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1 Introduction 

Managing personal finances has become an increasingly relevant problem over the 

years. Many people seek to make financial investments for the preservation and 

accumulation of their wealth over time.  

The primary goal of this study was to examine the potential of applying factors of 

modern asset pricing models to automated long-term portfolio management. 

Specifically, this work attempts to evaluate the effectiveness of systematic investing 

in portfolios based on the quantitative selection rules derived from the factors of 

popular asset pricing models. This work was largely based upon the efforts of Eugene 

Fama and Kenneth R. French (1993, 2015), namely their Three-Factor Model (TFM) 

and Five-Factor Model (FFM)  as well as on works of other scholars contributing to 

the field of factor-based asset pricing models. These include Mark M. Carhart (1997), 

Titman, Wei, and Xie (2004), and Novy-Marx (2013). One of the major concerns in 

this work was to deliberately simulate the impact of the market frictions in the 

historical simulations of the strategies. Such frictions could include but are not 

limited to the transaction costs, the commissions and fees charged by the broker, 

bid-ask spread or the difference between the prices for the buyers and sellers, order 

execution latency and other factors. In order to arrive at somewhat realistic 

expectations about the performance of the strategies in the retail investor setting, it 

is crucial to take such effects into account.  

Among the works on the topic, it could be appropriate to highlight Wouter J. Keller, 

Adam Butler, and Ilya Kipnis (2015) who employed a practically oriented approach in 

order to test strategies based on the combination of the return persistence 

phenomenon described by Jegadeesh and Titman (1993) and Mean-Variance 

Optimization (MVO) as introduced by Markowitz (1952). While the work produced 

optimistic findings for one of the proposed strategies, it did not specifically suggest 

any capital requirements and lacked the consideration of transaction costs. The 

research was based on the work of Jegadeesh and Titman (1993), specifically a 

tendency of stocks with relatively high historic return or “winners” to keep delivering 
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a high relative return over a certain time with the opposite logic for the 

underperforming, so-called “losers” stocks. This effect was the given name of 

“momentum” and was frequently researched by academics ever since (e.g. Louis K.C. 

Chan, Narasimhan Jegadeesh, and Josef Lakonishok (1996), Daniel Kent, David 

Hirshleifer, and Avanidhar Subrahmanyam (1998), Bruce D. Grundy, J. Spencer 

Martin (2001), etc.). According to Jegadeesh and Titman (1993), the premium 

associated with momentum can be extracted by taking long positions in “winners” 

and short ones in “losers”, the so-called “up minus down” portfolio or UMD for short.  

David Blitz and Pim Van Vliet (2008) were the other contributors to the field of 

factor-based investment strategies. In their work, they described the strategy based 

on the “value” and “momentum” factors and applied it globally across different asset 

classes. They considered the impacts of transaction costs,  but their analysis did not 

propose capital requirements, and the paper did not include the source code to their 

strategy that would allow a retail investor to replicate the approach. The “value” 

factor used by David Blitz and Pim Van Vliet (2008) was based on the effort of Eugene 

Fama and Kenneth R. French (1993) where the value of a company was measured as 

a ratio of a firm’s book value to the market value of the equity. In their work, Fama 

and French demonstrated that the returns of the stocks trading at a higher book-to-

market ratio on average would be higher than the ones with a lower ratio. Thus, 

according to their evidence, an investor should be able to isolate the value premium 

for holding a portfolio with the long positions in high-value stocks and short ones in 

low-value stocks, the so-called “high minus low” portfolio or HML for short. 

As observed during the review of the literature, there were no formal studies that 

would address the perspective of a retail investor on the problem of investing in the 

U.S. equities using factor-based strategies. Specifically, based on the existing 

empirical observations, it was neither clear whether diversified factor portfolio 

strategies could be successfully applied in a personal investment account considering 

the relatively high transaction costs for a retail investor, nor was it clear what the 

adequate amount of capital required to break even would be. With the 

aforementioned in mind, it was decided to conduct a comprehensive analysis of the 

factors and their potential to be used as a long-term investment vehicle in a retail 
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investor context. The research employed several factors including value (HML) and 

operating profitability, the so-called “robust minus weak profitability” portfolio or 

RMW for short, which are the factors that have been demonstrated by Eugene Fama 

and Kenneth R. French (2015) to have the highest performance premium over the 

long-term. The “profitability” factor, as defined by the scholars, was measured as the 

gross profit of a firm divided by its book equity. Similarly to the value (HML) factor, 

companies with robust profitability were expected to yield higher returns on average 

than the ones with weak profitability. It was decided to include the momentum 

(UMD) as a complementary factor as it was shown by Jegadeesh and Titman (1993) 

to deliver a comparable premium to the ones of the other factors mentioned earlier. 

Additionally, to enrich the analysis done in this work, it was decided to study the 

performance of different factor combinations along with the single-factor portfolios. 

To ensure relevance, the study was conducted from the perspective of a retail 

investor as the main consumer of the research paper.  

1.1 Motivation for the research 

The author’s main motivation was in learning about the practicality of using estab-

lished factor models for hands-off long-term investing. One of the main concerns of 

the study was to determine whether basic factor portfolios would be capable of de-

livering risk-adjusted returns superior to one of the U.S. market indices, such as the 

S&P 500. There are a few reasons why one would attempt to implement these strat-

egies as opposed to investing in an index fund following a similar security selection 

pattern. For instance, such funds could be simply inaccessible in one’s particular situ-

ation or part of the world due to financial regulations. Similarly, one might prefer 

keeping full control over the asset selection process over the alternative of holding 

shares of an index fund. Thus, one might keep the ability of tweaking and “adding 

new flavours” into the strategy. Some of the main setbacks in the progress towards 

this goal are the costs known as active investment management costs. These are the 

costs associated with transaction costs incurred by an active manager. To study the 

problem efficiently, it was decided to apply modern tools, such as Quantopian and 

Python used by quantitative investment managers to simulate the realistic outcomes 
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of such investment strategies. Based on the aforesaid, the research could be benefi-

cial to a retail investor looking for an introduction to implementing an automated 

long-term investment strategy or for a student seeking to familiarise himself or her-

self with the field of quantitative investment management. Additionally, this topic is 

of the author’s interest since he is interested in pursuing a career in financial data 

science.  

1.2 Research questions 

The study examined the following list of questions: 

1. Does a portfolio based on multiple factors provide a better risk-adjusted return 

than a single factor portfolio and a market portfolio? 

2. What is the extent of the variation of the sensitivity of the sectors of the U.S. 

economy in response to each factor? 

3. Are factor-based portfolios the expedient alternative to a market portfolio for a 

retail investor? 

To answer the questions above, the author conducted the simulations for a list of al-

gorithmic strategies holding and rebalancing different sets of the U.S. equities for the 

period from 01.01.2003 to 31.07.2018. Each strategy selected securities based on 

specific criteria in an attempt to capture the effects of factors described by Fama and 

French (1993, 2015) and Jegadeesh and Titman (1993). All simulations were con-

ducted with the assistance of Quantopian (www.quantopian.com), a platform for de-

veloping and testing algorithmic trading strategies. All of the historical pricing data 

used in the simulations were sourced from the platform’s free database. Fundamen-

tal data including data from the financial statements were provided by Morningstar. 

The results produced by all simulations were carefully examined. The key perfor-

mance metrics used for analysis and comparison of the strategies were cumulative 

returns for the period, volatility, Beta, Sharpe ratio and maximum drawdown. 
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Apart from testing the historical performance of the strategies, the predictive charac-

teristics of each factor were examined. To make it easier to identify the potential pat-

terns in the factors’ predictive characteristics during different states of the market, 

the analysis was done separately for the three sub-periods, pre-crisis (01.01.2003 – 

01.01.2007), crisis (01.01.2007 – 01.01.2010) and post-crisis (01.01.2010 – 

01.01.2018). The study also addressed the impacts of the portfolio size and the 

amount of invested capital on the performance of the strategies.  

The following results were revealed as the answers to the research questions: first, it 

was observed that the portfolios based on a combination of factors tended to out-

perform single-factor portfolios on a risk-adjusted basis. In their turn, single-factor 

portfolios achieved a higher risk-adjusted return than the S&P 500, RSP (equal-

weight S&P 500) and Russell 3000. The analysis also showed significant variability in 

sensitivity to factors between the sectors of the U.S. economy. Likewise, the sectors 

demonstrated diverse factor sensitivity patterns during the three sub-periods: pre-

crisis, crisis, and post-crisis (see Tables 8 – 16). Further, the results revealed that 

given sufficient capital, it should be possible for a retail investor to outperform the 

market using the factor portfolios. 

1.3 Structure of the thesis 

To introduce the topics addressed in the research, the paper provides the academic 

background on asset pricing models in the chapter “Theoretical background of asset 

pricing models.” Next, the “Methodology” chapter familiarises the reader with the 

research design and approach used in testing the hypotheses. The following chapter 

presents the analysis of the descriptive statistics and gives a graphical illustration of 

the findings. Lastly, the “Conclusion” chapter summarises the answers to the re-

search questions and outlines the practical implications of the findings. Additionally, 

it discusses the research limitations and presents recommendations for future stud-

ies. 
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2 Theoretical background of asset pricing models 

This chapter defines the conceptual framework of the study. Most concepts intro-

duced in the work are built upon the foundation of the Capital Asset Pricing Model 

(CAPM) which is discussed in sub-chapter 2.1. In brief, the CAPM states that the re-

turn on an asset is a function of the asset’s specific risk as well as its exposure to the 

systematic risk. More recent advancements of CAPM-based models are also dis-

cussed within the sub-chapters 2.2 – 2.4. Sub-chapter 2.2 describes the conceptual 

background of Fama and French’s (1993) Three-Factor Model (TFM) and defines the 

factors proposed by the scholars while explaining how they enhanced the formula-

tion of CAPM. The Three-Factor Model was an attempt to increase the capacity of 

CAPM to explain the return of the market by adding “value” and “size” factors to the 

original expression. Sub-chapter 2.4 continues by introducing the Five-Factor Model 

(FFM), a modification of the Three-Factor Model (TFM) with two additional factors 

“profitability” and “investment” described by Fama and French (2015) based on the 

contributions of Novy-Marx (2013) and Sheridan Titman, K.C. John Wei and Feixue 

Xie (2003). Mark M. Carhart’s (1997) Four Factor Model is discussed in brief in sub-

chapter 2.3 as it introduced the “momentum” factor that was not used by Fama and 

French as part of their models, however, was a persistent phenomenon as demon-

strated by Narasimhan Jegadeesh and Sheridan Titman (1993). Sub-chapter 2.5 out-

lines the works on the factor portfolios in different market states. Namely, Kent Dan-

iel’s (2013) effort on describing the “momentum crashes” and their predictability. 

As this study prioritises the examination of the potential of applying the factors as 

the building paradigms of a retail investor’s portfolio, it was decided to focus on a se-

lect number of factors that demonstrated the highest long-term earning potential 

based on the historical data as per Kenneth R. French’s data (mba.tuck.dart-

mouth.edu/pages/faculty/ken.french/data_library.html). For the graphical represen-

tation, refer to Figures 2 and 3. 

As the following chapter provides the foundational notion of the author’s rationale, it 

is essential for understanding the context of the research. 
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2.1 Capital asset pricing theory 

History denotes the development of the Capital Asset Pricing Model (CAPM) as an in-

dependent effort of three scholars William Sharpe (1964), John Lintner (1965) and 

Jan Mossin (1966). Building upon the foundation of the works on portfolio selection 

theory (1952) and diversification (1959) proposed by Harry Markowitz, the model in-

troduced a theoretical capital asset valuation framework that could be used for pric-

ing individual securities or a portfolio. The model considers asset’s sensitivity to two 

types of risk, one of which is a diversifiable or company-specific risk and the other is 

a non-diversifiable risk also known as systematic risk attributed to the fluctuations of 

the market. Each security, as defined by the model, is naturally expected to have a 

certain rate of return due to its unique risk sensitivity characteristics. 

CAPM is in widespread use in corporate finance for computing the cost of capital and 

calculating the market risk of an enterprise as well as in portfolio valuation. The for-

mula is given below: 

𝑅𝑖 =  𝑅𝑓 +  𝛽𝑖(𝑅𝑚 − 𝑅𝑓) 

where:  𝑅𝑖 — the rate of return of security 𝑖 predicted by the model; 

𝑅𝑓 — the risk-free rate; 

𝛽𝑖 — the beta coefficient of security 𝑖; 

𝑅𝑚 — the return of the market (Denzil Watson, 2007, p. 242). 

The predicted rate of return on a capital asset (𝑅𝑖) implies the percentage income 

the security is expected to generate. A risk-free rate (𝑅𝑓) is a theoretical rate of re-

turn on a risk-free investment. While no investments are risk-free, bonds issued by 

the governments of politically and economically stable countries are generally con-

sidered to be free from the risk of default. Therefore, the risk-free rate can be ap-

proximated by taking the current rate of return or yield on short-dated government 

bonds (Denzil Watson, 2007, p. 247). Beta coefficient (𝛽𝑖) denotes the extent to 
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which the security is a subject to unsystematic risk. Specifically, it indicates the rela-

tion between the market return and the asset’s. Market return (𝑅𝑚) in CAPM is the 

return of the entire market. Typically, analysts estimate the equity risk premium for 

the national equity market of the issues being analysed (but if a global CAPM is being 

used, a world equity premium is estimated that considers the totality of equity mar-

kets) (Jerald E. Pinto, 2010, p. 45). For this purpose, depending on the application an 

equity index can be used. For instance, Standard & Poor's 500 Index in a case of the 

U.S. market or OMX Helsinki 25 in the case of Finland. The choice of the index would 

depend on the goals pursued by the analyst. 

It is necessary to mention that CAPM requires several assumptions: 

• Investors are rational and want to maximise their utility; 

• All information is freely available to investors and, having interpreted it, in-

vestors arrive at similar expectations; 

• Investors can borrow and lend at the risk-free rate; 

• Investors hold diversified portfolios, eliminating all unsystematic risk; 

• Capital markets are perfectly competitive. The conditions required for this 

are: a large number of buyers and sellers; no one participant can influence 

the market; no taxes and transaction costs; no entry or exit barriers to the 

market; and securities are divisible; 

• Investment occurs over a single, standardised holding period (ibid., p. 242.). 

Although these limitations are important to consider when using the model, they are 

not unacceptable to the point of making CAPM useless. As reasonably noted by Wil-

liam F. Sharpe (1964): “the proper test of a theory is not the realism of its assump-

tions but the acceptability of its implications.”  

The CAPM itself might not reflect the focal point of this research specifically as it in 

its original form was not applied within the study. Nonetheless, as CAPM is the com-

mon conceptual framework of the newer theories used in this thesis, understanding 

the model “as is” is essential for following the thought process of the author. 
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2.2 The Three-factor asset pricing model 

A modification designed to improve on the CAPM approach was proposed by two 

scholars Eugene Fama and Kenneth French in 1993 in their publication for the Jour-

nal of Financial Economics, “Common risk factors in the returns on stocks and 

bonds.” Fama and French began by observing that two classes of stocks tended to do 

better than the market as a whole: small market capitalisation stocks and high book-

to-market stocks (commonly referred to as value stocks, as opposed to growth 

stocks) (Eugene F. Fama, 1993). These factors have been given names representing 

respective long-short diversified portfolios: Small-minus-big (SMB) meaning long po-

sitions in small caps and short in big caps, and High-minus-low (HML) or long posi-

tions in high book-to-market stocks and short in low book-to-market.  

In their paper, Fama and French demonstrated that their model did a better job in 

explaining the U.S. stock returns as compared to CAPM when the size (SMB), value 

(HML) and market risk (Beta) combined. Their Three-Factor Model (TFM) had the 

lowest 𝑅2 of 0.83 for the portfolio in the largest-size and highest-BE/ME quintiles 

routinely reaching over 0.90 for the period from 1963 to 1991. It is significantly larger 

than the 0.69 generated by the market alone (CAPM) (Eugene F. Fama, 1993, p. 19). 

The model is represented by the formula below: 

𝑅𝑖 = 𝑅𝑓 + 𝛽𝑖(𝑅𝑚 − 𝑅𝑓) + 𝑏𝑠 ∗ 𝑆𝑀𝐵 + 𝑏𝑣 ∗ 𝐻𝑀𝐿 + 𝛼𝑖  

Where: 𝑅𝑖 — the expected rate of return of the portfolio 𝑖;  

𝑅𝑓 — the risk-free rate of return;  

𝑅𝑚 — the return of the market portfolio; 

𝛽𝑖 — the beta coefficient of security 𝑖. 𝛽𝑖 in this model is comparable to 

the classical 𝛽𝑖 however not equal to it since there are now two addi-

tional factors (SMB and HML) that partially absorb it. The factors meas-

ure the historic excess returns of small-cap stocks over big caps and of 

value stocks over growth stocks; 

𝑏𝑠 — the coefficient of exposure of the portfolio to size factor; 

𝑏𝑣 — the coefficient of exposure of the portfolio to value factor; 
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𝑆𝑀𝐵 — the difference in returns between diversified small cap and big 

cap stock portfolios. Expressed as (𝑅𝑠𝑚𝑎𝑙𝑙 −  𝑅𝑏𝑖𝑔); 

𝐻𝑀𝐿 — the difference in returns between diversified high book-to-

market and low book-to-market stock portfolios. Expressed as (𝑅ℎ𝑖𝑔ℎ −

 𝑅𝑙𝑜𝑤); 

𝛼𝑖 — the portfolio’s alpha (abnormal return). 

The factors in the model are calculated by regressing the historical excess returns of 

the portfolio onto the returns on the portfolios constructed from stocks ranked by 

their market capitalisation and book-to-market ratio. The data containing the premi-

ums on these factor-based portfolios can be found on Kenneth French's website 

(mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). Importantly, 

the corresponding exposure coefficients 𝑏𝑠 and 𝑏𝑣 produced by the regression can 

take negative as well as positive values. 

