VAMK

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES

Yan Feng

Battery Assembly

Execution System

Information Technology
2018

FOREWORD

As a joint degree student, | have spent two years studying at the VAMK University
of Applied Sciences. This thesis symbolizes the culmination of all my hard work.
Here, 1 would like to express my appreciation to everyone who helped and guided
me during this time. It is thanks to their support that | remained optimistic whenever

| faced challenges.

First of all, Dr. Yang Liu, my supervisor, provided invaluable suggestions and
instructions for my thesis. Without his help, my final project could not have been
realized according to the clear plan he helped me formulate. Thus, | modified and
optimized my thesis under his guidance, and | wish to express my profound

appreciation for this assistance.

Furthermore, | also wish to express appreciation to all the teachers and staff who
educated and provided me with vast professional knowledge and practical skills,
including Mr. Timo Kankaanpaa, Dr. Chao Gao, Dr. Ghodrat Moghadampour and

everyone else who assisted me with kindness and patience.

Finally, it is impossible for me not to thank my parents. If they had not agreed with
my decision to come to Vaasa, everything would be different. Whenever |
encountered obstacles, it was their comfort that gave me the courage and strength
to persevere. | also want to thank my friends whom | met here in Finland. | wish

them all the best for the future.

VAASAN AMMATTIKORKEAKOULU
UNIVERSITY OF APPLIED SCIENCES
Information Technology

ABSTRACT

Author Yan Feng

Title Battery assembly execution system
Year 2018

Language English

Pages 79

Name of Supervisor Yang Liu

With the increased popularity of manufacturing execution systems, there is an
urgent need for such a system which connects the relevant robot and enterprise
resource planning system. This project uses this system in order to complete the
assembly and picking up of batteries in factories. The main work is divided into
five modules.

The first module is concerned with the enterprise resource planning system, Odoo,
which is used to acquire several manufacturing orders and handle them. Then, three
modules related to the different robots execute their tasks after receiving the order.
In the ABB robot’s program, the order information is assigned. After the ABB
robot finishes the mission, the mobile robot delivers the assembled battery module.
The CMMO controller is responsible for picking up the battery module. While the
mobile robot moves in the working range, the manufacturing order status is set as
done. The final module relates to strategy. Based on the original module
organizational design, two creative features are proposed and researched under the
supervisor’s guidance. In the future, they could help optimize the application.

This project was completed using Java on a PC equipped with Windows 10. The
following software packages support this project: Odoo, RobotStudio,
MobilePlanner, MobileEyes and Festo configuration tool.

In all, this project is designed for factory use and improving operator efficiency.

Keywords Odoo, ABB robot, Omron robot, CMMO controller, Strategy design

CONTENTS

THVISTELMA
ABSTRACT

1 INTRODUCTION ...t 11
00 U 0T 1SS 11
1.2 OVEIVIEW SEIUCKUIE ...ttt 11
1.3 Introduction t0 Adept LYNXccveiieiieiieie e 11
1.3. 1 MODIlE rODOL.......cviiiiiieieee e 11
1.3.2 Adept Lync key featuresccccoveeiiiiv e 12
1.3.3 Adept LYNX SOFIWAIEcoviiiieieieiesieseeeee e 13
1.3.3. 1 MODIIEPIANNET ...t 13
1.3.3.2MODIIEEYESoviiiiiiceee e 14
1.3.4 Adept Lynx command languageccceeevveieeiesieseerieennnn, 14
1.4 Introduction to motor controller CMMO-STccooviiiiiiniieceee 14
141 MOtOr CONrOIIErocvieiiiiic e 14
1.42 CMMO-ST SPECITICAtIONScveviviriiriiriisiesieeee e 15
1.4.3 Software for configuration and commissioning........................ 15
1.4.3.1WED SEIVICE ...t 15
1.4.3.2FCT (Festo configuration tool)...........ccccceeeeviiieieciieennn, 16
1.5 Introduction to the Odo0 SYSIEM........c.coiiiiriiiiiiereeee s 16
151 ERP SYSIEM .oiiiiiiiicii et 16
152 Od00 KeY TEALUIESeoviiiieiieieiesie e 17
1.5.3 Od0o0o Programmingcccceeceereeiiieesieesieeseessieesee e see e e 18
1.6 ABB robot INtrodUCTIONcoiiiiiiiiieie s 19
1.6.1 ABB’SIRB 1200 ...t 19

1.6.2 ABB robot SOftWArecoooeeeeeeeeeeeeeeee e 20

1.6.3 ABB RODOt WED SEIVICE ..o, 21

2 OVERALL STRUCTURE ...t 23
2.1 PrOJECE STIUCLUIE ...t 23

2.2 Module deSCrIPLIONccveiieicie e 23
2.3 Project FIOWCHAIc.cooviiiiiiieee e 25

3 ODOO MODULE ... 27
3.1 Environment CONFIQUIAtIONccoiiiiiiieieeieese e 27
311 INStAIALION ... 27

3.1.2 Component EXIENSIONccccvvieieieieiiesiesee s 28

3.2 Od00 Programming........c.cccvevueeieeieeriesieeseesreseeseesaeseesreesnesreesseensesneesnas 31
321 0d00 JAVA AP ... s 31

4 ABB ROBOT MODULE ..o 38
4.1 Environment CONFIQUIALIONcoviiiiiiiiiieiesieeeee e 38
4.1.1 Demo deploymEeNntcc.coveiiiiiieiie e 38

4.1.2 Parameter Creation..........ccooevveriererenesesesee e 39

4.2 ABB robot programming.........cccccceeiieieeieeiesiieseesre e esie e 40
4.2.1 ABB robot WeD SEIVICES.......ccooeieriiiiiiiieieeee s 40

4.2.2 RODOIWAIE SEIVICEScveuvieiiiieiieierieieie e 41

4.2.3 Operations 0N RAPID data..........ccccoovririniiiiienenc e 42

5 OMRON ROBOT MODULE.......ccoiiiiiiiiiee e 44
5.1 Environment CONFIQUIAtIONccoiiriiiierieienie e 44
5.1.1 Initial map Creationcccocvevveeiie i 44

5.1.2 Editing maps by adding OBJeCtSccocviiiiiiiii e 45

5.1.3 Working With TasKScccevveiiiiiieiie s 47

5.2 Omron robot Programmingc.cceeeeerenenenesiseseeee e 49

5.2.1 Working With PULLYccoiiiiiieee e 50

5.2.2 ARCL Implementation..........ccccooeieniiiiiniieeee e 52

6 CMMO CONTROLLER MODULEccccoiiiiiiieeeeeeee e 54
6.1 Environment CONFIQUIAtIONcooiiiiiiiiiiieeee e 54
6.1.1 Device configuration............ccccceveereiieiiiese e 54

6.1.2 Parameter SEttiNg......ccovviieririeiiere e 57

6.1.3 Enabling the Web Server ... 58

6.2 CMMO controller programming.........ccccceoeeererenineeieiee e 59
6.2.1 WED SEIVEr QUETIES......cuveceeeieciecieeee et 60

7 STRATEGY MODULE ..o 62
7.1 Initial Programmingc.cocveveeieeieeie e 62

7.2 FULUIE TRALUIES ... 63
7.2.1 Scheduling Algorithm Based on Priority Table........................ 63

7.2.1.1 Deadline/value priority table design..........ccccceevvenirnnnns 64

7.2.1.2 Deadline/value priority table design implement................ 66

7.2.2 Going through all points in the shortest pathccccooeneenne. 69

7.2.2.1 TSP Problemccoeieeiiieceeee e 69
7.2.2.2Greedy algorithm ... 70

7.2.2.3 Greedy algorithm for solving TSP problems..................... 71

8 RESULTS ...ttt 72
8.1 Preparatory WOIK.........ccccuciieieiiecieese sttt 72
8.2 IMPIEMENTALION ..o 72
8.2.1 Starting the ProjeCtcceccvvveiieie e 72

8.2.2 PrOJECE PIOCESScuveviiiitiiiisiieieie ettt 72

9 SUMMARY et 77

10 REFERENCESoo ottt 78

LIST OF ABBREVIATIONS

AMR

AGV

IDE

AlV

ARCL

PC

MES

FCT

CRM

RPC

HTTP

ERP

REST

API

TSP

Autonomous Mobile Robot

Autonomous Guided Vehicle

Integrated Development Environment

Autonomous Indoor Vehicle

Advanced Robotics Command Language

Personal Computer

Manufacturing Execution System

Festo Configuration Tool

Customer Relationship Management

Remote Procedure Calls

HyperText Transfer Protocol

Enterprise Resource Planning

Representational State Transfer

Application Programming Interface

Travelling Salesman Problem

LIST OF FIGURES

Figure 1. Adept LYNX/LL ..o 13
Figure 2. MODIEPIANNETcviiie e e e 14
Figure 3. CMMO-ST/14/ Product OVEIVIEWcc.coveiviriiriiniieieeieieee e 15
FIQUIE 4. FCT PANEIS ..ottt 16
Figure 5. ERP MOAUIES/A/cooiiiiiieeeee e 17
FIQUIE 6. OU00 OVEIVIBWecuiiiiieieciie ettt te e e beeaesnaesreeneanes 18
Figure 7. OpenERP/L3/ arChiteCtUre.........cooiiiiiiieieie e 19
Figure 8. RODOtStUAIO PANEISccvveiiiicceee e e 21
Figure 9. robot web service/8/ arChiteCtureccooiiiiiiiiiieeee e, 22
Figure 10. Whole project arChiteCturecccccevveiiiieiiese e 23
Figure 11. Whole project FIOWCHArtccoooiiiiiiiiieiree e 25
Figure 12. Adding the new database............cccecveiieiiiiciicce e 29
Figure 13. Adding the specified module..............cccooiiiiiiiiii e, 29
Figure 14. Adding product materialS...........ccccovveiieiiiie i 30
Figure 15. Adding manufaCturing OFders...........ccooereiererenineeeee e 30
Figure 16. Odoo module aChiteCIUIec.cciiieiieie e 31
Figure 17. Configuration COOB...........ooiiiiiiiiieieeiee e 32
Figure 18. Configuration in the property file..........cccooiiieiiiii e 32
Figure 19. Authentication in the property file and itS COdEccceviriiiiiiiiiiiiee, 33
Figure 20. Preparation of the calling methods in the property file and its code............. 34
Figure 21. Parameters of the searching method in the property file..........ccocoovvvennnen. 34
Figure 22. Searching method COUEccooiiiiiii i 34
Figure 23. Parameters of the reading method in the property file...........ccocoviiiiinnen. 35
Figure 24. Reading Method COUE..........cooiiiiiiiie e 36
Figure 25. Parameters of the writing method in the property fileccccocvviiiiinenen, 37
Figure 26. Writing Method COUBoouiiieiiiie e e s 37

Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44,
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.

Figure 53.

Recent file in RODOISTUIOcovveiiiiiiiiic e, 38
Current Program StIUCLUIEccueiveiieiiieeii e 39
Current program order information...........cccocveveiieiieie s 39
ABB robot module architeCtureccccooviieiiiie e 40
The subset of services and resources in robot web servicesccccccueuee. 41
The subset of services and resources in RobotWare Services............c.cc...... 42
GET rapid symbol dataccceieeiieiiiiieseee e 43
Updating @ RAPID variable ... 43
Marking the Map goalsS.........cceiveiiiiiiiccece e 46
Drawing the advanced areas and liNesSc.covriiinieieneni i, 47
Details in the MOVE tasKccccoiiiiiiiic e, 48
Omron robot module architeCture ... 49
Server Information in MobilePlannerccooeveiiieni i 51
CONLENT TN PULLY ..o 51
Initialization of the related variables(1)cccoceovevieiiiiciecce e, 52
Initialization of the related variables (2) ..., 52
Code for patrolling the route 0NCe (1)cccevvevieiieiieie e 53
Code for patrolling the route 0NCe (2)cccoovverieieieie e 53
Code for patrolling the route 0NCe (3)c..covevvevieiieieeece e 53
Three connections with the CMMO controller ... 54
Controller CoNfIGUIAtioN..........coviiieeiiece e 55
AXis Motor Unit configuration..........c.oceveieniniiieieeese e 56
Valve profile SEleCtionccovvi i 56
Homing Switch with indeX NegatiVEccoviiiiiriiiee e, 58
Uploading and downloading SEttiNg..........ccevveiiieiieiiiie s 58
Device control €nabling ..o 59

CMMO controller module architeCtUIe........oevvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 59

Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.

