
 

 

Peter Kiplagat 

Android Vehicle Tracking System 
 

Metropolia University of Applied Sciences 

Bachelor of Engineering 

Degree Programme in Information Technology 

Bachelor’s Thesis 

7 May 2019 



 Abstract 

 

Author 
Title 
 
Number of Pages 
Date 

Peter Kiplagat 
Android Vehicle Tracking System 
 
43 pages + 12 appendices  
7 May 2019 

Degree Bachelor of Engineering 

Degree Programme Information Technology 

Professional Major Software Engineering 

Instructors 
 Jarkko Vuori, Principal Lecturer 

 
This project was conducted for a small logistic company co-owned by the author and part-

ners, and the purpose was to build an Android vehicle tracking system to be used as a tool 

for tracking of the company’s vehicles. The initial implementation as outline in this report 

was only limited to real-time tracking as a foundation to adding more features in the future. 

 

The mobile application was developed in Android Studio IDE using the Java programming 

language, while the tracking device was built from the Arduino Uno and SIM808 

GSM/GPS/BT shield. Firebase Realtime database was used as a database server, and PHP 

was used as a script language to setup the proxy server in the Metropolia school server. 

 

The implementation results were satisfactory with a functioning vehicle tracking system. The 

tracking device was capable of tracking the vehicle’s speed and location and successfully 

sending it to a database server while the Android mobile application was capable of com-

municating with the server and displaying the GPS data on the device’s google maps. 

 

The developed tracking system can be used effectively to track the company’s vehicles. 

However, it still needs more optimization and additional features to get excellent tracking 

information. The product is yet to receive feedback from the other partners, but notable fu-

ture development would be to study how to improve the map representation on the mobile 

application. 

 

Keywords Android, Arduino, Firebase Realtime Database 



 

 

 

Contents 

List of Abbreviations 

1 Introduction 1 

2 Current State 2 

3 Existing Tracking Technologies 4 

4 Development Tools 6 

4.1 Android Studio 6 
4.2 Firebase 7 
4.3 Arduino 8 

5 Android Application Development 13 

5.1 Android Overview and Software Stack 13 
5.2 Android Application Framework and Components 16 

6 Design, Implementation and Testing 22 

6.1 Phase One: Design 22 
6.2 Phase Two: Implementation First Cycle 22 

6.2.1 Hardware Installation 23 
6.2.2 Software Installation and Programming 24 
6.2.3 Phase Two Testing 25 

6.3 Phase Three: Implementation Second Cycle 27 
6.3.1 Firebase Realtime Database 27 
6.3.2 Proxy Server 28 
6.3.3 Phase Three Testing 30 

6.4 Phase Four: Implementation Third Cycle 31 
6.5 Phase Five: Implementation Fourth Cycle 33 

6.5.1 Setting up Development Environment 33 
6.5.2 Login Activity 33 
6.5.3 Maps Activity 35 
6.5.4 Phase Five Testing 36 

6.6 Phase Six: Practical Testing 37 



 

 

7 Summary and Conclusions 40 

References 41 

Appendices 

Appendix 1. Activity, Service, Broadcast Receiver and Content Provider 

Appendix 2. Arduino Software Code 

Appendix 3. Proxy Server PHP File 

Appendix 4. Android Login Activity 

Appendix 5. Android Map Activity 

  



 

 

Glossary 

API Application Programming Interface. A set of tools for building software  

APK Android Package. A package file format used by Android operating system 

for distribution and installation of mobile applications 

AT ATtension. AT Commands are instructions used to control a modem 

BT Bluetooth 

GPRS General Packet Radio Service 

GPS Global Positioning System 

GSM Global System for Mobile communications  

HTTP Hypertext Transfer Protocol 

IDE Integrated Development Environment  

iOS iPhone Operating System 

JDK Java Development Kit. A software development environment used for de-

veloping Java applications and applets. 

JSON JavaScript Object Notation 

NDK Native Development Kit. A toolset used for implementing applications in 

native code using C and C++ 

SDK Software Development Kit  

UART Universal Asynchronous Receiver- Transmitter 

UI User Interface



1 

  

 

1 Introduction 

The world has evolved and continues to evolve with technology. And this has led to tre-

mendous growth in businesses in all aspects. Particularly the mobile phone industries. 

The invention of smart mobile phones has seen many companies compete to develop 

and consistently improve their devices to match the new technology. 

 

More important is the focus on the software development. All mobile devices ran on dif-

ferent software platforms i.e. Android, iOS and Windows. This has in turn led to phenom-

enal development of mobile applications especially by service providers who wish to pro-

vide their services through the mobile phone. 

 

The goal of this project was to build a vehicle tracking system for a small logistic company 

registered abroad and co-owned by the author and family. From a commercial perspec-

tive, GPS tracking continues to gain demand as businesses especially trucking compa-

nies continue to recognize its benefits. This has led to, for example, improved delivery 

time and better fleet management and hence reduced inefficiencies and operation cost. 

 

The case company currently subscribes to tracking services from Goome GPS trackers 

[1]. Hence, the motivation for choosing this subject for the thesis. Although, the service 

fees seem negligible at the moment, a foreseeable company’s growth in the future will 

definitely be felt. Additionally, there is a flexibility to add more features to this product in 

the future, but currently the product only provides GPS tracking. 

This thesis has been divided into seven chapters. Chapter one introduces the purpose 

of the thesis while chapters two and three gives the background of the case company 

and the current technology being utilized along with other existing tracking technologies. 

Chapter four introduces the development tools that were utilized in the implementation 

and chapter five gives the theory on Android operating system. The step by step imple-

mentation and test results are detailed in chapter six and the report is concluded with 

chapter seven. 



2 

  

 

2 Current State 

As mentioned in the introduction, this project was proposed as a solution to try and pro-

vide a better and optimized solution to the current technology deployed by the company 

associated with the author. This chapter gives a brief overview of this case company 

under which the project was undertaken, the current technology and the proposed solu-

tion . 

 

The case company is a small scale logistic company registered in the year 2015 in 

Kenya. It is co-owned by the author and family members. And as such, the idea of the 

project was born by the author with the intention of using the acquired technical skills to 

try and provide an alternative solution to what is currently being utilized. The idea was 

brought to the attention of the team members with the objective of reducing the com-

pany’s cost and providing more optimization. 

 

Currently the company subscribes to tracking solutions from Goome GPS trackers, i.e. 

a Chinese tech company that develops and manufactures GPS tracking devices for ve-

hicles, people and assets [1]. Like many other tracking solutions, their service includes 

an installation of a GPS tracking device on a vehicle and a mobile application for tracking. 

This comes with a one-time installation charge and yearly fee that may differ with coun-

tries. 

 

Since the idea behind the project was to provide a cheaper and optimized alternative, a 

brainstorming session was raised in one of the meetings to get an insight of the team 

members opinions. The following were concluded: 

- A cheaper solution was viable especially with the feasible growth of the company 

- A flexible solution was needed because the current technology only provided 

GPS tracking with no modification possibilities. 

- There was considerable inconvenience as it relates to maintenance from the 
company representatives. 

 

For this reasons, a flexible solution was suggested with the initial aim of providing a 

similar GPS tracking with the possibilities of adding more features to the application in 

the future such as maintenance and drivers records. With a majority of the members 



3 

  

 

owning an Android phone, it was concluded that the project would begin with an Android 

mobile application with the possibility of developing an iOS application in the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

  

 

3 Existing Tracking Technologies 

In order to successfully complete the project, a general understanding of how GPS track-

ing works needed to be studied. And since the company already had a working solution, 

i.e. from Goome GPS trackers, there was already a vague idea on how the project 

needed to be conducted. Basically the three obvious requirements needed were: a track-

ing hardware, a server and a mobile application. This chapter gives the theory on the 

existing tracking technologies that were studied. 

 

Goome GPS Trackers 
 

The studies began with Goome GPS Trackers since it was a known working technology 

that the company was already using. When this service was ordered back in the year 

2015, the company sent there field technicians who came to install the tracking hard-

ware’s on the trucks. It was followed by an office meeting where the usage training was 

offered including the software downloads. 

 

A number of vehicle tracking devices are available for sale on Goome’s website. At the 

time of studying, the G19s model was their hot product. Figure 1 displays the G19s track-

ing device with its features. 

 

 



5 

  

 

 

Figure 1. G19s tracker [2]. 