Size and value premiums isolation 

The method of isolating the factor premiums described in “Common risk factors in 

stock and bond returns” (1993) implied constructing six portfolios. First, the universe 

has been defined as all CRSP firms incorporated in the U.S. and listed on the NYSE, 

AMEX, or NASDAQ. Typically, a universe of securities refers to a set of securities that 

share a common feature. Security universes can be used for different purposes. Insti-

tutionally, investment managers typically specify a universe of securities that defines 

some of the investing parameters for a managed fund. Broadly, investors may choose 

to allocate different portions of their portfolio based on various security universes 

with different risk-reward characteristics (Investopedia, 2018). Then, after the uni-

verse was defined all stocks were ranked based on their size and split into two 

groups: “small” and “large”. Due to significant tilt towards small caps in the sample 

used by Fama and French (1993), mainly caused by the stocks on AMEX and NASDAQ 

(3,616 small caps out of 4,797 in 1991), it was decided to use median NYSE size as a 

breakpoint. Then, each group was separately ranked by book-to-market and split into 

three groups: bottom 30%, middle 40%, and the top 30% (this grouping method was 

referred to as 2x3 sorts). Although the scholars acknowledged the choice of these 
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specific breakpoints to be arbitrary, they saw no reason why the tests could be sensi-

tive to these choices. As the result, six portfolios were created from the intersection 

of the two size groups and three book-to-market groups: Small/Low book-to-market 

(S/L), Small/Medium book-to-market (S/M), Small/High book-to-market (S/H), 

Big/Low book-to-market (B/L), Big/Medium book-to-market (B/M), and Big/High 

book-to-market (B/H). According to the paper, the size premium (SMB) is the differ-

ence in simple average returns of 3 small and 3 big cap portfolios each month. Book-

to-market premium (HML), however, was the difference between the simple average 

of the returns on the two high book-to-market portfolios (S/H and B/H) and the aver-

age of the returns on the two low book-to-market portfolios (S/L and B/L) (Eugene F. 

Fama, 1993, p. 7). 

2.3 Momentum and four-factor asset pricing model 

After Fama and French publication in 1993 Mark M. Carhart proposed a modification 

to the model that was designed to improve on the previous findings (1997). 

Before describing the four-factor model, however, it is necessary to introduce the 

early works on the so-called “momentum” phenomenon on which Mark M. Carhart 

based his work. One of the first efforts on the topic belongs to Bondt and Thaler 

(1985) who were among the first to introduce a strategy based on past stock returns. 

In the study, they demonstrated the performance of portfolios consisting of past win-

ners and losers (the stocks with high and low past returns). In their sample, they used 

NYSE listed stocks between 1926 and 1982. According to the paper, the portfolio of 

losers has outperformed the market by 19.6% on average while the winner portfolio 

underperformed the market by 5% on average for 36 months holding period. De 

Bondt and Thaler attributed the findings to the behavioural bias of investors’ overre-

action to unforeseen events. An alternative explanation was given by K. C. Chan in 

1988 in which he argued that the estimates of the returns in the strategy proposed 

by De Bondt and Thaler (1985) were sensitive to the methods used since the risks of 

losers and winners were not constant. Thus, controlling for the systematic risk using 

CAPM would significantly decrease the returns generated by the strategy leaving 
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only small abnormal returns. In 1990, Paul Zarowin discussed another explanation of 

the “overreaction” phenomenon arguing that the major part of it could be explained 

by the losers being small-cap stocks and winners being large caps. Therefore, any re-

turn anomalies could be justified by controlling for the size effect. Later, Narasimhan 

Jegadeesh and Sheridan Titman (1993) revealed a few interesting findings in their 

study of relative strength strategies. They examined the mid-term (3 – 12 months) 

performance of zero-cost portfolios constructed on a basis of the past returns using 

the sample that included all NYSE and AMEX listed stocks from 1965 to 1989. 16 dif-

ferent variations of the strategy have been used where they altered the period over 

which the returns on the stocks were calculated, referred to as J number of months 

as well as the holding period or K-month (ranging from 3 to 12 months for J and K). In 

each case, they used equal weight portfolios rebalanced monthly. Another set of 16 

similar strategies were different by having a week gap between the end of the port-

folio formation period J and the beginning of the holding period K. By skipping a 

week, they avoided some of the bid-ask spread, price pressure, and lagged reaction 

effects that underlie the evidence documented in Jegadeesh (1990) and Lehmann 

(1990) (Narasimhan Jegadeesh, 1993, p. 83). Jegadeesh and Titman (1993) concluded 

that strategies buying past winners and selling past losers generated a significant ab-

normal return over the period from 1965 to 1989. They argued that the evidence was 

consistent with the delay of a stock price adjustment to the firm-specific information. 

The most successful strategy selected stocks based on their returns over the previous 

12 months and then held the portfolio for 3 months. This strategy yielded 1.31% per 

month when there was no time lag between the portfolio formation period and the 

holding period and 1.49% per month when there was a 1-week lag between the for-

mation period and the holding period (ibid., p. 69). 

In 1997 Mark M. Carhart applied momentum in his four-factor model (FFM) which 

was an alteration of the three-factor (TFM) model proposed by Fama and French 

(1993). In his model, the momentum factor mimicking portfolio was defined as the 

equal-weight average of firms with the highest 30% eleven-months returns minus the 

equal-weight average of firms with the lowest 30% eleven-months returns lagged 

one month. The portfolios included all NYSE, AMEX, and NASDAQ stocks and were re-

balanced monthly (Carhart, 1997, p. 61). Using the factor, Carhart demonstrated 
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monthly excess returns that were larger than those of the other factors in Fama-

French TFM for his sample (July 1963 to December 1993). Later, Clifford S. Asness et 

al. (2013) studied the effects of value and momentum factors in other markets and 

asset classes. They gathered evidence for a presence of value and momentum factor 

premiums in the markets including European equity, commodities, fixed income, and 

currency markets. 

2.4 The Five-factor asset pricing model 

In 2015 E. Fama and K. French published an updated version of their three-factor 

model to which they added two new factors. They relied on the evidence of Novy-

Marx (2013), and Titman, Wei, and Xie (2004) arguing that the three-factor model ig-

nores much of the variation in the average returns related to profitability (RMW) and 

investment style (CMA). Despite the two additional factors, the new model had the 

same approach to defining the factors as in Fama and French (1993). However, in 

Fama and French (2015), more bucketing frequencies were used including 2x2, 5x5, 

2x2x2x2, etc. For instance, 5x5 would split the universe into five equal size groups 

(SMB) and then each sub-group into five value (HML) or profitability (RMW) groups. 

2x2x2x2, on the other hand, was a multilevel sorting that was used to control for 

other factors while isolating the single factor premium. This allowed for more precise 

estimates of the factor premiums and was generally an advantage to using just one 

sorting technique.  

It was noticed by E. Fama and K. French that the “value” factor (HML) had present a 

size dependency with the small stocks demonstrating significantly higher book-to-

market premium for their sample (the period from July 1963 to December 2013). A 

similar but weaker tendency was present for “profitability” (RMW). Nevertheless, 

one of the work results was that for portfolios formed on “size”, “value”, “profitabil-

ity”, and “investment”, the five-factor model provided better descriptions of average 

returns than the three-factor model (Eugene F. Fama, 2014, p. 4). The formula is 

given below: 
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𝑅𝑖 = 𝑅𝑓 + 𝛽𝑖(𝑅𝑚 − 𝑅𝑓) + 𝑏𝑠 ∗ 𝑆𝑀𝐵 + 𝑏𝑣 ∗ 𝐻𝑀𝐿 + 𝑏𝑝 ∗ 𝑅𝑀𝑊 + 𝑏𝑐 ∗ 𝐶𝑀𝐴 +  𝛼𝑖 

Where: 𝑅𝑖, 𝑅𝑓, 𝑅𝑚, 𝛽𝑖, 𝑏𝑠, 𝑏𝑣, 𝑆𝑀𝐵, 𝐻𝑀𝐿, and 𝛼𝑖 — as in the three-factor 

model; 

𝑏𝑝 — the coefficient of exposure of the portfolio to profitability factor; 

 𝑏𝑐 — the coefficient of exposure of the portfolio to investment factor; 

𝑅𝑀𝑊 — the difference in returns between diversified high operating 

profitability and low operating profitability stock portfolios. Expressed 

as (𝑅ℎ𝑖𝑔ℎ_𝑜𝑝 −  𝑅𝑙𝑜𝑤_𝑜𝑝); 

𝐶𝑀𝐴 — the difference in returns between diversified portfolios of 

stocks that have conservative investment style and stocks that invest 

aggressively. Expressed as (𝑅𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑣𝑒 −  𝑅𝑎𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒). 

According to Fama and French (2015), both of their models captured more of the 

market variation than CAPM with the five-factor model (FFM) capturing the most 

variation. This meant that it should be technically possible to use the factor premi-

ums to generate an additional premium on top of the market premium. The priority 

of this thesis was to assess the practical achievability of this implication by simulating 

the factor-based investment strategies and taking the transaction costs and capital 

requirements into account. 

Profitability and investment factors 

In 2012, Robert Novy-Marx published an article in which he claimed profitability 

measured by gross profits-to-assets to have roughly the same power as book-to-mar-

ket predicting the cross-section of average returns (Novy-Marx, 2012, p. 1). 

As a proxy to Novy-Marx’s measure, Fama and French used operating profitability in 

their work that was slightly different from his in a way that they would also subtract 

interest expense from operating income. For instance, for portfolios formed in June 

of year t, profitability (measured with accounting data for the fiscal year ending in t-

1) is annual revenues minus cost of goods sold, interest expense, and selling, general, 
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and administrative expenses, all divided by book equity at the end of fiscal year t-1 

(Eugene F. Fama, 2014, p. 7).  

The fifth factor in Fama and French five-factor model is investment style (CMA). The 

original idea for using it was suggested by Sheridan Titman, K.C. John Wei and Feixue 

Xie in 2003 in their publication “Capital investments and stock returns”. According to 

the paper, companies that significantly increase capital investments tend to have 

negative benchmark-adjusted performance. To measure how conservative a firm is 

with its capital investments the measure of abnormal capital investment has been 

proposed which was calculated using the following formula: 

𝐶𝐼𝑡−1 =  
𝐶𝐸𝑡−1

(𝐶𝐸𝑡−2 + 𝐶𝐸𝑡−3 + 𝐶𝐸𝑡−4)/3
− 1 

Where: 𝐶𝐼𝑡−1 — the capital expenditure of a firm scaled by its sales in year t-1; 

(𝐶𝐸𝑡−2 + 𝐶𝐸𝑡−3 + 𝐶𝐸𝑡−4)/3 – the average capital expenditure of a firm 

for the three years scaled by the respective annual sales. 

Using sales as deflator implicitly assumes that capital expenditure would grow pro-

portionally with the company’s sales. According to the paper, 𝐶𝐼 could be viewed as 

a measure of abnormal capital expenditure or an aggressive investment style. 

2.5 Factor portfolios and market states 

Before studying the potential of factor portfolios as the long-term automated invest-

ment vehicles, one may rightfully question how these portfolios would perform in 

stressed market conditions. One of the notable works on the topic belongs to Kent 

Daniel (2013). K. Daniel studied the performance of the momentum-based portfolio 

in different states of the market. Based on his data, he claimed that the momentum 

crashes that were observed during market downturns were partly forecastable. Kent 

argued that such crashes occur during periods of panic following market declines 

where the volatility is high. Using the momentum portfolios, he demonstrated that 

the momentum crashes such as the one in June 1932 and the one in March 2009 
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were followed by a significant outperformance of the losers and underperformance 

of the winners with respect to the market, the opposite to the performance of the 

portfolios in a bullish market. Kent showed that ex-ante hedging for the momentum 

crashes allows generating slightly better returns on a long term as compared to the 

unhedged portfolio. For a graphical representation of this idea see Figure 1. 

 

Figure 1 Cumulative daily returns to momentum strategies 1927 – 2013 (Kent Daniel, 
2013) 

There was not much academic coverage of the reaction of the other specific factors 

to the market states. However, a limited judgement could be made based on the 

data on the performance of the factor portfolios provided by Kenneth R. French on 

his website (mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). 

Figure 2 illustrates the cumulative performance of the factor portfolios over the pe-

riod from 1963 to 2018 based on that data. Firms in the low prior return portfolio are 

below the 30th NYSE percentile.  Those in the high portfolio are above the 70th NYSE 

percentile. Although all factor portfolios have demonstrated positive cumulative re-

turns over the long term, momentum (UMD) though, having the strongest draw-

down, had the highest return as compared to the other factors. 
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Figure 2 Cumulative return of the 2x3 factor portfolios from 1963 to 2018 (French, 
2019) 

For a clearer comparison of the other factor portfolios, Figure 3 represents the same 

graph without momentum (UMD). 
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Figure 3 Cumulative return of the 2x3 factor portfolios from 1963 to 2018 (excluding 
UMD) (ibid.) 

2.6 Hypothesis development 

Macleod Clark J and Hockey L (1981) define a hypothesis as a statement or explana-

tion that is suggested by knowledge or observation but has not yet been proved or 

disproved. To classify a hypothesis as a scientific hypothesis, the scientific method re-

quires it to be testable. To test the research hypothesis, one may conduct an experi-

ment aimed at the hypothesis to be either proved or falsified. Falsifiability is the prin-

ciple that a proposition or theory admits the possibility of being shown false by the 

authentic data (National Academy of Sciences, 1998). Therefore, this study aims to 

provide credible and relevant data for hypotheses testing, thus ensuring the accepta-

ble level of objectivity. 

Scientists generally base scientific hypotheses on previous observations that cannot 

satisfactorily be explained with available scientific theories (Paul G. Hewitt, 2013). In 

the process of investigating the literature the following hypotheses were defined: 

𝐻1: Investing in a portfolio based on multiple factors provides a better risk-adjusted 

return than a portfolio based on a single factor and a market portfolio. 
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𝐻2: Different sectors of the U.S. economy have different sensitivity to factors. 

𝐻3: Factor-based portfolios are less expedient for a retail investor than a market 

portfolio due to high transaction costs in a retail investor’s account. 

3 Methodology 

In traditional definition, a methodology is a system of principles and approaches to 

research on which one relies during the gathering and developing of knowledge 

about the discipline. The methodology could be viewed as the primary research 

strategy that outlines the means by which research is to be undertaken and, among 

other things, identifies the methods to be used in it. Research methods described in 

the methodology define the means or modes of data collection or sometimes how a 

specific result is to be calculated (Howell, 2013). This chapter is aimed at describing 

the steps and choices made by the author in the process of the research. The provi-

sion of the insight into the decision-making process behind the study should allow 

the reader to evaluate the critical thinking of the author as well as check the validity 

of the research design and implications. 

3.1 Research design 

The definition of the research philosophy is an essential step in the early stage of any 

scientific research. According to Saunders (2009) research philosophy is an over-arch-

ing term related to the development of knowledge and the nature of that 

knowledge. The philosophy of the research encompasses the scientist’s view of real-

ity as well as reflects the nature of the phenomena studied and the goals pursued in 

the study. Saunders et al. (2009) define positivism, realism, interpretivism, and prag-

matism as the main research philosophies. This thesis was rather concerned with 

studying the measurable facts about observable reality and generalisation of the re-

sults that could be replicated in the same manner at any given time. Taking the 

aforementioned into account, this thesis is consistent with the positivist research tra-

dition.  
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The original objective of this research was to determine whether factor strategies 

could be a better alternative to a market portfolio. To answer the research questions, 

the appropriate type of research has to be adopted. Saunders et al. (2009) define 

three main research categories - descriptive, explanatory and exploratory. Explora-

tory research includes relatively unstudied areas or new topics and generates ideas 

and hypotheses for future research. It evaluates phenomena in a new light and al-

most exclusively based on a qualitative approach. Looking for an explanation of a sit-

uation or problem, explanatory research finds out the answers to “why” questions. 

Descriptive research defines and describes social phenomena (Sarma, 2012, p. 3). In 

order to better serve the research objective, this study has been designed to provide 

descriptive and explanatory components. 

Saunders and colleagues (2009) state that in deductive research one develops a con-

ceptual framework based on existing theories, which is subsequently tested using 

data. Besides, an important characteristic of the deduction is that concepts need to 

be operationalised in a way that enables facts to be measured quantitatively (ibid., p. 

125). Since the questions in this research were aimed at studying the objective meas-

urable facts about the factor-based investment strategies, quantitative techniques 

were employed. These traits are intrinsic to the deductive approach.  

3.2 Methods of data collection 

Secondary data was studied in this thesis for the purpose of answering the research 

questions. Unlike in primary data analysis, in an analysis of secondary data a study 

typically employs the data or information that was gathered by someone else (e.g., 

researchers, institutions, other NGOs, etc.) for some other purpose than the one cur-

rently being considered (Cnossen, 1997). 

Most of the secondary data was sourced from the Morningstar database, which in-

cludes corporate fundamentals such as book equity of a firm, gross profit, etc. The 

dataset covered over 8,000 companies traded in the U.S. with over 670 metrics 

(Quantopian Inc., 2019). Historical returns on stocks were accessed via Quantopian’s 
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database. As a universe of securities, all public companies from NYSE, AMEX, or 

NASDAQ listed between 01.01.2003 and 31.07.2018 were selected. These exchanges 

should encompass most of the publicly traded companies in the U.S. Since a similar 

universe was defined by Fama and French (2015), it was deemed reasonable for this 

work as well. However, for the results to be realistic, it was necessary to exclude sev-

eral categories of firms from the universe. QTradableStocksUS is one of the default 

universes provided in the Quantopian API to simplify the exclusion of untradable or 

illiquid securities. Here are the filters applied to the universe: 

• Market capitalisation over $500M. This restriction eliminates many undiversifia-

ble risks like low liquidity and difficulty in shorting; 

• Median daily dollar volume of $2.5m or more over the trailing 200 days. This 

ensures that stocks in the universe are relatively easy to trade when entering and 

exiting positions; 

• Prior day's close higher than $5. In cases where the price is lower, the bid-ask 

spread becomes larger relative to the price, thus making the transaction cost too 

high; 

• 200 days of price and volume data in place. If a stock has missing data from the 

previous 200 days, the company is excluded. This targets stocks with trading 

halts, IPOs, and other situations that make them harder to access; 

• Primary/Common share. The QTradableStocksUS chooses a single share class for 

each company. The criteria are to find the common share with the most dollar 

volume; 

• ADRs, Limited Partnerships. QTradableStocksUS excludes ADRs and LPs (Payne, 

Working On Our Best Universe Yet: QTradableStocksUS, 2017). 