Figure 78.

HOMING QUENY COUBovieieceic ettt 60
HOMING WED Page.......ooiiii 60
SEOP QUETY COUBvvivieieeite ettt sta et e st te e sreesaeeneesreesbeeneenneas 61
SEOP WED PAGE ... 61
Strategy module architeCtUre............cooveiveiiieii e 62
Priority table design for EDV and VED..........cccocviiiiiininineeeee 66
Code for EDV table design (1)cecvveieiiieiieiieiie e 67
Code for EDV table design (2)......cccooeiiiiiiniiieieieiee e 67
Code for EDV table design (3)......cceiiveiiiiiiiieieiie e 67
Code for EDV table design (4)......ccoeiiiiiiiniiieieieneese e 68
Code for EDV table design (5).......cccoiveiieiiiiiieiesie e 68
Code for EDV table design (6)........ccovviiiriniiieieieiese e 68
Code for EDV table deSign (7)......cceoveieiiieireiecie e 68
Code for EDV table design (8)......cccooviiriiiiiiiiiiieee e 69
Solution to the TSP problemscoovoiiicii e 70
Solution in the Greedy algorithm ..., 71
Starting the PrOJECTccveoee e 72
RESUIL CAPTUIE (L) c.veneeeeiiieieieeie e 73
RESUIL CAPLUIE (2) .ottt 73
Mobile robot ENVIFONMENL..........cooiiiieii e, 74
OMron robOot FEACLIONcoviiiiieiiecee e 74
RESUIL CAPTUIE (3) 1.ttt 75
CMMO coNtroller rEACTION..........ccveiiieiiiieie e 75
RESUIL CAPTUIE (4) .ottt 75

SEIECLEA OFUEE STALUS.....eeeeeeeeeeeee ettt ee e eeeeeeeeeees 76

11

1 INTRODUCTION

1.1 Purpose

Nowadays, the problems with exited MES systems is that they only accept the same
version machine and lack interface capabilities for the specified ERP system. In this way,
this thesis aims to illustrate MES system implementation based on the commonality of
the Odoo—ERP system and then the controls of Omron and ABB robots. During this
process, these machines cooperate and tackle a set of tasks so as to realize battery

assembly.
1.2 Overview Structure

This thesis is divided into five components: the ABB robot module, Omron robot module,
CMMO controller module, strategy module and Odoo module. The chapter two provides
an overview of this project’s structure, detailing the individual modules and whole
process work flow. In chapter three, the Odoo system is not only researched and
developed, but the methods for determining manufacturing module order and updating
order status are also considered. In chapter four, the ABB robot program is deployed in
RobotStudio, with the method for assigning order outlined. Chapter five focuses on the
Omron mobile robot, detailing the means of creating, modifying and adding tasks to the
scanned map. Moreover, this module is also responsible for controlling the mobile robot
and directing its actions. Chapter six outlines the CMMO controller, discussing
connection selection and its operation process. Chapter seven briefly describe the original
version before introducing two innovative points. The final chapter sums up the thesis

and provides a conclusion.
1.3 Introduction to Adept Lynx
1.3.1 Mobile robot

A mobile robot is an automatic machine capable of locomotion. In other words, it can

move around in its environment and is not fixed to a single physical location.

Mobile robots can be autonomous, meaning they can navigate an uncontrolled
environment without the need for physical or electro-mechanical guidance devices.

Alternatively, mobile robots can rely on guidance devices for traveling pre-defined

https://en.wikipedia.org/wiki/Automatic_machine
https://en.wikipedia.org/wiki/The_Loco-Motion

12

navigation routes in relatively controlled space (AGV). In contrast, industrial robots are
usually relatively stationary, consisting of a jointed arm (multi-linked manipulator) and a
gripper assembly (or end effector), attached to a fixed surface.

1.3.2 Adept Lync key features

The Adept Lynx, a brand small new mobile robot, is a self-navigating Autonomous Indoor
Vehicle (AlV) designed for dynamically moving materials in challenging environments
including confined passageways as well as dynamic and populated locals.

Unlike traditional autonomously guided vehicles (AGVs), Lynx requires no facility
modifications, such as floor magnets or navigational beacons, saving users up to 15% in

deployment costs.

Lynx includes Adept's proprietary software and controls allowing the intelligent
navigation of people and unplanned obstacles, which would otherwise render traditional

AGVs incapacitated. Moreover, it can be programmed and functional within a day.

It is designed for developers, integrators, and end-users because its system can be
customized for various applications and payloads. Furthermore, manufacturing,

warehousing, clean tech, and laboratories are ideal environments for Lynx.

Its specifications are as follows:

o Weight 60 kg, haul-load 60 kg

o Operating time 13 hours, recharge time 3.5 hours, autonomous recharging on dock
o Zero degree turning radius thanks to differential steering

o Maximum speed of 4mph

o Programmable voice and audio prompts

o Optional joystick for shenanigans

13

Figure 1. Adept Lynx/11/
1.3.3 Adept Lynx Software

To realize the envisaged functions, the Adept Lynx software is applied and illustrated in
this thesis.

1.3.3.1 MobilePlanner

In order to set up AIV autonomous mobile activities, the user must map the operating
space and configure its parameters. The MobilePlanner software is used to render this

map and carry out configuration (Figure 2). The license key is required to open it.

14

O WicbieRianner

e o= |
File Edit Robot Map View Tools Window Help

% wemm- ® "B G "6 Rine p

Disconnect Feet Config Msp SeNetGo Seve
[© 192.168.200.210:Configuraton \WVAS 192. 168. 200, 2 10-caffeeround.mep D\

= C—ww 1o 2 € @ @ ® © 5 5 @ a [@]
G P Editable Lists Stp SendRobot Drive LocalzeRobot GoalatRobot CentercnRobot FitinWindow —Rede Magnfy Pan Monitor | Show Robot
Robot Tasks = Goals = M 1?| toutes | Goals Macros 4ib;
conferenceroom +- CheckObject -
fysianiab -~ Move
Goal10 move (4900, 400, 200, 50, ... o
Goal11 +-RecordSound 2
Goal3 +-Rotate
Goak4 +-TemeOut
konaastomaato +- TnggerAttached
koneistusiab
konetelrikda 1
v takas
owl
ow3
ovid
prepare_pont e
pasov
robotikkalad
Start_point L3l
sahko ¥
sahkotekndka
Betoknneteknikka P
ymparstoteiniida a3 :_”
A
. Goat)
e |
%
5=
= i
e | R)

ﬂ;a'c 8 714% a@ Qx ¥:
Figure 2. MobilePlanner
1.3.3.2 MobileEyes

The MobileEyes software can monitor multiple AlV's activities, executing them in the

mapped space.
1.3.4 Adept Lynx command language

ARCL (Advanced Robotics Command Language) is a simple, text-based, command-and-
response operating system designed to integrate a fleet of Adept mobile robots with an

external automation system.

Among its functions, users can operate and monitor the mobile robot, its accessories and
payload over the network. In other words, ARCL serves to automate the specified mobile
robot. Meanwhile, the Telnet or putty provides access to the ARCL commands from a

command prompt which supports user debugging.
1.4 Introduction to motor controller CMMO-ST
1.4.1 Motor controller

A motor controller is one or more devices which govern electric motor performance in

some manner. Typically, a motor controller includes a manual or automatic means for

15

starting and stopping the motor, selecting rotation direction or speed, regulating torque,

and safeguarding against overloads and faults.

1.4.2 CMMO-ST specifications

In this project, the motor controller, CMMO-ST, receives commands from a user to

perform functions of its electric cylinder, which is its axis motor unit. /9/

[1]
[2]

3]
(4]
[s]
[6]
(7]
(8]
[9]
[10]

(1]

Figure 3. CMMO-ST/14/ product overview

1.4.3 Software for configuration and commissioning

[X9] Load/[logic voltage

[X1]1/0O interface for control
system with SPC/IPC

Front view with 7-segment display
[X18] Parameterisation interface
Ethernet (R}-45)

[X1A] Reference switch

[X3]S10

[X2] Encoder (RS422)

[X6] Motor

Functional earth (3x)

Mounting surface (H-rail)
Mounting surface

1.4.3.1 Web service

[1]

[2]

[3]
[]

Certain functions can be performed through the motor controller’s integrated web server

1) The CMMO-ST’s status can be determined through the web server.

2) Parameterization and commission of positioning systems for the optimized motion

series can be simplified.

3) FCT parameter file transmission is enabled so that configuration data can be uploaded

to a computer or downloaded to the motor controller.

16

1.4.3.2 FCT (Festo configuration tool)

The Festo Configuration Tool (FCT) is Windows-based software for the parameterization,
commissioning and diagnostics of drives with configurable motor-axis combinations and

positioning systems (OMS).

In FCT commissioning, configuration and parameterization are carried out through a

page-oriented workflow. FCT enables the following:

a) Configuration of the entire Festo modular system of axes and motors;
b) Configuration of user-specific axes

c) Mechanicals

d) Use of the motor controller’s maximum function range;

e) Extended status displays, diagnostics options and test functions;

Projects |42 cmmo * 4 b x | Dynamic Help 2 x
Operation Modes | | et i
Controller Acis Motor Unit / OMS Gear Ratio ftotal - 4 "Digital I/ 0" online tab for ...- 1
CMMO-ST-C5-1-DIOP EPCO-25-100-3P-ST-EB+EAGF-PI-KF-25. 1:1 <Previous | ||| DIOX i
The states of the digital inputs and outputs
of the CMMO-5T-C5-1-DIOx types are
Control Profile [Valve Profile (7) ~| Upload displayed in this panel. The individual
signals are labelled with their current
Cortrol Interface [Digtat 110 | Download funetion.

Description
Used Functions

Display
= Syne
= @ | oreen
Store O | vellow

Input active

Output active

r © [arey Input or output inactive
Comparators:
.
) Both frames can be undocked
¥ Position - \Slop 1 Sdvidually (see "Undocking
lotion online dialog areas"):
r r
o Digital Input: Opens
the "Diaital
Inouts” (display) dialeg 8
o [
‘ i C a i b

ax

[Jog postive

Digital Inpus
) 31.Pint (Start record 1)
) X1 Pin2 (Start record 2)
€ X1 Pin3 (Start record 3)
O X1 Pind (Start record 4)
2> X1.Pin5 (Start record 5)

() 1.PinG (Start record §)

) X1.PinT (Start record 7)

) X1 Ping (Homing)

() X1.Ping (Brake Control)
) X1.Pin10 (Control-Enable)
© X1.Pin11 (Reset)

] [Digital Outputs,

) X1.Pin12 (Position 1 reached)
) X1.Pin13 (Position 2 reached)
(& X1.Pin14 (Position 3 reached)
{2 X1.Pin15 (Position 4 reached)
(2 X1.Pin16 (Position 5 reached)
) X1.Pin17 (Position 6 reached)
() X1.Pin18 (Position 7 reached)
& X1.Pin18 (In zone)

() 1.Pin20 (Homing Valid)
) X1.Pin21 (Ready)
(& X1.Pin22 (Torque limit reached)

Figure 4. FCT panels

1.5

15.1 ERP system

As an integrated management system for core business processes, Enterprise resource

planning (ERP) typically takes place in real-time and is mediated by both software and

Introduction to the Odoo system

17

technology. In some cases, it is considered a form of business-management software,
capable of collecting, storing, managing and interpreting data from various business
activities. With regards to its implementation, the common database maintained by a
database management system supplies ERP with an integrated and continuously updated

view of core business processes.