 

Figure 1 displays the G19S tracking device with its tracking features which include, for 

example, real-time tracking, geo-fence, trace playback, movement etc. A quick online 

chat with their customer service confirmed their prices to be very reasonable and afford-

able. This comes with a free mobile application for both Android and iOS.  

 

Auto Leaders/ Sino Track 
 

Like Goome trackers, Sino track is a Chinese company offering similar tracking solutions. 

At the time of studying, the ST-908 model was their latest tracking device. A general 

comparison of the features listed on their website found their products to be similar to 

Goome’s with competitive prices. 

 

In conclusion from this and other tracking providers not documented here, it was found 

that most of the available tracking solutions were very much similar and within the same 

price ranges. Most of them offer a one-time payment for their tracking devices in addition 

to free software applications for both the mobile and the computer. They come with user 

manuals and can be posted to almost any part of the continent. Most of their hardware 

is open source but not programmable. Their software is also customized and without the 

possibilities of adding more features. 

 

 

 

 

 

 



6 

  

 

4 Development Tools 

4.1 Android Studio 

Android application development begins with setting up the development environment. 

Although Android operating system is based on Linux, Android SDK and tools are avail-

able for all the major operating systems i.e. Mac OS, Windows and Linux. Android Studio 

is the official Integrated Development Environment (IDE) for Android application devel-

opment based on IntelliJ IDEA, which offers a powerful code editor and developer tools 

with enhancing features such as: 

- A flexible Gradle-based build system 

- A fast and feature-rich emulator  

- A unified environment for developing for all Android devices 

- Instant Run for pushing changes to a running application without building 

a new APK 

- Code templates and GitHub integration to assist in building common ap-

plication features and importing sample code 

- Extensive testing tools and frameworks 

- Lint tools to catch performance, usability, version compatibility, and other 

problems 

- C++ and NDK support 

- Built-in support for Google Cloud Platform. [3] 
 

Android Studio is freely available for download from the official Android developer home 

page. It comes with installation instructions, which include a setup wizard for download-

ing the recommended Android SDK and lists the minimum system requirements for any 

of the chosen operating system. Android Studio version 2.2 and higher comes bundled 

with the latest OpenJDK, which is the recommended JDK version for Android projects 

[4]. 



7 

  

 

4.2 Firebase 

Firebase is a backend platform for building web and mobile applications. It was launched 

in April, 2012 by Tamplin and Andrew Lee, initially providing API’s for integrating online 

chats to websites and now as a Baas (Backend as a Service) platform for continuously 

improving the cloud experience with new features and functionalities [5]. 

 

Firebase Realtime Database 
 

Firebase Realtime Database is a NoSQL cloud hosted database that provides storage 

of data in JSON format and real-time synchronization to all connected users. Its key 

capabilities include data syncing to provide live updates to connected devices unlike the 

use of HTTP requests, offline response through SDK persistence of data to disk, scala-

bility across multiple databases and direct connection from either a mobile device or web 

browser as it does not need an application server. In addition, it provides an expression-

based rules language i.e. Firebase Realtime Database Security Rules for defining the 

data structure and read and write permissions. [6] 
 
Firebase Cloud Firestore 
 
Cloud Firestore is a NoSQL cloud-hosted document database that provides direct access 

to mobile and web applications through native SDK’s. Data is stored in documents which 

are organized into collections hence providing flexible, hierarchical data structures, 

which in turn offers fast and simplified querying of data and automatic scaling. Additional 

capabilities include; real-time listeners for syncing data across connected applications, 

offline response, serverless connection and integration with other Firebase and Google 

Cloud Platform (GCP). [7] 

 

Firebase Authentication 
 

Most applications require the identity of their users in order to securely save their data to 

the cloud and avail them on any of their devices. This is achieved using FirebaseUI as a 

complete drop-in auth solution or by using the Firebase Authentication SDK to manually 

integrate one or more sign-in methods into the app. Firebase supports authentication of 



8 

  

 

users on applications using passwords, phone numbers and popular federated identities 

such as Google and Facebook. [8] 

 

Firebase Cloud Storage 
 
Cloud Storage enables application developers to store and serve user-generated con-

tent, such as photos or videos. Firebase SDKs for Cloud Storage provides robust up-

loads and downloads irrespective of network quality i.e. ensuring the client can retry the 

operation right where it left off, saving the users time and bandwidth. Other capabilities 

include integration with Firebase Authentication and automatic scaling. [9] 

4.3 Arduino 

Arduino is an open source electronic platform based on simple hardware and software. 

It came into existence at the Ivrea Interaction Design Institute as a simple tool for fast 

prototyping and aimed at students lacking electronic and programming backgrounds. All 

Arduino boards and software are entirely open-source and can be adapted by the users 

as they see fit. [10] 

 

There currently exists many boards in the Arduino family with the most popular including 

but not limited to Arduino Uno, Arduino Nano, Arduino Mega and Arduino Due. Arduino 

boards use Arduino programming language as a set of instructions to read inputs and 

turn them into outputs. The Arduino programming language follows the C++ code struc-

ture and is made up of Functions for controlling the Arduino board and performing com-

putations and variables for defining the Arduino data types and constants. [11] 

 

Arduino software is available for all the major operating systems i.e. Mac, Windows and 

Linux. Their boards are relatively cheaper compared to other available microcontrollers. 

For this reasons among others and their simplicity, it was chosen for this project. 

 

Arduino IDE 
 



9 

  

 

The Arduino IDE is a development platform that allows users to write different kinds of 

embedded programs and upload them on to the many available Arduino boards. Arduino 

IDE is available in two options: 

- Online IDE: With the Arduino Web Editor, the sketches can be saved in the cloud 
making them available from any device. It requires a reliable internet connection 

to function and the updates are automatic. 

- Offline IDE: The offline IDE requires installation on to the development system. 

The sketches are saved on to the local machines, and they do not require an 

internet connection other than when uploading the codes to the boards. Updates 

are initiated by the user. [12] 

 

Figure 2 shows a screen shot of the Online IDE. 

 

 

 
Figure 2. Screen shot of Arduino Web Editor. 

 

Figure 2 displays a screenshot of the Arduino Web Editor. As observed, the IDE contains 

a section of different folders which includes, for instance, libraries and examples meant 



10 

  

 

to guide and help in the writing of the Arduino program. Also noticeable, are the two 

default functions needed for a working Arduino program: 

- Setup() function: It is called once when the program is started i.e. powerup or 
reset of the board for initialization purposes. 

- Loop() function: It is called after the Setup() function for looping purposes. 

 

Uploading of the code to the board is quiet streamlined. One just needs to connect an 

USB cable to the USB port of the Arduino from the computer, select the board/port, com-

pile the code and just save it to the board. 

 
Arduino Shields 
 
Arduino Shields are boards that can be stacked on top of the Arduino board to further 

extend its features [13]. Different kinds of shields are available on the market, both official 

and unofficial and a quick search on the net yields multiple results. They provide many 

features such as wireless communication in the form of GPRS or Bluetooth, additional 

sensors such as GPS and much more.  

 

SIM808 module 

 

SIM808 module is one of the latest Arduino shields used in this project that supports 

GSM/GPRS Quad-Band network and uses GPS technology to achieve satellite naviga-

tion. The key features include 850/900/1800/1900 MHz Quad-band, support for Blue-

tooth 4.0, high GPS receive sensitivity and support for A-GPS for indoor localization. [14] 

 

Figure 3 displays a snapshot of the SIM808 module with the integrated GSM, GPS and 

BT chips. 



11 

  

 

 
 

Figure 3. Snapshot of SIM808 module 

 

As illustrated in Figure 3, the SIM808 module is integrated with the GSM, GPS and BT 

chips and their functionalities can be achieved by connecting them to their respective 

antennas. 

 

SIM808 is controlled by AT (ATtension) commands through UART protocol to communi-

cate with an Arduino as seen in Figure 4.  

 



12 

  

 

 
Figure 4. SIM808 shield communication port [14]. 

 

In Figure 4, hardware and software serial communication is enabled either through pins 

D0 and D1 or pins D7 and D8 of the Arduino, respectively. SIM808 shield was chosen 

for this particular project as it provided the needed capabilities of GSM and GPS com-

munication. They are also relatively cheap and available and have a wealth of libraries. 

