
Observability for Cloud Native platforms

Bachelor thesis

Degree Programme in Business Information Technology

2023

Marko Hartikainen

Tietojenkäsittelyn koulutus Tiivistelmä
Tekijä Marko Hartikainen Vuosi 2023
Työn nimi Observability for Cloud Native platforms
Ohjaaja Ismo Turve

Opinnäytetyön tarkoituksena oli tutkia ja toteuttaa avoimen lähdekoodin
havaittavuusratkaisu ensin kehitysympäristöön ja myöhemmin tuotantoympäristöön.

Opinnäytetyössä tarkasteltiin perinteisten valvontaratkaisujen vertailua havaittavuuden
tarjoamiin etuihin. Tutkimuksessa tarkasteltiin, miten havaittavuus ylittää valvonnan
kattamalla laajemman valikoiman työkaluja, joiden avulla saadaan syvällisempiä näkemyksiä
järjestelmän toimintaan, suorituskykyyn ja mahdollisiin verkkoon liittyviin ongelmiin.

Opinnäytetyö keskittyi myös erilaisten kojetauluissa tarjottavien havaittavuuden
visualisointiominaisuuksien vertailuun. Nämä kojetaulut ovat ratkaisevassa asemassa
kerätyn datan esittämisessä helposti tulkittavassa muodossa, mikä mahdollistaa
valvontatiimille päätöksenteon perustuen havaittuun järjestelmän toimintaan.

Opinnäytetyö tehtiin yhteistyössä Datalounges Oy:n kanssa, missä havaittavuusratkaisu
otettiin käyttöön onnistuneesti omassa pilvi-infrastruktuurissa. Tämä käyttöönotto
mahdollisti reaaliaikaisen valvonnan, järjestelmän suorituskyvyn ja toiminnan analysoinnin
sekä hälytysten lähettämisen.

Avainsanat Havainnollistaminen
 Pilvinatiivi
 Lokienhallinta
 Monitorointi

Sivut 25 sivua ja liitteitä 5 sivua

Degree Programme in Business Information Technology Abstract
Author Marko Hartikainen Year 2023
Subject Observability for Cloud Native platforms
Supervisors Ismo Turve

The purpose of the thesis was to explore and implement an open-source observability
solution first, to the development environment, and later into production.

The thesis delved into the comparison between traditional monitoring solutions and the
advantages offered by observability. It examined how observability goes beyond monitoring
by encompassing a wider range of tooling to gain deeper insights into system behavior,
performance and potential network issues.

The thesis also focused on the comparison between different dashboard solutions that offer
visualization capabilities for observability. These dashboards played a crucial role in
presenting the collected data in an easily format, allowing monitoring team make decisions
based on the observed system behavior.

Thesis was conducted in collaboration with Datalounges Oy, where the observability solution
was successfully deployed in the company’s own cloud infrastructure. This deployment
enabled real-time monitoring, analysis of the system's performance, behavior and alerting.

Keywords Observability
 Cloud Native
 Log Management
 Cloud Monitoring

Pages 25 pages and appendices 5 pages

Glossary:

K8s Kubernetes

K3s Lightweight Kubernetes distribution

Agent Monitoring software gathers system and application metrics from virtual

machine instances

Helm Kubernetes package manager

CRUD Create, Read, Update, Delete operation

DevOps Set of tools and practices that increases an organization’s ability to deliver

applications and services more efficiently.

AWS Amazon Web Services

CPU Central Processing Unit

CSP Cloud Service Provider

SaaS Software as a Service

HLA High-Level architecture

API Application Programming Interface

JVM Java virtual machine

Contents

1 Introduction ... 1

2 Observability .. 2

2.1 Pillars of Observability ... 2

2.1.1 Metrics ... 3

2.1.2 Logs ... 3

2.1.3 Traces ... 4

2.1.4 Events ... 4

2.2 Traditional monitoring and observability .. 5

2.3 Benefits of observability .. 6

2.4 Components of observability solution ... 7

2.4.1 Data sources ... 8

2.4.2 Data processing .. 8

2.4.3 Indexing & storage ... 9

2.4.4 Visualization dashboard ... 9

2.4.5 Alerting ... 10

2.4.6 Tracing .. 11

3 Service provided requirements: CASE Datalounges .. 12

3.1 Service Provider requirements .. 12

3.2 Observability solution comparison .. 14

3.3 Technology selection ... 16

4 Observability deployment: CASE Datalounges .. 17

4.1 Infrastructure ... 17

4.1.1 Observability deployment .. 18

4.1.2 Agent installation ... 20

4.2 Role based views .. 21

4.3 Observability .. 21

5 Results ... 25

References .. 26

Figures and tables

Figure 1. Three pillars of observability .. 3

Figure 2. Differences between monitoring and observability ... 5

Figure 3. Components of observability solution ... 7

Figure 4. Visualization .. 9

Figure 5. Basic worklow for alerting .. 10

Figure 6. Infrastructure HLA .. 17

Figure 7. Observability architecture .. 18

Figure 8. Deploy Logstash .. 19

Figure 9. Complete deployment command list ... 19

Figure 10. Agent installation with helm .. 20

Figure 11. Agent values. .. 20

Figure 12. Opensearch roles .. 21

Figure 13. Pod's memory usage .. 22

Figure 14. Single event in discovery .. 22

Figure 15. Trace example in python .. 23

Figure 16. Trace analytics view .. 23

Figure 17. Trace service map ... 24

Table 1. CSP requirements .. 13

Table 2. Top solutions .. 15

Table 3. Technology comparison ... 16

Appendices

Appendix 1 Logstash configuration file

Appendix 2 CSP requirements

1

1 Introduction

The world of IT -infrastructure is getting containerized. With containers, it is possible to

