP adress .. 11

Figure 3. Simumatik's PLC controller's configuration panel 11

Figure 4. Codesys Project creation window .. 12

Figure 5. GVL's properties tab .. 12

Figure 6. Codesys project explorer ... 12

Figure 7. Codesys add symbol configuration window 13

Figure 8. Codesys symbol configuration tab... 13

Figure 9. Simumatik’s PLC 16DIO4AIO configuration window 14

Figure 10. Global variable declaration in codesys .. 14

Figure 11. Codesys control WIN V3 console .. 14

Figure 12. Codesys device configuration, select device window 15

Figure 13. Codesys device configuration menu .. 15

Figure 14. Location of the Codesys runtime security policy tab 16

Figure 15. Codesys runtime security policy tab .. 16

Figure 16. Simumatik's PLC16DIO4AIO configuration panel 17

Figure 17. VMware Workstation Player with URsim virtual machine 18

 54

Figure 18. Linux terminal window in URsim virtual machine........................... 19

Figure 19. Simumatik's UR controller configuration panel 19

Figure 20. Location of the limit switches in the automated storage and retrieval

system in Simumatik .. 20

Figure 21. Location of the levers and slots in the automated storage and

retrieval system in Simumatik ... 21

Figure 22. Locations of the electric components in the automated storage and

retrieval system in Simumatik ... 22

Figure 23. The photoelectric sensor located on a stacker crane’s platform in

Simumatik ... 23

Figure 24. Locations of the can sorting system components in Simumatik,

part1 ... 24

Figure 25. Locations of the can sorting system components in Simumatik,

part3 ... 25

Figure 26. Locations of the can sorting system components in Simumatik,

part2 ... 25

Figure 27. Structure of a byte ... 26

Figure 28. Function outputs, mapping global variables outputs2 to application

variables in Codesys .. 27

Figure 29.Function inputs, mapping global variables inputs and inputs2 to

application variables in Codesys .. 27

Figure 30. Simumatik's PLC16DIO4AIO controller, mapping process to a GVL

variables ... 28

Figure 31. Structure of the Codesys project ... 29

Figure 32. Contents of the main program in Codesys 29

Figure 33. Code snipped of the Automated_Storage_System's variables 30

Figure 34. Automated_Storage_System ladder logic first network 31

Figure 35. Automated_Storage_System Lader logic second network 31

Figure 36. The third network of the Automated_Storage_System's ladder logic

 ... 32

Figure 37. The third network of the Automated_Storage_System's ladder logic

 ... 32

Figure 38. Graph of the 12-step lifting and storing item sequence part 1 33

Figure 39. Graph of the 12-step lifting and storing item sequence part 2 34

Figure 40. The sixth network of the Automated_Storage_System's ladder logic

 ... 35

 55

Figure 41. The seventh network of the Automated_Storage_System's ladder

logic .. 36

Figure 42. The eighth network of the Automated_Storage_System's ladder

logic .. 36

Figure 43. The nineth network of the Automated_Storage_System's ladder

logic .. 37

Figure 44. The tenth network of the Automated_Storage_System's lader logic

 ... 38

Figure 45. Simumatik's UR controller configuration panel 39

Figure 46. Universal Robots graphical programming environment 40

Figure 47. UR controller's ports configuration panel in Simumatik 41

Figure 48. Code snipped of UR 5 robot program from URsim 41

Figure 49. Code snipped of UR 5 robot program’s threads from URsim 42

Figure 50. Code snipped of UR 5 robot main program from UR-sim 43

Figure 51. Code snipped of UR 5 robot main program from UR-sim 44

Figure 52. Simumatik’s emulation interface .. 45

Figure 53. Universal Robots graphical programming environment, loadin a

program and starting the robot ... 45

Figure 54. Codesys download and launch of the PLC application to a Codesys

Control runtime ... 46

Figure 55. Automated Sorting System in full operation 47

Figure 56. UR 5 robot lifting can’s rack in Simumatik 48

Figure 57. UR 5 inserting cans into the slots of the can’s rack 49

Appendix 1/4

Catalog of Components for the Automated Sorting System

CONTENTS

1 ELECTRICAL COMPONENTS ... 57

1.1 Limit Switch ... 60

1.2 Photoelectric Sensor ... 61

1.3 Circuit Breaker... 62

1.4 Motor contactor ... 63

1.5 DC Power Supply .. 64

1.6 Three Phase Industrial Socket .. 65

1.7 AC Motor ... 66

1.8 DC motor ... 67

1.9 DC Relay ... 68

2 CONTROL DEVICES .. 68

2.1 PLC 16 DIO 4AIO .. 69

3 OTHER COMPONENTS ... 71

3.1 Pneumatic compressor .. 71

3.2 Vacuum Gripper .. 71

3.3 Conveyor Belts .. 72

1 INTRODUCTION

This document will provide a brief description of the system’s components.