 

Arduino Uno 
 
Arduino Uno is one of the Arduino’s microcontroller boards that is based on ATmega328, 

and consisting of 14 digital input/output pins, 6 analog inputs, USB connection, power 

jack and a reset button among other features. It is the reference model of the Arduino 

platform having been the first in a series of USB Arduino boards. [15] 

 

It is the most robust and the most documented board of the Arduino family [15]. For this 

reason and the cost, it was chosen for this particular project. It is powered through an 

USB connection or an external battery and like the other boards, uses serial communi-

cation with the computer or other devices. 



13 

  

 

5 Android Application Development 

A vast amount of free online information is available for Android application development 

from various web sites and forums including but not limited to Google’s detailed devel-

oper guide. This section details the background of Android operating systems history 

and core topics. 

5.1 Android Overview and Software Stack 

Android is a Linux based mobile operating system originally developed by a startup with 

the same name. In 2005 Android Inc was acquired by Google along with its development 

team. Most of its code was released under the open source Apache License as it was 

Google’s intention to make it open and free. This together with the ability to customize 

through addition of one’s own proprietary extensions made it attractive to hardware man-

ufacturers. [16, p. 2] 

 

T-Mobile G1 was the first Android mobile handset with the first version of Android oper-

ating system released in the United States in October 2008. It has since undergone major 

transformation with the current version as of October 2018 being the Android 9 Pie. The 

initial version Android 1.0 included the common features like pull-down notifications, con-

tent sharing across applications and multitasking between applications but lacking ad-

vanced features such as voice search and turn-by-turn navigation which are now fea-

tured in the Android 9 Pie. The earlier versions included Cupcake (Android 1.5), Donut 

(Android 1.6), Éclair (Android 2.0), Froyo (Android 2.2), Gingerbread (Android 2.3), Hon-

eycomb (Android 3.0), Ice Cream Sandwich (Android 4.0), Jelly Bean (Android 4.1), Kit-

Kat (Android 4.4), Lollipop (Android 5.0), Marshmallow (Android 6.0), Nougat (Android 

7.0), Oreo (Android 8.0). [17, p. 11 ; 18]. 

 

Figure 5 displays the earliest and most recent Android handsets as of 2019. 



14 

  

 

  
 

Figure 5. T-Mobile G1 with the first Android version 1.0 (left) and Samsung S10 with the 

latest version Android 9 Pie (right) [19; 20]. 

 

Figure 5 shows the contrast between the first and the latest android handsets with their 

respective versions. The device on the left is the T-Mobile G1 earlier released in 2008 

adopting the very first Android operating system – Android 1.0 while the device on the 

right is the latest Samsung S10 recently released and running on the Android 9 Pie. The 

Pie emphasizes the power of Artificial Intelligence (AI) with noticeable changes being the 

removal of the three-button navigation setup from its predecessors.  There are currently 

many Android devices in Market including but not limited to Smartphones, Tablets, E-

readers, Internet TV’S, Automobiles and Smartwatches. 

 

The Android operating system is simplified as a Linux kernel and a collection of C/C++ 

libraries exposed through an application framework that provides services for, and man-

agement of, the run time and applications. Its elements of composition are discussed 

below: [17, p. 15] 

 

- Linux kernel: Linux 2.6 kernel handles the core services such as hardware 

drivers, process and memory management, security, network, and power man-

agement in addition to providing an abstraction layer between the hardware and 

the remainder of the stack. 



15 

  

 

- Libraries: This layer runs on top of the kernel and includes C/C++ core libraries 

such as libc and SSL. In  addition is a media library for audio and video media 

playback, a surface manager for display management, graphic libraries for 2D 

and 3D graphics, SQLite for native database support and SSL and WebKit for 

integrated web browser and Internet security. 

- Android run time: The Android run time, along with the core libraries and the 

Dalvik VM forms the basis for the application framework by powering the appli-

cations. The core libraries provide most of the functionality available in the core 

Java libraries in addition to Android specific libraries. While Dalvik is a register-

based Virtual Machine optimized to ensure that a device can run multiple in-

stances efficiently by relying on the Linux kernel for threading and low-level 

memory management. 

- Application framework: The application framework provides the classes for 

creating Android applications in addition to generic abstraction for hardware ac-

cess and managing the user interface and application resources. [17, p. 15] 

 

Figure 6 displays all of these components stack together to form the complete frame-

work. 



16 

  

 

 
 

Figure 6. Android Software Stack [17, p. 16]. 

 

Figure 6 illustrates the different components discussed above as they are stacked on 

one another to form the complete Android Software architecture. 

5.2 Android Application Framework and Components 

The Application Framework layer provides Java classes to be used by the developer in 

designing and building applications. Component reuse being a key feature in Android’s 

architecture enables a developer to publish and share activities, services, and data be-

tween applications. The Android framework is consists of the following key application 

services: [17, p. 17 ; 21] 

- Activity Manager controls the lifecycle of applications and manages the activity 

stack. 

- Content Providers allows sharing of data between applications. 



17 

  

 

- Resource Manager provides access to non-code resources such as strings, 

graphics and user interface layouts. 

- Notification Manager enables applications to send alerts and notifications to 

the user 

- View System contains a set of views to be used for creating user interfaces for 

applications. 

- Intents provides a mechanism for transferring data between applications and 
their components. [17, p. 17 ; 21] 

 

Application components are loosely linked by the application manifest file AndroidMan-
ifest.xml which gives a description of each component and how they interact. All Android 

applications have the manifest file which declares essential information to the Android 

platform it needs to know to successfully run the application. Among others, the decla-

ration include the minimum API level, hardware/software features and permissions re-

quired by the application. [22 ; 23, p. 12] 

 
Activities 
 
An activity represents a single screen with a user interface through which a user can 

interact with the application. A single application can be composed of many activities in 

which one should be marked as the activity that is presented when the application is 

launched. For instance, an email application might have one activity showing a list of 

new emails, another activity for composing an email, and another activity for reading 

emails. An activity is implemented as a subclass of Activity class as shown in Appendix 

1. [22 ; 23, p. 12] 

 

The life cycle of an activity 
 

The Activity instances in the application transition through different states of their lifecycle 

as the user flips through the application. The Activity class provides a number of call 

backs that allows the activity to be aware of their state transitions i.e. that the system is 

creating, stopping, or resuming an activity, or destroying the process in which the activity 

resides. The behaviour of an activity when the user leaves and re-enters the activity can 

be declared within the lifecycle call back methods. For instance, when building a 



18 

  

 

streaming video player, the video can be paused and the network connection terminated 

when the user switches to another application, which will then be reconnected when the 

user returns allowing the video to resume from the same spot. [24] 

 

Figure 7 provides a graphical view of an activity lifecycle. 

 

 
Figure 7. Activity lifecycle [24]. 

 



19 

  

 

Figure 7 illustrates a set of core call back methods used by an activity to transition be-

tween the different stages of its lifecycle. Although they all do not have to be always 

implemented, they provide developers a platform to achieve the desired user expecta-

tions through various processes as discussed below: 

- onCreate() is a call back method that should always be implemented. It is 
called when an activity is first created i.e. from a user choosing to start an appli-

cation. Basic application start up logic that should only happen once for its en-

tire life are performed here. For instance, creating views, initializing variables 

and binding data to lists. After its execution, the system calls the onStart() and 

onResume() methods in quick succession to enter the Started state as an activ-

ity does not reside in Created state. Any lifecycle-aware component tied to the 

activity’s lifecycle in the Created state also receives the ON_CREATE event. 

- onStart() is invoked after the onCreate and just before an activity is visible to 
the user [23,14]. Through this call, the application prepares the activity to be 

visible and interactive to the user for instance by initializing the code that main-

tain the UI. Any lifecycle-aware component tied to the activity’s lifecycle in the 

Started state also receives the ON_START event. Once completed, the activity 

enters the Resumed state has it neither resides in the Started state, and the 

system invokes the onResume() method. 

- onResume() is invoked once the activity enters the Resumed state and be-
comes visible to the user. The application remains in this state until otherwise 

something happens e.g. receiving a phone call. An interruptive event moves the 

activity to the Paused state and the system invokes the onPause() method. Any 

lifecycle-aware component tied to the activity’s lifecycle in this state receives 

the ON_RESUME event. 

- onPause() is invoked when an activity’s view becomes partially blocked and is 
no longer the focus of input [23,14] . The activity remains in this state until it ei-

ther resumes by invoking the onResume() method or becomes completely invis-

ible by invoking the onStop() callback. Any lifecycle-aware component tied to 

the activity’s lifecycle in this state receives the ON_PAUSE event. 