make great business ideas into great digitalized services quickly, reliably and systematically.

While containerized software is becoming the form factor of choice for IT industry, new

technologies challenge how IT is consumed. They make cost effective multi- and hybrid

cloud solutions possible and provide companies and organizations with unprecedent agility.

As these applications evolve to business critical assets, it also becomes increasingly

important for organizations to stay up to date on the status of these applications. It is critical

to understand how digital services behave under load, collect logs for analysis and get

alerted in case of problems.

Such requirements are common and widely acknowledge for traditional datacenter

infrastructure. Also virtual machines in cloud environments have solved this challenge as

they do not significantly differ from the datacenter infrastructures when it comes to

monitoring and log management requirements. Cloud Native is different, however.

Ephemeral containers and self-adjusting applications that connect via API cannot be

managed similarly to well-known virtual machines. For this purpose new technologies

require new tooling.

In this thesis such methodologies and technologies are researched and put into practice by

setting up an observability platform that enables a service provider organization to measure

and monitor cloud native applications across different cloud platforms.

Thesis research questions are:

• How to build observability into Kubernetes environment?

• What factors influence the solution of the user interface?

2

2 Observability

Definition of observability can be summarized as follows: “Observability is the ability to

measure a system’s current state based on the data it generates, such as logs, metrics, and

traces.” (Livens, 2021)

Even though observability is a relatively new term in DevOps, its origin comes from 1960 by

Rudolf E. Kálmán’s (1930-2016) Control Theory, where it was first intoduced to describe how

well a system can be measure by its outputs. Observability is not a single technology but a

practice that helps operations teams reach their service level targets, reduce time required

for repairs and extend the mean time between failures. For developers observability is a vital

tool to troubleshoot applications and create robust services. Observability helps both

developer and operations teams to get a holistic picture of the system being observed.

(Crowdstrike, 2021)

During these years, definition of observability has evolved into its latest form, the three

pillars of observability. (Han, 2019)

2.1 Pillars of Observability

To distinguish the different technologies and their use cases, observability is split into three

pillars, logs, metrics and traces as in figure 1. Although, having all of these does not make a

system observable, it is a good start. The value of observability comes from combining these

pillars and using the data to provide services to operations teams then to consume.

Together these pillars collect comprehensive information about the system and its

behaviour, enabling operators to run systems reliably and respond to unexpected behaviour.

Using metrics, an operator can identify when the system is operating slower than usual or if

there is an anomaly in its behaviour. Traces help identify which part of the system is slower

than usual or causing the anomaly and if it needs to be addressed. Finally, logs are there for

errors and exceptions, and allow operators to carry out further analysis.

3

Figure 1. Three pillars of observability (Wert, 2019)

2.1.1 Metrics

Metrics are counters or measurements of a system characteristic during a time period.

Metrics are numeric by definition and represent aggregated data. Examples of metrics can

be average CPU usage per minute per server or the number of requests returning errors per

JVM each day. Metrics can be collected from infrastructure, load balancers and even

applications. (Ellingwood, 2017)

2.1.2 Logs

Logs are intended to leave clues on what part of the codebase a request has reached, and if

the application encountered anything unexpected or abnormal in processing that request.

Logs can also be used to capture access attempts, as in the case of access logs. Logs can be

generated by the application responding to requests or by the operating system, example

syslog or the Windows event log. (Sharif, Arfan, 2022)

4

2.1.3 Traces

A distributed trace, more commonly known as a Trace, records the paths taken by requests,

made by an application or end-user as they propagate through multi-service architectures,

like microservice and serverless applications. Without tracing, it is challenging to pinpoint

the cause of performance problems in a distributed system. It improves the visibility of our

application or system’s health and lets us debug behavior that is difficult to reproduce

locally. Tracing is essential for distributed systems, which commonly have nondeterministic

problems or are too complicated to reproduce locally. (Bigelow, 2021)

Tracing makes debugging and understanding distributed systems less daunting by breaking

down what happens within a request as it flows through a distributed system. A Trace is

made of one or more Spans. The first span represents the root span, each root span

represents a request from start to finish. The spans underneath the parent provide a more

in-depth context of what occurs during a request or what steps make up a request.