ERP contributes in three aspects. Firstly, the business resources related to the core process
can be tracked, including cash, raw materials, production capacity and business
commitment status (orders, purchases, and payroll). Secondly, the data from various
departments are shared among the system’s multiple applications. Furthermore, ERP

optimizes the information flow of business functions, constructing a common framework

with outside stakeholders.

imploments functions of ceder Procurement (SRM)
Masimese CoM savings with support for
logistics processes
Il

Comwrt 1o infcemation Focus on external strategies

Helps in plannung and aptime

|| the manutactunng capacity and
materal resources. 1 s evolved

Business Intelligence e-Commerce || femtheis

Efciently and sustainabily manage
the entire asset Iifecycle, improve asset

wsage and cut costs with
“ powerful analytics

Enterprise asset
management

Corporate performance
and governance

Human Resource

I1 ERP Il modules

Figure 5. ERP modules/4/

1.5.2 Odoo key features

Odoo is an all-in-one management software, meaning it offers multiple business

applications which together form a complete suite suitable for companies of all sizes.

18

As a piece of intelligent business software, the Odoo modules cover almost all user
requirements including CRM, digital activities, billing, accounting, manufacturing,

warehousing (including project management), and inventory.

E" v | Actonw 215 € >

MO/00006

Product

Quantity To Produce

Bill of Material

Figure 6. Odoo overview
1.5.3 Odoo programming

Although Odoo usually extends internally via modules, many of its features and all of its
data are also available for external analysis or integration with a range of tools. Therefore,
Odoo, otherwise known as OpenERP, is based on client/server architecture, with the

client and server communicating using XML-RPC protocol.

XML-RPC is a web technology consisting of a set of tools for constructing distributed
applications on top of existing web infrastructures. The web is consistently applied as a

"transport layer" which does not guarantee a direct human interface via the browser.

Extensible Markup Language (XML) provides a vocabulary for describing Remote
Procedure Calls (RPC), which is then transmitted between computers using HyperText
Transfer Protocol (HTTP). RPC provides a mechanism for developers to define interfaces
that can be called over a network. These interfaces can be simple or complex. XML-RPC
calls are conducted between two parties: the client (the calling process) and the server

(the called process). A server is made available at a given URL.

XML-RPC therefore allows multiple computers with different operating systems written
in different languages to share processing. The RPC approach spares programmers the

trouble of learnings underlying protocols, networking, and various implementation details.

19

XML-RPC can be used with Python, Java, Perl, PHP, C, C++, Ruby and
Microsoft’s .NET. Implementations are widely available for platforms such as Unix,
Linux, Windows and Macintosh. Thus, part of Odoo’s Model Reference API is easily

available over XML-RPC and accessible in multiple languages.

The diagram below synthesizes OpenERP’s client server architecture. The OpenERP

server and the OpenERP clients communicate using XML-RPC.

Tiny ERP Client
Tiny ERP Sermer
Trees Forms Repors Wizards
Windows Action POCL
Bisines
Chjects User
et
S0Ap '
Brines Be=Modie || wy evices MIL-RPC = = = |=p| FFE Core B
Clject: Distitarion Gty
/ NET-RPC
Report Widgets
o / \
Forms Somrch
Workflow Treen c
Egine

Figure 7. OpenERP/13/ architecture

Because Odoo (OpenERP) logic is already configured for the server side, the client side’s
specification and functions are very simple, with responsibility limited to posting data
such as forms, lists and trees and sending results back to the server. Thus, it is easy for

users to construct a client and communicate with the exited server.
1.6 ABB robot introduction
1.6.1 ABB’s IRB 1200

Nowadays, industrial robots, those used for manufacturing, are emerging across more and
more sectors. These robots are automated, programmable and capable of movement on at
least two axes, with most able to accomplish various industrial processes including

welding, painting, assembly, picking and placing printed circuit boards, packaging and

20

labeling, palletizing, product inspection, and testing. Thanks to their high endurance,

speed, and precision, these robots can assist humans in handling materials.

Taking this thesis’s topic into account, the robot belonging to the ABB 1200 family can
assemble batteries in a given time. ABB’s IRB 1200 is a perfect industrial robot which
saves the user space and time thanks to its small size and operating efficiency. More
specifically, it addresses the requirements that material handling and machine tending
applications have in relation to flexibility, ease of use, compactness and short cycle times

without compromising large working envelopes.
1.6.2 ABB robot software

Offline programming is the best means for maximizing the return on investment for robot

systems. The problem lies in converting the robot controller to a PC application.

RobotStudio, which is an exact copy of the real software package that runs robots in
production, is built on the ABB Virtual Controller and has solved this problem. This
application allows realistic simulations to be performed, using real robot programs and
configuration files identical to those used in practice. With this, users can program on

their PC in the office without halting production.

Considering its functions, RobotStudio provides the tools for increasing user robot system
profitability by letting tasks such as training, programming, and optimization be
performed without disturbing production.

In all, Robot Studio’s advantages include:
1. Lower risk

2. Quicker start-up

3. Shorter change-over

4. Increased productivity.

21

Figure 8. RobotStudio panels
1.6.3 ABB Robot web service

For robot task execution or data updating, the Robot Web Services, which are designed

based on the "architectural style “REST, can support users with their own programs.

Representational State Transfer (REST), is an architectural style that defines a set of
constraints and properties based on HTTP. Web Services that conform to the REST
architectural style, or RESTful web services, provide interoperability between digital-
enabled computer systems. REST-compliant web services provide requesting systems
with access to and manipulation of textual representations of web resources through a

uniform and predefined set of stateless operations.

The application protocol in Robot Web Services is HTTP, while the cornerstones of
HTTP are URL's and Verbs. An URL is designed to identify something, such as a resource.
A HTTP Verb defines the method to be executed on a resource. Each resource can support
one or more HTTP verb. HTTP has multiple predefined verbs, the most important of

which are:
» GET: Retrieve a resource
» PUT: Create or update a resource

» POST: Update a resource

22

» DELETE: Delete a resource
GET does not change a resource’s status, whereas DELETE, PUT and POST do.

Robot Web Services highlight a set of web APIs that can any HTTP aware client can
consume using any programming language. The APIs return data either as XML or JSON,
which can then be parsed using standard XML/JSON parsers. The available Robot Web
Service can be easily verified using a Web browser and typing the robot controller URL
in the address field. It is possible to use the default user name and password, "Default
User" and "robotics", so as to read most data. Meanwhile, in order to use the REST APIs,

the client application should execute a HTTP request and parse the response.

Clients should not monitor for state changes in resources, because these are sent as events.
Robot Web Services support the Websockets protocol, through which clients can

subscribe to changes.

I \“!‘ P
REST API l '
. h k I j .
ﬁ i ttp, websockets, xml, json \ =

>

b

Figure 9. Robot web service/8/Architecture

23

2 OVERALL STRUCTURE

This chapter illustrates this project’s architecture, describing each section before

providing a flow chart which outlines the entire process.
2.1 Project structure

Taking the envisaged project functions into account, the project is divided into five
components: the ABB robot module, Omron robot module, CMMO controller module,
strategy module and Odoo module. These components cooperate in order to execute tasks

within the limited time.

abhrohot | I odooActions
connectCommo hymx
+AbbRobotModel +ManufacturingOrders
+AbbRobotSenice +Commo +Morehctions +QdooConnector
+ManualFeatoringHode sHtgURLConnectionimp ymPracess +OrderProcess
+RobolStatus +propertiesConfiguration
77
N X I L
“ , \ | ~ <
\ | & <
\
\ I
s \ [
S . \\ |
N " 5\ | i
. 5\ | pid
- [| i d
client

+ClienthdainClass

Figure 10. Whole project architecture

2.2 Module description

e ABB robot module

24

This module connects with the ABB robot, changing its parameters as the data which is
received from Odoo. In order to realize this goal, the robot web service, which uses HTTP
protocol and is based on the REST structure, is utilized with the file including the ABB

robot control programs available to the robot controller—RobotStudio.

The application constantly polls so as to monitor which programs the robot has finished
by checking whether the specified parameter has changed or not. Once a positive response
IS obtained, the parameter” readAmount” is changed and then recognized by this
application so that the user is aware of the module status and can execute the rest of the

work flow.
e Omron robot module

The Omron robot module connects with the Omron Adept Lynx robot, instructing it to
execute a sequence of actions such as going to a specified area and realizing a certain
position. In this part, related applications such as MobilePlanner and MobileEyes can
assist the user in preparation work, while ACRL language is mastered and applied in the
program. If the user starts this application, the telnet connection is created with Adept
Lynx and the code, include correct ACRL command, is sent to the robot according to the

map sequence.
e CMMO controller module

In the CMMO controller module, multiple connection methods are present, with the
differences between them determining module performance effectiveness and
convenience. After identifying the advantages and disadvantages of connection methods,
the web service is selected so as to communicate with the CMMO controller, sending it
to execute actions of the electronic cylinders. The CMMO controller data are saved in the
parameter file, with configuration information fixed according to the parameter file when

the application is running.
e Odoo module

This component is responsible for reading, searching and updating data in Odoo. In its
process, the first confirmation made is Odoo having been installed and the database

created following certain requirements. Next, because the target section is the

25

manufacturing module, the key words must be saved in the property file, so that when the

XML-RPC methods are called, they can be realized without the parameters’ names.
e Strategy module

This component serves as the main class for organizing other modules’ functions.
Furthermore, its innovative points, as future features, are the design of the complex event
detection method based on the priority structure in the manufacturing schedule and the
shortest path algorithm applied in route selection. Hence, the module produces the best

solution for executing module performance.

2.3 Project flowchart

) S EEEEE—
E Enter manfachoring
4 O—) order and other
& details
—
£
§ p Y .
- Read manufadoring Send produdid,
E order and related rz:;e;; 'dj;:a orderid and pg||ing
5 data amount variable » amountRead is
3 b / amountRead ture?
e |3
2
e
g .
> |3 7
4 14 Receive orderid, produd id and
» & Update
g - amount and create Assembly the Tearnead
]] amountRead varible with the module
] E - value
g g given value
E 2 Finished?
-
g
®
a
g
2
L] Move to G0 and watt
E Go and pick Move storage next arder
g
: T
L
=
g
o Lift up Lift down
g
£
£
c

Figure 11. Whole project flowchart

In this flowchart, the Odoo module first gets the specified data according to user needs,
then processes the manufacturing orders taking different conditions into consideration.

The next step is to send the relevant information in a single order to the ABB robot. Once

26

the ABB robot completes the battery assemblage process, the value of the parameter
“amountRead” is changed. If the Java application detects this transform, the Omron robot
is enabled and called to take the shortest route to pick up the necessary materials. After
the Adept Lynx arrives at its target location, the CMMO controller moves the electric
cylinders up and down so as to lift the packaged battery. Then, the Omron robot moves
again, taking the battery and waiting for the next order. Finally, the finished order’s status

IS converted to “done” so that every user has the latest data.

27

3 ODOO MODULE

This section introduces the Odoo service configuration, steps for importing Odoo Java

APIs and the primary Odoo Java APl methods applied in this project.

The initially prepared environment dictates how the project starts. Thus, the Odoo system
configuration is fixed before programming, or more precisely, it is installed and run
automatically. Using the task manager, the user can monitor current service status so as
to ensure that the Odoo system is operating normally. Furthermore, the database and
various modules designed by the individuals should be added. In order to make the system
more closely resemble reality, information regarding products and manufacturing orders

were collected for the product and manufacturing modules.
Through these efforts, the following actions are rendered more effective.

In the Odoo system with XML-RPC architecture and the ability to accept multiple
languages and platforms, the developers can use Python, Ruby, PHP or Java on machines
running Unix, Linux, Windows or Macintosh when programming web services using
XML-RPC. Considering the further component development, Java is selected. Hence, the
XML-RPC web service must first be mastered because it serves as the cornerstone of later
development. Knowledge pertaining to Odoo Java API about concepts helps users adapt

to library implementation instances.

Possessing a comprehensive command of Odoo Java API is insufficient for this project.
Unlike other languages, the structure of Java applications is unique in its design. Thus,

familiarity with the examples in the Java API guide is essential for those interested.
3.1 Environment configuration
3.1.1 Installation

Odoo can be installed through multiple methods, but not all are appropriate in every
situation. Rather, the installation methods depend on the intended use. The following
content describes each method and their key features.