The abovementioned limitations were put in place to secure the ability of unob-

structed trade preserving the adequate transaction costs as well as risks. For in-

stance, an American depositary receipt (ADR) is a negotiable certificate issued by a 

U.S. bank representing a specified number of shares in a foreign stock traded on a 

U.S. exchange (Chen, American Depositary Receipt - ADR, 2018). ADR being dollar-

denominated security that trades in the United States but represents a share of a 
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foreign corporation can be a subject to underlying currency risk (Merjan, 2018). 

Hence, excluding ADRs from the universe may be a reasonably simple measure to de-

crease the overall portfolio’s currency risk which is intrinsic to this type of securities. 

This thesis covers the sample from 01.01.2003 to 31.07.2018. The simulations of the 

strategies were carried out over the whole period. The factor sensitivity analysis (Al-

phalens analysis), however, was done separately for each economic sector during the 

three sub-periods: “pre-crisis” (01.01.2003 – 01.01.2007), “crisis” (01.01.2007 – 

01.01.2010) and “post-crisis” (01.01.2010 – 31.07.2018). This was done to capture 

the changes in stocks’ sensitivity to factors under conditions of a normal market as 

well as in the stressed conditions observed during the recession after the subprime 

mortgage crisis. According to data, major financial markets lost more than 30% of 

their value during the period (Kosakowski, 2017).  

3.3 Definition of key variables 

The description of the key variables used in this work is given in Table 1
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Table 1 Definition of key variables 

Variable Description Calculation Source 

Information coefficient 
(IC) 

The IC shows how closely the factor's financial forecasts match actual 
financial results. The IC can range from 1 to -1, with -1 indicating the 
forecasts bearing no relation to the actual results, and 1 indicating 
that the forecasts perfectly matched actual results (Kenton, 2018). 

𝐼𝐶 = (2 ∗ 𝑝𝑐) − 1 

𝑝𝑐 — the proportion of the correct forecasts made by the 
factor. For example, if there are 100 forecasts made in to-
tal and 68 were directionally correct pc = 0.68. 

Quantopian 

Risk-adjusted infor-
mation coefficient (RAIC) 

Information coefficient (IC) adjusted for its standard deviation over 
the period of calculation. 

𝑅𝐴𝐼𝐶 =
𝐼𝐶

𝜎𝐼𝐶

  
Quantopian 

Portfolio return (𝑹𝒑) The total percentage return of the portfolio from the start to the end 
of the backtest. 

𝑅𝑝 =  
𝑃𝑡

𝑃𝑡−1

− 1 

𝑃𝑡 — the dollar value of the portfolio at time t; 

𝑃𝑡−1 — the dollar value of the portfolio at time t-1. 

Quantopian 

Volatility () The standard deviation of the portfolio’s returns. For the purpose of 
this work, average annual volatility values were used.  = √

∑(𝑥 − 𝑥̅)2

𝑛
 

𝑥 — the value of the portfolio at a moment in time; 

𝑥̅ — mean value of the portfolio in the testing period; 

𝑛 — the number of observations. 

Quantopian 
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Sharpe ratio (SR) A measure of risk-adjusted performance of the portfolio. The portfo-
lio's excess return minus the risk-free rate divided by the portfolio's 
standard deviation.  

𝑆𝑅 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑝

 

𝑅𝑝 — portfolio return; 

𝑅𝑓 — the risk-free rate; 

𝜎𝑝 — the portfolio standard deviation. 

Quantopian 

Sortino ratio (Srt) A modified version of the Sharpe ratio that differentiates the portfo-
lio’s harmful volatility (downward deviation) from the overall volatility 
of portfolio returns as measured by the standard deviation. 

𝑆𝑟𝑡 =
𝑅𝑝 − 𝑅𝑓

𝜎𝑑

 

𝑅𝑚𝜎𝑑 — the standard deviation of the downside. 

Quantopian 

Portfolio Beta () A measure of the portfolio’s exposure to systematic risk (market risk). 
The Beta of 1 indicates that the portfolio on average would tend to ex-
perience a 1% increase in value for the same increase in the return of 
the market portfolio and a 1% decrease given the market portfolio lost 
1% of its value and vice versa. 

 =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑝, 𝑅𝑚)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑅𝑚)
 

𝑅𝑚 — return on the market portfolio. 

Quantopian 

Maximum drawdown 
(MDD) 

Maximum drawdown is a measure of the maximum loss from a peak 
reached by the portfolio before a new peak value is attained. 

𝑀𝐷𝐷 =
𝑃 − 𝐿

𝑃
 

𝑃 — peak value before the biggest drop; 

𝐿 — the lowest value of the portfolio before the new peak 
was attained. 

Quantopian 

Book-to-market (BM) A company’s book value of the equity (as per balance sheet) divided 
by its market capitalisation. The ratio is used as a proxy of value (HML) 
and can be applied to determine undervalued and overvalued firms. 

𝐵𝑀 =
𝐵𝑜𝑜𝑘 𝑣𝑎𝑙𝑢𝑒

𝑀𝑎𝑟𝑘𝑒𝑡 𝑐𝑎𝑝
 

𝐵𝑜𝑜𝑘 𝑣𝑎𝑙𝑢𝑒 — total book value of the firm’s equity; 

Morningstar 
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𝑀𝑎𝑟𝑘𝑒𝑡 𝑐𝑎𝑝 — market capitalisation of the firm. 

Operating profitability 
ratio (OP) 

A measure of the company’s profitability defined as operating income 
minus interest expense divided by the firm’s total equity. The ratio is 
the proxy of the firm’s profitability (RMW) that can be used to differ-
entiate highly profitable companies from the least profitable ones. 

𝑂𝑃 =
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 𝑒𝑥𝑝𝑒𝑛𝑠𝑒

𝑇𝑜𝑡𝑎𝑙 𝑒𝑞𝑢𝑖𝑡𝑦
 

Morningstar 

Momentum (UMD) A ratio of the stock’s price at t-1 divided by its price at t-12 where 1 
and 12 being the number of months. The returns for the abovemen-
tioned period serve as a proxy for momentum where the stocks are 
classified as winners and losers according to the respective returns. 

𝑈𝑀𝐷 =
𝑃𝑡−1

𝑃𝑡−12

 

𝑃𝑡−1 — the price of the stock one month ago; 

𝑃𝑡−12— the price of the stock twelve months ago. 

Quantopian 

Portfolio turnover (To) Turnover represents the rate at which assets are being bought and 
sold within the portfolio. A turnover of 100% would imply that the 
portfolio positions have all been replaced within the period of time in 
question. For the purpose of this work, average daily turnover values 
were used. 

𝑇𝑂 =
1

𝑇 − 𝜏 − 1
∑ ∑(|𝑤𝑗,𝑡+1

𝑖 − 𝑤𝑗,𝑡+
𝑖 |

𝑁

𝑗=1

)

𝑇−1

𝑡=𝜏

 

𝑤𝑗,𝑡
𝑖 — the portfolio weight in asset j chosen at time t un-

der strategy i; 

𝑤𝑗,𝑡+
𝑖 — the portfolio weight before rebalancing but at t+1; 

𝑤𝑗,𝑡+1
𝑖 — the desired portfolio weight at time t+1 (after re-

balancing); 

The definition above implies that the turnover is equal to 
the sum of the absolute value of the rebalancing trades 
across the N available assets and over the 𝑇 − 𝜏 − 1 trad-
ing dates normalised by the total number of trading dates 
(Victor DeMiguel, 2009). 

Quantopian 
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Gross leverage (Lv) Portfolio gross leverage is a fraction of the total invested funds that 
are used by the investor (own + borrowed) at a moment in time.  𝐿𝑣 =  

𝑀𝑉𝑙𝑜𝑛𝑔𝑠 + |𝑀𝑉𝑠ℎ𝑜𝑟𝑡𝑠|

𝑁𝑒𝑡 𝑙𝑖𝑞𝑢𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒
 

𝑀𝑉𝑙𝑜𝑛𝑔𝑠  — the total dollar market value of long positions; 

|𝑀𝑉𝑙𝑜𝑛𝑔𝑠| — the absolute total dollar market value of 

short positions; 

𝑁𝑒𝑡 𝑙𝑖𝑞𝑢𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 — the sum of net portfolio value 
(𝑀𝑉𝑙𝑜𝑛𝑔𝑠 − 𝑀𝑉𝑠ℎ𝑜𝑟𝑡𝑠) and cash on hand. 

Quantopian 
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3.4 Methods of data analysis 

This chapter describes the methods of the data analysis applied in this paper. First, 

the work introduces a series of tables summarising the key variables computed based 

on the secondary data as well as characteristics of the tested portfolios. For each fac-

tor or a combination of factors, portfolios with different numbers of positions were 

defined: 100, 200 and 500. Although the choice of these particular numbers was ra-

ther arbitrary, the main purpose of using three different values was in capturing the 

variation in returns and the volatility of the factor strategies with the change of the 

weights/size of the portfolios in question. Based on empirical tests, it was noticed 

that having a highly diversified portfolio of 500 positions would typically result in not 

all orders being executed. This was likely caused by the unavailability of sufficient li-

quidity due to a low trading volume (simulated by Quantopian’s slippage model) as 

well as due to the economic sector exposure constraint (must not exceed 10% to 

any given sector). 100 and 200, on the other hand, were used to demonstrate the 

performance achieved by more concentrated factor portfolios with the assumption 

of 1% being the highest acceptable level of position concentration. Additionally, each 

portfolio was subject to an economic sector constraint with maximum exposure to 

each sector between -10% and 10%. This allowed controlling for the bias arising from 

the tilt to a certain economic sector. 

It was decided to keep a similar grouping as in Fama and French (2015) to ensure 

capturing the size effect. Therefore, every simulation was run separately for the 

small and the large-cap groups, resulting in 42 portfolios in total including single-fac-

tor portfolios and combined factor portfolios. 

3.4.1 Asset sorting 

For sorting the assets in the universe, each stock was given a rank within the universe 

based on a relative value associated with the factor being tested. For instance, for 

simulating the value factor (HML) portfolio, the ranks were assigned based on the 

book-to-market ratio. Then, long positions were taken in undervalued stocks. A simi-

lar approach was applied to profitability (RMW) and momentum (UMD). To 
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automate the process of ranking and sorting, the Quantopian Pipeline API was uti-

lized, which allowed the user to define the factor (also referred to as Alpha-factor) 

arithmetically, according to which the securities are ranked and sorted. For the sake 

of the data completeness, all securities with missing data points were dropped from 

the universe before the simulation. 

3.4.2 Simulation and backtesting 

To test the first hypothesis, simulations of several factor portfolios were carried out. 

For this purpose, Quantopian’s backtesting environment was used. There are multi-

ple reasons in favour of such a choice. First, Quantopian provided free access to a va-

riety of reliable financial data that included ongoing corporate fundamentals from 

2002. Secondly, the software has demonstrated superior performance over similar 

software solutions when working on large chunks of data, allowing it to execute algo-

rithms in a time-efficient manner. Thirdly, the Quantopian engine automatically deals 

with the calculations of the trade commissions and slippage, making it possible to ac-

count for the transaction costs and other frictions experienced by an investor on a 

live account. Finally, the platform provides the researcher with versatile output of 

descriptive statistics on backtests that include graphs and useful variables that allow 

the researcher to save time while decomposing the results produced by the strategy. 

The timeframe selected for all tests was between 01.01.2003 and 31.07.2018 since 

the fundamental data dated back to 2002. An important characteristic of this particu-

lar sample was that it included the period of the subprime mortgage crisis. Thus, the 

sample allowed us to observe the effect of the recession on the performance of the 

strategies. All backtests executed in this works were accompanied by metrics such as 

portfolio returns for the period, volatility, Sharpe ratio, Sortino ratio, daily turnover, 

Beta, maximum drawdown and gross leverage. 
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Portfolio weights 

In this work, three types of equal-weight portfolios were used (100, 200 and 500 po-

sitions) as opposed to Fama and French (2015) where capitalisation-weighted in-

dexes had been used. A capitalisation-weighted index is a type of market index with 

individual components that are weighted according to their total market capitalisa-

tion. The larger components carry a higher percentage weighting, while the smaller 

components in the index have lower weights. This type of index is also known as a 

market value-weighted index (Chen, 2018). Although hypothetical value-weighted 

portfolios are useful in explaining market returns, using them as an investment vehi-

cle has a few major setbacks. Foremost, a market portfolio tends to have larger posi-

tions in stocks with a high market capitalisation, and hence, asymmetric exposure to 

economic sectors. For example, in recent years, certain sectors and industries have 

performed better than others, and that is now reflected in the makeup of the S&P 

500. It also means that many sectors will be underrepresented in the index (Lemke, 

2018). For instance, purchasing a share of the S&P 500 in November 2018 would im-

ply investing about 20% in technology, 15.8% in healthcare and only 2.6% in materi-

als. Furthermore, empirical evidence suggests that the equal-weighted version of an 

index tends to outperform its capitalisation-weighted version over time. For exam-

ple, the Invesco S&P 500 Equal Weight ETF (ticker: RSP) launched in 2003, which is an 

equal-weighted version of the S&P 500, has consistently outperformed the index 

throughout its lifetime. Figure 4 is the visual representation of this observation: 



34 
 

 

 

Figure 4 SPY vs RSP (Alden, 2018) 

This effect goes in line with Fama and French (1993) since the equal-weighted fund 

should be more exposed to the size effect holding equally large positions in the 

small-cap equities. It is worth mentioning, however, that value-weighted portfolios 

typically would have a reduced tracking error with respect to the market (MSCI Inc., 

2018). This allows achieving the lower deviation of returns from those of the bench-

mark (if the benchmark is a value-weighted index), which could be beneficial to a cer-

tain type of investors. 

Initial capital balance 

In order to ensure sufficient liquidity as well as smooth order execution, the initial 

capital balance was set to $1,000,000 for all simulations. However, since this work is 

aimed at studying the factor strategies from the perspective of a retail investor, a se-

lection of strategies has also been tested with $100,000, $50,000 and $10,000 as the 

initial capital (see sub-chapter 4.4).  
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Rebalancing 

The studies like Elton (1993) and French (2008) suggest that higher portfolio turno-

ver, ceteris paribus, leads to a lower overall portfolio performance due to the in-

crease in costs of managing such a portfolio. In factor strategies based on corporate 

fundamentals, the rebalancing frequency would likely depend on the availability of 

the new data that typically comes from the financial statements. Other factors such 

as the appearance of new securities and exchange withdrawals should make less dif-

ference when it comes to rebalancing frequency and turnover. Regardless, these is-

sues are taken care of automatically by the testing software. Although the rebalanc-

ing was set to monthly for all fundamental strategies, the positions are altered only 

when a more attractive option comes around or when the current position becomes 

irrelevant (e.g. security getting withdrawn from the exchange). Therefore, the asset 

turnover in such strategies is lower than in strategies relying on momentum.  

In momentum portfolios, however, the rebalancing frequency might have a stronger 

impact on the performance. For consistency, it was decided to rely on the findings of 

Mark M. Carhart (1997) when constructing momentum portfolios which implied 

keeping the rebalancing monthly. 

Benchmarking 

According to Investopedia, a benchmark is a standard against which the performance 

of a security, mutual fund or investment manager can be measured. Generally, broad 

market and market-segment stock and bond indexes are used for this purpose. When 

assessing the success of an investment strategy it is essential to consider whether 

the right benchmark is in place to compare it against. 

Typically, investment managers would select the benchmark against which prospec-

tive investors will evaluate their performance. Some managers choose a narrow 

benchmark for evaluation purposes — even though they may invest in a broader 

group of securities than the benchmark includes (Wespath, 2016). 
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For the benchmark to be appropriate, it has to satisfy certain criteria. Those include: 

• Transparency — the contents and weights of individual investments are 

known; 

• Investability — it has to be possible to invest in the benchmark; 

• Measurability — the performance should be possible to calculate on a suffi-

ciently frequent basis; 

• Appropriateness — investment style, security types, and components of the 

benchmark are consistent with the portfolio being measured; 

• Specified in advance — the benchmark is selected before the beginning of an 

evaluation period; 

• Public — an investor should be able to verify performance using third-party 

data (ibid., p. 1). 

A benchmark serves two purposes. First, there is a backward-looking function that 

allows one to compare the performance delivered by an investment strategy against 

an alternative investment (often a passive management fund). Second, a forward-

looking function helps the investor to build expectations with regards to the poten-

tial performance of the benchmarked investment strategy based on the benchmark’s 

risk and performance characteristics. 

Apart from the qualities described above, it was important for this study that the 

benchmark had equal exposure to small, mid-sized, and large firms. Another require-

ment was that the benchmark must be a passive management fund and have a low 

expense ratio. The expense ratio is the annual fee that all funds or ETFs charge their 

shareholders. It expresses the percentage of assets deducted each fiscal year for 

fund expenses, including 12b-1 fees, management fees, administrative fees, operat-

ing costs, and all other asset-based costs incurred by the fund (Morningstar, Inc., 

2019). 

Based on the abovementioned criteria, it was decided to use three funds as bench-

marks. First, S&P 500 (ticker: SPY) as being the most liquid and accessible proxy for 
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the U.S. equity market. Second, Russell 3000 (ticker: RUA) as it had exposure to firms 

with small and medium market capitalisation representing approximately 98% of the 

investable U.S. equity market (Bloomberg, 2019). Furthermore, since this work stud-

ies equal-weighted portfolios and both S&P 500 and Russell 3000 are the value-

weighted indices, equal-weighted S&P 500 (ticker: RSP) has been added as the third 

benchmark. 

3.4.3 Forward testing 

It is typically believed that in order to provide a measure of protection against over-

fitting, an investment approach is required to be tested on out-of-sample data (David 

E. Rapach, 2005). Nonetheless, it was decided to leave forward testing out of scope 

for this particular work due to time limitations. The tests described in the report, 

however, could be replicated and extended further with no programming skills as all 

the source code along with the instructions were published in Appendices 10 – 15. 

Additionally, source code with instructions is publicly available at a GitHub reposi-

tory: https://github.com/slazarevich/fama_french_quantopian.  