(Coralogix, 2022)

2.1.4 Events

Alongside the three pillars, events can be utilized to enhance a system's observability. For

instance, it can decide that every time an admin user executes a privileged task, the system

registers an event in an observability tool. Events are registered with specific actions, the

execution of a function, updating of a database record or an exception thrown by the code

and are timestamped, unchangeable documentation that comes in three forms, plaintext,

structured and binary. Analysed over time, events can help determine patterns and

structured logs can also be used as low-level events. (Arfan Sharif, 2023; O'reilly, n.d.)

5

2.2 Traditional monitoring and observability

As cloud-native environments have become more complex and root cause of failures more

difficult to pinpoint, companies have realized benefits of observability for their business.

Traditionally monitoring and log management have been separate practices that have

allowed visibility to system state. Monitoring is a tooling solution for teams to allow

configuring dashboards and set alerts to inform team if anomaly is detected. All these are

done with predefined metrics and logs. This is a working solution but rely on assumption

that team acknowledges what is going to happen. (Livens, 2021)

Monitoring and observability are technical solutions utilized by teams to manage and

troubleshoot their systems. While monitoring is focused on enabling teams to observe and

comprehend the current state of their systems through the collection of predefined sets of

metrics or logs. In observability, like figure 2 shows, observability allow you to ask questions

why it is not working. Observability enables teams to proactively debug their system by

exploring properties and patterns that are not predetermined. (Google, n.d.)

Figure 2. Differences between monitoring and observability. (A beginner's guide to

observability, s. 6)

6

2.3 Benefits of observability

While running simpler systems, example virtual machine instance in AWS, monitoring

resources such as cpu, memory and network is normally enough and monitoring team is able

to see if instance requires more capacity. Distributed system on other hand, are more

complex. There are workloads that are constantly updated, there might be internal network

connection failures that causes application slowness and therefore more difficult to spot on

and every change occur new type of failure. This might lead into unidentified information

errors as “unknown unknown”, when simplier environment is expecting to build

environment monitoring to things that are anticipated during project, called as “known

unknown” type of errors. (Splunk, 2020; Padgett, 2021)

So why is observability important in this scenario?

• Cloud Native software solutions are complex. Traditional technologies do not meet

the requirements of combining logs, traces and metrics to run and understand cloud

native applications by combining all data sources and presenting them in an

understandable format. (Parr, n.d.)

• Observability saves time and debugging effort when developers are solving software

related problems. (Stripe, 2018)

• Get alerted for problems early and identify root causes of system behavior problems.

(Splunk, 2020)

Observability offers several benefits to a system by enhancing its visibility, making

monitoring safer, more effective and providing a full-scale view of events and performance.

It not only identifies problems in real-time but also delivers data that allows the complete

observation of the application flow, preventing failures in the future. (Seixas, 2021)

7

2.4 Components of observability solution

To make system observable, it needs tooling. Figure 3 illustrates this workflow. Logs, metrics

and other events need to be collected from various systems. These are then stored and an

analytics solution that has search capabilities is required so that dev and ops specialist can

look for and filter the items they require for their tasks. A visualization service is a powerful

extension of the tooling which enables users of the platform to quickly understand and

measure the state of their systems. Traceabilty can be part of the technology stack or part of

the practice. Also alerting for identified key events is a necessary component.

On top of data collection and analysis, it is important to create reports that allow different

stakeholders to understand and explain the status of systems.

Figure 3. Components of observability solution. (Intraclustr, n.a)

There are various solutions in the market that have structured their offerings differently, but

mainly they can be categorized as follows:

• Data sources. Typically agents or similar components that collect metrics, events and

logs from data sources.

8

• Data processing or aggregation. These technologies collect the data from the data

sources, normalize it and manage the data flow.

• Indexing & storage. Store data to allow monitoring, analysis and security use cases.

• Visualization. A dashboard solution that then provides views and visibility to

collected data in human readable format. (Horovits, n.d.)

Together this structure sets up a foundation for services that make observability valuable.

Collecting data from different sources, processing and storing it and visualizing into a

desired format are steps that let organizations combine and analyse the operational data

so that they can get alerted in case of anomalies and do tracing to find the actual root

causes for problems.

2.4.1 Data sources

Log and metric management involve the continuous collection, storage, processing, and

analysis of data from various programs and applications to improve system performance,

resource management, security, and compliance. This practice can be categorized into

different stages including collection, monitoring, analysis, retention, indexing or search and

reporting. (Arfan Sharif, 2023)

Typically, in a standard setup, the system will generate logs and metrics that need to be

shipped out from data source. A log shipper, agent, is then responsible for transporting

these logs to their intended destination. (Elastic, n.d.)

2.4.2 Data processing

Data processing is the process of collecting and summarizing data from multiple sources to

provide a comprehensive view of a system or network's performance. It involves defining

the data sources, collecting raw data, processing, cleaning it and summarizing it into a more

manageable form. The resulting dataset can be used to monitor network performance,

identify issues, anomalies and generate reports for analysis and troubleshooting. (Paperduty,

n.d.)

9

2.4.3 Indexing & storage

Indexing refers to the process of creating a searchable index of the data, which involves

parsing and analysing the data and creating an index of terms that can be used to search the

data. Once the data is indexed, search engines can then be used to search the data based on

specific search criteria, such as keywords or phrases. (OpenSearch, n.d.)