- onStop() is called once the activity moves to the Stopped state and becomes 
invisible to the user. From this state, the activity either reappears and the sys-

tem invokes onRestart or is finished and the system invokes onDestroy() . Any 



20 

  

 

lifecycle-aware component tied to the activity’s lifecycle in this state receives 

the ON_STOP event. 

- onRestart() is called after the onStop() when the current activity is being re-dis-
played i.e. the user navigating back. It is followed by onStart() and onResume() 

successively [25]. 

- onDestroy() is the final call before the activity is destroyed. The system invokes 

this callback either because the activity is finishing (the user completely ending 

the activity) or the system is temporarily destroying the activity due to a configu-

ration change (e.g. device rotation). Any lifecycle-aware component tied to the 

activity’s lifecycle in this state also receives the ON_DESTROY event. [24] 

 

Services 
 

Services are application components lacking the user interface and running in the back-

ground. They can perform the same actions as activities but without the user interface 

and are useful for long-running operations. For example, a service might play music in 

the background while the user flips through different applications. A service is imple-

mented as a subclass of Service class as shown in Appendix 1. [22 ; 26, p. 31-32] 

 

Broadcast Receivers 
 

Broadcast Receivers are application components without the user interface that simply 

respond to broadcast messages from either other applications or from the system, for 

example, a system initiated broadcast due to low battery or an incoming call. A broadcast 

receiver is implemented as a subclass of Broadcast Receiver class and each message 

is broadcaster as an Intent object as shown on Appendix 1. [22 ; 23, p. 18] 

 
Content Providers 
 

Content Providers are application components that provide interfaces for sharing data 

between applications. For example, the Contact application uses Contacts Provider to 

retrieve data about user’s contacts. The Contacts application itself does not have any 

contacts data, and the Contacts Provider does not have any user interface. It is imple-

mented as a subclass of Content Provider as shown in Appendix 1. [22 ; 26, p. 32-33] 



21 

  

 

 

 
Intents 
 
Intents are messaging objects used to communicate between application components. 

The fundamental use cases are starting an activity, starting a service and delivering a 

broadcast. They can either be Explicit intents, i.e. they specify the application that will 

perform the action, or Implicit intents, i.e. they declare a general action to perform 

without specifying any component. [27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

  

 

6 Design, Implementation and Testing 

This chapter describes the step by step development cycle of the software and hardware, 

from the design stages up until completion of the entire project. 

6.1 Phase One: Design 

The initial stage of the implementation began with the design of the visual layout of the 

desired end product. This was used as the basis of determining the hardware and soft-

ware requirements and the visual logic needed for the implementation. The design chart 

in Figure 8 illustrates the process flow of the project. 

 

 

 

 

 

Figure 8. Project design as a process flow chart. 

 

Figure 8 illustrates the logic and process flow of the desired end product. The tracking 

device would be responsible for tracking the location and speed of the vehicle and send-

ing it to a server. The server would then store the data and avail them on request to the 

mobile application. Finally the mobile application would provide an interface for viewing 

the tracking information of the vehicle. 

 

Before beginning to implement the design, certain requirements were set. The mobile 

application needed to be user friendly and easy to use and the cost needed to be kept 

as low as possible. For this reasons, two variables were chosen to be tracked: vehicle 

speed and location (latitude and longitude). 

6.2 Phase Two: Implementation First Cycle 

The first cycle of the implementation began with the design and building of the tracking 

device. The hardware and software tools needed to achieve this, as discussed on 

Mobile Ap-

plication Server 
Tracking 

Device 



23 

  

 

chapter 4 were chosen on the basis of the minimum variables set in Phase One of the 

implementation i.e. vehicle speed and location.  

6.2.1 Hardware Installation  

The hardware tools needed are listed below: 

-  Arduino Uno,  

- SIM808 shield with GSM and GPS antennas and 3 V lithium battery  

- 9 V battery 

- USB cable 

- SIM card 

 

Figure 9 displays the complete hardware installation of Arduino Uno stacked with SIM808 

shield. 

 

 
 

Figure 9. Arduino Uno with SIM808 shield. 

 

The installation as shown in Figure 9 was pretty straightforward with the help of the user 

guide. The SIM card was unlocked and inserted on to the SIM card holder, the GSM and 



24 

  

 

GPS antennas were connected, the 3V lithium battery was inserted on the battery holder, 

then finally stacked on top of the Arduino Uno. The 9V battery was left for the final instal-

lation as the USB cable used for programming  provided power supply needed for the 

initial set up and testing.  

6.2.2 Software Installation and Programming 

Once the hardware installation had been completed, the project moved to the final im-

plementation of the first cycle, i.e. programming of the Arduino to track the speed and 

location. The development system used was a workstation with Mac operating system. 

In addition,  Arduino IDE was needed for programming. The two available options were 

to download the Arduino IDE or use the Arduino Web Editor. The latter was chosen as it 

provided an easy setup with just an installation of the Arduino Plugin being required.  

 

Next, the program was written. There exists a wide amount of libraries from the Arduino 

community. Tiny GPS, Tiny GPS++, DF Robot, SIM808 and Adafruit Fona are most of 

the libraries that were studied and experimented with. The project finally settled on Ada-

fruit Fona library as a personal preference as it turned out to be more stable and simpli-

fied. 

 

The most important parts of the code is highlighted in Listing 1 below, whereas the entire 

code can be viewed in Appendix 2. 

 

// Instances 

SoftwareSerial fonaSS = SoftwareSerial(7, 8); 

 

// Global variables for holding gps data 

float latitude, longitude, speed_kph; 

 

// Turn GPRS off & on again 

  if (!fona.enableGPRS(false)) 

    Serial.println(F("Failed to turn off")); 

 

  delay(1000); 



25 

  

 

 

  if (!fona.enableGPRS(true)) 

    Serial.println(F("Failed to turn on")); 

 

  delay(1000);  

 

boolean gps_success = fona.getGPS(&latitude, &longitude, 

&speed_kph); 

 

Listing 1. Section of the code for initializing and enabling GPRS. 

 

As it can been observed from Listing 1, Software serial communication was enabled with 

pins 7 and 8 as RX and TX respectively. Global variables for holding the GPS data were 

declared as floating values,  and finally the GPRS was enabled. The last line of code 

was used inside the getGPS() function to retrieve the GPS data i.e. latitude, longitude 

and speed. 

6.2.3 Phase Two Testing 

The first cycle was concluded with testing of the code on the serial monitor of the Arduino 

IDE. This was achieved by connecting the Arduino to the computer with an USB cable 

and switched ON with the ON/OFF button. The baud rate on the monitor was selected 

to match the baud rate in the code i.e. the recommended 19200 bps. The code was then 

compiled and after fixing of the errors was uploaded to the board. Figure 10 displays a 

section of the results on the serial monitor. 

 



26 

  

 

 
 

Figure 10. Screenshot of Arduino IDE Serial monitor. 

 

Phase two was completed successfully with the output of the desired results i.e. latitude, 

longitude and speed as can be observed in Figure 10. 

 

Table 1 describes the AT commands implemented in the Arduino code as displayed in 

Figure 10. 

 

Table 1. SIM808 AT commands. 

Syntax Description 
AT+CGNSPWR? Queries the status of GNSS power supply 

AT+CGNSINF Reads GNSS navigation information 

AT+CREG? Queries the cell network 

AT+CIPGSMLOC=1,1 Retrieves GSM location and time 

 

 



27 

  

 

The Arduino software implemented AT commands as described in Table 1 to enable the 

GPS and used the Serial.println() function to output the results to the serial monitor 

mainly for debugging purposes. 

6.3 Phase Three: Implementation Second Cycle 

The implementation of the second Cycle was to setup the Server, which in this case was 

the Firebase database so that it could receive GPS data from the Arduino tracking de-

vice. 

6.3.1 Firebase Realtime Database 

The two available options discussed in chapter 4.2 were Firebase Realtime database 

and Cloud Firestore. The project opted to use the Realtime database as the latter was 

still in beta stage. 

 

The sign up and configuration follows the user guide and is not detailed in this report. 

Figure 11 displays an overview of the Firebase Realtime Database. 

 

 



28 

  

 

 

Figure 11. Screenshot of Firebase Realtime Database.  