The components are virtual representations of a real-life counterparts. Each

component has ports and variables. The ports are the equivalent of terminals

in the electrical components, serving as connection points between compo-

nents.

1.1 Material handling machinery

1.1.1 Stacker Crane

The stacker crane is called “LIU Crane” in Simumatik. Because the stacker

crane is a new addition to the Simumatik’s component library, it is currently

unfinished. It has only input actuators, with the power source yet to be imple-

mented. However, because this is a virtual component and the code defines

its functionality, the actuators are still functioning, despite the unimplemented

power source.

The Figure (1) depicts directional movements of the actuators in the stacker

crane. The actuators move_left and move_right, responsible for horizontal

movement of the crane along the X axis. While the actuators move_up and

move_down determines vertical movements of the crane along the Y axis. Fi-

nally, actuators move_rail_pos and move_rail_neg controls extension and re-

traction of the crane’s rail, therefore moving along the Z axis. Component LIU

crane has the following inputs and variables that will be connected to the plc.

Ports:

- move_left: When energized, moves crane to the left
- move_right: When energized, moves crane to the right
- move_up: When energized, moves crane up
- move_down: When energized, moves crane down
- move_rail_pos: When energized, extends the rail forward
- move_rail_neg: When energized, extends the rail backward

Variables

- GEAR_RATIO_X: Responsible for the speed adjustment of the x axis
- GEAR_RATIO_Y: Responsible for the speed adjustment of the y axis
- GEAR_RATIO_Z: Responsible for the speed adjustment of the z axis

1. Simumatik’s Virtual Stacker crane’s directions of the actuators

1.1.2 UR5 Robot

For picking up cans’ virtual component UR5 robot is selected. UR5 virtual

component have 6 axis inputs (Figure 3). Each axis controls the robot’s rota-

tional joint (Figure 2). Inputs can be connected to a UR virtual controller in Si-

mumatic.

2. UR 5 robot’s rotational joints

3. Simumatik’s UR 5 robot's 2D diagram and its axis inputs

2 ELECTRICAL COMPONENTS

2.1 Limit Switch

Limit switches are used for position detection for industrial equipment.

The limit switch is used to detect the presence of a moving part and has 1 in-

put port and 2 output ports. When a moving part triggers an actuator, it either

opens or closes the circuit, depending on which output port is used.

4. Simumatik's limit switch and its ports

5. Simumatik’s limit switch 2D

2.2 Photoelectric Sensor

A photoelectric sensor is used to detect any physical objects like cans, boxes,

and pallets. It can be configured to be either normally open or normally closed.

Ports:

- x1: 24V port (input)
- x2: 0v port (input)
- Signal port (output): Produces an electrical output upon detection of a

physical object, outputting either 24V or 0V.

Variables

- ray_length: Determines the length of the ray.
- ray_visible: Controls the visibility of the ray in simulation.
- normally_open: When enabled, the sensor output will be activated

upon detecting an object; if disabled, functions like normally closed

6. Simumatik's photoelectric sensor

7. Simumatik's photoelectric sensor 2D

2.3 Circuit Breaker

A circuit breaker is an electrical safety device, designed to interrupt the current

during fault events, protecting the devices connected to it. The circuit breaker

instantly breaks the connection if the current exceeds the variable ‘max_cur-

rent’.

Ports:

- l1_ in: The first-phase input of three-phase electrical power.
- l2_ in: The second-phase input of three-phase electrical power.
- l3_ in: The third-phase input of three-phase electrical power.

- l1_ out: The first-phase output of three-phase electrical power.
- l2_ out: The second-phase output of three-phase electrical power.

l3_ out: The third-phase output of three-phase electrical power.