1. Online: The easiest way to use Odoo in production or to trial it.

28

2. Packaged installers: Suitable for testing Odoo, developing modules and for long-term

production subject to additional deployment and maintenance work.

3. Source Install: Provides greater flexibility such as running multiple Odoo versions
on the same system. Good for developing modules and can be used as the basis for

production deployment.

4. Docker: If the user typically uses the docker for development, an official docker base

image is available.

In this project, the packaged installer meets the requirements. Hence, it is selected because

its features support development in other aspects.

Odoo provides packaged installers for Windows, deb-based distributions (Debian,
Ubuntu,) and RPM-based distributions (Fedora, CentOS, RHEL, ...) for both the
Community and Enterprise versions. Thus, the packaged installer for Windows is easy to

use and apply.
Installation steps:
e Download available version/5/: The Community version package was downloaded.

e Check the components in relation to user needs during installation. Because the user
must save their own data in the Odoo system, the SQL Database must be installed.
16/

3.1.2 Component Extension

The Odoo system allows users to design its functions and features according to their
requirements. Therefore, real-world conditions should be researched, recorded and

logged into the Odoo system.
Component Extension steps:

e Add the new database: The specified database should be created and basic
information, such as database name, email and password, preserved because data can

be applied during user programming.

29

Create Database

Odoo is up and running!
Fill out this form to create a new database. You will install your first app afterwards.

Database Name

Email

867251552@qq.com

Password

sssssses @

Language Country

English ~ ~

[] Load demonstration data (Check this box to evaluate Odoo)

Figure 12. Adding the new database

e Adding the specified module: Odoo supplies the user with various applications which
can satisfy their individual needs (Figure 13). For this project, the manufacturing

module is required.

B <= P D RS < -
E =08 = [= B -

l::l‘% g"' I::E =3
@ = H = =B =
n:l [] m‘ =3
e = B e L = B -

Figure 13. Adding the specified module

e Adding product materials: Given that the battery module is assembled from multiple
elements such as battery cells, the battery connector, the battery frame, entries for
these products are created and updated with amount, price and so on.

30

enfory Manufacturing
Products T Q
Import 1414 €| > 2 =
Operations BatteryCell BatteryConnector
Manufacluring Orders Price: $1.00 Price: $ 5.00
On hand: 10,368.000 Unit(s) On hand: 3,993.000 Unit(s)
Unbuild Orders
Scrap Orders
BatteryFrame BatteryModule
Master Data Price: $ 15.00 Price: $ 140.00

Bills of Materials

Reporting

Manufacturing Orders

Configuration

Settings

Figure 14. Adding product materials

e Adding the manufacturing orders. After the materials are prepared, manufacturing
orders can be created one by one. The reference, material availability and order status

are produced automatically by Odoo, while the deadline, product choice and quantity
are edited by the administrator.

Deadline Start « Product Quantity Materials Availability State

047282018 18:23.0X BatieryModule 3000 Available

Master Data

Products
Bills of Materiats
Reporting
Manulacturing Orders 36.000
Configuration

Seftings

Figure 15. Adding the manufacturing orders

3.2 Odoo Programming

L:E ManufacturingOrders

+ManufacturingOrders
+satdmountvoid

]

OdooConnector

31

amountdouble
referemce: String
deadline_stantString
productString

quantity double
material_availity: String
state:String

finished_quantitydouble <

idiint

endpoim2:String
pre:Siring
execute:String
Iogin:String
module:String
filter-String
reference:Siring
id:String
material_availity. String
quantity-String
state:String

product String
deadline_startString
hostString

portint

tinydb:String
password:String

uid:int

cid_lengthint
obS:String

obO-double

oblint

statelnfol:String
statelnfo2:String
statelnfo3:String
statelnfod String
read:String

wirite: String
finished_guantity String
endpoint! :String
auth:String
objClientX¥miRpcClient
EmirpeAuthentic ate XmiRpeClient
objStatConfig XmiRpeClientConfigimpl
amirpeConfighuthenticate XmiRpcClientConfigimpl
cid:Object]

resullData: StringBuilder

OrderProcess

arderManufacturingOrders
state:String
indexcint

+checkOrders:boolean

max_ldinteger
nexOrderManufacturingOrders

£ propertiesConfiguration

+properiesConfiguration

finished_guantity String
read:-Siring
write:String
statelnfol String
statelnfo2:String
statelnfo3:String
statelnfod:String
host:String
module:String
filter:String
reference.String

-initalProprertyyoid
+updateToProgress: String
+updateToDone:String
+pro_authenticatecint

idsFromManfactoring. Object]

Figure 16. Odoo module architecture

deadline_start String
product String
quantity: String
rmaterial_availity: String
state:String

Id:String

portint

tinydb:String
login:String
password:String
endpoint! :String
endpoint2:Siring
execute:Siring
pre:String

auth:String

During programming, code segments are divided into various classes according to their

functions so as to elucidate the underlying logic. The class “PropertiesConfiguration”

collects all the key words in Odoo. “ManufactoringOrder” initializes the order produced

by Odoo. “OdooConnector” calls the Odoo java API to read, search and update

manufacturing order data. “OrderProcess” verifies whether orders are available and calls

the next order according to the latest deadline.

3.2.1 Odoo Java API

To achieve the “OdooConnector” class functions, the Odoo Java API available through

XML-RPC should be applied. In order to master this technology, the user must grasp

serval points which are outlined below.

e Configuration

32

In the Odoo Java API configuration, certain elements must be logged. Firstly, the server
URL, which is the instance's domain (e.g. https://mycompany.odoo.com). Secondly, the
database name, which is the name of the instance (e.g. mycompany). Finally, the

username, which is configured as the user's login shown by the Change Password screen.

String wrl <imsert server URL:,
db <insert database name>,

username -
password = <insert password your admin [: admin}>;

Figure 17. Configuration code

To make this part available, the configuration content was organized in the property file.

pre=http
host=1localhost
port=8069
database=BatteryModule

dbuser=867251552@qqg.com

dbpassword=ugUshe4r

Figure 18. Configuration in the property file
e Loggingin
Odoo requires API users to be authenticated prior to data querying.

The “xmlrpc/2/common” endpoint provides meta-calls which don't require authentication,
including version information retrieval. The authentication itself is carried out through
the authenticate function, which returns a user identifier (uid) in the authenticated calls

instead of the login. Moreover, the user identifier is applied for calling other methods.

Prior to authentication and identifier retrieval, the key words endpoint and authentication

should be written in the property file.

endpointl=/xmlrpc/2/common
auth=authenticate

Then, in the certain method, the project’s related content was organized.

33

xmlrpcConfigAuthenticate.setServerURL(new URL(pre, host, port, endpointl));
xmlrpcAuthenticate.setConfig(xmlrpcConfigAuthenticate);

int uid = (int)xmlrpcAuthenticate.execute(
xmlrpcConfigAuthenticate, auth, Arrays.aslList(
tinydb, login, password, Collections.emptyMap()));

Figure 19. Authentication in the property file and code
e Calling methods

In the previous points, the configuration and log-in were introduced. However, when the
user wants Odoo to execute more complex functions, then calling methods are first
utilized. This is done through the second endpoint, “xmlrpc/2/object”, which is applied to
the Odoo model to call methods via the “execute_kw” RPC function.

Each call to “execute_kw” takes the following parameters:
o the database used, a string

o the user id (retrieved through authentication), an integer
o the user's password, a string

o the model name, a string

o the method name, a string

o an array/list of parameters paced by position

O

a mapping/dict of parameters to pace by keyword (optional)

At first, the key word endpoint should be written in the property file. Then, two variables
are created, XmlIRpcClient and XmIRpcClientConfigimpl. Next, they are initialized and

parameters set with the exited data.

endpoint2=/xmlrpc/2/object

34
XmlRpcClient objClient;

XmlRpcClientConfigImpl objStartConfig;

objClient = new XmlRpcClient();
objStartConfig = new XmlRpcClientContigImpl();

objStartConfig.setServerURL(new URL(pre, host, port, endpoint2));
objClient.setConfig(objStartContig);

Figure 20. Preparation of the calling methods in the property file and its code

e List records

In examining every item in the specified module, the method search () can be used to
produce a perfect solution, helping the user solve the issue. In other words, records in the

certain field can be listed and filtered via search().

In regards to its protocol, search () takes a mandatory domain filter (possibly empty), and

returns the database identifiers for all records with which there is a match.

To start, the key word related data should be written in the property file as the figure.

execute=execute_kw
module=mrp.production
filter=search

Figure 21. Parameters of the searching method in the property file

Then, all the manufacturing orders should be listed.

configlist.add(tinydb);
configlist.add(uid);
configlist.add(password);
configlist.add(module);
configlist.add(filter);

paramList.add(condiState);
configlist.add(paramList);
cid = (Object[]) objClient.execute(execute, configlist);

Figure 22. Searching method code

e Read records

Although the ID array was saved after filtering, other order fields remained unknown. In

order to obtain the information needed, the read () method is next applied.

https://www.odoo.com/documentation/10.0/reference/orm.html#odoo.models.Model.search
https://www.odoo.com/documentation/10.0/reference/orm.html#odoo.models.Model.search
https://www.odoo.com/documentation/10.0/reference/orm.html#reference-orm-domains

35

Record data is accessible via the read() method, which takes a list of IDs (as returned by
search()) and optionally a list of fields to retrieve. By default, all the fields the current

user can read are retrieved, typically creating a large quantity of results.

To start, the key word related data is written in the property file.

read=read

reference=name
deadline_start=date_planned_start
product=product_id
quantity=product_qgty
material_availity=availability
state=state

id=id

finished_quantity=agty produced

Figure 23. Parameters of the reading method in the property file

Then, all the other manufacturing order fields are listed.

https://www.odoo.com/documentation/10.0/reference/orm.html#odoo.models.Model.read
https://www.odoo.com/documentation/10.0/reference/orm.html#odoo.models.Model.search

36

cid = this.getIdsFromManfactoring();

for (int 1 = @; i < cid.length; i++) {
argslist.add(cid[i]);
¥

fieldlList.add(reference);
fieldlList.add(id);
fieldlList.add(deadline start);
fieldlList.add(product);
fieldList.add(quantity);
fieldList.add(material availity);
fieldlList.add(state);
fieldList.add(finished guantity);
fieldMap.put("fields", fieldlList);

paramList.clear();
configlist.clear();
paramList.add(argslList);
configlist.add(tinydb);
configlist.add(uid);
configlist.add(password);
configlist.add(module);
configlist.add(read);
configlist.add(paramList);
configlist.add(fieldMap);

cid length = cid.length;
for (int 1 = @; i < cid length; i++) {
records.add((Map<Object, Object>) ((Object[]) objClient.
execute(execute, configlist)})[i]);

Figure 24. Reading method code
e Update records

When the manufacturing order is finished, its status must be updated using the write ()
method. Records can be updated using write(), which takes a list of records and updates

them by mapping the updated fields to the values similar to create().

Multiple records can be updated simultaneously, but the same values are obtained for the

fields being set. Thus, multiple data actions should be handled carefully by the user.

To start, the key word related data is written in the property file.

https://www.odoo.com/documentation/10.0/reference/orm.html#odoo.models.Model.write
https://www.odoo.com/documentation/10.0/reference/orm.html#odoo.models.Model.create

write=write
stateInfol=confirmed
stateInfo2=progress
stateInfo3=done
stateInfod=cancel

Figure 25. Parameters of the writing method in the property file

Then, manufacturing order status for the specified IDs is changed.

configlist.add(tinydb);
configlist.add(uid);
configlist.add(password);
configlist.add(module);
configlist.add(write);

paramMap.put(state, stateInfo3);
List<Object> id = new ArraylList<Object>();
id.add(idTochange);

paramList.add(id);
paramList.add(paramMap);
configlist.add(paramList);

objClient.execute(execute, configlist);

Figure 26. Writing method code

37

38

4 ABB ROBOT MODULE

The main solution in the ABB robot module involves applying the robot web service in
order to update the manufacturing order in the ABB robot’s program, thus optimizing and
serializing the manufacturing process. In other words, when a group of tasks are marked

as increasing or decreasing in orders, the operators identify them in the shortest time.