3.4.4 Costs simulation analysis 

One of the major concerns in this work was to deliberately simulate the impact of the 

slippage and commissions to arrive at somewhat realistic approximations about the 

performance of the strategies built on the foundation of these studies. Therefore, an 

analysis designed to estimate the impact of the market frictions, such as transaction 

costs and capital requirements, was undertaken. As mentioned earlier, one of the 

main strengths of Quantopian lies within its sophisticated slippage model which was 

designed to account for the impact on a security price that order makes once sent to 

market. For instance, one’s “buy” order drives prices up, and the “sell” order drives 

prices down; this is generally referred to as the “price impact” of the trade. The size 

of the price impact is driven by how large the order is compared to the current trad-

ing volume (Quantopian Inc., 2019). 
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For the tests conducted in this thesis, the default slippage model was applied. This is 

a fixed slippage of 5 basis points on the price of the order. A buy order for a stock 

currently selling at $100 per share would fill at $100.05 (100 + (0.0005 * 100)), while 

a sell order would fill at $99.95 (100 - (0.0005 * 100)). 

There is also a volume cap of 10% that limits the proportion of volume one order 

may take up per bar. For instance, suppose one wants to place an order, and 1000 

shares trade in each of the next several minutes, and the volume cap is 10%. If an or-

der is placed for 220 shares then the order will be split into three transactions (100 

shares, 100 shares, and 20 shares) (ibid., p.1). 

The commission structure used in this work was based on a commission structure of-

fered by a discount brokerage firm Interactive Brokers. Therefore, there were two 

types of trading commissions — commission per share of $0.005 and a fixed per or-

der fee of $1. Since Quantopian is based on Zipline API, which at the moment of this 

study supported Interactive Brokers, it was deemed reasonable to use their commis-

sion structure as a reference. 

In addition, as it appeared during the preliminary testing, the performance of a strat-

egy may vary depending on the amount of capital under management. Therefore, to 

estimate the capital required to breakeven, several strategies were run with $10,000, 

$50,000, and $100,000 as initial capital (see sub-chapter 4.4).  

Each simulation in this study was intentionally run with maximum leverage equal to 

100% of the invested capital. Having this restriction in place ensures that only the 

capital itself is used for trading. This allows avoiding the potential inaccuracies due to 

additional costs and risks associated with leverage. 

3.4.5 Factor analysis with Alphalens 

To test the hypothesis that different sectors of the U.S. economy have different sen-

sitivity to factors, an Alphalens analysis was undertaken. Alphalens is a regression-

based tool that is commonly used for measuring the sensitivity of securities’ forward 
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returns to a factor defined by the analyst. Thus, it allows studying the predictive 

characteristics of a factor before simulating an investment strategy based on it. Gen-

erally, one would run a regression based on given parameters such as asset universe, 

arithmetical declaration of the factor (e.g. book-to-market ratio), and a look-ahead 

window that could be thought as the assumed longevity of the forecast relevance 

(30, 60, and 90 days in the case of this study). The output produced by Alphalens is 

information coefficient (IC), which is also a correlation of the factor value of a secu-

rity at time t and the returns on that security at t + 1 (see Table 1). Information coef-

ficient shows how closely the factor's financial forecasts match actual financial re-

sults. The IC can range from 1 to -1, with -1 indicating the forecasts bearing no rela-

tion to the actual results, and 1 indicating that the forecasts perfectly matched actual 

results (Kenton, 2018). The Alphalens analysis (see sub-chapter 4.3) was undertaken 

for each of the factors included in the portfolio simulation analysis (see sub-chapter 

4.1). These included value (HML), profitability (RMW), and momentum (UMD). For 

convenience, the Alphalens analysis was done separately for the three sub-periods, 

pre-crisis (01.01.2003 – 01.01.2007), crisis (01.01.2007 – 01.01.2010) and post-crisis 

(01.01.2010 – 01.01.2018). The results are presented in sub-chapter 4.3 with the rel-

evant source code along with the comments of the author provided in Appendix 15. 

3.5 Validity and reliability 

According to Greener (2008), research validity refers to the degree to which the re-

search method measures what it was intended to measure. In other words, it deter-

mines whether the combination of the data and techniques utilised in the research 

leads to the evidence of the causal relationship presented in the study. Malcom 

(2003) defines two types of research validity – internal and external. Internal validity 

describes the issues concerning research design and implementation. A common ex-

ample falling under this classification would be an error caused by the choice of in-

struments (e.g. incompatible versions of tools used in the research). Similarly, flaws 

in the process of sample definition could lead to the sample being unrepresentative. 

This and other inconsistencies in the research implementation are referred to as in-

ternal validity issues. External validity, however, requires that the outcomes of the 
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research have generalisable implications for the population studied. In a number of 

cases, the purpose of the research will not be to produce a theory that is generalisa-

ble to all populations. Instead, the researcher’s task would be to simply try to explain 

what is going on in his particular research setting (Mark Saunders, 2009). 

This study followed a list of strategies to ensure the research validity. First, to study 

the research questions, a sample between 01.01.2003 and 31.07.2018 was defined. 

This sample includes all firms incorporated in the U.S. and listed on the three major 

exchanges (NYSE, AMEX, or NASDAQ) throughout the whole period. The sample in-

tentionally excluded several types of stocks that could be difficult to trade due to the 

variety of reasons described in sub-chapter 3.2. Figure 5 illustrates the change in the 

number of firms in the studied universe over time. 

 

Figure 5 The number of securities in the tradable universe (Payne, 2017) 

A downfall in the number of securities during the subprime mortgage crisis (2007 – 

2009) could be partly attributed to the large portion of companies going bankrupt 

during the sub-period. As could be seen from Figure 6 the sample represents various 

business fields facilitating the study to be consistent and resumptive, thus preventing 

the results from being discreet to a particular industry or sector. 
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Figure 6 Number of securities in the tradable universe by sector (ibid., p.1) 

In order to secure internal validity, the data used in the research was sourced from 

Morningstar and Quantopian databases which are considered reliable sources. The 

ways in which the key variables were measured as well as the tools used were kept 

unchanged over the course of the research. 

To secure external validity and to avoid ambiguous notation, the variables operated 

in the work were treated in accordance with the previous studies on similar topics in 

the field. 

Saunders et al. (2009, p.156) define the reliability as the extent to which the results 

produced in the research could be replicated with a similar set of data by another ob-

server in a different occasion. This work was designed in a way to encourage the 
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reader to undertake an independent validation by replicating the presented results. 

The data produced by the tests were taken “as is” and carefully assessed from a criti-

cal standpoint. Furthermore, the methods used in the research were based on the 

methods described by similar studies in the area. Additionally, the process of results 

generation was reported in reasonable detail while the input data used in the study 

was taken from sources known for reliability. To maintain the academic structure of 

the thesis, all necessary references to the works done by other researchers were pro-

vided. Hence, the research can be considered to provide an acceptable level of relia-

bility. 

4 Empirical findings 

This chapter presents the empirical findings produced by the study. The data given 

here was used as the basis in the preparation of the research conclusions and impli-

cations. For understandability, the chapter contains the descriptive statistics in sub-

chapter 4.1 as well as graphical analysis in sub-chapter 4.2. The statistics on the fac-

tors’ sensitivity patterns produced by an Alphalens analysis are presented in the sub-

chapter 4.3. For convenience, the Alphalens analysis results were categorised accord-

ing to the three sub-periods (pre-crisis, crisis, post-crisis).  

4.1 Descriptive statistics analysis  

Based on the secondary data, several variables were calculated for 42 factor-based 

portfolios. These variables included cumulative returns, annual returns, maximum 

drawdown, annual volatility, Sharpe ratio, Sortino ratio, gross leverage, daily turno-

ver, and Beta. The simulations were done over the period between 01.01.2003 and 

31.07.2018. The results of the computation are given in tables 2 – 7. For convenient 

comparison, the portfolios were grouped based on market capitalisation (small and 

large) and the number of stocks held (500, 200 and 100).  
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During the testing, it was noticed that concentrated factor-based portfolios tended 

to provide better risk-return profiles as per Sharpe ratio (Tables 3,4, 6, and 7), while 

the portfolios of 500 stocks performed relatively worse (Tables 2 and 5). The highest 

Sharpe ratio (0.73) was demonstrated by the large-cap RMW portfolio of 100 stocks 

(Table 7). Over the period, the portfolio earned 542.8% with an annual volatility of 

18.9% and a maximum drawdown of 54.7%. The highest return among the portfolios 

was the HML-RMW portfolio of 100 stocks with a cumulative return of 765.4%, an-

nual volatility of 23.8%, Sharpe ratio of 0.7 and maximum drawdown of 61.3%. Such 

maximum drawdown figures were typical among the tested portfolios due to their 

exposure to the market during the subprime mortgage crisis. A higher daily turnover 

rate was generally associated with portfolios of fewer stocks where the momentum 

(UMD) was used, whereas portfolios based on value (HML) and profitability (RMW) 

with 500 stocks tended to have a relatively low daily turnover. For all 42 portfolios, 

the daily turnover averaged at 1.94% with the highest of 3.5% for the HML-RMW-

UMD portfolio holding 100 small-cap stocks and the lowest of 0.9% for HML portfolio 

of 500 large-cap stocks. 
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Table 2 Performance of small market capitalisation 500 stocks long-only factor portfolios against Russell 3000, RSP and S&P 500 

SMALL 500 ($1,000,000) RUSSELL 
3000 

RSP (from 
30.04.2003) 

S&P 500 HML RMW UMD HML-RMW HML-UMD RMW-UMD HML-RMW-
UMD 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 289.7% 259.4% 216.7% 438.5% 363.0% 383.3% 391.4% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 9.1% 8.6% 7.7% 11.4% 10.4% 10.7% 10.8% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -53.9% -44.0% -47.7% -60.1% -59.1% -57.6% -58.7% 

Annual volatility () 18.2% 19.6% 18.0% 18.5% 14.7% 16.5% 22.1% 22.0% 21.3% 21.5% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.57 0.63 0.53 0.60 0.56 0.58 0.58 

Sortino ratio (Srt) 0.83 0.89 0.85 0.80 0.89 0.74 0.85 0.79 0.82 0.82 

Gross leverage (Lv) 1.0 1.0 1.0 0.75 0.67 0.72 0.93 0.93 0.93 0.93 

Daily turnover (To) 0.1% 0.1% 0.1% 1.4% 1.7% 2.4% 1.5% 1.7% 1.6% 1.7% 

Portfolio Beta () 1.0 1.0 1.0 0.92 0.74 0.82 1.12 1.12 1.09 1.10 

 

Table 3 Performance of small market capitalisation 200 stocks long-only factor portfolios against Russell 3000, RSP and S&P 500 

SMALL 200 ($1,000,000) RUSSELL 
3000 

RSP (from 
30.04.2003) 

S&P 500 HML RMW UMD HML-RMW HML-UMD RMW-UMD HML-RMW-
UMD 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 590.7% 487.4% 350.4% 674.8% 456.9% 456.9% 533.3% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 13.2% 12.1% 10.2% 14.1% 11.7% 11.7% 12.6% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -65.6% -51.9% -58.2% -60.1% -61.8% -58.3% -58.8% 

Annual volatility () 18.2% 19.6% 18.0% 25.0% 20.1% 22.4% 23.4% 22.7% 22.1% 22.4% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.62 0.67 0.54 0.68 0.60 0.61 0.64 

Sortino ratio (Srt) 0.83 0.89 0.85 0.89 0.94 0.76 0.97 0.84 0.86 0.91 

Gross leverage (Lv) 1.0 1.0 1.0 0.98 0.90 0.95 1.0 1.0 1.0 1.0 

Daily turnover (To) 0.1% 0.1% 0.1% 1.8% 2.1% 2.9% 2.3% 2.7% 2.5% 2.8% 

Portfolio Beta () 1.0 1.0 1.0 1.23 1.02 1.11 1.18 1.15 1.11 1.13 
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Table 4 Performance of small market capitalisation 100 stocks long-only factor portfolios against Russell 3000, RSP and S&P 500 

SMALL 100 ($1,000,000) RUSSELL 
3000 

RSP (from 
30.04.2003) 

S&P 500 HML RMW UMD HML-RMW HML-UMD RMW-UMD HML-RMW-
UMD 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 661.5% 675.8% 333.2% 765.4% 461.8% 466.1% 546.7% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 13.9% 14.1% 9.9% 14.9% 11.7% 11.8% 12.7% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -70.3% -57.7% -61.2% -61.3% -63.3% -57.1% -59.4 

Annual volatility () 18.2% 19.6% 18.0% 27.1% 22.6% 24.3% 23.8% 22.8% 22.6% 22.5% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.62 0.70 0.51 0.70 0.60 0.61 0.65 

Sortino ratio (Srt) 0.83 0.89 0.85 0.88 0.99 0.71 1.0 0.84 0.85 0.91 

Gross leverage (Lv) 1.0 1.0 1.0 1.0 0.98 0.99 1.0 1.0 1.0 1.0 

Daily turnover (To) 0.1% 0.1% 0.1% 2.2% 2.4% 3.4% 2.9% 3.3% 3.1% 3.5% 

Portfolio Beta () 1.0 1.0 1.0 1.31 1.14 1.18 1.19 1.14 1.12 1.13 

 

Table 5 Performance of large market capitalisation 500 stocks long-only factor portfolios against Russell 3000, RSP and S&P 500 

LARGE 500 ($1,000,000) RUSSELL 
3000 

RSP (from 
30.04.2003) 

S&P 500 HML RMW UMD HML-RMW HML-UMD RMW-UMD HML-RMW-
UMD 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 230.7% 250.2% 235.9% 403.7% 404.6% 443.4% 430.8% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 8.0% 8.4% 8.1% 11.0% 11.0% 11.5% 11.3% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -54.6% -43.2% -47.5% -58.3% -55.9% -52.8% -53.8% 

Annual volatility () 18.2% 19.6% 18.0% 16.5% 13.4% 15.0% 19.2% 19.2% 18.6% 18.7% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.55 0.67 0.59 0.64 0.64 0.68 0.67 

Sortino ratio (Srt) 0.83 0.89 0.85 0.76 0.92 0.82 0.89 0.89 0.95 0.93 

Gross leverage (Lv) 1.0 1.0 1.0 0.80 0.72 0.77 0.99 0.99 0.99 0.99 

Daily turnover (To) 0.1% 0.1% 0.1% 0.9% 1.2% 2.0% 1.2% 1.4% 1.3% 1.4% 

Portfolio Beta () 1.0 1.0 1.0 0.88 0.72 0.79 1.4 1.03 1.0 1.01 
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Table 6 Performance of large market capitalisation 500 stocks long-only factor portfolios against Russell 3000, RSP and S&P 500 

LARGE 200 ($1,000,000) RUSSELL 
3000 

RSP (from 
30.04.2003) 

S&P 500 HML RMW UMD HML-RMW HML-UMD RMW-UMD HML-RMW-
UMD 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 347.8% 428.1% 422.9% 438.1% 370.1% 456.0% 434.9% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 10.1% 11.3% 11.2% 11.4% 10.5% 11.7% 11.4% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -66.9% -52.3% -54.0% -62.0% -57.9% -54.8% -56.0% 

Annual volatility () 18.2% 19.6% 18.0% 21.8% 17.3% 19.7% 19.9% 19.3% 18.9% 19.2% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.55 0.70 0.64 0.64 0.61 0.68 0.66 

Sortino ratio (Srt) 0.83 0.89 0.85 0.77 0.98 0.89 0.90 0.85 0.94 0.91 

Gross leverage (Lv) 1.0 1.0 1.0 1.0 0.92 0.97 1.0 1.0 1.0 1.0 

Daily turnover (To) 0.1% 0.1% 0.1% 1.3% 1.6% 2.6% 2.1% 2.4% 2.3% 2.7% 

Portfolio Beta () 1.0 1.0 1.0 1.15 0.93 1.01 1.06 1.03 1.0 1.02 

 

Table 7 Performance of large market capitalisation 100 stocks long-only factor portfolios against Russell 3000, RSP and S&P 500 

LARGE 100 ($1,000,000) RUSSELL 
3000 

RSP (from 
30.04.2003) 

S&P 500 HML RMW UMD HML-RMW HML-UMD RMW-UMD HML-RMW-
UMD 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 342.7% 542.8% 493.3% 497.5% 368.0% 520.0% 408.7% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 10.0% 12.7% 12.1% 12.2% 10.4% 12.4% 11.0% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -70.0% -54.7% -56.2% -63.4% -57.3% -55.1% -60.5% 

Annual volatility () 18.2% 19.6% 18.0% 22.9% 18.9% 21.3% 20.5% 19.5% 19.6% 19.6% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.53 0.73 0.65 0.66 0.61 0.70 0.63 

Sortino ratio (Srt) 0.83 0.89 0.85 0.74 1.02 0.89 0.93 0.84 0.97 0.87 

Gross leverage (Lv) 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0 

Daily turnover (To) 0.1% 0.1% 0.1% 1.6% 1.9% 3.1% 2.6% 3.0% 2.8% 3.3% 

Portfolio Beta () 1.0 1.0 1.0 1.19 1.01 1.06 1.08 1.03 1.02 1.03 
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4.2 Graphical analysis 

Figure 7 represents the 5 highest performing long-only strategies for the large mar-

ket capitalisation portfolios according to their Sharpe ratios. 100 RMW portfolio had 

the highest risk-adjusted return within the large-cap group with a Sharpe ratio of 

0.73 and the annual return of 12.7%. The other four portfolios had weaker overall 

performance yet still outperformed the three benchmarks (Russell 3000, RSP and 

S&P 500) almost over the whole sample period (01.01.2003 – 31.07.2018). Notably, 

each of the 5 highest performing strategies had exposure to the profitability factor 

(RMW). 

