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Abstract: Flexible robotics safety solutions allowing the implementation of fenceless robot
cells are becoming a reality nowadays. Safety approved sensors such as light curtains, safety
scanners, and safety cameras have been deployed already successfully in various industrial
robotic solutions. Still, as these safety systems are installed in fixed locations, monitoring
predefined regions, the systems can be rigid and inflexible. This paper introduces a novel hybrid
safety solution. The solution comprises safety-approved sensors, additional sensors, and artificial
intelligence analysis. The system increases flexibility, especially in cases where collaborating
humans and robots need monitoring in larger areas. Typically, in such environments, work
objects are large and heavy, introducing additional challenges. In addition, the proposed system
includes a digital twin implementation that allows a connection between the real and virtual
worlds. Already virtual models and robot simulation have been used for designing safe robot
applications. However, the efficient use of digital twins in safety planning and safety monitoring

is still uncommon.
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1. INTRODUCTION

The utilization of robotics in industrial environments is
highly regulated by standards such as ISO 10218 [ISO
(2011)] and legislation. The human safety within robotic
applications is ensured by following the ISO 12100 stan-
dard [ISO (2010)], and the actual safety-approved sensors
that can be used to implement such systems, need to fulfill
the ISO 13849 [ISO (2016a, 2012)] or IEC 61508 [IEC
(2010a,b)] standards. These strict and somewhat conser-
vative regulations might prevent the wider utilization of
robots. As a consequence, traditionally, industrial robots
are isolated behind fences to prevent human injuries.

A true human-robot collaboration (HRC) enables a com-
bination of human skills and robot qualities. When im-
plemented appropriately, it is expected to allow dynamic,
more efficient performance leading to increased produc-
tivity than either one alone could achieve [see for exam-
ple Michalos et al. (2015); Robla-Gémez et al. (2017)].
However gaining the true HRC is not easy to achieve,
at least partially due to conventional safety requirements,
that restrict dynamic and efficient collaboration between
the robots and people. Fortunately, the new safety require-
ments have been taken into account in the updated ISO
10218 standards. In addition, ISO/TS 15066:2016 [ISO
(2016D)] is solely aimed for collaborative robotics (cobots).
Cobots with limited payloads have been implemented suc-
cessfully in many manufacturing tasks such as pick-and-
place operations, packing and palletizing, machine tend-
ing, welding, screw driving, and quality inspection.

In this specification, the robot safety modes are defined
as follows: hand guiding, speed and separation monitoring
(SSM), safety-rated monitored stop, and power and force
limiting. Nevertheless, safety assurance can be considered
as the most critical requirement for cobots as stated by Bi
et al. (2020).

In this paper, an additional safety system is introduced.
These components and the system are not safety-approved.
Instead, these components can be used together with
safety-approved sensors to increase safety and monitoring
capabilities. The system consists of a Bluetooth Low
Energy (BLE) indoor positioning system (IPS), digital
twin (DT), and a combination of a 360-degree camera and
machine learning (ML) for detecting people. Additionally,
the implementation of a DT can be used for safety training,
risk analysis, and accident analysis. The overall system is
shown in Fig. 1.

2. RELATED RESEARCH

In literature, safety aspects have been reported widely.
A review by Halme et al. (2018) is a comprehensive
review of approaches for implementation of safe HRC
focusing on vision-based safety systems. Only a limited
number of them have been used successfully in HRC. A
survey for methods for safe human-robot interaction (HRI)
was conducted by Lasota et al. (2017). Bi et al. (2020)
performed a survey of cobots and especially safety-related
to them. As another example of HRC being an activate
research area, a software tool for designing safe HRC was
implemented by Saenz et al. (2020).
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Fig. 1. Overall system. Industrial environment contains
safety approved and additional system that together
are used for increased safety and monitoring. Indoor
positioning system (Quuppa) provides position of
people and mobile robots to RoboDK that acts as
a link between real and virtual worlds. SteamVR is
used for displaying the real world in VR.

If the relative position of humans and robots need to be
monitored and measured for a safe operation, vision-based
methods are a natural choice. Perhaps, one of the most
common computer vision-based safety systems is Safety-
EYE (Pilz GmbH & CO. KG, Ostfildern, Germany) that
can be installed on a robot cell where the system can mon-
itor multiple regions simultaneously. A human entering an
unsafe region inside the cell leads to a predefined action
of the robot; the movement speed can be reduced or the
robot’s motion can be completely halted. Another vision
safety system based on a combination of lidar and RGB-
camera was recently reported by Rashid et al. (2020).