This module is divided into two components. The first component involves deploying a
demo for RobotStudio prior to programming. A suitable environment ensures the module

program works well and produces the correct response.

The second component deals with mastering the robot web service and further developing
a series of actions responsible for sending, receiving and verifying data between the

program and the code in RobotStudio.
4.1 Environment configuration
4.1.1 Demo deployment

In RobotStudio, which is downloaded from the ABB website and installed on the user’s

computer, the exited demo is first opened.

O ¥ ABB RobotStudio 6.06.01 - O X
i Home Modeling Simulation Controller RAPID Add-Ins 7]

Recent Stations and Pro

i3 Open = IRB_1200_rem—-b_deme.rsstn

IRE_1200_renb_dens. rsstn

B B

Print
Share
Online

Help

Options

B3 et

[] alvays show this page on

Figure 27. Recent file in RobotStudio

39
4.1.2 Parameter creation
Then, in the demo, the moving program “mMoverob” is located.

Current Station
4 B 1200-100380
] HOME
{§ Configuration
-] Event Log
% 1/0 Systea
4 [] RAPID
¥a T_joint (Program ’jointvalue’)

4 %al T_ROB1 (Progran ’NewProgranNane’)
4] Comnunicate
4] Nainmodule
4] alloverob
o] Process

o] srGCode_Nachining

o] SocketConmunicate

] BASE
4] user

G Vision System

Figure 28. Current program structure

In this program, the required parameters are created and initialed at zero. The parameter
“ordered” refers to the 1D produced. The value of the parameter “productID” should be
the same as the manufacturing order ID sent to the ABB robot. The parameter “quantity”
represents the quantity of the prepared manufacturing order, which is calculated
according to the supposed and finished product amounts. Finally, the parameter

“amountRead” checks whether the ABB robot’s tasks have been finished.

PERS num orderld:=0;
PERS num productId:=8;
PERS num quatity:=0;
PERS num amountRead:=8;

After running this application, the parameter is changed as shown in Figure 29, in which
every variable has been updated in accordance with the actual situation and the

manufacturing orders received from Odoo.

PERS num orderId:=1;
PERS num productId:=8;
PERS num quatity:=9;
PERS num amountRead:=1;

Figure 29. Current program order information

40

4.2 ABB robot programming

3 AbbRobotModel

3 ManualFcatoringModel
+AbbRobotModel _
+AbbRobotModel +ManualFcatoringModel
id:String orderid:in‘t.
name:String pmd.”?,"“"”'
username:String _qua_tm,r.!nt
password:String ipld:String

AbbRobotSenvice

-username:String
-password:String
-ip:String
-AbbRobotStatus:int
-Virtual1 Status:int
-Virtual2Status:int

-robotAuth:DigestScheme
-initiateSendOrdervoid
-initiateGetOrder:int
-checkRobotlp:String
+getCoord:String
+getarmountRead:String
+sendCoord:String
+checkCoords:String
+checkConn:boolean
+robotConn:void

Figure 30. ABB robot module architecture

For this module’s programming, the four classes contribute towards achieving the
common goal of updating the ABB robot’s parameters. The class “AbbRobotModel”
collects the data related to the ABB robot, creating a model for it
“ManualFcatoringModel” plays a similar function as above, except that it creates a model
available for manufacturing. “AbbRobotService” organizes the data processing methods

and can send, receive data with the ABB robot in RobotStudion.
4.2.1 ABB robot web services

The class “AbbRobotService” serves as the core module component for the Robot Web
Services, which require time and energy in order to be researched and mastered. Moreover,

they consist of numerous services, each of which may have additional services or

41

resources, making the target resources difficult to identify. A subset of available services

and resources is given:

— ftasks
{roof} fiileservice
—1 lexecution
— [properties
| /subscription — /system
— Isymbol
— fctrl — [rapid — /data
— Isymbols
— Ipanel
— lusers | fiosystem Inetworks
— lcfg Idevices
—| lelog Isignals

Figure 31. The subset of services and resources in robot web services

o Fileservice: Provides remote access to files and directories. Handles the transfer,
creation, removal and renaming of files and directories (similar to FTP service.)

o Subscription service: Handles resource subscriptions and sends events when

subscribed resources are updated. Subscription service uses "Websockets" for events.

o Ctrl service: Handles robot controller global functionality, such as access to the

controller clock, controller identification and restart execution.
o Users service: Handles the registration of connected clients.
o RW Handles RobotWare services, such as 10, RAPID, E-log and CFG.
4.2.2 RobotWare services

As a component of Robot Web Services, the RAPID System Service resource map is
shown in Figure 32. In this project, rapid symbol data and its updating are sought after,
so that the rapid data URL <can Dbe determined according to:

42

“/rw/rapid/symbol/data/{symbolurl}”. Moreover, the “symbolurl” here refers to
“RAPID/T_ROB1/"and the specified variable. Thus, the parameters in the prepared
demo can be determined.

“—m ;‘tas ks ;{tas k} ;‘p —

/symbol

/properties [symburl}

M ;{SV . b : rl}

fuiinstr [active

Figure 32. The subset of services and resources in RobotWare services
4.2.3 Operations on RAPID data

Two operations are necessary in rapid symbol data processing. The fist operation involves
receiving rapid symbol data. Because a resource is executed by the method defined by a
HTTP verb in the HTTP protocol, and each resource supports one or more HTTP verb,
the HTTP verb and its related method are assessed accordingly. During rapid symbol data

retrieval, the GET verb serves as support.

Given below is an excerpt of the code for the first operation.

43

CloseableHttpClient client = HttpClients.createDefault();

//set the URL for the specified variable

URL url = new URL("http://"+checkRobotIp(ipId)+"/rw/rapid/symbol/data/RAPID/T_ROB1/"“+manufactoringName);
HttpHost targetHost = new HttpHost(url.getHost(),url.getPort(),url.getProtocol());

HttpClientContext context = HttpClientContext.create();

CredentialsProvider credPro = new BasicCredentialsProvider();
credPro.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(username,password));

AuthCache authCache = new BasicAuthCache();
authCache.put(targetHost, robotAuth());

context.setCredentialsProvider(credPro);
context.setAuthCache(authCache);

//use the GET verb

HttpGet httpGet = new HttpGet(url.getPath());

//execute and get the response

CloseableHttpResponse res = client.execute(targetHost, httpGet,context);

Figure 33. GET rapid symbol data

The second operation refers to updating a RAPID variable. In this process, the URL
“action=set” is added to the original URL so as to carry out updating. Next, the HTTP

verb is POST. Given below is an excerpt of the code for the second operation.

CloseableHttpClient client = HttpClients.createDefault();

//set the URL for the specified variable and suitable action parameter

String url = "http://"+checkRobotIp(ipId)+"/rw/rapid/symbol/data/RAPID/T_ROB1/mMoverob/"+manufactoringName+"?action=set";
//use the POST verb

HttpPost post = new HttpPost(url);

List<NameValuePair> Param = new ArraylList<NameValuePair>();

Param.add(new BasicNameValuePair("“value",""+value));
post.setEntity(new UrlEncodedFormEntity(Param));

HttpHost targetHost = new HttpHost(new URL(url).getHost(),new URL(url).getPort(),new URL(url).getProtocol());
HttpClientContext context = HttpClientContext.create();

CredentialsProvider credPro = new BasicCredentialsProvider();
credPro.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials(username,password));

AuthCache authCache = new BasicAuthCache();
authCache.put(targetHost, robotAuth());
context.setCredentialsProvider(credPro);
context.setAuthCache(authCache);

//execute and get the response
HttpResponse response = client.execute(targetHost,post,context);

Figure 34. Updating a RAPID variable

44

5 OMRON ROBOT MODULE

The Omron mobile robot, Adept Lynx, serves as the battery carrier. In order to make it
move, the manual for the relevant software should be read and memorized. Moreover, the

properties of ARCL (Advanced Robot Command Language) must be learnt and mastered.

This module is developed in regard to two aspects. Initially, the environment is scanned
into the new map, with a list of target goals marked on the map in MobilePlanner. After
obtaining the raw map, certain modifications should be carried out, thus rendering the
map clearer and easier to follow. In order to make controlling the mobile robot more
effective and the commands simpler, the concepts of macros and routes should be
understood. A group of actions can be defined in one macro and several macros can form

one route. Using these reduces the amount of command code.

The second aspect involves establishing the telnet connection and sending control orders
in the program. In this section, the software putty can verify program correctness and test
ARCL commands through its console. Then, Java helps to create the telnet client and

apply the tested commands prior to communication with Adept Lynx.
5.1 Environment configuration
5.1.1 Initial map creation

In order to describe this module, the software MobilePlanner should first be introduced.
This software package serves as the "control center" of the Adept Motivity software suite,
providing the tools to accomplish all major mobile robot activities, such as creating and
editing map files, creating and editing goals and routes, driving the robot and

configuration.

With the Motivity software, including MobilePlanner, autonomous robots know where
their position and drive from one place to another without a human operator. The only
requirement is that the mobile robot has a prepared map of the operating environment
static features. With MobilePlanner, making a map for the robot, and even an entire fleet

of robots, is fast and easy.

For map creation purposes, this project’s definition of a map should be determined

because the map can only be planned using MobileEyes and MobilePlanner. The map in

45

these software packages represents the floorplan of the mobile robot's operating space,
including the environment’s static features, such as walls, doors and permanent shelving.
Moreover, the map contains the route information, goals, docks, and tasks for the robot.

The name of the map always has an extension.

As previously discussed, the Adept mobile robot is familiar with its environment, that is
it has a map for navigation. In order to create a map, the user must first press scan in
MobilePlanner and scan the workspace. Then, the environment can be scanned while the
mobile robot navigates. At the same time, certain points, such as the charging station-

dock, can be marked with the joy-stick, facilitating accurate and precise goal indication.

Although the scan file comes from the robot, the user map is saved on the local PC until
it is saved elsewhere. Depending on file size, the conversion process can take a
considerable amount of time and memory. Once the scan is complete, the user can

transform it into a map so as to assign the mobile robot tasks to execute.
5.1.2 Editing maps by adding objects

This final section discusses the process of converting a scanned file into a map file so that
the robot can navigate its environment. However, the map is not yet completed. Editing

maps by adding objects such as goals, docks and forbidden areas is necessary.

At first, the Eraser tool can be used to make the map appropriate in more situations by
providing a clear outline. Its main task is to remove map features which are temporary or
moveable, such as chairs and forklifts. As for the objects in different ranges, eraser size

can be adjusted between 5 to 1000mm in order to accept them.

Once basic map features satisfy the user, drawing tools can be applied so as to add goals,
docks, forbidden lines and areas, as well as more advanced lines and areas. These features

must be added so that the mobile robot can successfully navigate the workspace.

Thus, their definitions can be determined. Goals are virtual destinations to which the
mobile robot drives in its environment. Goal properties include the x-coordinate, y-
coordinate and the heading degree, which plays an important role in robot rotation. Figure
35 displays a list of goals marked on the map.

46

B VobiePlanner T — -
File Edit Robot Map View Tools Window Help

192.168.200.210 ~ ’_in p@ ’76 ’_@ [a @ @ p

Disconnect Flest Config Map SetNetGo | Save || Undo Redo | Search
[© 192. 168,200, 210:Configuration @ 192. 168.200.210:caffeeround map [x]
Draw [Build] o 2 @ o @ $ 5 5 @
Sounce Lists . Stop SendRobot Drive LocalzeRobot =~ GoalatRobot CenteronRobot FitinWindow ~Reduce Magnify Pan
Robot Tasks | Goals | Macros Routes | Goals | Macros | Spedial | L R S 4 i
conferenceroom - f gl g
sikanlal fysikaniab) [o =
Goal10 Goal10 U N e e~ Lt ["—T J
Goal11 Goal11 . o =
Goal3 Goal3 -3 o 3 ‘JJ =
Goald Goald TR
konazutomaatio konazutomaatio . k“‘“”"‘““ﬁ
koneistusiab koneistusiab !
keneteknikka keneteknikka -] :
ovi takas ovi takas)
auiL auiL
auiz auiz
it . it
prepare_paint prepare_paint
pasovi pasovi
robatikkalab robatikkalab
Start_point Start_point L
sthiks sthiks 3
sahkbteknilkka sahkbteknilkka
- fietokoneteknikka - fietokoneteknikka
- ymparistitekmitda - ymparistitekmitda N
Goald
|
e B -

Figure 35. Marking the map goals

Advanced lines, points, and areas include features such as closed doors, measuring sticks,
switchable forbidden lines or areas and one-ways. These advanced features can also be

added to the map, controlling traffic flow in certain conditions.