 

Figure 7 Top 5 large-cap factor portfolios vs Russell 3000 (IWV), S&P 500 (SPY) and 
S&P 500 Equal Weight (RSP) 

Similarly, Figure 8 demonstrates the 5 highest performing small market capitalisation 

portfolios. Small-cap strategies appeared to have significantly higher volatility as 

compared to their large-cap counterparts. The leading strategy in the group with a 

Sharpe ratio of 0.7 and an annual return of 14.9% was a portfolio of 100 stocks se-

lected based on the combination of the value and profitability factors (HML-RMW). 
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Figure 8 Top 5 small-cap factor portfolios vs Russell 3000 (IWV), S&P 500 (SPY) and 
S&P 500 Equal Weight (RSP) 

4.3 Factor analysis with Alphalens 

This sub-chapter reports the sensitivity of the sectors in the U.S. economy to the fac-

tors covered in this study, namely value (HML), profitability (RMW), and momentum 

(UMD). The results of the computation were grouped into three sub-periods: pre-cri-

sis (01.01.2003 – 01.01.2007), crisis (01.01.2007 – 01.01.2010), and post-crisis 

(01.01.2010 – 31.07.2018). Tables 8 – 16 depict the mean information coefficients 

(IC) of each of the factors for each of the sub-periods. The IC shows how closely the 

factor's financial forecasts match actual financial results. The IC can range from 1 to -

1, with -1 indicating the forecasts bear no relation to the actual results, and 1 indicat-

ing that the forecasts perfectly matched actual results (Kenton, 2018). A common 

practice is to associate a higher information coefficient with stronger predictive 

power of the factor. This computation was made based on the forward returns (FR) 

generated by each factor assuming no transaction costs. An example of a forward re-

turn would be if one took a position in the asset A and held it for n days based on the 
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factor value computed on the first day. In order to give a broader perspective on how 

the predictive qualities of factors decay over time, the periods of 30, 60 and 90 days 

of forward returns were calculated. The number of days in the context of this analy-

sis means n days of holding the security after the factor value was calculated.  

The data in this section was augmented with the graphical depictions of the infor-

mation coefficients for each factor and sector in Appendices 1 – 9.  

4.3.1 Value (HML) 

During the pre-crisis, sub-period small-cap stocks had stronger average information 

coefficients for value (HML) than the large caps for all three forward return periods 

(30, 60 and 90 days). The highest IC values among the group were the ones with utili-

ties (0.135, 0.202 and 0.255), basic materials (0.074, 0.106 and 0.134) and health 

care (0.055, 0.096 and 0.115). Leaders of the large-cap group during pre-crisis were 

basic materials (0.066, 0.103 and 0.139), consumer defensive (0.041, 0.069 and 

0.094) and health care (0.044, 0,066 and 0,083). Financial services, industrials, and 

technology all showed positive sensitivity towards value (HML) among both size 

groups with slightly higher IC for the small caps (Appendix 1a, 1b, and Table 8 - 10). 

The sectors with the negative value (HML) sensitivity in the sub-period were real es-

tate and communication services with the lowest IC values in both the small and the 

large-cap groups. When looking at the small and the large caps together, mean IC 

tended to deviate from 0 more with the longer period taken for forward return com-

putation. This was the case for all sectors except for the energy (Appendix 1c). 

During the crisis sub-period, both the small and the large-cap groups experienced sig-

nificant changes in the average ICs as compared to the pre-crisis. ICs of the small-cap 

utilities dropped from 0.135, 0.202 and 0.255 to 0.022, 0.018 and 0.041 for 30, 60 

and 90 days forward returns respectively (Table 8, 9 and 10). ICs of real estate in the 

large-cap group, on the other hand, increased to 0.036, 0.058 and 0.058 for 30, 60 

and 90 days almost inverting the IC values as compared to the pre-crisis sub-period 

(Table 8, 9 and 10). Such a change in IC of the sector might be explained by the 

strong direct connection of the businesses to the real estate market, which was one 
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of the most affected during the sub-period. Basic materials and technology seemed 

to have lost most of the sensitivity to the value factor (HML) in both the small and 

the large size groups during the crisis. Large-cap utilities, however, had one of the 

highest HML sensitivities (0.04, 0.06 and 0.077) after having slightly negative ICs in 

the preceding sub-period (-0.007, -0.017 and -0.032). Industrials was the only sector 

that kept having the positive sensitivity to HML in both the small and the large size 

groups during the crisis although with the large caps having a slightly higher ICs this 

time (Tables 8 - 10). 

During the post-crisis, basic materials, energy, industrials, and technology held on to 

negative ICs towards HML, never returning to the positive sensitivity to the factor. 

The communication services sector had an IC reversal in the small caps as well in the 

post-crisis as compared to both previous sub-periods. This time the small caps had a 

positive ICs of 0.03, 0.072 and 0.076 as opposed to -0.014, -0.044 and -0.101 before 

the crisis. Financial services, real estate, and utilities were the only sectors that re-

turned to the similar HML sensitivity patterns they had before the crisis (Table 8, 10). 

Generally, the factor has been the strongest throughout the pre-crisis sub-period 

with its ability to predict returns deteriorating after the crisis. The small-cap group 

was more sensitive to HML over the whole period covered in the study. 
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Table 8 Mean information coefficient by sector (HML 30 days) 

HML (30 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
0.074 0.066 0.004 -0.010 -0.026 -0.060 

(12.327) (11.670) (0.488) (-1.156) (-5.477) (1.805) 

Consumer cyclical 
-0.003 0.034 -0.018 -0.019 -0.008 0.006 

(-0.940) (8.156) (-3.140) (-2.609) (-3.245) (-11.018) 

Financial services 
0.056 0.029 0.018 -0.010 0.010 0.017 

(10.628) (6.468) (2.105) (-1.301) (2.698) (4.314) 

Real estate 
-0.076 -0.087 -0.004 0.036 -0.006 -0.022 

(-12.277) (-10.682) (-0.410) (4.897) (-1.173) (-4.668) 

Consumer defensive 
-0.021 0.041 0.016 -0.011 0.000 0.008 

(-4.654) (7.943) (2.397) (-1.433) (0.034) (1.704) 

Health care 
0.055 0.044 0.057 0.018 0.010 0.000 

(14.163) (9.426) (10.031) (2.756) (2.880) (0.099) 

Utilities 
0.135 -0.007 0.022 0.040 0.062 0.028 

(16.041) (-1.086) (2.054) (4.969) (9.543) (7.245) 

Communication ser-
vices 

-0.014 -0.020 -0.027 0.025 0.030 -0.105 

(-1.660) (-2.385) (-3.153) (3.057) (4.305) (-16.477) 

Energy 
-0.005 0.044 0.022 0.008 -0.010 -0.010 

(-1.019) (7.788) (3.006) (1.467) (-2.488) (-2.278) 

Industrials 
0.041 0.015 0.029 0.032 -0.027 -0.023 

(10.045) (3.637) (5.867) (6.060) (-10.494) (-6.156) 

Technology 
0.042 0.026 0.000 -0.003 -0.010 -0.017 

(14.217) (6.062) (0.073) (-0.534) (-2.933) (-4.673) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 

Table 9 Mean information coefficient by sector (HML 60 days) 

HML (60 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
0.106 0.103 0.030 -0.002 -0.041 -0.069 

(18.951) (17.187) (3.989) (-0.242) (-9.514) (2.620) 

Consumer cyclical 
0.000 0.050 -0.022 -0.022 -0.009 0.008 

(-0.061) (12.211) (-3.653) (-3.127) (-3.581) (-13.268) 

Financial services 
0.073 0.045 0.016 -0.019 0.014 0.022 

(12.849) (9.816) (1.822) (-2.322) (3.479) (5.663) 

Real estate 
-0.082 -0.119 0.009 0.058 -0.012 -0.037 

(-12.726) (-14.405) (0.877) (10.665) (-2.536) (-7.771) 

Consumer defensive 
-0.011 0.069 0.012 -0.016 0.006 0.012 

(-3.042) (13.714) (1.733) (-2.001) (1.419) (2.503) 

Health care 
0.096 0.066 0.078 0.003 0.023 0.000 

(23.666) (14.313) (16.374) (0.568) (7.219) (0.122) 

Utilities 
0.202 -0.017 0.018 0.060 0.098 0.040 

(23.362) (-2.723) (1.528) (7.038) (17.116) (9.943) 

Communication ser-
vices 

-0.044 -0.019 -0.072 0.012 0.072 -0.126 

(-5.767) (-2.246) (-9.923) (1.322) (10.491) (-21.088) 

Energy 
-0.024 0.051 0.033 0.022 -0.004 -0.010 

(-4.593) (9.530) (4.246) (4.510) (-0.879) (-2.349) 

Industrials 
0.064 0.031 0.040 0.056 -0.039 -0.028 

(14.843) (7.637) (8.515) (11.741) (-14.800) (-7.610) 

Technology 
0.064 0.039 0.005 -0.004 -0.012 -0.018 

(21.369) (8.834) (1.046) (-0.678) (-3.331) (-4.478) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 
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Table 10 Mean information coefficient by sector (HML 60 days) 

HML (90 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
0.134 0.139 0.054 0.013 -0.052 -0.083 

(21.921) (24.127) (6.696) (1.664) (-13.424) (2.808) 

Consumer cyclical 
-0.002 0.063 -0.028 -0.017 -0.016 0.009 

(0.664) (18.281) (-4.703) (-2.414) (-6.278) (-16.305) 

Financial services 
0.097 0.060 0.020 -0.021 0.016 0.026 

(16.985) (13.239) (2.266) (-2.500) (3.919) (6.519) 

Real estate 
-0.079 -0.136 0.029 0.058 -0.012 -0.042 

(-13.543) (-18.963) (2.623) (11.567) (-2.520) (-8.651) 

Consumer defensive 
-0.011 0.094 -0.008 -0.025 0.006 0.012 

(-2.819) (21.041) (-1.061) (-3.109) (1.458) (2.409) 

Health care 
0.115 0.083 0.097 -0.001 0.036 -0.003 

(29.081) (19.328) (21.083) (-0.092) (12.419) (-0.974) 

Utilities 
0.255 -0.032 0.041 0.077 0.121 0.036 

(32.124) (-4.739) (3.508) (8.408) (22.658) (9.293) 

Communication ser-
vices 

-0.101 0.012 -0.076 0.004 0.076 -0.141 

(-14.499) (1.365) (-11.052) (0.477) (11.263) (-27.316) 

Energy 
-0.043 0.061 0.041 0.033 -0.008 -0.008 

(-7.985) (10.871) (5.157) (6.615) (-1.864) (-1.963) 

Industrials 
0.088 0.045 0.050 0.071 -0.047 -0.032 

(20.491) (12.696) (11.180) (14.362) (-18.162) (-8.509) 

Technology 
0.078 0.049 0.011 -0.006 -0.018 -0.013 

(25.170) (10.858) (2.068) (-1.132) (-4.903) (-3.163) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 

4.3.2 Profitability (RMW) 

During the pre-crisis sub-period, small-cap stocks demonstrated stronger average ICs 

for RMW. The sectors with the highest RMW sensitivity among the small caps were 

financial services (0.022, 0.053 and 0.088), real estate (0.077, 0.101 and 0.113), and 

health care (0.058, 0.071 and 0.09). Among the large caps, energy had the highest IC 

(0.047, 0.062 and 0.081) during the sub-period (Tables 11 – 13). The sectors with the 

strongest negative RMW sensitivity in the sub-period were basic materials, utilities, 

and industrials (both small and large caps), and consumer defensive (large-cap 

group). 

During the crisis, energy sector experienced the largest sensitivity decline for both 

size groups with the small caps’ IC dropping to -0.013, -0.038 and -0.065 and the 

large caps’ falling to -0.004, -0.03 and -0.044 for the 30, 60 and 90 days respectively.  
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Among the other sizable changes were the large-cap consumer cyclical and consumer 

defensive (both size groups). Both sectors demonstrated positive ICs during the sub-

period contrary to the tendency of the previous sub-period. Technology (both size 

groups) and communication services (large caps) also experienced a positive change 

in their IC values as compared to the pre-crisis.  

After the crisis, most sectors had positive RMW sensitivity (Appendix 8a – 8c, Table 

11 – 13). The exceptions were consumer defensive (both size groups) and utilities 

(large caps). This time, the strongest ICs were in large-cap basic materials (0.072, 

0.093 and 0.11) and small-cap communication services (0.117, 0.156 and 0.179).  

During the whole period, the factor’s IC was predominantly in favour of the small-cap 

stocks. After the crisis, the effect of the RMW factor was noticeably more wide-

spread across all the sectors. This might indicate the factor’s universality which could 

be practical for designing diversified strategies. 

Table 11 Mean information coefficient by sector (RMW 30 days) 

RMW (30 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
0.006 -0.030 -0.033 -0.021 0.062 0.072 

(0.913) (-5.210) (-5.441) (-2.697) (13.067) (15.832) 

Consumer cyclical 
0.020 -0.006 -0.002 0.021 0.008 -0.008 

(6.248) (-1.205) (-0.458) (4.078) (2.837) (-3.545) 

Financial services 
0.022 0.001 0.026 0.038 -0.001 0.028 

(3.835) (0.301) (3.001) (4.146) (-0.234) (7.085) 

Real estate 
0.077 0.026 0.033 0.016 0.015 0.019 

(12.881) (3.891) (4.449) (2.347) (3.296) (5.356) 

Consumer defensive 
0.027 -0.016 0.052 0.008 -0.018 -0.006 

(4.507) (-3.635) (8.152) (1.294) (-4.435) (-1.772) 

Health care 
0.058 0.007 0.007 -0.004 0.034 0.012 

(8.591) (1.710) (1.776) (-0.810) (9.934) (3.705) 

Utilities 
-0.022 -0.008 0.005 -0.012 0.025 -0.008 

(-2.846) (-1.549) (0.506) (-2.035) (4.237) (-2.333) 

Communication ser-
vices 

0.041 0.003 0.031 0.051 0.117 0.030 

(4.731) (0.346) (3.006) (4.496) (17.827) (5.412) 

Energy 
0.044 0.047 -0.013 -0.004 0.053 0.040 

(7.095) (6.082) (-1.952) (-0.712) (13.301) (10.936) 

Industrials 
0.005 0.014 -0.026 -0.016 0.035 0.023 

(1.118) (4.497) (-7.052) (-5.548) (14.431) (7.554) 

Technology 
0.007 0.002 0.008 0.015 0.018 0.021 

(1.575) (0.417) (1.418) (2.843) (7.118) (7.202) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 
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Table 12 Mean information coefficient by sector (RMW 60 days) 

RMW (60 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
-0.020 -0.043 -0.049 -0.015 0.077 0.093 

(-3.048) (-7.671) (-8.160) (-2.078) (17.014) (23.862) 

Consumer cyclical 
0.037 -0.011 0.012 0.019 0.019 -0.003 

(11.119) (-0.398) (2.460) (4.330) (7.105) (-1.108) 

Financial services 
0.053 0.004 0.035 0.040 0.004 0.041 

(9.722) (0.808) (3.692) (4.355) (1.034) (9.777) 

Real estate 
0.101 0.029 0.053 0.014 0.013 0.024 

(16.990) (4.004) (7.637) (2.203) (2.741) (6.240) 

Consumer defensive 
0.019 -0.026 0.058 0.007 -0.021 -0.013 

(3.598) (-5.540) (8.141) (0.978) (-5.009) (-3.884) 

Health care 
0.071 0.014 0.007 -0.016 0.052 0.020 

(11.143) (2.967) (1.544) (-3.184) (16.731) (6.236) 

Utilities 
-0.012 -0.032 -0.030 -0.026 0.061 -0.017 

(-1.404) (-5.608) (-2.965) (-4.228) (10.421) (-5.525) 

Communication ser-
vices 

0.011 -0.010 0.006 0.052 0.156 0.034 

(1.264) (-1.194) (0.580) (4.661) (22.957) (5.912) 

Energy 
0.049 0.062 -0.038 -0.030 0.082 0.052 

(8.156) (8.530) (-6.684) (-6.409) (21.725) (13.806) 

Industrials 
-0.011 0.002 -0.038 -0.033 0.057 0.037 

(-2.287) (0.560) (-9.522) (-9.061) (23.442) (11.275) 

Technology 
0.003 0.008 0.021 0.027 0.025 0.021 

(0.640) (1.508) (3.576) (5.359) (9.922) (7.801) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 

Table 13 Mean information coefficient by sector (RMW 90 days) 

RMW (90 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
-0.038 -0.028 -0.031 -0.003 0.084 0.110 

(-5.882) (-5.049) (-5.589) (-0.476) (18.442) (29.344) 

Consumer cyclical 
0.051 -0.016 0.040 0.023 0.027 0.006 

(15.655) (-3.784) (7.587) (5.650) (10.657) (2.623) 

Financial services 
0.088 0.009 0.040 0.052 0.025 0.046 

(15.739) (1.631) (4.101) (5.774) (7.470) (11.604) 

Real estate 
0.113 0.024 0.071 -0.005 0.018 0.025 

(19.969) (3.420) (8.841) (-0.715) (4.036) (6.798) 

Consumer defensive 
0.002 -0.036 0.087 0.016 -0.023 -0.019 

(0.429) (-7.975) (13.219) (2.532) (-4.973) (-5.298) 

Health care 
0.090 0.020 0.006 -0.009 0.071 0.029 

(14.746) (4.035) (1.375) (-2.169) (25.221) (9.082) 

Utilities 
0.001 -0.038 -0.004 -0.032 0.056 -0.015 

(0.114) (-6.547) (-0.432) (-4.893) (9.648) (-4.692) 

Communication ser-
vices 

0.007 -0.026 -0.007 0.093 0.179 0.047 

(0.835) (-3.519) (-0.678) (7.862) (26.348) (8.436) 

Energy 
0.050 0.081 -0.065 -0.044 0.095 0.058 

(8.570) (12.872) (-11.629) (-9.045) (25.562) (15.443) 

Industrials 
-0.013 -0.015 -0.035 -0.037 0.068 0.050 

(-2.934) (-5.003) (-8.392) (-10.235) (27.892) (16.020) 

Technology 
-0.003 0.022 0.034 0.037 0.030 0.026 

(-0.730) (4.102) (5.577) (6.676) (13.052) (10.498) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 
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4.3.3 Momentum (UMD) 

During the pre-crisis, sub-period energy (0.089, 0.117 and 0.149) and real estate 

(0.076, 0.076 and 0.081) had the highest ICs for UMD among the small caps. The 

small-cap technology (-0.061, -0.099 and -0.121), utilities (-0.04, -0.066 and -0.082) 

and basic materials (-0.035, -0.056 and -0.08), on the other hand, had the lowest ICs 

to the factor (Appendix 3a). In the large-cap group, basic materials had the highest IC 

for the holding periods of 30 and 60 days while communication services and energy 

had the highest ICs for 90 days of forward returns (Table 14 – 16, Appendix 3b). It is 

worth noting that unlike other sectors, real estate and energy had positive UMD sen-

sitivity for both size groups throughout the sub-period. 