2.4.4 Visualization dashboard

Dashboards are used to visualize the collected data. With various possibilities, it is possible

to build visuals for different types of scenarios for different teams as in Figure 4. Dashboard

solution makes it possible to navigate the data, build real time event visualization and

monitor workloads across all environments. (Elastic, n.d.)

Figure 4. Visualization. (Verteuil, 2022)

10

2.4.5 Alerting

Figure 5 illustrates an alerting workflow, and it allows to define rules to detect different

types of conditions and raise flags to the monitoring team when metric values fall outside

predefined scope. System then triggers an action that notifies the monitoring team. Most

commonly alerts are sent via email or sms, but it is also possible to send a message to Teams

or similar messaging platform. (Elastic, n.d.)

Figure 5. Basic worklow for alerting

11

2.4.6 Tracing

Trace is a collection of associated events that occur as a result of an input, example a user's

login. A trace includes numerous spans, each representing an operation carried out in

response to the original request. Each span records start and end times for the operation,

and other optional attributes like service instance identifiers. This method enables the

identification of each request, call, and process involved in a particular transaction, the

sequence of their occurrence, and the duration of each phase. (Coralogix, 2022)

12

3 Service provided requirements: CASE Datalounges

With Cloud Native computing and containerization, ideas can become great digital services.

Datalounges, the Cloud Native platform company provides as-a-service solutions that enable

observability across clouds, help customers better manage and secure cloud native

applications and improves business continuity. With these services, Datalounges customers

deliver both a developer experience and secure, reliable operations for cloud native

applications.

In the following chapter, we meet cloud service provider requirements for observability

solution and comparison for the dashboard solution.

3.1 Service Provider requirements

The goal of this project is to implement an observability solution for a cloud service provider.

Datalounges Oy as a CSP (Cloud Service Provider), offers infrastructure for customers to

deploy their applications to the cloud as well as a platform for development. With an

Observability solution, service provider can stay on top of systems running in the

infrastructure, get alerts for anomalies, extend mean time for failures and prevent

downtime. As the number of systems that require observing is not known beforehand, the

solution should be scalable to meet demand.

In order to ensure that this project's observability solution will be appropriate for its use

cases, the CSP has set requirements in table 1 and optional requirements can be found in

appendix 2. The requirements concern the system's operational environment, technical

requirements and functionalities. They are further divided into mandatory and optional

categories. Mandatory requirements need to be addressed on the end product and of the

optional requirements, some are implemented and others discussed in the summary chapter

of this thesis.

13

Table 1. CSP requirements

Mandatory Requirements

Requirement Explanation Additional info

Must run in CSP's own cloud
infrastructure

The CSP provides Kubernetes capacity
as-a-service. Observability deployment
must run in that capacity.

Must have the following
integrations available

OIDC

Harbor

GitLab

Current Kubernetes version

Must support Private and
Public Cloud Kubernetes
environments serviced by CSP

The solution must be able to collect
logs, metrics and traces from AWS
EKS, AKS, GKE and Rancher RKE2
Kubernetes environments

A common Kubernetes integration
is required

Must have disaster recovery
option

The solution must include a solution
for disaster recovery so that
customers using the service can be
guaranteed for their data’s availability

Technical

Must be containerized and run
on Kubernetes

The services must be containerized
and run in CSP's Kubernetes capacity

Must be deployable as a Helm
chart

Must be deployable as a Helm chart so
that CSP's admins can deploy and
redeploy the solution

Must support the following
use cases

Log management

Metrics management

Tracing

Alerts generation

Must support the following
user tasks

Create views in the dashboard
component as self-service

Search logs and metrics

Collect log item changes for alerts

14

3.2 Observability solution comparison

Even if observability market as such is vast and there are technologies and vendors from

small open-source projects to global software vendors, the requirements set several

limitations that only a handful of providers can match. For example, Gartner Peer Insight lists

77 technologies that can be considered observability (Gartner) and G2 (G2, n.d) with 66

entries provide a wide foundation for comparisons. Many of the technologies have strong

functionalities and a wide selection of features. A typical solution is a monitoring (Dynatrace,

Microsoft) tool or a log management platform (Splunk, New Relic) that has expanded to

include observability functionality. Then a different branch of solutions are the SaaS

solutions that can be either standalone (Datadog) or extensions of the cloud platforms they

run on (AWS, Google).

Key limits for selection turn out to be support for on-premise Kubernetes, open source

codebase and deployment options. The main contenders in table 2 cover the minimum

requirements set forth for Datalounges, have strong userbases and have received high

rankings from users in public categorizations mentioned earlier in this chapter.

OpenSearch Dashboard is a user-friendly platform for managing and visualizing data in

opensearch, an open source search and analytics engine. It allows users to create custom

dashboards, monitor real-time metrics and perform complex searches.

Zabbix is an opensource monitoring software that can be used to track and analyze the

performance of networks, servers, and applications. It features a web-based interface and

supports multiple monitoring methods, such as SNMP, JMX, and ICMP.