Forbidden lines and areas are frequently applied in the maps. If the user wants to restrict
mobile robot movement, adding forbidden lines and areas can help. These areas typically
correspond to a portion of the operating environment which the mobile robot is not

allowed to enter.

IgnoreSonar area, which refers to areas on the map where sonar sensors are disabled,
should also be added. This can be useful for crossing known thresholds so as to avoid
activating the foot sensor, which thus reduces the risk of mobile robot immobility in the

presence of obstacles.

Figure 36 presents the menu for draw tools which can add advanced areas and lines.

(3 [Mobil -
r Fde Fes I
w2020 - ™ Lt & B 2e »
Disconnect Fleet Config Map SetNetGo Save | Undo Redo Search
[© 192,168,200, 210:Configuration WVAS) 192.168.200.210:caffesround. map [x]
(Draw | Buid 0 8 5 & B)) a_ @&
FitinWindow ~ Reduce Magnify PanUp PanDown Panleft PanRight Monitor Show Robot
R E Poo=
Select snap
Eraser cut
E . & .
Goal Dock
2 [

Forbidden Line Forbidden Area

% —_

Advanced Points Advanced Lines

&

Advanced Areas

L.
Tl

Figure 36. Drawing advanced areas and lines
5.1.3 Working with Tasks

An Adept mobile robot is unique in its ability to navigate freely and safely in a workspace.
Moreover, such a robot can perform useful work (tasks) while safely driving itself to

particular places (goals and routes).

The tasks are the lowest-level "work™" that the robot can perform. More specifically, tasks
refer to activities which the mobile robot can perform, such as going to a goal, checking
sensors or speaking a phrase. Tasks give the robot useful work and serve as the project
cornerstones because these tasks are already available, but the robot needs definitions and

associations with the map.

Mobile robots are given both instant and non-instant tasks. Instant tasks allow other tasks
to be started before the instant task is finished. Non-instant tasks force the next task to
wait until instant tasks have been completed. Thus, when the task is called, the degree to

which is it instant must be taken into consideration.

The Move task is a non-instant task used for enabling robot movement for a specified
distance. In its execution, the situation must be assessed so that no obstacles are

encountered. In this project, the robot cannot move when crossing the door because its

48

sonar sensors would detect obstacles and halt the robot. Thus, the robot has to move

backwards, with its distance value given as negative in Figure 37.

@ MabilePlanner | % £ -

Task "move" Description:

Moves forward by the spedified distance, provided that no obstades are encountered,

Class: Movement

Parameters:
Parameter Value Min Max *
“ | distance -300 A
speed 400 0 3
- | Tont dearance 200
w | Side dearance 50
- | time until fail 30 0 il '

Figure 37. Move task details

The setHeading task is another necessary task which belongs to the category of non-
instant tasks. This task supports the user in turning the robot towards a specified heading.
This parameter represents the number of degrees the robot must turn and is especially
significant when the robot comes to the door and wants to go backwards. Robot rotation

can be altered using this method.

Speech and sound tasks are those that control robot audio. As the mobile robot navigates
the operating space, a sound can be played during driving so as alert those around it of its
presence or its next intended task. In this project, the speech task is programmed to initiate
when the mobile robot begins patrolling the route and attracts user attention.

Because of the complex actions, compromise is necessary for task groups. In order to
solve this problem, macros can be applied so as to combine goals and tasks together.

Macros allow the user to save combinations of goals/tasks within one or more routes,

49

meaning macros are "reusable”. For example, rotation and movement can be incorporated

into a macro for efficiency.

The sum of all goals, tasks and macros should ultimately led to the route(s) being applied.
In fact, a route is essentially a "to do" list for the mobile robot, consisting of a series of
ordered tasks, goals, and macros for completion. In this project, two routes are created:
PickRoute and LeaveRoute. The PickRoute collects all data related to going to the
operating space. Firstly, the robot is called to go to prepare_point goal, which it
acknowledges by saying” I am going to pick up a battery”. This goal is located in the
opposite direction of the door. Thus, the robot executes the macro to move backwards
and wait. After picking up the battery, the LeaveRoute is called, initializing the macro for
rotation and moving backwards as accompanied by the robot saying, “I am going to leave”.

Then the robot goes to another goal.

Finally, the finished map is saved to the robot so that it has all the information necessary

to execute its tasks.

5.2 Omron robot programming

LynxProcess

MoreActions
telnetClient.TelnetClient

inputStream:InputStream
pStream:PrintStream
actions:MoreActions
flag1:boolean
flag2:boolean

+preloginin:String
+loginin:String
+gotoGoal:String
+moveBackward: String

+init:yvoid
+enrollBox:boolean
+exitBoxhoolean
+disconnectvoid

Figure 38. Omron robot module architecture

Figure 28 shows the two classes which contribute to module program. The LynxProcess
class is used to build the telnet connection with the mobile robot-Adept Lynx and call the
methods in the MoreActions class for controlling the mobile robot in performing certain

functions.

50

The MoreActions class contains the methods for writing ARCL commands in the telnet
console. These methods include actions such as logging in, reading instructions,
patrolling the PickRoute and patrolling the LeaveRoute. All these actions help the robot

finish the movements required for this project.
5.2.1 Working with Putty

The software introduced in the previous chapter provides the finished map with defined
tasks and routes. However, it is not sufficient for this project’s programming. The code

in this program should be capable of controlling the robot.

Although applying ARCL can resolve this issue, the connection must first be identified

and ARCL commands tested prior to implementation.

ARCL supports multiple client/server connections through the TCP/IP socket. According
to the Adept Lynx manual, the robot can communicate through the telnet, which is a
protocol used on the internet or on local area networks. Telnet provides a bidirectional
interactive text-oriented communication facility using a virtual terminal connection, in
which user data is interspersed in-band with Telnet control information for a 8-bit byte-

oriented data connection over the Transmission Control Protocol (TCP).

The Putty software can be applied in the initial stages in order check command correctness.
Putty is a free and open-source terminal emulator, serial console and network file transfer
application which supports several network protocols, including SCP, SSH, Telnet, rlogin,

and raw socket connection. Moreover, it can connect to a serial port.
Following the steps below, a connection ARCL can be established:
1. On the Windows-based PC, open Putty

2. Start Telnet using the ARCL server address and port number specified in ARCL
Server Setup Parameters. Figure 39 shows where the port (7171) and server address
(192.168.200.210.) can be found.

51

Robot Isterface | Robot Operation | Robot Physical | Enterpeise | Debug 7. Shom Experts Paraneters

Sections: Parameters for ‘ARTL server setup':

Darwreter -

? ® Acconfg

v Paiwend adept

- Logent e

T O AcCeaANEataces

and to free mators n ARCL, ™hes
¢, bu .

Figure 39. Server Information in MobilePlanner

3. Enter the password according to the instructions. After the user has successfully
logged in, the server responds with a list of supported commands, each with a brief

description. An excerpt of the content is displayed in Figure 40.

Figure 40. Content in putty

4. If needed, the echo off command can be executed to prevent input written by the user

from echoing in

5. When the user finished their operation, the quit command can properly close the

connection.

After the user connects to ARCL, available ARCL commands can be examined.

52

5.2.2 ARCL Implementation

After establishing a connection to the ARCL server and monitoring the mobile robot using
ARCL commands designed through putty, implementation can be realized using Java.

Before organizing the command code, the telnet should first be created as in Figure 41.

TelnetClient telnetClient = new TelnetClient();
InputStream inputStream=null;

PrintStream pStream=null;

Figure 41. Initialization of the related variables (1)

The client setting and initialization of the related variables are organized as shown in
Figure 42.

public void init() throws SocketException, IOException {
telnetClient.setDefaultTimeout (50000) ;
telnetClient.connect("192.168.200.210", 7171);

inputStream = telnetClient.getInputStream();
pStream = new PrintStream(telnetClient.getOutputStream());
actions = new MoreActions();

Figure 42. Initialization of the related variables (2)

In executing connection work, ARCL commands can be written using Inputstream, the

responses to which are then returned by PrintStream.

Although the getRoutes command is not applied in this Java application, it is useful for
verifying which routes the robot should save. More precisely, it displays the list of route

names found on the current map.

The method required for implementation is driving the mobile robot to pass through the
routes. For this purpose, three methods which meet the requirements are identified, patrol
command, patrolOnce command and patrolResume command. The patrol command
initiates the named route’s continuous patrol, while the patrolResume command calls the
robot to continue the current route’s navigation. As the two methods are applied, the stop
command is applied, making the process more complex. Thus, the patrolOnce command,

which calls the robot to patrol the specified route once, is the best choice for the user.

53

The code for patrolling the PickRoute route once is given in Figure 43.

pStream.println("patrolOnce PickRoute"™); write the command
pStream.flush(); push the command to |

Figure 43. Code for patrolling the route once (1)

For patrolling another route, the route name must be changed.

pStream.println("patrolOnce LeaveRoute™); write the command
pStream.flush(); push the command to Teln

Figure 44. Code for patrolling the route once (2)

They all require the rely to be checked, with one such action displayed in Figure 45.

if (sBuffer.toString().trim().endsWith{"Finished patrolling route PickRoute")) {
break;
}

Figure 45. Code for patrolling patrol the route once (3)

54

6 CMMO CONTROLLER MODULE

This module administers the connection with the CMMO controller, thereby organizing
its function. The CMMO controller version is CMMO-ST-EA-SY. This device can be
charged using three connection types: FCT, CVE and Web servers as shown in Figure 46.
19/

Connection | Changeover of device control

FCT Device control can be assumed by all other connections (device control: enable FCT).
When the device control is disabled, master control is restored to the 1/0 interface.
CVE Device control can be assumed by all other connections and can assign device

control to an existing active connection (object #3).
Web servers | Can take over device control from the 1/0 interface. When the device control is
disabled, master control is restored to the 1/0 interface.

Figure 46. Three connections with the CMMO controller

In comparing the advantages and disadvantages of these three methods, it is clear that the
Web server is outstanding. After deciding on the connection, the user can assume device
control using the 1/O interface. Hence, the parameter file which was changed in the FCT

can be downloaded to the CMMO controller, assigning the Web server master control.

When the Web server assumes device control, the queries controlling the CMMO device
require the user to identify and select certain requirements and efficiency for
consideration. When homing method configuration is set according to user needs, the
combination of homing and stop can control the electronic cylinders in lifting the battery
through the CMMO controller. In order to avoid exceptions during execution, the homing
query time length should be limited, so that the CMMO controller can order the electronic

cylinders to lift successfully.
6.1 Environment configuration
6.1.1 Device configuration

Although the CMMO controller connection is determined using the web server, the FCT
must nonetheless be applied so as to configure the parameter file. Thus, the components
containing the CMMO controller and electric cylinders should be connected and
configured in the FCT. Figure 47 shows the current motor controller identified and

selected.

55

Edit Drive Configuration u

Controller

1. Configure Controller
Controller Type: CMMO-ST-CE-1-DIOP LI ;'. .

2. Corfigure fdis Mator Unit £ OMS

- N
3. Configuration Resutt
g _.
-
“.I

Deetermine configuration from Type Code / Part Number

Type Code / Part Number:

Help... | = Back Mext = Cancel

Figure 47. Configure controller

In Figure 48, the current Axis motor unit is identified and selected.