 

The read and write permissions are set in the Rules section and data is accessed in the 

Data section as seen in Figure 11. Noticeable, is also the URL link for accessing the 

database. Firebase Authentication, also briefly discussed in chapter 4.2 was used to 

authenticate the database using the email and password.  

 

6.3.2 Proxy Server 

The next task was to establish the HTTPS connection between the database and the 

Arduino tracking device in order to transmit the GPS data. However, it was realised that 

Arduino only supported HTTP communication while the Firebase accepted only HTTPS 

requests. This necessitated building of a proxy server to provide the linkage. 

 

The design chart in Figure 12 illustrates the updated process flow of the project with the 

proxy server included. 

 

 

 

 

 

Figure 12. Project design as a process flow chart with the proxy server included. 

 

As illustrated in Figure 12, the Arduino sends the GPS data using HTTP to the proxy 

server. The proxy server in turn forwards the data using HTTPS to the Firebase Realtime 

Database. And finally it is accessed via the Android application on the mobile phone. 

  

Firebase has third party libraries in different programming languages for creating an in-

terface to interact with the Firebase REST API (Representational State Transfer Appli-

cation program interface that uses HTTP requests to modify data). Listing 2 shows a part 

of the PHP file implemented using the Firebase PHP library to create an interface for 

Mobile Ap-

plication 

Firebase 

Realtime 
Proxy Ser-

ver 

Arduino + 

SIM808 



29 

  

 

linking the Firebase to the Arduino. The entire PHP library file can be viewed from Ap-

pendix 3. 

 

//Connect to firebase / secret contains the credentials 
        $acc = ServiceAccount::fromJsonFile( '../../secret/trackme.json'); 
 
// Write data to firebase using Push method 
    public function insert(array $data) { 
        if (empty($data) || !isset($data)) { return FALSE; } 
 
        $ref = $this->database->getReference()->getChild($this->dbname)-
>push($data); 
 
        return $ref->getKey(); 
    } 
 

Listing 2. Section code of the PHP file for connecting to Firebase database 

 

As observed from Listing 2, HTTPS request was achieved by appending .json at the end 

of the Firebase Realtime Database URL. Data was then written using the PUSH method. 

Notice that ‘secret’ folder contained the firebase credentials. 

 

The setup of the proxy server was concluded by hosting the created PHP file in the 

personal home drive of Metropolia’s school server. This was uploaded into the pub-
lic_html folder as seen in Figure 13. 

 

 
 

Figure 13. Screenshot of school personal home drive.  

 



30 

  

 

Figure 13 shows the Firebase PHP file named ‘firebaselib.php’ in addition to the vendor 

directory hosted in the personal home drive. The vendor directory not discussed in the 

report contained the Composer and the PHP autoload used in creating the Firebase li-

brary file. 

6.3.3 Phase Three Testing 

The second cycle of the implementation was concluded by testing the communication 

between the proxy server and the Firebase Realtime database. This was achieved by 

manually entering random values for the GPS data within the URL link: http://us-

ers.metropolia.fi/~peterkip/v2/firebaselib.php?deviceid=ABC-

123&lat=56.045326&lon=48.33487&speed=85 and checking the database if it was reg-

istering the same values. 

 

Figure 14 shows the expected updates on the Firebase Realtime database. 

 

 
 

Figure 14. Firebase Realtime Database update. 

 

The random values entered in the URL link above i.e. latitude (lat = 56.045326), longi-

tude (lon= 48.33487) and speed (speed= 85) were updated on real time on the database 

as seen in Figure 13. This concluded phase three with success. 



31 

  

 

6.4 Phase Four: Implementation Third Cycle 

Having setup and configured the connection between the Firebase Realtime database 

and the proxy server, the third cycle implemented a connection between the proxy server 

and the Arduino tracking device. This was achieved with additional programming of the 

Arduino using the Fona library code as seen in Appendix 2. Notice, that the Fona library 

code has example implementations for SMS response and  incoming call response in 

addition to GPS tracking. Further capabilities can be achieved through modifications by 

the programmer. 

 

Listing 3 highlights part of the code used inside the sendToFirebase() function in Ap-

pendix 2. 

 

//build the URL to the proxy 

  String url = "http://users.metropolia.fi/~peterkip/v2/firebaselib.php?/"; 

  url += "&deviceid="; 

  url += String(deviceid); 

  url += "&lat="; 

  url += String(latitude); 

  url += "&lon="; 

  url += String(longitude); 

  url += "&speed="; 

  url += String(speed_kph); 

 

Listing 3.  URL link to proxy server. 

 

Listing 3 illustrates how the URL link was built. Device id which can also be the vehicle 

registration was appended to the base URL together with the GPS data. This was then 

used by the Fona library to implement AT commands earlier introduced in phase two, to 

establish HTTP connection between the tracking device and the proxy server and send 

the GET request. 

 

Phase Four Testing 

 



32 

  

 

The third cycle was concluded by testing the Arduino code and checking the database 

for data updates. This was achieved using an USB cable and the setup procedure dis-

cussed in phase two testing.  

 

Figure 15 displays a section of the results printed on the Arduino serial monitor. 

 

 
 

Figure 15. Arduino output. 

 

Phase four was completed successfully with the output of the expected results as dis-

played in Figure 15. The status code of 200 confirmed a successful GET request which 

was also double checked against the data in the database. The serial monitor also dis-

plays the AT commands implemented in the Fona library. 



33 

  

 

6.5 Phase Five: Implementation Fourth Cycle 

So far, the system had been tested to function up to the server. Next, was the fourth 

cycle implementation which was also the final implementation of the project. The focus 

here was to design and build the Android application and connect it to the Firebase. 

 

Taking into consideration, the tracking information stored in the database and what was 

expected to be displayed to the user, the application settled on two Activities: Login Ac-

tivity for authentication and Map Activity for displaying the GPS data (location and 

speed).  

6.5.1 Setting up Development Environment 

Android Studio earlier introduced in chapter 4.1 was used as the development environ-

ment for the Android application. The Mac OS  also earlier mentioned in phase two of 

the implementation was used as the development system. It is worth noting that the An-

droid Studio was already pre-installed in the development system from a previous An-

droid course and as such it was only updated to the newest version i.e. version 3.4.  

 

The Android studio also had an emulator already pre-configured i.e. Nexus 5. However, 

the author already owned an Android phone i.e. Huawei P smart and as such it was 

preferred for this project. Connecting this phone to the Android studio was pretty straight-

forward with just an installation of the USB drivers in the development system and ena-

bling of USB debugging from the phone’s settings. 

6.5.2 Login Activity 

Login Activity was implemented as the user interface of the application i.e. the main ac-

tivity of the application. This was responsible for the following:  

- Taking the user credentials for authentication 

- Calling the Map activity on successful authentication. 
 

This was achieved by implementing Firebase Authentication as discussed in chapter 4.2 

using “email” and “password”.  



34 

  

 

 

Android Studio comes with Firebase assistant window under the ‘Tools’ section. This 

provided an easy setup wizard. Although not detailed in this report, the email and pass-

word authentication was selected from the Authentication feature, together with Realtime 

database then connected to Firebase. 

 

 Figure 16 displays the Login page of the application on Huawei P smart mobile phone. 

 
 

Figure 16. Login page 

 

Figure 16 displays the login page of the application requiring email and password. This 

was implemented using Edit Text fields and a button with onClick listener. The entire 

Java code is detailed in Appendix 4 excluding the XML file. 



35 

  

 

6.5.3 Maps Activity 

Maps Acivity was the second activity of the application responsible for displaying the 

Map with the GPS location and speed. The activity used markers to display the location 

on Google map and Text View to display the speed. 

 

The activity implemented OnMapReadyCallback library among other libraries and func-

tions as detailed in Appendix 5. Listing 4 highlights part of the java code as implemented 

on Android Studio. 

 
@Override 
//calls the Google maps when ready 
public void onMapReady(GoogleMap googleMap) { 
    mMap = googleMap; 
    mMap.setMaxZoomPreference(20); 
 
    onLocationChange(); 
} 
 
//Listens to Firebase for updates and displays the data upon updates 
private void onLocationChange() { 
    DatabaseReference reference = FirebaseDatabase.getInstance().getRefer-
ence("gps"); 
    reference.addChildEventListener(new ChildEventListener() { 
        @Override 
        public void onChildAdded(DataSnapshot dataSnapshot, String previ-
ousChildName) { 
            //Clear previous markers 
            mMap.clear(); 
            //Set marker to currentLocation 
            setmMarkers(dataSnapshot); 
        } 
 
        @Override 
        public void onChildChanged(DataSnapshot dataSnapshot, String previ-
ousChildName) { 
            //Set marker on the updated location 
            setmMarkers(dataSnapshot); 
 
        } 
 
Listing 4. Functions for calling google map. 