Grafana is another opensource platform that provides data visualization and analytics for

multiple data sources, including databases, cloud services, and IoT devices. It offers a range

of data visualization tools, such as charts, tables and graphs. It can be integrated with other

monitoring tools.

15

Each of these are opensource, can be deployed on required infrastructure, support private

and public clouds, provide disaster recovery options and have a helm chart available for

containerized deployment. A Helm is a package manager for Kubernetes, designed to

simplify the deployment and management of the applications. It provides an efficient way to

package, install and update applications on a Kubernetes cluster. Helm uses charts, which

are packages containing all the necessary resources and configuration files required to

deploy an application. Helm simplifies the deployment process by packaging all the required

resources and configurations into a single chart. This makes it easier to deploy complex

applications and ensures consistency across deployments.

Table 2. Top solutions

CSP Requirements

Requirement OpenSearch Zabbix Grafana-Prometheus

Opensource Yes Yes Yes

Commercial

Support

AWS support program

(subscription)
Support subscription Support subscription

Community

Support

Strong. Community

driven product e.g slack

and git

Strong. Community,

events, forum

Good, slack channel.

Community forum, but

not technical problem

solving

Deployment

helm chart
Yes Yes Yes

DR option Yes Limited Yes

Integrations Yes Yes Yes

16

3.3 Technology selection

Majority of the essential items in selection criteria can be found in each of the three

solutions and the primary differences among them lie in the deployment options and plugin

offerings. An excellent example of this is the tracing feature, which is already integrated into

the OpenSearch platform. Overall, while all three tools have their strengths as seen in table

3, OpenSearch Dashboard stands out for its flexibility and ease of use, particularly for

managing and visualizing data in OpenSearch and in deployment section and is selected as

the prime candidate for deployment testing.

Table 3. Technology comparison

Technology comparison

Requirement OpenSearch Zabbix Grafana-Prometheus

Pros
Open source and highly

customizable

Comprehensive

monitoring capabilities

Wide range of data source

integrations

Powerful search and

analytics capabilities

Supports various

notification types and

methods

User-friendly interface

and easy to use

Supports various data

types and formats

Has a wide range of

data source integrations

Cons

Requires more advanced

technical expertise to set

up and maintain

Requires more

resources than other

solutions

Limited data

transformation

capabilities

Steeper learning curve

Requires additional

plugins or integrations

for full benefith

May not be suitable for

highly complex data

environments

17

4 Observability deployment: CASE Datalounges

This chapter discusses development infrastructure architecture and explains the concept of

Opensearch deployment as well metric agent which is deployed into client machine running

K3s. After deployments, we’ll see components that creates observability.

Opensearch deployment will be made in Datalounges capacity as required. The

infrastructure has some caveats when comparing to public cloud service providers and need

to be considered as part of the planning. Another cause for concern is organizing data

collection to gather metrics and logs. This will then enable setting up tracing and alerts.

Visualizations will include memory and cpu usage for pods, but mainly the use cases beyond

the basic requirements will be decided once the requirements for deployments, data

collection and capability to create visualizations have been finalized.

4.1 Infrastructure

OpenSearch is a cloud native application and requires Kubernetes infrastructure to run.

Development cluster consists of 9 nodes as figure 6 describes.

Figure 6. Infrastructure HLA

Development cluster is installed using Canonical MAAS (metal as a service) deployment.

Once the nodes have been installed and the network between them is operational the

18

system is ready for a Kubernetes deployment. Kubernetes services consists of masters, that

maintain the state of the cluster and manage operations for the infrastructure, workers that

are commanded by the masters and run the actual workloads and a storage solution

provides persistent storage services for the applications. For this project a deployment tool

is selected to deploy the cluster and its services. In the Rancher family, the management tool

is called Rancher, which is used to create and manage the k8s cluster.

4.1.1 Observability deployment

Once infrastructure has been set up and a platform that provides the Kubernetes services

have been installed, the next step is to consider how to run opensearch. In Kubernetes this

means a deployment. A deployment provides declarative updates for Pods and ReplicaSets.

In this case, deployments set the state for Opensearch pods and tell Kubernetes to keep

them in that state. Development testing can be done with default values that the helm chart

contains. Normally, testing can be done with a single node, but default configuration expects

at least a three node setup.

Deployment consists three different parts: Master, data and dashboard. Overall result will

follow architecture as in figure 7.

• Master role manages all critical tasks example, creating and deleting indexes.

• Data roles are responsible of the data and performing all data related tasks,

searching, indexing and CRUD operation.

• Dashboard then helps visualize these’s indexes and ables user search data with

graphical user interface.

Figure 7. Observability architecture

19

Add opensearch project into Helm

helm repo add opensearch https://opensearch-project.github.io/helm-project

Retrieve default values into file

helm show values opensearch/opensearch > values.yaml

Deploy opensearch master nodes

helm install opensearch-master-node opensearch/opensearch -n default -f
master_values.yaml

Deploy opensearch data nodes

helm install opensearch-data-node opensearch/opensearch -n default -f
data_values.yaml

Deploy opensearch dashboard

helm install opensearch-dashboard opensearch/opensearch-dashboards -n default

The installation command for Logstash is as follows in figure 8 and complete deployment file

can be found in appendix 1.