Besides vision-based methods, other approaches such as
microwave radars (e.g. safeRS from SICK AG, Waldkirch,
Germany) and more conventional safety solutions like light
curtains and laser scanners are commercially available as
off-the-shelf solutions.

To allow more flexible HRC, a novel safety monitoring
system was introduced by Pieska et al. (2020). This system
allows efficient and safe human-robot cooperation and
is especially relevant for industrial robotic applications
where large regions need to be monitored. Another paper
by Magrini et al. (2020) introduced a layered control
architecture with additional sensors.

As one novelty of the proposed approach reported in this
paper, the system provides feedback from the real envi-
ronment to a digital model of the environment. This addi-
tional component (DT) can be used for risk-free training of
new employees and visitors as reported by Kaarlela et al.
(2020). Demonstrations of emergency stop function, safety
area violation, and procedures on emergency scenarios
such as co-worker injury can be safely carried out. DTs
can be utilized to increase the level of safety awareness of
workers and this in turn can prevent accidents.

The next three sections contain a short introduction to the
key technologies of the proposed approach.

2.1 Indoor positioning

Global Positioning System (GPS), Global Navigation
Satellite System (GLONASS), and Galileo are widely ac-
knowledged positioning systems. However, these systems
work poorly inside built environments. For this reason,
different indoor positioning technologies were invented.
Such systems are based on radio waves, acoustic signals,
light, or other forms of electromagnetic radiation [Mainetti
et al. (2014)].

The Bluetooth 5.1 standard (BLE) includes direction
finding feature that has been utilized successfully for
centimeter accuracy indoor positioning system [Martin
(2019)]. The positioning is based on the detection of the
signal’s angle of arrival. This technology can be utilized
to improve the safety of robotized environments. With an
accurate IPS, both mobile robots or people can be tracked
in real-time.

2.2 Machine learning

ML is part of artificial intelligence techniques that some-
how mimic human problem-solving. One part of ML is
deep learning [see for example LeCun et al. (2015)] that
has been used successfully in a vast number of different
applications. Probably, most popular applications can be
found in applications where images are used in one way
or another. In this domain, convolutional neural networks
(CNNs) have been used successfully for image classifi-
cation | Krizhevsky et al. (2017)], object detection and
localization [Girshick et al. (2014); Redmon et al. (2016)],
semantic segmentation [Long et al. (2015)], and image
captioning [Chen et al. (2017)] among other applications.

2.3 Digital twin

DTs introduced by Grieves (2014) have the potential
for avoiding the laborious phase of artificially creating
real-time sensor information from robots, machines, and
humans into the virtual world. DTs have a real-time
sensor bridge between the real and virtual worlds. The
DT sensor information bridges physical qualities such as
pose, location, and speed of machines and humans from the
production floor to the virtual world| Malik and Bilberg
(2018); Kousi et al. (2019)]. When combined with virtual
reality (VR), DTs can elevate the level of VR to a more
realistic level. Safety planning, risk analysis, and safety
training conducted in a DT are very realistic as movements
and functionalities of machines, robots, and humans in
the training environment correspond to the real world.
Because DTs include real-time sensor data gathering, there
is no need for the artificial creation of movement and
functionality of machines or humans.

Furthermore, it is possible to store sensor information
gathered from machines and human tracking devices into a
database. This stored information can be later, if needed,
utilized for replaying scenarios such as accidents or oth-
erwise dangerous situations. The stored information has a
true potential to be a powerful tool for accident analyses
and for creating training scenarios of emergencies.

The DT also provides a method for safe risk-analysis
[Bellalouna (2019)] and safety planning based on real-
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time data. Engineers planning safety measures can step
into the DT and conduct risk-analysis without interfering
with the actual production. The DT is a stress and risk-
free environment for safety planning, inspection, and risk
analysis.

VR has been implemented in safety training already
by Sim et al. (2019). It has also been proven as a more
efficient training method compared to traditional training
methods such as lecturing. Training taking place in VR can
be seen as an intuitive, immersive, and interactive way of
learning [Le et al. (2015)].