- 11: Electrical safety port(input)
- 12: Electrical safety port(output)

Variables

- max_current: maximum allowed value of current, before breaking the
connection

9. Simumatik’s circuit breaker
8. Simumatik’s circuit breaker 2D

2.4 Motor contactor

A motor contactor is used to turn a three-phase electrical motor on and off. It

has three inputs and three outputs, along with the two auxiliary contacts, x11

and x12. PLCs and other VDC control devices cannot control a three-phase

high-voltage motor directly. A VDC control device is connected via ports x11

and x12. When electrical current flows through ports x11 and x12, it energizes

the coil. The coil generates a magnetic field, which attracts the contacts to

complete the circuit, activating the device connected to the contactor.

Ports:

- l1_ in: The first-phase input of three-phase electrical power.
- l2_ in: The second-phase input of three-phase electrical power.
- l3_ in: The third-phase input of three-phase electrical power.

- l1_ out: The first-phase output of three-phase electrical power.
- l2_ out: The second-phase output of three-phase electrical power.

l3_ out: The third-phase output of three-phase electrical power.

- x11: 24V port (input)
- x12: 0V port (input)

10. Simumatik's motor contactor 2D 11. Simumatik's motor contactor

2.5 DC Power Supply

DC power supply is used to convert alternating current (AC) to direct current

(DC) for powering different VDC electronic devices.

Ports:

- L1: Phase line that is used to connect to one of the three- phase elec-
tric power.

- N: Neutral line that is used to connect to neutral line of the tree- phase
electric power.

- dc_p: 24V port (output)
- dc_n: 0V port (output)

Variables:

- max_current: Maximum allowed value of current, before breaking the
connection.

- overload: Activates red led light and sends a signal if power is off.

13. Simumatik's DC power

supply 2D

12. Simumatik's DC power supply

2.6 Three Phase Industrial Socket

A three-phase industrial socket used to supply power to devices that require

three-phase electricity.

Ports:

- l1: The first-phase output of three-phase electrical power.
- l2: The second-phase output of three-phase electrical power.

l3: The third-phase output of three-phase electrical power.
- neutral: 0V Neutral connection.

Variables

- max_current: maximum allowed value of current, before breaking the
connection

- overload: Sends a signal if power is off.

15. Simumatik's three phase industrial

socket 2D

14. Simumatik's three phase in-

dustrial socket

2.7 AC Motor

A three-phase electrical motor is used for various tasks in industrial settings,

such as powering heavy machinery like conveyors.

Ports:

- l1: The first-phase input of three-phase electrical power.
- l2: The second-phase input of three-phase electrical power.
- l3: The third-phase input of three-phase electrical power.
- axis: Output that displays and transfers motors rpm value to the con-

nected machinery.

16. Simumatik's AC motor 2D 17. Simumatik's AC motor

2.8 DC motor

Dc motor is used to power up smaller equipment that does not require much

torque. It operates on 24VDC.

Ports:

- x1: 24V input port
- x2: 0V input port
- axis: Output that displays and transfers motors rpm value to the con-

nected machinery.

18. DC motor 2D 19. Simumatik's DC motor

2.9 DC Relay

DC_Relay_24V_2xNO is used to control one or multiple VDC devices. Con-

tacts A1 and A2 power the relay, while 2 normally open contacts (11, 12) and

(13, 14) serve as auxiliary ports for connecting other devices. When ports A1

and A2 are energized, normally open contacts complete the circuit, and the

devices that are connected to relays contacts are activated.

Ports:

- A1:24V port
- A2: 0V port
- 11: input port
- 12: output port
- 13: input port
- 14: output port

3 CONTROL DEVICES

20. Simumatik's DC relay 2D 21. Simumatik's DC relay

3.1 PLC 16 DIO 4AIO

PLC 16 DIO 4AIO has 16 digital inputs and 16 digital outputs, as well as 4 an-

alog input and output ports. The controller can be configured with the help of

various communication drivers, such as opcua_client, twincat_ads, s7protocol,

and many more, to establish connections with third-party software.