 

Listing 4 illustrates the main functions implemented on Android Studio to successfully 

call the google map with the GPS data. The OnMapReady() function displays the google 

map when it is ready and available and calls the onLocationChange function. The on-

LocationChange() function is tasked with listening to Firebase for updates, upon which it 

calls the setMarker() function to insert the markers on the Map and display the speed on 

the Text View field. 



36 

  

 

6.5.4 Phase Five Testing 

Like all the other implementation cycles, Phase Five was concluded with testing of the 

Android application. This was done using a Huawei mobile phone that was already con-

figured to the Android Studio. Running the application on Android Studio while the phone 

is connected to the computer with an USB cable installs the application on the phone. 

 

Figure 17 illustrates the testing of the application. 

 

  
 

Figure 17. GPS tracking application 

 



37 

  

 

Figure 17 illustrates how the application was tested and the results. This was verified 

from the data stored in the Firebase Realtime database. To achieve this, the database 

was first populated with random GPS data and a random user was registered using a 

random email and password. Entering the correct credentials and clicking the login but-

ton would then display the map with the latest GPS data as stored in the database while 

wrong credentials would toast a failed login message. 

6.6 Phase Six: Practical Testing 

The project had now reached the final milestone and was ready to be deployed for prac-

tical use. As mentioned before, the intention so far had been to track the location and 

speed of the vehicle, and all the preceding test results had proven that the system was 

functioning as expected. However, so far all the tests had been done with the device 

connected to the computer and with random generated data. The final phase, therefore, 

was to confirm this results with a practical test of the product.  

 

Unlike the previous tests, this time the Arduino tracking device was disconnected from 

the computer and powered with the 9V lithium battery. The pre-requisites were the sim 

card had to have some active data, and the Huawei mobile phone needed to have access 

to the internet. With the help of a friend, the system was placed inside a car and a small 

test drive was done while the application was open.  

 

Figure 18 displays the GPS location and speed as viewed on the Map activity of the 

application and the phone’s location on google map. 



38 

  

 

  
 

Figure 18. Map page of the application (left) vs google map location (right). 

 

The images displayed in Figure 18 captures the same instances as viewed from the 

same phone on both the map activity of the application and the google map current lo-

cation. 

 

The Map activity of the application uses red markers and text to display the current GPS 

location and speed respectively. This data was then compared to the google map current 

location and driving speed of the car. Notice that the images displayed above were cap-

tured while the car was stationary i.e. speed reading of 0.0 km/hr. 

 

The results displayed in Figure 18 confirms that the system is working as designed. How-

ever, the GPS accuracy has not been achieved. Also worth noting is that the speed 



39 

  

 

reading were mostly inaccurate especially when the car was in motion. In some instances 

a speed of over 50km/h was recorded, and yet the car had been stopped. 

 

It is also worth noting that the Arduino tracker had been set to a 10 second delay and 

SIM808 automatically selected the position sampling frequency from the four available  

frequency bands  as mentioned in chapter 4.3 (850/900/1800/1900 MHz). These were 

some the factors attributed to the inaccurate GPS readings. 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 

  

 

7 Summary and Conclusions 

The overall outcome of the project was successful. The tracking device built from the 

Arduino and SIM808 shield is capable of tracking the vehicle’s speed and location, and 

sending it to the database, while the Android application developed is capable of display-

ing this data as initially intended.  

However, the accuracy of the GPS results is still not met. From the final results noted in 

chapter 6, there was a big variation in the GPS data especially the speed. It is assumed 

that this inaccuracy might be attributed to the sensitivity of the GSM module and the 

position sampling frequency. Additionally, the location variables (latitude and longitude) 

were retrieved as double variables in the Android application. For this reason, it is as-

sumed that floating variables might provide more location precision in the future. 

The objective of the project was to build an Android vehicle tracking system to be used 

as a monitoring tool for the company’s vehicles. Judging by the results, it can be con-

cluded that this goal has been successfully achieved upon completion of this project. The 

Android application is very easy to use and the tracking device can easily be installed on 

the vehicle. 

The whole experience has been positive with many lessons learnt concerning time man-

agement and expectations. If this was to be repeated, then definitely better planning and 

more research on the topic would have to be undertaken before embarking on the pro-

ject.  

In conclusion, the project has achieved its purpose by providing a functional Arduino 

vehicle tracking device and an Android mobile application as a final product. This can 

already be utilized by the company. However, this application is not fully developed to its 

potential, and due to the deadline of this report, the assumptions noted above are left to 

be studied and implemented later. In addition, further studies are needed for better rep-

resentation of the GPS data on the map. 



41 

  

 

References 

1. Shangai Gumi Industrial Co. Ltd [Internet]. Goomegpstracker.com. 2019 [cited 
27 March 2019]. Available from: http://www.goomegpstracker.com/COM-
PANY/About-Us/About-Us.html 
 

2. G19S GPS Tracker [Internet]. Goomegpstracker.com. 2019 [cited 28 March 
2019]. Available from: http://www.goomegpstracker.com/PRODUCT/Vehicle-
GPS-Tracker/car-gps-tracker/33.html 

 

3. Meet Android Studio [Internet]. Developer.android.com. 2019 [cited 15 March 
2019]. Available from: https://developer.android.com/studio/intro 

 
4. Configure Android Studio [Internet]. Developer.android.com. 2019 [cited 15 

March 2019]. Available from: https://developer.android.com/studio/intro/studio-
config 

 

5. Kumar A. Mastering Firebase For Android Development [Internet]. Chaudhari K, 
Raman R, Carneiro F, Sunilkumar S, Editing S. Birmingham: Packt Publishing 
Ltd; June 2018 [cited 20 March 2019]. Available from: 
https://books.google.fi/books?id=RMNiDwAAQBAJ&printsec=frontcover&dq=in-
title:Mastering+Firebase+for+Android+Development+:+Build+Real-Time,+Scal-
able,+and+Cloud-enabled+Android+Apps+with+Fire-
base&hl=en&sa=X&ved=0ahUKEwiziJbG-ZDhAhWE16YKHduYB34Q6AEIK-
TAA#v=onepage&q=intitle%3AMastering%20Firebase%20for%20An-
droid%20Development%20%3A%20Build%20Real-Time%2C%20Scala-
ble%2C%20and%20Cloud-enabled%20Android%20Apps%20with%20Fire-
base&f=false 

 
6. Firebase Realtime Database [Internet]. Firebase.google.com. 2019 [cited 20 

March 2019]. Available from: https://firebase.google.com/docs/database/ 
 

7. Cloud Firestore [Internet]. Firebase.google.com. 2019 [cited 20 March 2019]. 
Available from: https://firebase.google.com/docs/firestore/ 

 
8. Firebase Authentication [Internet]. Firebase.google.com. 2019 [cited 15 March 

2019]. Available from: https://firebase.google.com/docs/auth/ 
 

9. Cloud Storage [Internet]. Firebase.google.com. 2019 [cited 15 March 2019]. 
Available from: https://firebase.google.com/docs/storage/ 

 

10. What is Arduino? [Internet]. Arduino.cc. 2019 [cited 23 April 2019]. Available 
from: https://www.arduino.cc/en/Guide/Introduction 

 



42 

  

 

11. Language Reference [Internet]. Arduino.cc. 2019 [cited 23 April 2019]. Available 
from: https://www.arduino.cc/reference/en/ 

 

12. Getting Started with Arduino and Genuino Products [Internet]. Arduino.cc. 2019 
[cited 23 April 2019]. Available from: https://www.arduino.cc/en/Guide/HomeP-
age 

 

13. Shields [Internet]. Arduino.cc. 2019 [cited 24 April 2019]. Available from: 
https://www.arduino.cc/en/Main/arduinoShields 

 

14. SIM808 GPRS/GSM+GPS Shield v2.0 [Internet]. Elecrow.com. 2019 [cited 25 
April 2019]. Available from: https://www.elecrow.com/wiki/index.php?ti-
tle=SIM808_GPRS/GSM%2BGPS_Shield_v2.0#Resources 