Edit Drive Configuration

56

Axis Motor Unit / OMS
1. Configure Controller
Type: |EPco |
2. Configure Axis Motor Unit / OMS
Technology: Ball screw
3. Configuration Result Size: lm
Guidance: | GuideBal |
Variant: |3P-ST-EB+EAGF-P1-KF-25-... =l
‘working Stroke: 100 -
Feed Constant: 3.00 mmir
Result: EPCO-25-100-3P-ST-EB+EAGF-P1-KF-25— .
Brake: Yes
Encoder: Yes

Determine configuration from OMS 1D/ Type Code / Part Number

Search Pattern:

Help... |

Figure 48. Axis Motor Unit configuration

In Figure 49, the correct control profile selected is valve profile rather than binary profile.

Projects |42 cmmo

4 b x [Dynamic Help

Operation Modesl E
Controliar

CMMO-ST-C5-1-DIOP

Asis Motor Unit / OMS

EPCO-25-100-3P-ST-EB+EAGF-P1-KF-25-...

Gear Rato (total)

1:1

>

"Digital I/O" online tab for ...~
DIOX

The states of the digital inputs and outputs
of the CMMO-ST-CS-1-DIOx types are

[0

Control Profile: Valve Profile Upload I displayed in this panel. The individual
© [o @] signals are labelled with their current
Control Interface [Dictal 0 =~ Downlosd | ||| function.
Display Description
Used Functions E Sync |
- @ | green Input active
Stoce l Q | yellow Output active
I Q@ | gray Input or output inactive
Comparators: @
= H Both frames can be undocked
W Position red = Stop I individually (see "Undocking
- = Motion online dialog areas”™):
' O Digital Input: Opens
the “Digital
- Inputs” (display) dialog -
— e
<« | " » <« | " »
B x
Digital Inputs TJ) | Digital Outputs o
[fog postive © X1.Pint (Start record 1) © X1.Ping (Brake Control) @ X1.Pin12 (Position 1 reached) © X1.Pin20 (Homing Valid)
@ x1.Pin2 (Start record 2) @ X1.Pin10 (Control-Enable) © X1.Pin13 (Position 2 reached) O X1.Pin21 (Ready)
© X1.Pin3 (Start record 3) Q@ X1Pin11 (Reset) © X1.Pin14 (Position 3 reached) @ X1.Pin22 (Torque limit reached)
@ X1.Pind (Start record 4) (@ X1.Pin15 (Position 4 reached)
© X1Pin5 (Start record 5) © X1.Pin16 (Position 5 reached)
@ X1.Pin6 (Start record 6) © X1.Pin17 (Position 6 reached)
- | © X1.Pin7 (Start record 7) @ X1.Pin18 (Position 7 reached)
k : © X1.Pin8 (Homing) @ X1.Pin19 (In zone)

Figure 49. Valve profile selected

57

6.1.2 Parameter setting

For further functions, it is necessary to better understand homing action. After research,

it is known that homing includes multiple methods.

In FCT (Festo Configuration Tool), the homing method can be configured in the Axis

options panel and carried out on the “homing” tab using the set parameters.

The homing method containing "Target" and "Direction™ is selected. The result is
displayed in stylized form next to the selection as follows. Meanwhile, the methods
available in the list depend on several conditions, meaning the user should select the most

suitable method from the list.
Target:

o Block: Homing searches for a mechanical stop. When detected, the parameters are

specified.
o Condition: A motor with an encoder operates in "controlled" mode.

o Homing Switch with Index: Only for motors with an encoder. Homing searches for
a homing switch which end at the encoder’s next index. The homing switch is

parameterized and the motor with the encoder operated in "controlled" mode.

o Homing Switch without Index: Homing searches for a homing switch with

parameterization.

o Position Actual Value: The current position becomes the homing position, with no

movement required. This target is always within possible limits.
Direction:

When the target equals "Block™ or "Homing Switch", its direction is determined as

follows.
For linear axes:
o Negative: A spindle is "retracted”, a slide moves in the motor’s direction.

o Positive: A spindle "extends", a slide moves away from the motor.

58
For rotary modules (rotation axes) looking towards the drive shaft:
o Negative: The motor shaft turns anti-clockwise.
o Positive: The motor shaft turns clockwise.

In order to activate the homing switch, the homing switch with index negative method is
applied. Here, the electronic cylinders belong to the linear axes, meaning they lift down

and then up in executing a single cycle. This method description is shown in Figure 50.

Homing
Method Description:

11: Homing Switch with Index Negative

Homing Valid O

Homing Switch O

Actual Position: 26,54 mm

Actual Velocity: 0,00 mm's

Actual force: 158 %
@ Start Homing

Figure 50. Homing Switch with index negative
6.1.3 Enabling the Web server

When the homing setting had been modified in FCT, the new parameter file is
downloaded to the device, with the parameter uploaded to the PC from the web server
page (192.168.178.1). Thus, next time the user can simply download the exited
"Parameter.fpf" file directly to the device without changing FCT settings. The controlling

panel, including uploading and downloading functions, is displayed in Figure 51.

Select parameter set for download to CMMO:

Browse... | Parameter.fpf

Diownload parameter set to CMMO |(De'u'i|::e Cantraol is required)

Upload parameter setto PC |

Figure 51. Uploading and downloading settings

59

Device Control (master control), which is an exclusive access right, ensures that one
connection can control the actuator at any given time Simultaneous control by multiple
connections could cause serious problems for the actuator. There is always an approval
signal for the connection controlling the device at any given time. After switching on the

motor controller, the 1/0O interface has sole control over the device.

To facilitate the Web servers in assuming control over the current device using the 1/0
interface, control by other methods must first be disabled. Moreover, by enabling CMMO
control through the web service as in Figure 52, a HTTP connection with the CMMO web

service can be constructed.

Control

Device Control: [¥| Control Enable; [+ Reset Error

Figure 52. Device control enabling

6.2 CMMO controller programming

Commo

flag:boolean HttpURLConnectionimp
time:double

-USER_AGENT:String

+changelirection:boolean
+hamingGetyvaid
+ztopGethoolean

Figure 53. CMMO controller module architecture

This module contains two classes: HttpURLConnectionlmp class and Cmmo class. The
first class consists of two basic methods, the first of which, homingGet, builds the HTTP
connection with the CMMO Web server, sending the homing query to the server by GET
request. The other method, stopGet, also engenders HTTP communication with the
CMMO Web server, forwarding the stop query to the server, again using GET.

In the CMMO class, the changeDirection method performs the functions of lifting electric

cylinders. The two methods in the HttpURLConnectionlmp class form part of the

60

changeDirection method, because when the homingGet is applied as part of

changeDirection, the thread including the stop action waits until the cylinder lifts.
6.2.1 Web server queries

During homing query execution, the HTTP GET request with the URL
"http://192.168.178.1/query?homing” retrieves the result and controls the motor so as to
execute its actions. In the current IDE, the code is shown in Figure 54.

St;lgé 5;1:L:"Htl;;if192,168,1?8.1Iquery?homing";

URL obj = new URL{url);
HttpURLConnection con = (HttpURLConnection) obj.openConnection();

optional default is GET
con.setRequestMethod("GET");

Figure 54. Homing query code

Moreover, the corresponding web page is displayed in Figure 55.

T —
http://192.168...1/query?homing * "-\hCMMD ® | -+
(S 1921681781/ queryThoming C Search ﬁ’ E 2 3
|2 Most Visited || Getting Started || Suggested Sites || Web Slice Gallery
Homing.
|
[~ > Conscle () Debugger [# styleEditor | (5 Perfermance T Metwork | R B3

Figure 55. Homing Web page

Then, according to time counted, an HTTP GET request with the URL
"http://192.168.178.1:80/query?stop” is sent to the server in order to stop the motor. In

the current IDE, the code is given in Figure 56.

61

//send stop query
String url = "http://192.168.178.1/query?stop";

URL obj = new URL{url});
HttpURLConnection con = (HttpURLConnection) obj.openConnection();

// optional default is GET
con.setRequestMethod("GET");

Figure 56. Stop query code

The corresponding web page is displayed in Figure 57.

http://192.168.178.1/query?stop %

@)‘& 1921681781/ queryZstop ¢ |[Q search | &% @& ¥y A4 © =
|[8) Most Visited { | Getting Started {_: Suggested Sites | Web Slice Gallery

Stop.

® > Console | @ Debugger | [# style Editor] @ Perf e FN | | B- ™ B |% 00 x

Figure 57. Stop Web page

62
7 STRATEGY MODULE

This module plays the most important role in the whole project, importing all the other
modules and possessing the ability to call every method in their packages. Thus, it
organizes the methods needed based on the workflow present in the overall structure, so
that once the application runs, the program follows the sequence and completes the tasks.

Furthermore, there are two creative points which were brought to attention by my
supervisor, the detection method based on the priority structure in the manufacturing
schedule and the shortest path algorithm applied in route selection. In this chapter, the
research regarding the two methods is outlined. These methods merit further analysis and

development in the future so as to improve this application.

7.1 Initial programming

clientMainClass

productOrder:ManufacturingOrders
flag:boolean

ma:OdooConnector
proOrder.OrderProcess
ly:LynxProcess

actions:Commo

flag1:hoolean

flag2:boolean

flag3:boolean

flag4:boolean

+main:void
+run:void

Figure 58. Strategy module architecture

In the main class initial version, although the code is simple, it can control the different
modules and coordinate cooperation so as to finish the designated work line. In the main
method, the “to do” list is obtained from the Odoo actions package before the first
manufacturing order is produced. This order serves as the run method’s parameter. In the
run method, several while loops are present because the main thread must wait for one

robot to finish its activities before instructing another robot to run.

63

7.2 Future features
7.2.1 Scheduling Algorithm Based on Priority Table

In implementing this project, the priority table applied is the earliest deadline first (EDF).
In other words, this EDF policy assigns the highest priority to the task with the earliest
deadline. Similar algorithms include the rate-monotonic (RM) algorithm, least slack first
(LSF for short), highest value first (HVF) and maximum value density first (HVDF).

However, it is not sufficient for priority to be determined solely by a certain characteristic
parameter. Although these algorithms are optimal under normal system load, when
overload occurs, the system cannot guarantee that all tasks meet the deadline. Thus,
algorithms like EDF experience drastic performance degradation, even succumbing to the
domino effect. Moreover, deadlines and short idle tasks are not necessarily the most
critical, but even during overload, the system must guarantee the timely completion of
critical tasks. This thus supports system performance, causing system failures and even

crashes. Considering this risk, EDF is not the best algorithm for this project.

Many studies have demonstrated the importance of priority-driven scheduling algorithms
expressing task criticality and deadline by using two independent characteristic
parameters. One algorithm, the best effort (BE) algorithm, is based on task value density.
However, experimental results show that BE has a substantially large system overhead in
the event of system overload. Certain articles have mentioned the criticality-deadline first
(CDF) algorithm, according to which each task is assigned a priority based on relative
deadline and criticality when it arrives. Period or criticality, as feature parameter
algorithms, can greatly improve overall system performance. Unfortunately, this

algorithm still carries certain risks.

In summary, the above algorithm has the following shortcomings: (1) Since the task
deadline and value are two completely different concepts with distinct value rangers, they
cannot be weighted in a simple manner; (2) Since the operating system or scheduling
system usually only supports a limited priority, the CDF priority must be converted to the
system’s priority level, causing different tasks to have the same priority; (3) Heuristic
algorithms, such as BE, have large system overheads, especially during system overload,
with the higher overload processing overhead affecting system performance more

severely. In order to overcome these problems, a real-time scheduling algorithm is

64

proposed, for which task priority is assigned by ordering which fully reflects the sequence
relationships between task characteristic parameters. This algorithm not only serves in
synthesizing task value with two deadline feature parameters, but also in any other tasks
with two feature parameters involved in the scheduling of comprehensive consideration.
Moreover, this algorithm focuses on the priority table design method for synthetic task
deadline and value. Two scheduling algorithms, EDV (earliest deadline value) and VED
(value earliest deadline), are proposed. In this project, because every product-battery
module is labelled with the same price, the value comparison does not differ from the

amount comparison in their findings.
7.2.1.1 Deadline/value priority table design

The objective of the deadline/value priority table design method is to comprehensively
consider task deadline and value during task scheduling so that the system may gracefully
collapse under overload while avoiding a domino effect. First, the principles of

algorithmic scheduling are clarified:
e The earlier the task’s deadline, the greater its value and the higher its priority;
e For those tasks with identical deadlines and values, the first-arrival takes priority.