Ports:

- x1: 24V input port
- x2: 0V input port
- in_0 - in_15: The range of digital input ports
- out_00 - out_15: The range digital outputs
- analog_in_0 – analog_in_3: The range of analog input ports
- anallog_out_0 – analog_out_3: The range of analog output ports
- rack_output: Optional IO-card

Variables:

- driver_type: Driver selection
- setup_params: The parameters forwarded to the gateway, like ip- ad-

dress and port.
- var_DI1, var_DI2: [Byte] Variable names for the corresponding input

signals.
- var_DO1, var_DO2: [Byte] Variable names for the corresponding out-

put signals
- var_AI1 – var_AI4: [INT] Variable names for the corresponding analog

input signals
- var_AO1 – var_AO4: [INT] Variable names for the corresponding ana-

log output signals
- voltage_range: Analog range voltage setting
- Analog_range: Range of values for analog signals in the PLC software

22. Simumatik's PLC16DIO4AIO controller 2D 23. Simumatik's PLC16DIO4AIO controller

3.2 Universal Robots Controller

UR controller uses the ur_driver to communicate with the URsim simulation

software and controls the robot. Simumatik’s virtual representation of the UR

controller differs in functionality from

an actual counterpart.

Ports:

- l1: The first-phase input of three-phase electrical power.
- l2: The second-phase input of three-phase electrical power.
- l3: The third-phase input of three-phase electrical power.
- in_0 – in_7: Single input bits
- out_0 – out_7: Single output bits
- axis1 – axis6: axis values in radians, prepared for a robot (output port)

Variables:

- controller: Name of the robot
- read_interval: Refreshing time value

24. Simumatik's UR controller 2D

25. Simumatik's UR controller

4 OTHER COMPONENTS

4.1 Pneumatic compressor

Pneumatic compressor used to power up various pneumatic compo-
nents.

Ports:

- out: Pneumatic power output

4.2 Vacuum Gripper

This ideal vacuum gripper is used to grab an object with a suction-cup
using pneumatic power. It can be attached to various robots. The Grip-
per has a built-in sensor that provides an output signal to its connected
device.

Ports:

- x1: 24V port for powering up gripper sensor
- x2: 0V port for powering up gripper sensor
- p1: Pneumatic power input, supplied by pneumatic compressor
- signal: Output port, that sends detection signal to its connected device

26. Simumatik's pneumatic compressor

28. Simumatik's vacuum gripper 2D 27. Simumatik's vacuum

gripper

4.3 Conveyor Belts

Every conveyor has motor axis, which can be used to connect a motor. Con-

veyor belts are used to transport items from one point to another.

Ports:

- motor_axis

30. Simumatik's mini conveyor 1000 x 200

mm

29. Simumatik's mini conveyor 500 x 200

mm

31. Simumatik's conveyor belt

Appendix 2/4

Wiring diagrams of the Automated Sorting System

Appendix 3/4

PLC Program for the Stacker Crane

Appendix 4/4

Program for Universal Robot 5

Program
 BeforeStart
 i_var_1≔1
 i_var_2≔1
 i_var_3≔1
 Robot Program
 If sensorBelt2 and i_var_2≟1 and sensor3
 MoveJ
 homePosCov2
 MoveJ
 pickPosConv2
 Set gripper=On
 Wait: 1.0
 If gripped
 MoveJ
 homePosCov2
 MoveJ
 dropPosConv2
 MoveJ
 finalDropPosCo2
 Set gripper=Off
 i_var_2≔2
 If sensor and i_var_2≟2
 MoveJ
 basePos
 MoveJ
 pickup
 Set gripper=On
 Wait: 0.5
 If gripped
 MoveJ
 basePos
 If i_var_1≟1
 MoveJ
 DropPos1
 FinalDropPos1
 i_var_1≔2
 Set gripper=Off
 ElseIf i_var_1≟2
 MoveJ
 DropPos2
 FinalDropPos2
 i_var_1≔3
 Set gripper=Off
 ElseIf i_var_1≟3
 MoveJ

 DropPos3
 FinalDropPos3
 i_var_1≔4
 Set gripper=Off
 ElseIf i_var_1≟4
 MoveJ
 DropPos4
 FinalDropPos4
 i_var_1≔1
 Set gripper=Off
 i_var_2≔1
 Wait: 1.0
 i_var_3≔2
 Wait: 4.0
 i_var_3≔1
 MoveJ
 LiftUpPos
 Thread_3
 If sensor3≠ True or i_var_3≟2
 Set conveour3=On
 Else
 Set conveour3=Off
 Thread_2
 If sensorBelt2≠ True
 Set coveour2=On
 Else
 Set coveour2=Off
 Thread_1
 If sensor≠ True
 Set conveour=On
 Else
 Set conveour=Off