 
15. Arduino Uno Rev3 [Internet]. Arduino.cc. 2019 [cited 24 March 2019]. Available 

from: https://store.arduino.cc/arduino-uno-rev3 
 

16.  Lee W-M, DiMarzio J.F. Beginning Android Programming with Android Studio 
[Internet]. 4th ed. John Wiley & Sons, Incorporated; October 2016 [cited 7 March 
2019]. Available from: https://ebookcentral.proquest.com/lib/metropolia-
ebooks/reader.action?docID=4714030 

 

17. Meier R. Professional Android 4 Application Development [Internet]. 3rd ed. 
John Wiley & Sons, Incorporated; April 2012 [cited 9 March 2019]. Available 
from: https://ebookcentral.proquest.com/lib/metropolia-ebooks/detail.action?do-
cID=818033 

 

18. Celebrating a Sweet Decade of Android [Internet]. Blog.google.com. 2019 [cited 
9 March 2019]. Available from: https://blog.google/products/android/celebrating-
sweet-decade-android/ 

 

19.  Android: A 10-Year Visual History [Internet]. Theverge.com 2019 [cited 9 
March 2019]. Available from: https://www.theverge.com/2011/12/7/2585779/an-
droid-10th-anniversary-google-history-pie-oreo-nougat-cupcake 

 

20. Galaxy S10e|S10|S10+ [Internet]. Samsung.com. 2019 [cited 9 March 2019]. 
Available from: https://www.samsung.com/fi/smartphones/galaxy-s10/buy/ 

 
21. Android – Architecture [Internet]. Tutorialspoint.com. 2019 [cited 11 March 

2019]. Available from: https://www.tutorialspoint.com/android/android_architec-
ture.htm 

 

22. Android – Application Components [Internet]. Tutorialspoint.com. 2019 [cited 13 
March 2019]. Available from: https://www.tutorialspoint.com/android/an-
droid_application_components.htm 

 



43 

  

 

23. Panigrahy N. Xamarin Mobile Application Development for Android [Internet]. 
2nd ed. Birmingham: Packt Publishing Ltd; August 2015 [cited 13 March 2019]. 
Available from: 
https://books.google.fi/books?id=3bVrCgAAQBAJ&printsec=frontcover&dq=inti-
tle:Xamarin+Mobile+Application+Development+for+Android+-+Second+Edi-
tion&hl=en&sa=X&ved=0ahUKEwiUs6DavfTgAhWd6KYKHS9sDMQQ6AEIK-
TAA#v=onepage&q&f=false 

 

24. Understand The Activity Lifecycle [Internet]. Developer.android.com. 2019 [cited 
13 March 2019]. Available from: https://developer.android.com/guide/compo-
nents/activities/activity-lifecycle 

 
25. OnRestart [Internet]. Developer.android.com. 2019 [cited 14 March 2019]. 

Available from: https://developer.android.com/reference/android/app/Activ-
ity.html#onRestart() 

 
26. Gargenta M. Learning Android [Internet]. 1st ed. Oram A, Jepson B. Sebastopol: 

O’Reilly Media, Inc; 2011 [cited 14 March 2019]. Available from: 
https://books.google.fi/books?id=oMYQz4_BW48C&printsec=frontcover&dq=Le
arning+An-
droid&hl=en&sa=X&ved=0ahUKEwjl4ZbBq_rgAhVlwcQBHbhvA98Q6AEIM-
DAB#v=onepage&q&f=false 

 

27. Intents and Intent Filters [Internet]. Developer.android.com. 2019 [cited 14 
March 2019]. Available from: https://developer.android.com/guide/compo-
nents/intents-filters 

 



Appendix 2 

  1 (12) 

 

  

 

Appendix 1. Activity, Service, Broadcast Receiver and Content provider 

public class MainActivity extends Activity { 

} 

 

public class MyService extends Service { 

} 

 
public class MyReceiver  extends  BroadcastReceiver { 

   public void onReceive(context,intent){} 

} 

 
public class MyContentProvider extends  ContentProvider { 

   public void onCreate(){} 

} 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 2 

  2 (12) 

 

  

 

Appendix 2. Arduino Software Code 
 

//Libraries 

#include "Adafruit_FONA.h" 

#include <SoftwareSerial.h> 

 

// Instances 

SoftwareSerial fonaSS = SoftwareSerial(7, 8); 

SoftwareSerial *fonaSerial = &fonaSS; 

 

// Fona instance 

Adafruit_FONA fona = Adafruit_FONA(4); 

 

//Global variables for holding gps data 

float latitude, longitude, speed_kph;  

 

void setup() { 

  // Initialize serial 

  while (!Serial); 

  Serial.begin(19200); 

  Serial.println(F("Initializing....")); 

 

  fonaSerial->begin(19200); 

  if (! fona.begin(*fonaSerial)) { 

    Serial.println(F("Initialization failed")); 

    while (1); 

  } 

 

  // Setup GPRS settings => APN 

  fona.setGPRSNetworkSettings(F("internet")); 

 

  // Wait 

  delay(1000); 



Appendix 2 

  3 (12) 

 

  

 

 

  // Turn GPRS off & on again 

  if (!fona.enableGPRS(false)) 

    Serial.println(F("Failed to turn off")); 

 

  delay(1000); 

 

  if (!fona.enableGPRS(true)) 

    Serial.println(F("Failed to turn on")); 

 

  delay(1000); 

 

  Serial.println(F("Enabling GPS...")); 

  fona.enableGPS(true); 

 

  //getGPS(); 

  //sendToFirebase(); 

 

} 

void loop() { 

  getGPS(); 

  sendToFirebase(); 

 

} 

 

//Sending data to Server 

void sendToFirebase() { 

 

  // Setting the device ID/ In this case the Vehicle Reg 

  String deviceid = "ABC-123"; 

 

  // Log 

  Serial.print("DeviceID: "); 

  Serial.println(deviceid); 



Appendix 2 

  4 (12) 

 

  

 

  Serial.print("latitude: "); 

  Serial.println(latitude); 

  Serial.print("longitude: "); 

  Serial.println(longitude); 

  Serial.print("speed: "); 

  Serial.println(speed_kph); 

 

  // Prepare HTTP request 

  uint16_t statuscode; 

  int16_t length; 

 

  //http://users.metropolia.fi/~peterkip/v2/firebaselib.php?de-

viceid=123&lat=56.045326&lon=48.33487&speed=82 

  //build the URL to the proxy 

  String url = "http://users.metropolia.fi/~peterkip/v2/firebaselib.php?/"; 

  url += "&deviceid="; 

  url += String(deviceid); 

  url += "&lat="; 

  url += String(latitude); 

  url += "&lon="; 

  url += String(longitude); 

  url += "&speed="; 

  url += String(speed_kph); 

 

 

  char buf[80]; 

  url.toCharArray(buf, url.length()); 

 

  Serial.print("Sending GET request to server  "); 

  Serial.println(buf); 

 

  // Send GPS data to Firebase 

  if (!fona.HTTP_GET_start(buf, &statuscode, (uint16_t *)&length)) { 

    Serial.println("Failed!"); 



Appendix 2 

  5 (12) 

 

  

 

  } 

  while (length > 0) { 

    while (fona.available()) { 

      char c = fona.read(); 

      Serial.write(c); 

      length--; 

    } 

  } 

 

  fona.HTTP_GET_end(); 

 

  // Wait 

  delay(10000); 

 

} 

 

//Getting the GPS data 

void getGPS() 

{ 

  delay(2000); 

 

  // if you ask for an altitude reading, getGPS will return false if there isn't a 3D fix 

  boolean gps_success = fona.getGPS(&latitude, &longitude, &speed_kph); 

 

  if (gps_success) { 

 

    Serial.print("GPS lat:"); 

    Serial.println(latitude, 6); 

    Serial.print("GPS long:"); 

    Serial.println(longitude, 6); 

    Serial.print("GPS speed KPH:"); 

    Serial.println(speed_kph); 

 

  } else { 



Appendix 2 

  6 (12) 

 

  

 

    Serial.println("Waiting for FONA GPS 3D fix..."); 

  } 

 

  // Fona 3G doesnt have GPRSlocation :/ 

  if ((fona.type() == FONA3G_A) || (fona.type() == FONA3G_E)) 

    return; 