The crisis brought some drastic changes for UMD. With the exception of the large-

cap real estate stocks (0.029, 0.049 and 0.06) a consistent negative sensitivity pat-

tern could be seen among all the sectors throughout the sub-period (Table 14 – 16, 

Appendix 6a – 6c). The strongest negative IC for the small caps was one of the utili-

ties (-0.131, -0.175 and -0.205) and energy (-0.1, -0.152 and -0.182). In the large-cap 

group consumer defensive (-0.086, -0.127 and -0.142) and energy (-0.067, -0.099 and 

-0.111) had the lowest ICs in the sub-period.  

During the post-crisis, all sectors, even those that used to have negative UMD sensi-

tivity in the preceding sub-periods, had positive ICs, a pattern contrary to the one 

seen during the crisis. Financial services and communication services, however, re-

turned to a similar to the pre-crisis sensitivity patterns. Basic materials had the 

strongest UMD sensitivity in both the small and large-cap groups (Appendix 9a – 9c, 

Table 14 – 16).  
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Table 14 Mean information coefficient by sector (UMD 30 days) 

UMD (30 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
-0.035 0.060 -0.059 0.018 0.057 0.060 

(-5.030) (6.520) (-6.096) (1.634) (10.098) (10.024) 

Consumer cyclical 
0.036 0.004 -0.012 0.001 0.040 0.030 

(7.622) (0.788) (-1.480) (0.104) (12.802) (7.344) 

Financial services 
-0.006 -0.004 -0.050 0.007 -0.009 -0.005 

(-0.898) (-0.634) (-5.423) (0.656) (-2.106) (-0.916) 

Real estate 
0.076 0.055 -0.003 0.029 0.044 0.033 

(10.674) (7.848) (-0.265) (2.174) (9.253) (5.857) 

Consumer defensive 
0.014 -0.031 -0.058 -0.086 0.039 -0.004 

(2.017) (-5.829) (-7.808) (-9.566) (7.887) (-0.913) 

Health care 
-0.011 -0.018 -0.057 -0.032 0.018 0.008 

(-2.598) (-3.205) (-8.574) (-4.307) (6.025) (2.000) 

Utilities 
-0.040 -0.001 -0.131 -0.021 0.023 0.043 

(-4.211) (-0.159) (-12.282) (-2.238) (3.564) (8.432) 

Communication ser-
vices 

-0.034 0.039 -0.004 -0.001 0.013 0.061 

(-4.058) (5.224) (-0.318) (-0.062) (1.761) (10.271) 

Energy 
0.089 0.028 -0.100 -0.067 0.048 0.031 

(13.388) (3.464) (-13.294) (-7.701) (10.130) (6.223) 

Industrials 
-0.033 0.014 -0.040 -0.035 0.026 0.027 

(-5.850) (2.329) (-4.957) (-4.295) (7.933) (6.410) 

Technology 
-0.061 -0.029 -0.056 -0.016 0.012 0.019 

(-14.156) (-6.088) (-9.732) (-2.518) (4.447) (5.062) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 

Table 15 Mean information coefficient by sector (UMD 60 days) 

UMD (60 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
-0.056 0.068 -0.113 -0.012 0.080 0.070 

(-8.952) (7.870) (-11.366) (-1.134) (13.844) (11.733) 

Consumer cyclical 
0.041 -0.004 -0.023 -0.015 0.050 0.032 

(10.960) (-0.704) (-2.519) (-1.462) (16.730) (8.319) 

Financial services 
-0.026 -0.029 -0.041 0.010 -0.021 -0.023 

(-4.442) (-4.735) (-4.696) (0.860) (-4.830) (-4.203) 

Real estate 
0.076 0.055 -0.008 0.049 0.050 0.026 

(10.552) (8.380) (-0.570) (3.801) (11.469) (4.684) 

Consumer defensive 
0.018 -0.045 -0.071 -0.127 0.060 -0.005 

(2.658) (-8.740) (-11.484) (-16.279) (12.599) (-1.120) 

Health care 
-0.024 -0.024 -0.079 -0.051 0.020 0.005 

(-6.694) (-5.494) (-11.580) (-6.767) (7.260) (1.385) 

Utilities 
-0.066 0.003 -0.175 -0.046 0.039 0.055 

(-6.799) (0.340) (-17.253) (-5.538) (6.120) (10.898) 

Communication ser-
vices 

-0.056 0.066 -0.038 -0.011 -0.013 0.070 

(-7.012) (8.755) (-3.470) (-1.185) (-1.688) (12.602) 

Energy 
0.117 0.039 -0.152 -0.099 0.067 0.042 

(20.166) (5.596) (-21.812) (-13.608) (14.479) (8.785) 

Industrials 
-0.055 -0.002 -0.058 -0.056 0.030 0.038 

(-10.129) (-0.424) (-7.741) (-7.490) (9.551) (9.159) 

Technology 
-0.099 -0.062 -0.082 -0.022 0.006 0.007 

(-25.001) (-13.525) (-15.858) (-3.592) (2.638) (2.031) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 
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Table 16 Mean information coefficient by sector (UMD 90 days) 

UMD (90 days) PRE CRISIS POST 

Market cap Small Large Small Large Small Large 

Basic materials 
-0.080 0.055 -0.143 -0.059 0.090 0.097 

(-14.173) (6.384) (-12.719) (-5.173) (15.488) (16.066) 

Consumer cyclical 
0.049 0.003 -0.030 -0.025 0.061 0.032 

(15.552) (0.660) (-2.877) (-2.182) (20.992) (9.425) 

Financial services 
-0.045 -0.033 -0.046 0.012 -0.018 -0.023 

(-6.556) (-5.829) (-4.772) (0.987) (-4.194) (-4.433) 

Real estate 
0.081 0.079 -0.039 0.060 0.061 0.035 

(12.036) (15.060) (-2.676) (4.819) (14.991) (7.139) 

Consumer defensive 
0.037 -0.044 -0.073 -0.142 0.066 -0.010 

(5.789) (-8.358) (-9.590) (-18.517) (14.383) (-2.380) 

Health care 
-0.031 -0.022 -0.091 -0.058 0.019 0.007 

(-10.301) (-5.617) (-11.909) (-7.304) (7.377) (1.732) 

Utilities 
-0.082 0.005 -0.205 -0.055 0.046 0.057 

(-8.127) (0.637) (-19.223) (-7.483) (7.390) (11.832) 

Communication ser-
vices 

-0.027 0.070 -0.065 -0.037 -0.017 0.085 

(-3.350) (8.388) (-5.969) (-3.671) (-2.239) (15.762) 

Energy 
0.149 0.062 -0.182 -0.111 0.082 0.051 

(31.352) (8.969) (-25.678) (-17.483) (17.379) (10.732) 

Industrials 
-0.068 -0.009 -0.081 -0.082 0.038 0.045 

(-14.220) (-1.585) (-10.421) (-10.940) (12.380) (11.633) 

Technology 
-0.121 -0.089 -0.090 -0.032 0.003 -0.002 

(-29.781) (-18.843) (-16.640) (-5.144) (1.456) (-0.661) 

Note: t-statistics for IC appear in parentheses.             – 3 highest IC values in the sub-period.             – 3 lowest IC 

values in the sub-period.             – positive IC values in the sub-period.             – negative IC values in the sub-pe-

riod.             – neutral IC values in the sub-period. 

4.4 Costs simulation analysis 

For the cost simulation analysis, the strategies with the highest Sharpe ratios were 

selected with the following conditions fulfilled: first, there must be at least one port-

folio based on 1, 2 and 3 factors. Second, there must be a single factor portfolio em-

ploying each factor (HML, RMW, and UMD). Third, the list must include at least one 

portfolio holding 100, 200 and 500 positions. Although the choice of these particular 

conditions could be deemed arbitrary, using them should encompass strategies of 

different kinds. Thus, the researcher should be able to capture the relationship be-

tween the transaction costs and the different factors and portfolio sizes used.  

After analysing the strategies, five portfolios were selected: the large-cap profitability 

(RMW 100), the small-cap value and profitability (HML-RMW 100), the large-cap 

value, profitability, and momentum (HML-RMW-UMD 500), the small-cap value (HML 
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200) and the large-cap momentum (UMD 100). The numbers after the factor codes 

indicate the number of stocks held in the portfolio. 

To approximate the impact of the trade commissions and the other market frictions, 

the backtests were run with the appropriate considerations. There were two key as-

sumptions in the analysis: first, the investor had an account in a discount brokerage 

firm with the variable commission of $0.005 per share and the fixed cost of $1 per 

trade. It is also assumed that the reasonable initial capital of a retail investor account 

could be $100,000, $50,000 or $10,000. The simulations of each strategy are pre-

sented in tables 17 – 21. 

The large-cap RMW 100 (Table 17) and the small-cap HML-RMW 100 (Table 18) 

demonstrated superior performance to all the 3 benchmarks for $100,000 and 

$50,000 as initial capital as measured by the Sharpe ratio. The large-cap UMD 100 

portfolio (Table 21), however, managed to outperform the benchmarks with 

$100,000 and $50,000 as initial capital from the total return standpoint. However, 

the strategy had a comparable Sharpe ratio to the benchmarks due to its relatively 

high volatility. The large-cap HML-RMW-UMD 500 (Table 19) and the small-cap HML 

200 (Table 20) delivered lower risk-adjusted returns for all three balances ($100,000, 

$50,000 and $10,000) as compared to the benchmarks. The results of the cost simu-

lation analysis were mostly in favour of the concentrated portfolios, i.e. the ones 

with fewer stocks. 
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Table 17 RMW 100 large-cap portfolio performance comparison (Long-only) 

LARGE 100  RUSSELL 3000 RSP (from 
30.04.2003) 

S&P 500 RMW (w/o costs) RMW (with 
costs) 

RMW (with 
costs) 

RMW (with 
costs) 

RMW (with 
costs) 

Initial capital $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000 $100,000 $50,000 $10,000 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 552.8% 542.8% 502.1% 463.4% 283.1% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 12.8% 12.7% 12.2% 11.8% 9.0% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -54.6% -54.7% -55.0% -55.1% -56.5% 

Annual volatility () 18.2% 19.6% 18.0% 18.9% 18.9% 18.9% 18.9% 19.0% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.73 0.73 0.71 0.68 0.55 

Sortino ratio (Srt) 0.83 0.89 0.85 1.02 1.02 0.98 0.95 0.76 

Gross leverage (Lv) 1.0 1.0 1.0 0.99 0.99 0.99 0.99 0.99 

Daily turnover (To) 0.1% 0.1% 0.1% 1.9% 1.9% 1.9% 1.9% 1.9% 

Portfolio Beta () 1.0 1.0 1.0 1.01 1.01 1.01 1.01 1.01 

 

Table 18 HML-RMW 100 small-cap portfolio performance comparison (Long-only) 

SMALL 100  RUSSELL 3000 RSP (from 
30.04.2003) 

S&P 500 HML-RMW (w/o 
costs) 

HML-RMW (with 
costs) 

HML-RMW (with 
costs) 

HML-RMW (with 
costs) 

HML-RMW (with 
costs) 

Initial capital $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000 $100,000 $50,000 $10,000 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 799.2% 765.4% 727.5% 674.0% 312.7% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 15.2% 14.9% 14.6% 14.1% 9.5% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -61.2% -61.3% -61.5% -61.8% -64.5% 

Annual volatility () 18.2% 19.6% 18.0% 23.8% 23.8% 23.8% 23.8% 24.0% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.71 0.70 0.69 0.67 0.50 

Sortino ratio (Srt) 0.83 0.89 0.85 1.01 1.0 0.98 0.95 0.70 

Gross leverage (Lv) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Daily turnover (To) 0.1% 0.1% 0.1% 2.9% 2.9% 2.9 2.9% 2.9% 

Portfolio Beta () 1.0 1.0 1.0 1.19 1.19 1.19 1.19 1.20 
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Table 19 HML-RMW-UMD 500 large-cap portfolio performance comparison (Long-only) 

LARGE 500  RUSSELL 3000 RSP (from 
30.04.2003) 

S&P 500 HML-RMW-UMD 
(w/o costs) 

HML-RMW-UMD 
(with costs) 

HML-RMW-UMD 
(with costs) 

HML-RMW-UMD 
(with costs) 

HML-RMW-UMD 
(with costs) 

Initial capital $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000 $100,000 $50,000 $10,000 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 450.0% 430.8% 310.8% 244.4% -40.0% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 11.6% 11.3% 9.5% 8.3 -3.2% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -53.6% -53.8% -55.7% -56.8% -55.5% 

Annual volatility () 18.2% 19.6% 18.0% 18.7% 18.7% 18.8% 18.7% 12.5% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.68 0.67 0.58 0.52 -0.20 

Sortino ratio (Srt) 0.83 0.89 0.85 0.95 0.93 0.80 0.72 -0.27 

Gross leverage (Lv) 1.0 1.0 1.0 0.99 0.99 0.99 0.99 0.49 

Daily turnover (To) 0.1% 0.1% 0.1% 1.4% 1.4% 1.5% 1.5% 2.0% 

Portfolio Beta () 1.0 1.0 1.0 1.01 1.01 1.01 1.01 0.61 

 

Table 20 HML 200 small-cap portfolio performance comparison (Long-only) 

SMALL 200  RUSSELL 3000 RSP (from 
30.04.2003) 

S&P 500 HML (w/o costs) HML (with costs) HML (with costs) HML (with costs) HML (with costs) 

Initial capital $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000 $100,000 $50,000 $10,000 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 617.8% 590.7% 518.1% 439.6% 59.9% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 13.5% 13.2% 12.4% 11.4% 3.1% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -65.3% -65.6% -66.2% -67.1% -74.1% 

Annual volatility () 18.2% 19.6% 18.0% 25.0% 25.0% 25.0% 25.0% 25.6% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.63 0.62 0.59 0.56 0.25 

Sortino ratio (Srt) 0.83 0.89 0.85 0.90 0.89 0.84 0.79 0.34 

Gross leverage (Lv) 1.0 1.0 1.0 0.98 0.98 0.98 0.98 0.99 

Daily turnover (To) 0.1% 0.1% 0.1% 1.8% 1.8% 1.8% 1.8% 1.8% 

Portfolio Beta () 1.0 1.0 1.0 1.23 1.23 1.23 1.24 1.25 
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Table 21 UMD 100 large-cap portfolio performance comparison (Long-only) 

LARGE 100  RUSSELL 3000 RSP (from 
30.04.2003) 

S&P 500 UMD (w/o costs) UMD (with costs) UMD (with costs) UMD (with costs) UMD (with costs) 

Initial capital $1,000,000 $1,000,000 $1,000,000 $1,000,000 $1,000,000 $100,000 $50,000 $10,000 

Portfolio return (𝑹𝒑) 312.4% 395.1% 315.6% 506.3% 493.3% 449.6% 403.7% 142.6% 

Annual return (𝑹𝟏𝒚) 9.5% 11.1% 9.6% 12.3% 12.1% 11.6% 11.0% 5.9% 

Maximum drawdown (MDD) -56.4% -60.1% -54.9% -56.1% -56.2% -56.5% -56.9% -59.7% 

Annual volatility () 18.2% 19.6% 18.0% 21.3% 21.3% 21.3% 21.3% 21.3% 

Sharpe ratio (SR) 0.59 0.63 0.60 0.65 0.65 0.62 0.60 0.37 

Sortino ratio (Srt) 0.83 0.89 0.85 0.90 0.89 0.86 0.82 0.51 

Gross leverage (Lv) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Daily turnover (To) 0.1% 0.1% 0.1% 3.1% 3.1% 3.1% 3.1% 3.1% 

Portfolio Beta () 1.0 1.0 1.0 1.06 1.06 1.06 1.06 1.06 
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5 Conclusion 

This chapter intends to clarify the results of the examination performed to answer 

the research questions and test the predetermined hypotheses. This section also 

summarises the practical implications of the research along with its limitations. Addi-

tionally, a few suggestions for future research have been provided. 

5.1 Summary of key findings 

The primary goal of this study was to examine the potential of applying factors of 

modern asset pricing models for automated long-term portfolio management. The 

theoretical and empirical analysis assisted the author in achieving the main goals of 

the work. To summarise the key findings of the study, the research questions are in-

dividually answered in this sub-chapter. 

1. Does a portfolio based on multiple factors provide a better risk-adjusted return 

than a single factor portfolio and a market portfolio? 

To answer this question, a series of portfolio simulations were conducted that pro-

duced the descriptive statistics for each of the strategies. Since the risk-adjusted re-

turn is represented by the Sharpe ratio of the portfolio, it was used for comparison. 

The statistics suggested that the portfolios based on factors can indeed generate 

higher risk-adjusted returns since they were able to beat the performance of the 

benchmark in the majority of observations. The results also indicated a positive rela-

tionship between the Sharpe ratio and the number of factors used in the strategy. 

Thus, the portfolios based on multiple factors on average tended to outperform the 

strategies based on a single factor that in their turn on average tended to outper-

form the benchmark. 

2. What is the extent of variation of the sensitivity of the sectors of the U.S. econ-

omy in response to each factor? 
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Alphalens analysis showed that the sectors’ sensitivity as per the information coeffi-

cient varied significantly from one economic sector to another. Different sectors 

demonstrated diverse factor sensitivity patterns during the three sub-periods: pre-

crisis, crisis, and post-crisis. The majority of the sectors had positive sensitivity to 

value and profitability during the pre-crisis sub-period with a few sectors being nega-

tively sensitive. Sensitivity to these factors later dropped during the crisis with a 

more noticeable dip in the large-caps. During the post-crisis, however, sensitivity to 

profitability recovered for most of the sectors showing a stronger information coeffi-

cient than before the crisis. On the other hand, sensitivity to value weakened after 

the crisis for both size groups. The sectors showed mixed sensitivity to momentum 

during the pre-crisis sub-period independent of the size. Almost all sectors had nega-

tive sensitivity to momentum during the crisis sub-period with a sharp sensitivity re-

versal during post-crisis for all sectors except for the financial services and small-cap 

communication services. Generally, consistent sensitivity for the majority of sectors 

has only been seen with profitability (post-crisis) and momentum (crisis and post-cri-

sis). 

3. Are factor-based portfolios the expedient alternative to a market portfolio for a 

retail investor? 

To answer this question, costs simulation analysis was performed. The portfolios 

were compared based on their Sharpe ratios after consideration of the transaction 

costs and capital invested. It was discovered that a select number of portfolios were 

able to deliver superior risk-adjusted performance to one of the benchmarks after 

the costs of transactions. However, portfolios of fewer stocks tended to win over the 

portfolios with a larger number of positions. A retail investor should be able to out-

perform the market on the risk-adjusted basis using the factor-based portfolios with 

$50,000 or more at disposal.  