Figure 8. Deploy Logstash

Complete deployment commands are listed in figure 9. As mentioned, it is possible to use

default chart in development environment, but one possible modification is to deploy the

opensearch master and data components separately. This can be achieved by adjusting the

configuration in the "values.yaml" file to specify separate deployments for the master and

data nodes. By making these modifications, chart can be customized to meet specific

requirements, ensuring that the master and data components are deployed independently

for improved performance and scalability. This specific command retrieves the default values

for a Helm chart called "opensearch/opensearch" The > symbol redirects the output of the

"helm show values" command into specified file, in this case "values.yaml."

Figure 9. Complete deployment command list

Deploying Logstash

kubectl apply -f logstash.yaml

20

4.1.2 Agent installation

Agents are deployed using a helm installation as in figure 10 and installed into an

environment which is running k3s lightweight kubernetes distribution. Agents are gathering

metrics and logs only from containers and send these to Logstash for data processing. Logs

and metrics from the node itself are not gathered.

Figure 10. Agent installation with helm

Figure 11 shows values file what can be updated before installation process. Values can also

be edited after deployment is done, but this can lead other errors what deployment log may

not recognize.

Figure 11. Agent values.

 filebeatConfig:

 filebeat.yml: |

 filebeat.inputs: # log location

 - type: container

 paths:

 - /var/log/containers/*.log

 processors:

 - add_kubernetes_metadata:

 host: ${NODE_NAME}

 matchers:

 - logs_path:

 logs_path: "/var/log/containers/"

 # Output to Datalounges R4DAR

 output.logstash:

 hosts: "URL or ip for logstash:5044"

 timeout: 10

 bulk_max_size: 512

 max_retries: 1

 ssl.enabled: true

 ssl.verification_mode: "none"

 ssl.certificate: "/usr/share/r4dar/certs/client.pem"

 ssl.key: "/usr/share/r4dar/certs/client-key.pem"

 ssl.certificate_authorities: "/usr/share/r4dar/certs/root-ca.pem"

21

4.2 Role based views

Role based access control comes with multiple default option as seen in figure 12, which can

be pointed to a user or group. It can allow teams to access only their own indexes and

dashboards or allow user or groups to access alert control, but not data itself.

Opensearch supports the required use cases for user management and roles put forward in

the Datalounges requirements.

Figure 12. Opensearch roles

4.3 Observability

Visualizations of metrics are key components of the dashboards. A monitoring team can

have multiple dashboards which are built for a single application to one quick scope view

that summarizes status of the environment. Figure 13 shows example of max memory usage

of all pods.

22

Figure 13. Pod's memory usage

Discover gives user easy access to logs using DQL (Dashboard Query Language) or a selection

of ready fields where to find information what is needed. This is useful for single monitoring

sessions and gives an ability to build own visualization views to track single id events. Figure

14 shows single metric event in discovery search.

Figure 14. Single event in discovery

23

Tracing is a default installed plugin in later Openseach Dashboard versions and allows

application developers to have a better understanding of their applications behaviour and to

see latencies directly in the application.

Trace requires adding instrumentation to application front end, example in figure 15.

Figure 15. Trace example in python

Trace analytics provides us valuable information of how our front-end application API

responds to user selection. This helps developers understand response times better. Figure

16 shows example of trace analytics when web page is opened in K3s client machine.

Figure 16. Trace analytics view

from opentelemetry import trace

from opentelemetry.sdk.trace import TracerProvider

from opentelemetry.sdk.trace.export import

BatchSpanProcessor, ConsoleSpanExporter

from opentelemetry.sdk.resources import SERVICE_NAME,

Resource

Service name is required for most backends,

and although it's not necessary for console export,

it's good to set service name anyways.

resource = Resource(attributes={

 SERVICE_NAME: "your-service-name"

})

provider = TracerProvider(resource=resource)

processor = BatchSpanProcessor(ConsoleSpanExporter())

provider.add_span_processor(processor)

trace.set_tracer_provider(provider)

24

In figure 17, service map draws visual representation of the various services and

components that make up a software system, along with their relationships and

dependencies. By tracing the interactions between these services and components,

developers can identify potential bottlenecks, performance issues, or other problems that

may affect the overall performance of the system.

Figure 17. Trace service map

25

5 Results

Finding the appropriate observability tooling posed a significant challenge in this project.

Various factors were considered during the search for suitable solutions. These factors

included comprehensive monitoring solutions that provide real-time insights, tools capable

of collecting both infrastructure and application metrics, customizable dashboards and

alerting mechanisms.

OpenSearch has many configuration options and configuring them correctly can be a

daunting task. It's important to get the configuration right to ensure optimal performance

and security. Inadequate resources can lead to poor performance, while over-provisioning

can result in unnecessary costs and this needs to keep in mind if deployment is done into

public cloud service provider.