  // Check for network, then GPRS 

  Serial.println(F("Checking for Cell network...")); 

  if (fona.getNetworkStatus() == 1) { 

    // network & GPRS? Great! Print out the GSM location to compare 

    boolean gsmloc_success = fona.getGSMLoc(&latitude, &longitude); 

 

    if (gsmloc_success) { 

      Serial.print("GSMLoc lat:"); 

      Serial.println(latitude, 6); 

      Serial.print("GSMLoc long:"); 

      Serial.println(longitude, 6); 

      Serial.print("GSMLoc speed:"); 

      Serial.println(speed_kph, 6); 

    } else { 

      Serial.println("GSM location failed..."); 

      Serial.println(F("Disabling GPRS")); 

      fona.enableGPRS(false); 

      Serial.println(F("Enabling GPRS")); 

      if (!fona.enableGPRS(true)) { 

        Serial.println(F("Failed to turn GPRS on")); 

      } 

    } 

  } 

 

} 

 

 



Appendix 2 

  7 (12) 

 

  

 

Appendix 3. Proxy Sever PHP File 
 

 

<?php 
 
require_once './vendor/autoload.php'; 
 
use Kreait\Firebase\Factory; 
use Kreait\Firebase\ServiceAccount; 
 
class firebaselib 
{ 
    protected $database; 
    protected $dbname = 'gps'; 
 
    public  function  __construct(){ 
 
        //Connect to firebase / secret contains the credentials 
        $acc = ServiceAccount::fromJsonFile( '../../se-
cret/trackme.json');//__DIR__ . 
 
        $firebase = (new Factory)->withServiceAccount($acc)->create(); 
 
        $this->database = $firebase->getDatabase(); 
 
    } 
 
    // Write data to firebase using Push method 
    public function insert(array $data) { 
        if (empty($data) || !isset($data)) { return FALSE; } 
 
        $ref = $this->database->getReference()->getChild($this->dbname)-
>push($data); 
 
        return $ref->getKey(); 
    } 
 
} 
 
$gps = new firebaselib(); 
 
var_dump($_GET); 
$id = htmlentities($_GET["deviceid"]); 
$lat = htmlentities($_GET["lat"]); 
$lon = htmlentities($_GET["lon"]); 
$speed = htmlentities($_GET["speed"]); 



Appendix 2 

  8 (12) 

 

  

 

$time = date('c'); 
 
var_dump($gps->insert([ 
    //'track' => [ 
        'id'=> $id, 
        'lat' => $lat, 
        'lon' => $lon, 
        'speed' => $speed, 
        'time' => $time 
   // ] 
])); 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 2 

  9 (12) 

 

  

 

Appendix 4. Android Login Activity 
 
public class MainActivity extends AppCompatActivity { 
 
    private static final String TAG = MainActivity.class.getSimpleName(); 
 
    private EditText firebase_email, firebase_password; 
    private Button loginBtn; 
    private ProgressBar progressBar; 
 
    private FirebaseAuth mAuth; 
 
 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_main); 
 
        // Initialize Firebase Auth 
        mAuth = FirebaseAuth.getInstance(); 
 
        initializeUI(); 
 
        loginBtn.setOnClickListener(new View.OnClickListener() { 
            @Override 
            public void onClick(View v) { 
                loginUserAccount(); 
            } 
        }); 
    } 
 
    private void loginUserAccount() { 
        progressBar.setVisibility(View.VISIBLE); 
 
        String email, password; 
        email = firebase_email.getText().toString(); 
        password = firebase_password.getText().toString(); 
 
        if(TextUtils.isEmpty(email)){ 
            Toast.makeText(getApplicationContext(),"Please enter email...", 
                    Toast.LENGTH_LONG).show(); 
            return; 
        } 
        if(TextUtils.isEmpty(password)){ 
            Toast.makeText(getApplicationContext(),"Please enter password...", 
                    Toast.LENGTH_LONG).show(); 
            return; 
        } 
 
        mAuth.signInWithEmailAndPassword(email,password) 
                .addOnCompleteListener(new OnCompleteListener<AuthResult>() { 
            @Override 
            public void onComplete(@NonNull Task<AuthResult> task) { 
                if(task.isSuccessful()){ 
                    // Sign in success, update UI with the signed-in user's 
information 
                    Log.d(TAG, "Login successful!"); 
                    progressBar.setVisibility(View.GONE); 
 



Appendix 2 

  10 (12) 

 

  

 

                    Intent intent = new Intent(MainActivity.this, MapsActiv-
ity.class); 
                    startActivity(intent); 
                }else{ 
                    // If sign in fails, display a message to the user. 
                    Log.w(TAG, "Login failed!", task.getException()); 
                    Toast.makeText(getApplicationContext(), "Authentication 
failed.", 
                            Toast.LENGTH_SHORT).show(); 
                    progressBar.setVisibility(View.GONE); 
                } 
            } 
        }); 
    } 
 
    private void initializeUI() { 
        firebase_email = findViewById(R.id.email); 
        firebase_password= findViewById(R.id.password); 
        loginBtn = findViewById(R.id.login); 
        progressBar = findViewById(R.id.progressBar); 
    } 
 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 2 

  11 (12) 

 

  

 

Appendix 5. Android Map Activity 
 
public class MapsActivity extends FragmentActivity implements 
OnMapReadyCallback { 
 
    private static final String TAG = MapsActivity.class.getSimpleName(); 
    private HashMap<String, Marker> mMarkers = new HashMap<>(); 
    private GoogleMap mMap; 
 
    LatLng currentLocation; 
    TextView speedMeter; 
 
    @Override 
    protected void onCreate(Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        setContentView(R.layout.activity_maps); 
 
        speedMeter = (TextView) findViewById(R.id.textView); 
 
        SupportMapFragment mapFragment = (SupportMapFragment) getSupportFrag-
mentManager() 
                .findFragmentById(R.id.map); 
        mapFragment.getMapAsync(this); 
    } 
 
    @Override 
    //calls the Google maps when ready 
    public void onMapReady(GoogleMap googleMap) { 
        mMap = googleMap; 
        mMap.setMaxZoomPreference(20); 
 
        onLocationChange(); 
    } 
 
    //Listens to Firebase for updates and displays the data upon updates 
    private void onLocationChange() { 
        DatabaseReference reference = FirebaseDatabase.getInstance().getRefer-
ence("gps"); 
        reference.addChildEventListener(new ChildEventListener() { 
            @Override 
            public void onChildAdded(DataSnapshot dataSnapshot, String previ-
ousChildName) { 
                //Clear previous markers 
                mMap.clear(); 
                //Set marker to currentLocation 
                setmMarkers(dataSnapshot); 
            } 
 
            @Override 
            public void onChildChanged(DataSnapshot dataSnapshot, String pre-
viousChildName) { 
                //Set marker on the updated location 
                setmMarkers(dataSnapshot); 
 
            } 
 
            @Override 
            public void onChildMoved(DataSnapshot dataSnapshot, String previ-
ousChildName) { 



Appendix 2 

  12 (12) 

 

  

 

            } 
 
            @Override 
            public void onChildRemoved(DataSnapshot dataSnapshot) { 
            } 
 
            @Override 
            public void onCancelled(DatabaseError error) { 
                Log.d(TAG, "Database Error", error.toException()); 
            } 
        }); 
    } 
 
    private void setmMarkers(DataSnapshot dataSnapshot) { 
        //Set the updated location with a marker on the map 
        String key = dataSnapshot.getKey(); 
        HashMap<String, Object> value = (HashMap<String, Object>) dataSnap-
shot.getValue(); 
 
        double lat = Double.parseDouble(value.get("lat").toString()); 
        double lon = Double.parseDouble(value.get("lon").toString()); 
        String speed = value.get("speed").toString(); 
        String vehicle_id = value.get("id").toString(); 
 
        currentLocation = new LatLng(lat,lon); 
 
        if (!mMarkers.containsKey(key)) { 
            mMarkers.put(key, mMap.addMarker(new MarkerOptions().title(vehi-
cle_id).position(currentLocation))); 
        } else { 
            mMarkers.get(key).setPosition(currentLocation); 
        } 
 
        LatLngBounds.Builder builder = new LatLngBounds.Builder(); 
        for (Marker m : mMarkers.values()) { 
            builder.include(m.getPosition()); 
        } 
 
        mMap.moveCamera(CameraUpdateFactory.new-
LatLngBounds(builder.build(),300)); 
        speedMeter.setText(speed + " Km/h"); 
    } 
 
} 