Below are the hypotheses tested in this research. The first hypothesis was concerned 

with the factors ability to synergise, thus making multiple factor portfolios better 

than the single factor portfolios and a market portfolio: 
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𝐻1: Investing in a portfolio based on multiple factors provides a better risk-adjusted 

return than a portfolio based on a single factor and a market portfolio. 

According to the data produced by the portfolio simulation analysis, portfolios based 

on multiple factors tended to outperform the portfolios based on a single factor. 

Portfolios based on a single factor in their turn tended to outperform the bench-

marks. Therefore, the first hypothesis should be accepted. 

The second hypothesis presumed that the U.S. economic sectors had asymmetric 

sensitivity to the factors:  

𝐻2: Different sectors of the U.S. economy have different sensitivity to factors. 

According to the Alphalens sensitivity analysis data, the sectors had indeed shown 

significant variability in the sensitivity patterns for the different sectors during the 

same sub-periods. Thus, the hypothesis has to be accepted. 

The last hypothesis suggested that a retail investor would not be able to achieve the 

superior risk-adjusted return as compared to the benchmarks using factor portfolios: 

𝐻3: Factor-based portfolios are less expedient for a retail investor than a market 

portfolio due to high transaction costs in a retail investor’s account. 

The data produced by the cost simulation analysis suggested that a retail investor 

should be able to achieve the superior risk-adjusted performance to one of the 

benchmarks using the factor portfolios. This means that the hypothesis should be re-

jected. 

To conclude, this research studied the portfolios based on factors, namely value, 

profitability, and momentum. The analysis had shown that the factors may have 

good potential to be used as the basis of a viable investment alternative to a market 

portfolio. Nonetheless, the actual performance of such strategies will depend on the 

factors being used, cost structure as well as capital at disposal. The results of this 
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work should help one approach investing in the factor-based portfolios. The findings 

could also be used for further developments on the topic either practically or aca-

demically.  

5.2 Practical implications 

Managing personal finance has been of rising relevance in recent years. With the in-

crease in popularity, a vast amount of academic studies have been developed. How-

ever, many prioritised theoretical aspects over practical implications, leaving the 

community of retail investors with less actionable information. Developing sound 

empirical knowledge is of particular importance especially when advanced technol-

ogy becomes more accessible to the public and not only industry professionals. 

This study was specifically designed to be beneficial to the investment practitioners 

interested in applying quantitative factor models in their portfolios as well as anyone 

intending to develop knowledge about quantitative investment management prac-

tices. In order to facilitate this purpose, this study includes a reasonably detailed de-

scription of the approach as well as all relevant source code with the author’s com-

ments (see Appendices 10 – 15). 

Although this particular work studied the context of the U.S., a similar approach 

could be used for other countries’ markets as well. Broadly, this thesis should help 

the reader familiarise with the topic of quantitative investment management provid-

ing him or her with a ground for improving the ideas presented here. For instance, 

learning about factor combinations not discussed in the work or attempting hedging 

for certain sectors or factors could be the further areas of inquiry. Generally, this 

study intended to broaden the perspective of empirical research on the factor invest-

ment strategies by including retail investors in a group of parties interested in such 

research being done. 
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5.3 Limitations and recommendations 

This sub-chapter presents the limitations of the work and introduces some of the rec-

ommendations that could be of service for further studies. First, this thesis is limited 

to the sample of 42 factor-based portfolios that was formed from U.S. equities. 

Therefore, the research results could not be generalised for the global market. None-

theless, given access to data similar studies, it should be possible to conduct this 

study in the other countries’ markets as well. Besides, the tests employed in this the-

sis were conducted on past data within a fixed timeframe. This means that testing on 

the newer data may suggest different results for the strategies in question. Likewise, 

the researcher may observe divergent behaviour when testing the strategies on a live 

data feed.  

The limitations of the research, however, broaden the opportunities for future stud-

ies. Thus, in this work, factors were used “as is” in their simplest form. This suggests 

that the performance of the strategies could be significantly improved with addi-

tional conditions and constraints. For example, instead of using the single most re-

cent value for profitability factor, one may attempt to consider the profitability 

growth over a specified time to improve the quality of stock ranking. Similarly, there 

is more than one way of combining factors in a portfolio. Instead of finding the high-

est sum of the factors’ values one may prioritise certain factors over the others. For 

instance, one could filter the universe by the top profitability percentile and search 

for the highest value stocks within the sample. One could also apply the trend filter 

in a form of positive momentum similar to the previous example. 

Furthermore, one could extend the scope of this work by trying to hedge factor port-

folios against sectors of the economy insensitive to certain factors based on the data 

produced by the Alphalens analysis. A few more options could be attempting to opti-

mise the portfolios’ rebalancing frequencies and other parameters and broadening 

the research by studying the other countries’ markets. 
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Appendices 

Appendix 1. HML: Information coefficient by sector (Pre-crisis) 

Figures below represent the mean Information coefficient of the HML factor for the 

period between 01.01.2003 and 01.01.2007 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 1a – Small market capitalisation (1904 firms) 

 

• Appendix 1b – Large market capitalisation (1305 firms) 
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• Appendix 1c – No market capitalisation restrictions (2568 firms) 
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Appendix 2. RMW: Information coefficient by sector (Pre-crisis) 

Figures below represent the mean Information coefficient of the RMW factor for the 

period between 01.01.2003 and 01.01.2007 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 2a – Small market capitalisation (1738 firms) 

 

• Appendix 2b – Large market capitalisation (1192 firms) 
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• Appendix 2c – No market capitalisation restrictions (2347 firms) 
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Appendix 3. UMD: Information coefficient by sector (Pre-crisis) 

Figures below represent the mean Information coefficient of the UMD factor for the 

period between 01.01.2003 and 01.01.2007 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 3a – Small market capitalisation (1898 firms) 

 

• Appendix 3b – Large market capitalisation (1313 firms) 
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• Appendix 3c – No market capitalisation restrictions (2583 firms) 
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Appendix 4. HML: Information coefficient by sector (Crisis) 

Figures below represent the mean Information coefficient of the HML factor for the 

period between 01.01.2007 and 01.01.2010 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 4a – Small market capitalisation (1909 firms) 

 

• Appendix 4b – Large market capitalisation (1392 firms) 
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• Appendix 4c – No market capitalisation restrictions (2660 firms) 
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Appendix 5. RMW: Information coefficient by sector (Crisis) 

Figures below represent the mean Information coefficient of the RMW factor for the 

period between 01.01.2007 and 01.01.2010 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 5a – Small market capitalisation (1805 firms) 

 

• Appendix 5b – Large market capitalisation (1335 firms) 
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• Appendix 5c – No market capitalisation restrictions (2528 firms) 
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Appendix 6. UMD: Information coefficient by sector (Crisis) 

Figures below represent the mean Information coefficient of the UMD factor for the 

period between 01.01.2007 and 01.01.2010 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 6a – Small market capitalisation (1992 firms) 

 
• Appendix 6b – Large market capitalisation (1413 firms) 
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• Appendix 6c – No market capitalisation restrictions (2689 firms) 
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Appendix 7. HML: Information coefficient by sector (Post-crisis) 

Figures below represent the mean Information coefficient of the HML factor for the 

period between 01.01.2010 and 01.01.2018 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 7a – Small market capitalisation (2529 firms) 

 

• Appendix 7b – Large market capitalisation (1750 firms) 
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• Appendix 7c – No market capitalisation restrictions (3320 firms) 
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Appendix 8. RMW: Information coefficient by sector (Post-crisis) 

Figures below represent the mean Information coefficient of the RMW factor for the 

period between 01.01.2010 and 01.01.2018 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 8a – Small market capitalisation (2363 firms) 

 

• Appendix 8b – Large market capitalisation (1631 firms) 
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• Appendix 8c – No market capitalisation restrictions (3125 firms) 
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Appendix 9. UMD: Information coefficient by sector (Post-crisis) 

Figures below represent the mean Information coefficient of the UMD factor for the 

period between 01.01.2010 and 01.01.2018 as measured for 30 (blue), 60 (green) 

and 90 days (red) forward for each sector. 

• Appendix 9a – Small market capitalisation (2527 firms) 

 

• Appendix 9b – Large market capitalisation (1746 firms) 
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• Appendix 9c – No market capitalisation restrictions (3345 firms) 
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Appendix 10. Definition of the HML factor 

1. # The HML factor is defined inside a function initialize  
2. # expected to be defined by default in any Quantopian algorithm. 
3. def initialize(context): 
4.  
5.     # Commission is set to be $0.005 per share and $1 per trade. 
6.     set_commission(us_equities=commission.PerShare(cost=0.005, 
7.                                                    min_trade_cost=1)) 
8.  
9.     # Exchange code of a firm. 
10.     exchange = mstar.share_class_reference.exchange_id.latest   
11.  
12.     # A filter rule is created that returns True only for 
13.     # the stocks from the exchanges listed. 
14.     my_exchanges = exchange.element_of(['NYSE','NYS','NAS','ASE'])   
15.  
16.     # Total equity of a firm as per latest balance sheet. 
17.     total_equity = mstar.balance_sheet.total_equity.latest   
18.        
19.     # Market capitalisation of a firm.     
20.     market_cap = MarketCap()   
21.      
22.     # Sector code of a firm. 
23.     sector = Sector()   
24.        
25.     # The trading universe is defined as QTradableStocksUS that falls into 
26.     # my_exchanges and has data for total_equity, market_cap and sector. 
27.     universe_exchange = QTradableStocksUS() & my_exchanges  
28.                         & total_equity.notnull() & market_cap.notnull()  
29.                         & sector.notnull()   
30.        
31.     # Small and large market cap groups specified as percentile. 
32.     small = (MarketCap(mask=universe_exchange).percentile_between(0, 50))   
33.     large = (MarketCap(mask=universe_exchange).percentile_between(50, 100))   
34.        
35.     # Here the universe redefined as universe_exchange that falls into either  
36.     # small or large market cap group as defined above. 
37.     universe = universe_exchange & small   
38.        
39.     # Book to market is defined as total_equity divided by the market_cap. 
40.     book_to_market = total_equity / market_cap   
41.      
42.     # Book to market values are normalised and ranked in an ascending order. 
43.     book_to_market_rank = book_to_market.rank(ascending=True, mask=universe)   
44.     factor = book_to_market_rank.demean()   
45.        
46.     # The Pipeline object is defined and filled with the data defined above. 
47.     pipe = Pipeline(   
48.         columns={   
49.             'alpha': factor,   
50.             'bm': book_to_market,   
51.             'exchange': exchange,   
52.             'market_cap': market_cap,   
53.             'sector': Sector(),   
54.         }, 
55.         # Screen out all the data points lacking any of the specified values.   
56.         screen = universe & factor.notnull() & Sector().notnull(),   
57.     )   

Note: the fragment of code above is the part of another code fragment. For the full reference see Appendix 14.  
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Appendix 11. Definition of the RMW factor 

1. # The RMW factor is defined inside a function initialize 
2. # expected to be defined by default in any Quantopian algorithm. 
3. def initialize(context): 
4.  
5. # Commission is set to be $0.005 per share and $1 per trade. 
6. set_commission(us_equities=commission.PerShare(cost=0.005, 
7.                                                min_trade_cost=1)) 
8.  
9.     # Exchange code of a firm. 
10.     exchange = mstar.share_class_reference.exchange_id.latest 
11.  
12.     # A filter rule is created that returns True only for 
13.     # the stocks from the exchanges listed. 
14.     my_exchanges = exchange.element_of(['NYSE','NYS','NAS','ASE'])   
15.    
16.     # Defining total_equity, operating_income and interest_expense as 
17.     # corresponding values in the latest income statement and balance sheet. 
18.     operating_income = mstar.income_statement.operating_income.latest   
19.     interest_expense = mstar.income_statement.interest_expense.latest   
20.     total_equity = mstar.balance_sheet.total_equity.latest   
21.   
22.     # Market capitalisation of a firm. 
23.     market_cap = MarketCap()  
24.  
25.     # Sector code of a firm. 
26.     sector = Sector()   
27.  
28.     # The trading universe is defined as QTradableStocksUS that falls into 
29.     # my_exchanges and has data for operating_income, interest_expense, 
30.     # total_equity, market_cap and sector. 
31.     universe_exchange = QTradableStocksUS() & my_exchanges  
32.                         & operating_income.notnull()  
33.                         & interest_expense.notnull()  
34.                         & total_equity.notnull()  
35.                         & market_cap.notnull()  
36.                         & sector.notnull()   
37.    
38.     # Small and large market cap groups specified as percentile. 
39.     small = (MarketCap(mask=universe_exchange).percentile_between(0, 50)) 
40.     large = (MarketCap(mask=universe_exchange).percentile_between(50, 100))   
41.    
42.     # Here the universe redefined as universe_exchange that falls into either 
43.     # small or large market cap group as defined above. 
44.     universe = universe_exchange & large   
45.    
46.     # Operating profitability ratio is defined as operating_income subtracted  
47.     # interest_expense divided by the total_equity. 
48.     op_ratio = (operating_income - interest_expense) / total_equity 
49.  
50.     # OP ratio values are normalised and ranked in an ascending order.   
51.     op_ratio_rank = op_ratio.rank(ascending=True, mask=universe)     
52.     factor = op_ratio_rank.demean()   
53.    
54.     # The Pipeline object is defined and filled with the data defined above. 
55.     pipe = Pipeline(   
56.         columns={   
57.             'alpha': factor,   
58.             'op': op_ratio,   
59.             'exchange': exchange,   
60.             'market_cap': market_cap,   
61.             'sector': Sector(),   
62.         }, 
63.         # Screen out all the data points lacking any of the specified values.   
64.         screen = universe & factor.notnull() & Sector().notnull(),   
65.     )  

Note: the fragment of code above is the part of another code fragment. For the full reference see Appendix 14. 
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Appendix 12. Definition of the UMD factor 

1. # Momentum is defined as the return of a security over the period of the 
2. # last 11 months with 1-month gap between the end of the 11th month and today. 
3. class Momentum(CustomFactor):   
4.     inputs = [USEquityPricing.close]   
5.     window_length = 252   
6.    
7.     def compute(self, today, assets, out, close):   
8.         out[:] = close[-20] / close[0]   
9.    
10. # The function initialize is expected to be defined 
11. # by default in any Quantopian algorithm. 
12. def initialize(context):   
13.      
14.     # Commission is set to be $0.005 per share and $1 per trade.   
15.     set_commission(us_equities=commission.PerShare(cost=0.005, 
16.                                                    min_trade_cost=1))   
17.        
18.     # Exchange code of a firm. 
19.     exchange = mstar.share_class_reference.exchange_id.latest   
20.      
21.     # A filter rule is created that returns True only for 
22.     # the stocks from the exchanges listed. 
23.     my_exchanges = exchange.element_of(['NYSE','NYS','NAS','ASE'])   
24.        
25.     # umd is defined as price momentum. 
26.     umd = Momentum()   
27.        
28.     # Market capitalisation of a firm. 
29.     market_cap = MarketCap() 
30.    
31.     # Sector code of a firm. 
32.     sector = Sector()   
33.        
34.     # The trading universe is defined as QTradableStocksUS that falls into 
35.     # my_exchanges and has data for umd, market_cap and sector 
36.     universe_exchange = QTradableStocksUS() & my_exchanges  
37.                         & umd.notnull() & market_cap.notnull()  
38.                         & sector.notnull()   
39.        
40.     # Small and large market cap groups specified as percentile. 
41.     small = (MarketCap(mask=universe_exchange).percentile_between(0, 50)) 
42.     large = (MarketCap(mask=universe_exchange).percentile_between(50, 100))   
43.        
44.     # Here the universe redefined as universe_exchange that falls into either 
45.     # small or large market cap group as defined above. 
46.     universe = universe_exchange & large   
47.        
48.     # Price momentum values are ranked and normalised in an ascending order. 
49.     momentum = umd.rank(ascending=True, mask=universe)    
50.     factor = momentum.demean()   
51.        
52.     # The Pipeline object is defined and filled with the data defined above. 
53.     pipe = Pipeline(   
54.         columns={   
55.             'alpha': factor,   
56.             'momentum': umd,   
57.             'exchange': exchange,   
58.             'market_cap': market_cap,   
59.             'sector': Sector(),   
60.         }, 
61.         # Screen out all the data points lacking any of the specified values.   
62.         screen = universe & factor.notnull() & Sector().notnull(),   
63.     )   

Note: the fragment of code above is the part of another code fragment. For the full reference see Appendix 14. 
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Appendix 13. Definition of a combined factor 