Unfortunately, building blocks for virtual experience are
often passive three-dimensional models of entities from a
production environment. These three-dimensional models
contain physical data but lack functional and movement
data of their real-world duplicates. The addition of this
missing data to virtual entities requires the artificial cre-
ation of movement and functionality for machines, robots,
and humans involved. This phase in the creation of virtual
experience is usually time-consuming and also requires
deep knowledge of game programming. Game program-
ming skills are mandatory as functionality in the virtual
environment is created by utilizing game engine such as
Unity (2020). Each training scenario can be seen as an
individual programming project. Also because the vir-
tual environment is based on imported three-dimensional
model files, updating layout or product data usually leads
to complete re-creation of training scenarios [Bellalouna
(2019)].

3. APPROACH
3.1 Indoor positioning

The used commercially available IPS, based on the
BLE technology, was Quuppa Intelligent Locating Sys-
tem™(Quuppa Oy, Espoo, Finland). The positioning sys-
tem consisted of five locators evenly spread in the labora-
tory where each locator was calibrated using three distinct
points. After the calibration, tracking of spatial (z,y, z)
positions was performed in real-time.

3.2 Machine learning

With 360°cameras, a single camera shot contains infor-
mation of horizontal and vertical directions. A single im-
age is a projection of a scene on a unit sphere. When
viewed as a planar image, the image contains relatively
strong geometric distortions mainly on both poles. This
is not favorable for CNNs, that usually learn rectangular
or square convolutional filters during the training process.
This challenge poses a difficulty for the transfer learning
and already trained networks cannot be used as-is for such
data. To overcome this challenge, we used the method
developed by Eder et al. (2020) where tangent images are
extracted from equirectangular images. This procedure is
shown in Fig. 2.

We used 360fly (360fly 4K, 360F1ly Inc., Canonsburg, USA)
that was installed on the ceiling and a desk (Fig. 3).
These two different installations were used to simulate
two different monitoring possibilities, monitoring a robot

cell (the ceiling installation), and monitoring the imme-
diate surroundings of a robot (the on-desk installation).
We captured 360°videos at 2880 x 2880 pixel resolution.
Of these videos, spherical image frames were extracted
forming a database of 715 tangent images. Each image
was 512 x 512 pixels. Images were manually annotated
using a browser-based labeling tool Labelbox (Labelbox
Inc., San Francisco, USA). The labeling was performed
using rectangular bounding boxes. The data was split into
training and testing data with 90/10% ratio, and the total
number of annotated objects was 4 400.

YOLOv4 by Bochkovskiy et al. (2020) implemented in
PyTorch deep learning framework [ Paszke et al. (2017)]
was used for the training and inference. YOLOv4 is an
improvement over YOLOv3 that was originally introduced
by Redmon et al. (2016). The training was performed using
the Adam optimizer [ Kingma and Ba (2014)] over 500
epochs. Data was augmented using mosaic images from
four images, random horizontal and vertical flips, and
random HSV gain.

3.8 Digital twin

The DT presented here was compiled using three different
components:

(1) RoboDK robot simulation software [Mihai (2015)],
(2) Quuppa IPS, and
(3) SteamVR VR platform [Hewlett-Packard (2015)].

The RoboDK robot simulation software was acting as a
bridge between sensor information from robots, machines,
and humans to the virtual world. The Quuppa IPS pro-
vided the location information of humans to RoboDK, and
the Steam VR VR platform acted as a bridge of user sensor
information to the virtual twin. As the DT allows the
bi-directional data stream, the implemented DT can be
used for safety monitoring. Physical positions of people are
tracked using the indoor positioning system and physical
robot dimensions are obtained directly from robots. These
two sources of information are combined in the DT and
digital signals are used to control robot speed according
the spatial distances of people to pre-defined danger zones.

The first step during implementing the DT presented in
this paper was the laser scanning of the robotics laboratory
at Centria university (Fig. 4). Laser scanning was con-
ducted using the Leica 3D-laser scanner (ScanStation 2,
Leica Geosystems AG, St Gallen, Switzerland). The result-
ing point cloud was transformed into a three-dimensional
solid model in order to import the model in RoboDK
simulation software. At this point, the DT contained all
passive fixed elements such as walls, floor, robot fixtures,
and tables. The robot models matching the real world
were added in RoboDK from the library and the model
of human employees was created utilizing RoboDK tools.