Thesis first research question were how to achieve observability in Kubernetes, it is essential

to find proper tooling and ensure a successful deployment. This involves selecting the right

metric and logging collection, implementing tracing mechanisms and setting up alerts for

proactive issue detection. The deployment was able to meet the requirements and

performance was optimal and the application was able to handle the expected workload.

Second research question was what factors influence the solution of the user interface.

Considering the factors in table 3, OpenSearch dashboard stand out as the most favourable

option for the user interface, offering a well-rounded combination of flexibility, ease of use,

and maintainability.

In summary, the project of building observability and deploying it to a Kubernetes

environment has been a great experience. Through this project, I gained hands-on

experience in implementing observability tools, configuring monitoring solutions and

building dashboard visualizations. This practical knowledge has equipped me with valuable

expertise that can be applied to future projects and further advancements in Kubernetes

and observability.

26

References

Arfan Sharif. (6. 2 2023). Crowdstrike. Noudettu osoitteesta

https://www.crowdstrike.com/cybersecurity-101/observability/

Bigelow, S. J. (2021). Techtarget. Noudettu osoitteesta

https://www.techtarget.com/searchitoperations/definition/distributed-tracing

Coralogix. (19. 7 2022). Noudettu osoitteesta https://coralogix.com/blog/what-is-tracing-

everything-to-know/

Crowdstrike. (29. 6 2021). Noudettu osoitteesta https://www.humio.com/blog/observability-

redefined/

Elastic. (n.d.). Noudettu osoitteesta

https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html

Elastic. (n.d.). Noudettu osoitteesta

https://www.elastic.co/guide/en/kibana/current/introduction.html

Elastic. (n.d.). Noudettu osoitteesta

https://www.elastic.co/guide/en/kibana/current/alerting-getting-started.html

Ellingwood, J. (5. 12 2017). DigitalOcean. Noudettu osoitteesta

https://www.digitalocean.com/community/tutorials/an-introduction-to-metrics-

monitoring-and-alerting

G2. (n.d). Noudettu osoitteesta https://www.g2.com/categories/observability-solution-

suites

Gartner. (n.d). Gartner. Noudettu osoitteesta

https://www.gartner.com/reviews/market/application-performance-monitoring-

and-observability

Google. (n.d.). Google Cloud. Noudettu osoitteesta

https://cloud.google.com/architecture/devops/devops-measurement-monitoring-

and-observability

Han, C. (25. 2 2019). Medium. Noudettu osoitteesta

https://medium.com/hepsiburadatech/3-pillars-of-observability-d458c765dd26

Horovits, D. (n.d.). Logz.io. Noudettu osoitteesta https://logz.io/learn/complete-guide-elk-

stack/

27

Intraclustr. (n.a). Noudettu osoitteesta

https://www.instaclustr.com/support/documentation/opensearch/using-

logstash/connecting-logstash-to-opensearch/

Livens, J. (1. 10 2021). Dynatrace. Noudettu osoitteesta

https://www.dynatrace.com/news/blog/what-is-observability-2/

OpenSearch. (n.d.). Noudettu osoitteesta https://opensearch.org/docs/latest/im-

plugin/index/

O'reilly. (n.d.). Noudettu osoitteesta https://www.oreilly.com/library/view/distributed-

systems-observability/9781492033431/ch04.html

Padgett, C. M. (21. 6 2021). Forbes. Noudettu osoitteesta

https://www.forbes.com/sites/forbesbooksauthors/2021/06/21/managing-known-

and-unknown-unknowns/

Paperduty. (n.d.). Noudettu osoitteesta https://www.pagerduty.com/resources/learn/what-

is-data-aggregation/

Parr, K. (n.d.). Noudettu osoitteesta https://venturebeat.com/data-

infrastructure/introduction-to-observability-what-is-observability-and-why-is-it-

important/

Seixas, V. (12. 7 2021). Benefits of Observability. Noudettu osoitteesta Azion:

https://www.azion.com/en/blog/benefits-of-observability/

Sharif, Arfan. (21. 12 2022). Noudettu osoitteesta Crowdstrike:

https://www.crowdstrike.com/cybersecurity-101/observability/log-file/

Splunk. (1. 3 2020). Splunk. Noudettu osoitteesta https://www.splunk.com/en_us/data-

insider/what-is-observability.html#monitoring-and-observability

Splunk. (ei pvm). A beginner's guide to observability. s. 27.

Stripe. (2018). https://stripe.com/files/reports/the-developer-coefficient.pdf.