1. # Momentum is defined as the return of a security over the period of the 
2. # last 11 months with 1-month gap between the end of the 11th month and today. 
3. class Momentum(CustomFactor):   
4.     inputs = [USEquityPricing.close]   
5.     window_length = 252   
6.    
7.     def compute(self, today, assets, out, close):   
8.         out[:] = close[-20] / close[0]   
9.    
10. # The function initialize is expected to be defined           
11. # by default in any Quantopian algorithm. 
12. def initialize(context):   
13.        
14.     # Commission is set to be $0.005 per share and $1 per trade.   
15.     set_commission(us_equities=commission.PerShare(cost=0.005,  
16.                                                    min_trade_cost=1))   
17.        
18.     # Exchange code of a firm.   
19.     exchange = mstar.share_class_reference.exchange_id.latest  
20.   
21.     # A filter rule is created that returns True only for 
22.     # the stocks from the exchanges listed. 
23.     my_exchanges = exchange.element_of(['NYSE','NYS','NAS','ASE'])   
24.        
25.     # Market capitalisation, sector code and momentum of a firm. 
26.     market_cap = MarketCap()   
27.     sector = Sector()   
28.     umd = Momentum()   
29.        
30.     # Defining total_equity, operating_income and interest_expense as 
31.     # corresponding values in the latest income statement and balance sheet. 
32.     total_equity = mstar.balance_sheet.total_equity.latest   
33.     operating_income = mstar.income_statement.operating_income.latest   
34.     interest_expense = mstar.income_statement.interest_expense.latest   
35.        
36.     # The trading universe is defined as QTradableStocksUS that falls into 
37.     # my_exchanges and has data for umd, total_equity, operating_income, 
38.     # interest_expense, market_cap and sector. 
39.     universe_exchange = QTradableStocksUS() & umd.notnull()  
40.                         & my_exchanges & total_equity.notnull()  
41.                         & market_cap.notnull() & sector.notnull()  
42.                         & operating_income.notnull()  
43.                         & interest_expense.notnull()   
44.        
45.     # Small and large market cap groups specified as percentile. 
46.     small = (MarketCap(mask=universe_exchange).percentile_between(0, 50))   
47.     large = (MarketCap(mask=universe_exchange).percentile_between(50, 100))   
48.        
49.     # Here the universe redefined as universe_exchange that falls into either 
50.     # small or large market cap group as defined above. 
51.     universe = universe_exchange & large   
52.        
53.     # Book to market is defined as total_equity divided by the market_cap. 
54.     # The value is normalised and ranked in an ascending order. 
55.     bm = total_equity / market_cap   
56.     bm_rank = bm.rank(ascending=True, mask=universe)   
57.        
58.     # Operating profitability ratio is defined as operating_income subtracted 
59.     # interest_expense divided by the total_equity. 
60.     # The value is normalised and ranked in an ascending order. 
61.     op = (operating_income - interest_expense) / total_equity   
62.     op_rank = op.rank(ascending=True, mask=universe)   
63.      
64.     # Price momentum values are ranked and normalised in an ascending order. 
65.     umd_rank = umd.rank(ascending=True, mask=universe)   
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66.        
67.     # A class JoinFactors is defined that is used to combine the normalised 
68.     # scores of the factors defined above. 
69.     class JoinFactors(CustomFactor):     
70.         #inputs = [factor1, factor2, ...] There can be multiple inputs.     
71.         window_length = 1   
72.    
73.         def compute(self, today, assets, out, *inputs):     
74.             array = np.concatenate(inputs, axis=0)     
75.             out[:] = np.nansum(array, axis=0)     
76.             out[ np.all(np.isnan(array), axis=0) ] = np.nan   
77.    
78.     # window_safe declares that scores of the factors are robust to 
79.     # pricing adjustments from splits or dividends. In other words, 
80.     # the value that will be the same no matter what day you are 
81.     # looking back from. This is a required step in order to 
82.     # use them as the input to JoinFactors. 
83.     bm_weights.window_safe = True     
84.     op_weights.window_safe = True   
85.     umd_weights.window_safe = True   
86.    
87.     # The weights of the combined factor. 1, 2, 3 or more factors can be used. 
88.     final_weights = JoinFactors(inputs=[bm_weights, op_weights, umd_weights],  
89.                                 mask=universe)   
90.        
91.     # Redefining the universe as universe with the items  
92.     # where combined factor weights are present. 
93.     universe = final_weights.notnan()   
94.    
95.     # The Pipeline object is defined and filled with the data defined above. 
96.     pipe = Pipeline(   
97.         columns={   
98.                  'umd_rank': umd_rank,   
99.                  'bm_rank': bm_rank,   
100.                  'op_rank': op_rank,   
101.                  'umd_weights': umd_weights,   
102.                  'bm_weights': bm_weights,   
103.                  'op_weights': op_weights,   
104.                  'alpha': final_weights,   
105.                  'exchange': exchange,   
106.                  'market_cap': market_cap,   
107.                  'sector': sector,   
108.                 }, 
109.         # Screen out all the data points outside the trading universe.   
110.         screen = universe   
111.     )   
Note: the fragment of code above is the part of another code fragment. For the full reference see Appendix 14. 
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Appendix 14. Code template implementing a factor strategy 

1. # Importing objects, libraries and functions to be used in the algorithm. 
2. import pandas as pd     
3. import quantopian.algorithm as algo   
4. import quantopian.experimental.optimize as opt   
5. from quantopian.pipeline import Pipeline, CustomFactor   
6. from quantopian.pipeline.data import builtin, morningstar as mstar   
7. from quantopian.pipeline.factors.morningstar import MarketCap   
8. from quantopian.pipeline.classifiers.morningstar import Sector   
9. from quantopian.pipeline.filters import QTradableStocksUS 
10. from quantopian.pipeline.data.builtin import USEquityPricing   
11.    
12. # Constraint Parameters.   
13. MAX_GROSS_LEVERAGE = 1.0   
14. MAX_SHORT_POSITION_SIZE = 0.0 # 0.0%   
15. MAX_LONG_POSITION_SIZE = 0.01 # 1.0%   
16.    
17. # Scheduling Parameters. How long to wait before start after the market opens. 
18. MINUTES_AFTER_MARKET = 10 
19.  
20. ''' 
21. Definition of a custom factor such as Momentum happens here. 
22. Refer to the appendix 12. 
23. ''' 
24.    
25. # The function initialize is expected to be defined 
26. # by default in any Quantopian algorithm. 
27. def initialize(context):   
28.     # To set a custom benchmark the following function can be called: 
29.     # set_benchmark(symbol('IWV')) 
30.     # Otherwise the default benchmark will be used (SPY).   
31.        
32.     ''' 
33.     Factor definition logic goes in here. Refer to the appendices 10 – 13.  
34.     '''   
35.     
36.     # The function attach_pipeline is called  
37.     # to load the data in defined in the pipeline. 
38.     algo.attach_pipeline(pipe, 'pipe')   
39.    
40.     # Schedule a function, 'do_portfolio_construction', to run once a month   
41.     # ten minutes after market is open.   
42.     algo.schedule_function(   
43.         do_portfolio_construction,   
44.         date_rule=algo.date_rules.month_start(),   
45.         time_rule=algo.time_rules.market_open(minutes=MINUTES_AFTER_MARKET),   
46.         half_days=False,   
47.     )   
48.  
49. # The function before_trading_start defines the logic 
50. # that happens every time before the trading session begins. 
51. # Here pipeline output is processed. 
52. def before_trading_start(context, data):   
53.     context.pipeline_data = algo.pipeline_output('pipe')   
54.  
55. # Portfolio construction. Inside this function the strategy is expressed 
56. # as a set of objectives and constraints. 
57. def do_portfolio_construction(context, data):   
58.     pipeline_data = context.pipeline_data   
59.     todays_universe = pipeline_data.index   
60.    
61.     # Objective here was to maximise alpha which is  
62.     # our factor defined in the pipeline. 
63.     objective = opt.MaximizeAlpha(pipeline_data.alpha)   
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64.    
65.     # Constrain our gross leverage to 1.0 or less.    
66.     # This means that the absolute value of our long and short positions  
67.     # should not exceed the value of our portfolio.   
68.     constrain_gross_leverage = opt.MaxGrossLeverage(MAX_GROSS_LEVERAGE)   
69.        
70.     # Constrain individual position size to no more than a fixed percentage    
71.     # of our portfolio.   
72.     constrain_pos_size = opt.PositionConcentration.with_equal_bounds(   
73.         -MAX_SHORT_POSITION_SIZE,   
74.         MAX_LONG_POSITION_SIZE,   
75.     ) 
76.  
77.    # Constrain ourselves to allocate the same amount of capital to    
78.    # long and short positions. Not used in the simulations in this work. 
79.    market_neutral = opt.DollarNeutral()   
80.           
81.    # Constrain the maximum average exposure  
82.    # to individual sectors to -10% - 10%. 
83.    sector_neutral = opt.NetPartitionExposure.with_equal_bounds(   
84.         labels=pipeline_data.sector,   
85.         min=-0.10,   
86.         max=0.10,   
87.    )   
88.    
89.    # Run the optimization.  
90.    # This will calculate new portfolio weights and   
91.    # manage moving our portfolio toward the target.   
92.    algo.order_optimal_portfolio(   
93.         objective=objective,   
94.         constraints=[   
95.             constrain_gross_leverage,   
96.             constrain_pos_size,   
97.             # market_neutral, ---> not used in the study. 
98.             sector_neutral,   
99.         ],   
100.         universe=todays_universe,   
101.    )   
Note: the code template is dependent on the Zipline API and should be run within Quantopian Algorithms IDE. 
For testing one would want to sign up on www.quantopian.com and create a new blank algorithm. Then, the 
code above could be filled in with the factors defined in on the lines 20 – 23 and 32 – 34. To define the factors 
refer to Appendices 10 – 13. The full working factor strategy template with instructions could also be accessed on 
GitHub (URL: https://github.com/slazarevich/fama_french_quantopian). 
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Appendix 15. Factor analysis with Alphalens 

The template below illustrates the source code used for generating the comprehen-

sive factor analysis using the Alphalens API. The code should be viewed as a Jupyter 

Notebook file where # In[1]: like lines indicate notebook cells with the following af-

ter it code as input. 

1. # In[1]:   
2.    
3.    
4. # Importing objects, libraries and functions to be used in the notebook.   
5. from quantopian.pipeline import Pipeline   
6. from quantopian.research import run_pipeline   
7. from quantopian.pipeline.filters import QTradableStocksUS   
8. from quantopian.pipeline.data import morningstar, Fundamentals   
9. from quantopian.pipeline.factors.morningstar import MarketCap   
10. from quantopian.pipeline import CustomFactor     
11.    
12. from quantopian.pipeline.data.builtin import USEquityPricing   
13. from quantopian.pipeline.data import builtin, morningstar as mstar   
14. from quantopian.pipeline.classifiers.fundamentals import Sector   
15.    
16. from alphalens.utils import get_clean_factor_and_forward_returns   
17. from alphalens.performance import mean_information_coefficient   
18. from alphalens.tears import create_information_tear_sheet   
19. from alphalens.tears import create_returns_tear_sheet   
20.    
21. import numpy as np   
22.    
23.    
24. # In[2]:   
25.    
26.    
27. # Momentum is defined as the return of a security over the period of the   
28. # last 11 months with 1month gap between the end of the 11th month and today.   
29. class Momentum(CustomFactor):   
30.     inputs = [USEquityPricing.close]   
31.     window_length = 252   
32.    
33.     def compute(self, today, assets, out, close):   
34.         out[:] = close[-20] / close[0]   
35.    
36. # We create a pipeline to define the factor(s).   
37. def make_pipeline():   
38.        
39.     # Exchange code of a firm.   
40.     exchange = mstar.share_class_reference.exchange_id.latest   
41.        
42.     # A filter rule is created that returns True only for   
43.     # the stocks from the exchanges listed.   
44.     my_exchanges = exchange.element_of(['NYSE','NYS','NAS','ASE'])   
45.        
46.     # Market capitalisation, sector code and momentum of a firm.   
47.     market_cap = MarketCap()   
48.     sector = Sector()   
49.     umd = Momentum()   
50.        
51.     # Defining total_equity, operating_income and interest_expense as   
52.     # corresponding values in the latest income statement and balance sheet.   
53.     total_equity = mstar.balance_sheet.total_equity.latest   
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54.     operating_income = mstar.income_statement.operating_income.latest   
55.     interest_expense = mstar.income_statement.interest_expense.latest   
56.        
57.     # The trading universe is defined as QTradableStocksUS that falls into   
58.     # my_exchanges and has data for umd, total_equity, operating_income,   
59.     # interest_expense, market_cap and sector.   
60.     universe_exchange = QTradableStocksUS() & umd.notnull()  
61.                         & my_exchanges & total_equity.notnull()  
62.                         & market_cap.notnull() & sector.notnull()  
63.                         & operating_income.notnull()  
64.                         & interest_expense.notnull()   
65.        
66.     # Small and large market cap groups specified as percentile.   
67.     small = (MarketCap(mask=universe_exchange).percentile_between(0, 50))   
68.     large = (MarketCap(mask=universe_exchange).percentile_between(50, 100))   
69.        
70.     # Create a filter that returns True for the assets in the universe   
71.     # that belong to the given sector(s).   
72.     sec = morningstar.asset_classification.morningstar_sector_code.latest   
73.     my_sec = sec.element_of([101])   
74.        
75.     # Here the universe redefined as universe_exchange that belongs   
76.     # to the sector(s) in 'my_sec' and falls into either   
77.     # small or large market cap group as defined above.   
78.     # my_sec should be uncommented in case if a speficic sector is wanted.   
79.     '''''  
80.     Here are the sector codes that might be used:  
81.       
82.      -1: 'Misc',    
83.     101: 'Basic Materials',    
84.     102: 'Consumer Cyclical',    
85.     103: 'Financial Services',    
86.     104: 'Real Estate',    
87.     205: 'Consumer Defensive',    
88.     206: 'Healthcare',    
89.     207: 'Utilities',    
90.     308: 'Communication Services',    
91.     309: 'Energy',    
92.     310: 'Industrials',    
93.     311: 'Technology' ,   
94.     '''   
95.     universe = universe_exchange & small #& my_sec    
96.        
97.     # Book to market is defined as total_equity divided by the market_cap.   
98.     # The value is normalised and ranked in an ascending order.   
99.     bm = total_equity / market_cap   
100.     bm_weights = bm.rank(ascending=True, mask=universe)   
101.        
102.     # Operating profitability ratio is defined as operating_income subtracted   
103.     # interest_expense divided by the total_equity.   
104.     # The value is normalised and ranked in an ascending order.   
105.     op = (operating_income - interest_expense) / total_equity   
106.     op_weights = op.rank(ascending=True, mask=universe)   
107.      
108.     # Price momentum values are ranked and normalised in an ascending order.   
109.     umd_weights = umd.rank(ascending=True, mask=universe)   
110.        
111.     # A class JoinFactors is defined that is used to combine the normalised   
112.     # scores of the factors defined above.   
113.     class JoinFactors(CustomFactor):     
114.         #inputs = [factor1, factor2, ...] There can be multiple inputs.   
115.         window_length = 1   
116.    
117.         def compute(self, today, assets, out, *inputs):     
118.             array = np.concatenate(inputs, axis=0)     
119.             out[:] = np.nansum(array, axis=0)     
120.             out[ np.all(np.isnan(array), axis=0) ] = np.nan   
121.        
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122.     # window_safe declares that scores of the factors are robust to   
123.     # pricing adjustments from splits or dividends. In other words,   
124.     # the value that will be the same no matter what day you are   
125.     # looking back from. This is a required step in order to   
126.     # use them as the input to JoinFactors.   
127.     bm_weights.window_safe = True     
128.     op_weights.window_safe = True   
129.     umd_weights.window_safe = True   
130.    
131.     # The weights of the combined factor.  
132.     # 1, 2, 3 or more factors can be used.  
133.     final_weights = JoinFactors(inputs=[bm_weights, op_weights, umd_weights],  
134.                                         mask=universe)   
135.     universe = final_weights.notnan()           
136.        
137.     # The Pipeline object filled with the data defined above is returned.   
138.     return Pipeline(   
139.         columns={   
140.                  'bm_weights': bm_weights,   
141.                  'op_weights': op_weights,   
142.                  'umd_weights': umd_weights,   
143.                  'final_weights':final_weights,   
144.                  'exchange': exchange,   
145.                  'market_cap': market_cap,   
146.                  'sector': sector,   
147.                 },   
148.         # Screen out all the data points outside the trading universe.   
149.         screen = universe   
150.     )   
151.    
152. # Returning the data from the pipeline run over  
153. # a period of time between 01.01.2003 and 01.01.2005.   
154. factor_data = run_pipeline(make_pipeline(), '2003-1-1', '2005-1-1')   
155.    
156. # We preload the pricing data for all assets in the universe  
157. # for the time period in question.   
158. # In order to run the analysis properly it is recommended that 
159. # for the pricing data to cover the period in factor_data with  
160. # at least 1 month before the start of factor_data and a few more  
161. # months after the factor_data.  
162. # It is also recommended to use "open_price" as the fields parameter.   
163. pricing_data = get_pricing(factor_data.index.levels[1], '2002-12-1',  
164.                            '2005-6-1', fields='open_price')   
165.    
166.    
167. # In[3]:   
168.    
169.    
170. #Show top 30 lines of the factor_data.   
171. factor_data.head(30)   
172.    
173.    
174. # In[4]:   
175.    
176.    
177. # Count the unique assets in factor_data.   
178. assets = factor_data.index.levels[1].unique()   
179. len(assets)   
180.    
181.    
182. # In[5]:   
183.    
184.    
185. # Plot the mean information coefficient decay.   
186. # The graph allows to see how long does the predicting power last.   
187. longest_look_forward_period = 126 # week = 5, month = 21,  
188.                                   # quarter = 63, year = 252   
189. range_step = 5   
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190.    
191.    
192. merged_data = get_clean_factor_and_forward_returns(   
193.     # Here the factor of choice should be specified.    
194.     # For example, 'bm_weights',  
195.     # ‘op_weights’, ‘umd_weights’ or ‘final_weights’.   
196.     factor=factor_data[‘bm_weights’],   
197.     prices=pricing_data,   
198.     periods=range(1, longest_look_forward_period, range_step)   
199. )   
200.    
201. mean_information_coefficient(merged_data).plot(title=”IC Decay”)   
202.    
203.    
204. # In[6]:   
205.    
206.    
207. # This cell generates a set of descriptive statistics  
208. # about the factor as well as a few useful graphs.   
209. sector_labels, sector_labels[-1] = dict(Sector.SECTOR_NAMES), "Unknown"   
210.    
211. merged_data = get_clean_factor_and_forward_returns(   
212.     # Here the factor of choice should be referred.    
213.     # For example, 'bm_weights',  
214.     # 'op_weights', 'umd_weights' or 'final_weights'.   
215.     factor=factor_data['bm_weights'],   
216.     prices=pricing_data,   
217.     groupby=factor_data['sector'],   
218.     groupby_labels=sector_labels,   
219.     binning_by_group=True,   
220.     # Custom forward returns periods could be selected here.    
221.     periods=(30,60,90)   
222. )   
223.    
224. create_information_tear_sheet(merged_data, by_group=True, group_neutral=True)   
225. create_returns_tear_sheet(merged_data, by_group=True, group_neutral=True)   
Note: the code template is dependent on the Alphalens API and should be run within Quantopian Notebooks IDE. 
For testing one would want to sign up on www.quantopian.com and create a new notebook. Then, the code 
above could be filled in (In[*] lines should be treated as breaks between the cells of the notebook. To define the 
factors, refer to Appendices 10 – 13. The template could be imported directly to the Quantopian Notebook re-
search with the instructions provided on GitHub (URL: https://github.com/slazarevich/fama_french_quantopian). 