Real-time sensor information from machines and robots
was bridged to the virtual twin running on RoboDK.
In practice, physical connections between the PC run-
ning RoboDK and various robot controllers can be either
through serial or ethernet ports. In this case, the ethernet
connection was utilized in order to bridge the pose and
velocity information from robot controllers to the DT.
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Fig. 2. From spherical image to tangent images. (a) native format of Fly360 camera, (b) spherical image converted to
equirectangular format, (c) extracted tangent images. Image sizes are shown besides images.

Fig. 3. Spherical images obtained from two different in-
stallation locations. (a) on-desk, (b) on ceiling.

Fig. 4. The scanned point cloud of the robotics laboratory.

In addition, the location information of humans inside the
robotics laboratory were bridged to the DT. The Quuppa
positioning system provides location information of tags
in plain (x,y, z) coordinates through the ethernet connec-
tion. The Python application programming interface on
RoboDK was utilized in order to retrieve this information
from the server and position three-dimensional virtual
models of human workers.

At this point, all needed information of robotics laboratory
entities was bridged to the virtual world. The DT imple-
mentation described here provides possibility for visual
inspection and interaction by means of traditional human

interface devices such as mouse or touchpad. However, it
does not provide immersive or intuitive way of stepping
into the virtual environment.

In order to provide a more realistic and intuitive way for
safety training and analysis, a connection to the VR envi-
ronment was added. SteamVR is a VR platform enabling
immersive, interactive and intuitive user experience. Ro-
boDK supports publishing a virtual twin on the SteamVR
platform. Once published, users with VR-headsets and
hand held controllers can immerse to the virtual twin in a
very realistic way. Sensors inside headsets and controllers
provide user interactions with the virtual twin.

4. EXPERIMENTAL RESULTS

Fig. 5 shows training and validation losses together with
performance metrics calculated on the validation data.
Based on the learning curves, the training could have been
stopped earlier. On the other hand, there is still a minor
improvement in the precision after 400 epochs as shown in
Fig. 5b. Overall, there are no obvious signs of overfitting
and the model should generalize well.

Fig. 6 shows inference results where people inside the
robotics laboratory are detected using tangent images ex-
tracted from spherical images obtained from two different
camera installation locations. It can be observed that the
trained model performs well within this challenging en-
vironment. The model scales well with different amounts
of people and learned to detect individual people inside
groups even if they are partially blocked by other people
or obstacles.

Fig. 7 presents conduction of risk-analysis with the DT
of a robotic production cell. Another use case for using
the DT is related to training. Before entering the robotics
laboratory at Centria, safety training is required. The
DT implemented for Centria robotics laboratory enables a
risk-free method of safety training for visitors. The first
step to start the training is to wear VR-headset and
handheld controllers. During the training, the instructor
presents the safety zones and functionalities of each safety
device to trainees. Trainees can examine all robot cells and
study safety features without the risk of physical injury.
Trainees can communicate with the instructor and other
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Fig. 5. Training result. (a) Training and validation loss
(generalized intersection over union), (b) recall, pre-
cision, and mean average precision at 0.5 confidence
level (mAP@Q.5).

Fig. 6. CNN inference examples. (a) original tangent image
extracted from the ceiling installed camera, (b) infer-
ence result of (a), (c) original tangent image extracted
from the on-desk installed camera, (b) inference result

of (b).

trainees through built-in microphones and speakers on
VR-headsets. After the training, participants are familiar
with safe zones, the functionality of safety devices, and
operation of robot cells.

Besides, the DT enables the examination of safe distances
and possible hazards for educational purposes. As the
digital information can be stored, another thought scenario
is to use the DT for analysis of accidents or other events

Fig. 7. DT as a risk-analysis tool

that need to be studied afterward. With these features,
a DT is a powerful tool for conducting risk-analysis and
examining the safety qualities of a robot cell.

5. CONCLUSION

The current trend in industrial robotics applications is to
move robots outside fences. That is indeed possible by
following existing safety standards. However, more flexible
systems are still required. In this paper, an enhanced
robotic safety system consisting of additional sensors and
artificial intelligence was presented. The proposed system
improves the flexibility of the safety-approved systems and
allows monitoring of larger regions in industrial environ-
ments.

Implementation of a DT can be an effective method in
safety training, risk analysis, and safety planning. The
DT is capable of providing a more realistic safety training
experience compared to VR. Furthermore utilizing DTs
eliminates the time, skill, and labor for creating function-
ality and movement of entities with game programming
tools.
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