Verteuil, A. d. (6. 6 2022). Noudettu osoitteesta Grafana Labs:

https://grafana.com/blog/2022/06/06/grafana-dashboards-a-complete-guide-to-all-

the-different-types-you-can-build/

Wert, A. (27. 6 2019). Novatec. Noudettu osoitteesta https://www.novatec-

gmbh.de/en/blog/5-reasons-why-opentelemetry-will-boost-observability-and-

monitoring/

28

Appendix 1 / 1

APPENDIX 1 LOGSTASH CONFIGURATION FILE

Manifest for deploying logstash

apiVersion: v1
kind: ConfigMap
metadata:
 name: logstash-configmap
data:
 logstash.yml: |
 http.host: "0.0.0.0"
 path.config: /usr/share/logstash/pipeline
 logstash.conf: |
 input {
 beats {
 port => 5044
 ssl => true
 ssl_certificate_authorities => ["/usr/share/certs/root-ca.pem"]
 ssl_certificate => "/usr/share/certs/client.pem"
 ssl_key => "/usr/share/certs/client-key.pem"
 # ssl_verify_mode => "none"
 }
 }

 filter {
 }

 output {
 opensearch {
 user => "logstash"
 password => "U7KUqMIwabpjIt2" # "logstash"
 index => "%{[@metadata][beat]}-%{+YYYY.MM.dd}"
 hosts => ["https://opensearch-master:9200", "https://opensearch-data:9200"] #
["https://opensearch-master:9200","opensearch-cluster-data:9200"]
 cacert => "/usr/share/certs/root-ca.pem"
 ssl_certificate_verification => false
 }
 }

apiVersion: apps/v1
kind: Deployment
metadata:
 name: logstash
spec:
 replicas: 2

Appendix 1 / 2

 selector:
 matchLabels:
 app: logstash
 template:
 metadata:
 labels:
 app: logstash
 spec:
 containers:
 - name: logstash
 image: opensearchproject/logstash-oss-with-opensearch-output-plugin:latest
 ports:
 - containerPort: 5044
 volumeMounts:
 - name: config-volume
 mountPath: /usr/share/logstash/config
 - name: logstash-pipeline-volume
 mountPath: /usr/share/logstash/pipeline
 - name: certs
 mountPath: /usr/share/certs
 resources:
 limits:
 memory: "8Gi"
 cpu: "2500m"
 requests:
 memory: "4Gi"
 cpu: "800m"
 volumes:
 - name: config-volume
 configMap:
 name: logstash-configmap
 items:
 - key: logstash.yml
 path: logstash.yml
 - name: certs
 secret:
 secretName: opensearch-certificates
 - name: logstash-pipeline-volume
 configMap:
 name: logstash-configmap
 items:
 - key: logstash.conf
 path: logstash.conf

kind: Service
apiVersion: v1
metadata:

Appendix 1 / 3

 name: logstash
spec:
 selector:
 app: logstash
 ports:
 - protocol: TCP
 port: 5044
 targetPort: 5044
 type: LoadBalancer

Appendix 2 / 1

Appendix 2 CSP requirements

Mandatory Requirements

Requirement Explanation Additional info

Must run in CSP's own cloud
infrastructure

The CSP provides Kubernetes capacity
as-a-service. Observability deployment
must run in that capacity.

Must have the following
integrations available

OIDC

Harbor

GitLab

Current Kubernetes version

Must support Private and
Public Cloud Kubernetes
environments serviced by CSP

The solution must be able to collect
logs, metrics and traces from AWS
EKS, AKS, GKE and Rancher RKE2
Kubernetes environments

A common Kubernetes integration
is required

Must have disaster recovery
option

The solution must include a solution
for disaster recovery so that
customers using the service can be
guaranteed for their data’s availability

Technical

Must be containerized and run
on Kubernetes

The services must be containerized
and run in CSP's Kubernetes capacity

Must be deployable as a Helm
chart

Must be deployable as a Helm chart so
that CSP's admins can deploy and
redeploy the solution

Must support the following
use cases

Log management

Metrics management

Tracing

Alerts generation

Must support the following
user tasks

Create views in the dashboard
component as self-service

Search logs and metrics

Collect log item changes for alerts

Appendix 2 / 2

Optional Requirements

Requirement Explanation Additional info

Deployable from Rancher

The Observability solution should be

deployable from CSP's Rancher

catalog

Should support using CSP's

logos and color schemes

The CSP has its own brand manual and

the solution should support CSP's

brands

logos, fonts, colors, style sheets

Technical

Should be an Open Source

solution

CSP prefers open source solutions for

its deployments

Must allow providing solution as-a-

service

Should support accepting the

terms and conditions

Datalounges terms acceptance is

necessary in the first workflow for user

creation

	1 Introduction
	2 Observability
	2.1 Pillars of Observability
	2.1.1 Metrics
	2.1.2 Logs
	2.1.3 Traces
	2.1.4 Events

	2.2 Traditional monitoring and observability
	2.3 Benefits of observability
	2.4 Components of observability solution
	2.4.1 Data sources
	2.4.2 Data processing
	2.4.3 Indexing & storage
	2.4.4 Visualization dashboard
	2.4.5 Alerting
	2.4.6 Tracing

	3 Service provided requirements: CASE Datalounges
	3.1 Service Provider requirements
	3.2 Observability solution comparison
	3.3 Technology selection

	4 Observability deployment: CASE Datalounges
	4.1 Infrastructure
	4.1.1 Observability deployment
	4.1.2 Agent installation

	4.2 Role based views
	4.3 Observability

	5 Results
	References