Figure 60 shows the prioritization schedule based on deadlines/values, where the arrows
indicate task priority. In this priority assignment method, the task deadline sequence goes
in ascending order, starting with the earliest deadline. Originally, the task was more
straight forward, with the task value sequence ranked in descending order, starting from
the greatest value tasks. For tasks with identical deadlines, the higher its value, the higher
its priority. Meanwhile, for tasks with identical values, the earlier its deadline, the higher

its priority. In the priority table shown in Table 1, each task has a priority level.
P=i+j (1)

Where i and j denote the position of task deadline and value in their respective sequences.
The tasks identified on each diagonal line in the figure have the same priority level P, but
for tasks with identical priority, the scheduling order must be displayed in different

directions according to arrow direction. Task priority, p, is calculated as follows:

65
p=(>{+j—1) «({+j—2)/2+i)

The smaller the p-value, the higher the priority. For tasks with identical priority, the
scheduling algorithm is inclined to priorities tasks with earlier deadlines. This priority
design pattern provides a deadline/value scheduling algorithm for integrated tasks. These

algorithms are called EDV algorithms.

Similarly, another design pattern is present in task priority table, as shown in Figure 60.
For tasks with identical priority, the scheduling algorithm prioritizes larger tasks.
According to this model, task priority is calculated as follows:

p=(>{+j—1D*({+j—2)/2+] @)
Scheduling algorithms based on this pattern are called VED algorithms.

Although task priority is assigned according to the priority table, this method does not
conduct calculations in advance. Instead, the priority table for the dynamic organization

task at runtime is used, achieving priority-based task scheduling.

66

Fig.1 EDV priority table design

v

0|y 0 !
d,

6 | &

d,

d

i |

,

Fig.2 VED priority table design
Figure 59. Priority table design of EDV and VED

7.2.1.2 Deadline/value priority table design implement

This section uses EDV as an example of implementing a scheduling algorithm based on
the priority table. Based on the priority table’s characteristics, the task deadline sequence
and value sequence are realized as a deadline-based task linked list Qd and value-based
respectively. The task chains Qv, Qd, and Qv are bidirectional circular linked lists with
free head nodes, together forming a logical priority table. The reason behind the use of a
doubly linked list is the facilitation of task node insertion and removal. The structure and

list of TaskNodes are defined as shown in Figure 60:

67

int p; //The priority of the task
struct TaskNode *pdprior, *pdnext; //Deadline based task list pointer
struct TaskNode *pvprior, *pvnext; //Value-based task list pointer

}TaskNode, *TaskLink
TaskLink dhead;
TaskLink wvhead;
TaskNode *pactive

Figure 60. Code for EDV table design (1)

When a new task arrives, the system runs the priority algorithm, inserting the task into

Qd and Qv, and calculating task priority so as to determine whether it must preempt the

task currently being executed.

The task receiving strategy algorithm is described as follows:

1)
2)

(a)
(k)
(c)
(d)
()
(£)

Let pnew point to the new task, with an initially Null pointer field,

Insert the task pnew into Qd

pd=dhead=-»pdprior; // Define the pointer, point to the end of Qd Point

i=pd->1+ 1; / [/ initialize the new taﬁk in the priority table LOW ﬁUbﬁ»rlpt
while ({pd! = Dhead) and (pnew-> d <pd-> d)) { //Determine where the new task is in @
pd=>i++; pd=pd- >pupr1nr i--}

pnew=>i=i; //Set he row index of ty table

insert (pd,pnew) ; //after t t

Figure 61. Code for EDV table design (2)

3)

(a)
(k)
(c)

(d)
(=)

Insert the task pnew into Qv

pv=vhead->pvprior;
Jj= pv=>j+l; //initiali

while ((pv!=vhead) and (and >v>pv >v}) { f/Determine the position of the new task in Qv
pv=>J++; pvspv=>»pvprior; j--}

pnew=>j=j; //Set the new task under C mn in the priori ty table

insert (pv,pnew) ; = to pv

Figure 62. Code for EDV table design (3)

4)

Calculate task priority and determine whether it should preempt the task currently

being executed

68

(a) pnew=>p=(i+j-1) *(i+J-2)+ 1i;
(b) if (pnew=>p>pactive=>p) { 'he new task pnew preempts the current task
pactive; pactive=pnew;}

Figure 63. Code for EDV table design (4)

The algorithm searches backward from the two linked lists’ tail nodes so as to determine
the new task node’s position and priority. In the worst-case scenario, Qd and Qv must be
rescanned, making algorithm complexity equal O(2n), where n is the number of tasks in

the current priority table.

When a task has been executed, or fails before the deadline expires, the system must
invoke the task completion/frustration strategy in order to remove the completed or
aborted task node from the priority list, adjusting subsequent tasks’ rows and columns
accordingly. Next recalculated tasks are marked for their priority, with the highest priority
task selected for execution. The algorithm for the task completion/birth strategy is

described as follows:

5) Remove the currently completed task from the priority list

(a) From the Qd list Remove the task node
pd=pactive->pdprior->pdnext=pactive->pdnext;
pactive->pdnext->pdpriorspactive->pdprior;
(b) Remove the task node from the Qv list
Pvspactive->pvprior->pvnext=pactive->pvnext;
pactive->pvnext->pvpriorspactive->pvprior;
(c) delete pactive; pactivesNull;

Figure 64. Code for EDV table design (5)

6) Subscript all subsequent tasks to the Qd list minus 1

while (pd!=dhead)
{ pd->i--; pd->p=(pd->i+pd->j-1)*(pd->i+pd->j-2)/ 2+1i;
pd=pd=->pdnext;}

Figure 65. Code for EDV table design (6)

7) Subscript for all subsequent tasks in the Qv list minus 1

while (pv!=vhead) {
pv=3>]-—; pv->p=(pv->i+pv->]-1)*(pv =>i4pv->]-2) /2 +1i;
pv=pv=>pvnext;}

Figure 66. Code for EDV table design (7)

69
8) Scan the head node of the Qd list in order to determine the highest priority task

(a) pd=pactive=dhead =-»>pdnext;
(b) hp=0; ord the highest
if (pactive!=dhead) {
hp=pactive->p; pd=pd->pdnext;}
(c) While(pd!=dhead) {
if (pd=>p>hp) {(hp=p; pactive=pd;}
pd=pd=>pdnext;
}
(d) if (hp!=0)

Figure 67. Code for EDV table design (8)

The algorithm first removes the given task node from the linked list Qd and Qv, updating
the task’s row and column indices based on the next node of the removed node so as to
recalculate task priority. In difficult cases, Qd and Qv must be scanned once. The process
of determining the highest priority task involves scanning the Qd linked list (or
alternatively the Qv linked list), with time complexity O(n). Therefore, total algorithm

complexity is O (3n), where n is the number of tasks in the current priority table.
7.2.2 Going through all points in the shortest path

Initially, the mobile robot was not responsible for delivering all materials. However,
product transfer necessary part in factory work lines. Thus, the process of passing through

all points in the shortest path is now discussed.

After considering the relevant problem, the main issue is requiring the mobile robot to
visit a group of points with minimal effort. Thus, the problem bears similarities with the
Travelling Salesman Problem (TSP). Moreover, the difficulty faced can be solved using
the solution to the TSP.

7.2.2.1 TSP problem

The Travelling Salesman Problem (TSP) can be translated into the traveling salesman
problem and salesman problem. It is one of the famous problems in mathematics. Suppose
a travel businessman wants to visit n cities. He must choose the path to be taken. However,
he can only visit each city once and must return to the city from which he started. The

path selection goal is minimizing the required path distance.

70

The TSP problem is a combinatorial optimization problem, demonstrable using NPC
computational complexity. The TSP problem can be divided into two categories,
Symmetric TSP and Asymmetric TSP. All TSP problems can be outlined graphically:

V= {cl,c2,...,ci,...,cn} i =1,2,..., n

B tEemeE W

C = {crs: r,s€ vV}

Figure 68. Solution to TSP problems
A TSP problem can be expressed as:

Solving the traversal graph G = (V, E, C), all nodes are visited once and the starting node

is returned to, minimizing the path cost.
7.2.2.2 Greedy algorithm

The greedy algorithm is a common and simple algorithm for solving the optimization
problem. The greedy algorithm always makes the best choice for now, with every action
seeking to maximize current utility. However, it is worth noting that the greedy algorithm
cannot obtain an overall optimal solution for all problems. The chosen greedy strategy
must have a no-failure effect, meaning the process after a certain status has no effect on

the previous state.
1. The basic idea behind the greedy algorithm

Starting from an initial solution triggers the gradual approaching towards a given goal so
as to identify a better solution as quickly as possible. The algorithm stops when a certain

step can no longer be advanced. The general steps are as follows:
1) Establish a mathematical model for describing the problem;

2) Divide the problem into several sub-problems

3) Solve each subproblem

4) Combine subproblem solutions so as to fully solve the original problem

71

2. Greedy algorithm implementation framework

The greedy algorithm does not have a fixed framework, but the key to its design is the
choice of the greedy strategy. The premise of the greedy strategy is that the local optimal

strategy can lead to a global optimal solution.

Start with an initial solution;

While (toward a given total goal before further)
{
Using feasible decisions, find a solution element of a feasible solution;
}
A feasible solution that combines all sclution elements into a problem;

Figure 69. Greedy algorithm solution

3. Greedy algorithm problems

1) It is not guaranteed that the final solution obtained is optimal;

2) It cannot be used to calculate maximum and minimum solutions;

3) It can only be used under specific conditions, such as greedy strategies having no

repercussions.
7.2.2.3 Greedy algorithm for solving TSP problems

In order to initialize the TSP problem values, every node to be visited should be indexed,
with the distances (c,s and cg,) between these points kept as the item of the two-
dimensional array, for which the index represents the specified goal. The distance
between ARCL commands can be used using the Omron mobile robot so as to detect the

distances between points. Then, the value of these distances can be assigned to c,; and

Csr-

Using the Greedy strategy, the mover traverses all reachable next nodes, selecting the
nearest node as the next node. The basic idea is to traverse all reachable next nodes from
a node by selecting the nearest node as the next node. Then, the nodes passed are marked
and the next node selected as the current node. Thus, the greedy strategy is repeated until
the solution is realized. Once all nodes are marked as visited, the whole problem ends and

the final path array becomes the result.

72

8 RESULTS

8.1 Preparatory work

Prior to implementation, the materials and environment should be configured and
prepared. In other words, the machines should be charged and the data, including the map,
parameter file and ABB robot program, should be opened and operated.

8.2 Implementation
8.2.1 Starting the project

In order to execute this application, the Java application should first be run as shown in
Figure 70. In the code-containing eclipse, the main class should be opened and run as the
Java application.

5 clientMainClass.java

* import abbrobot.AbbRobotService;

public class

static in
static Ma Open Declaration F3
static bo Qpen Type Hierarchy F4
static 0d Open .Call Hierarchy Crl+Alt+H
static Or Show in Breadcrumb Alt+Shift+8
static ly Quick Outline Ctrl+=O
static Co Quick Type Hierarchy Ctri+T
sut?: bo Open With >
statis baslNElok I Alt+Shift=W >
static bo
static bo
publi Copy Qualified Name eption {
0 Paste Ctrl+Vv
P Quick Fix crl+1 fing());
P Source Alt+Shift+S > .
S k5 being excuted:");
s Refactor Alt+Shift=T >
r Local History
" References
¥ Declarations
publi & Add to Snippets... tOrder) throws Exception {
A A
i Aspect) Refactoring
M Coverage As > brineModel (arderTd nroductOrder setTd(), (int) productOrder.getAmount(),"2");
S Run As r: [T 1Java Application Alt+Shift+X, J
S Debug As » Run Configurations...
S Profile As > T
Validate
w
Team
Compare With > ("{\"amountRead\":\"1}")) {
Replace With » the task successfully™);

Figure 70. Starting the project
8.2.2 Project Process

After application initialization, the manufacturing order data is captured and processed.

In order to provide the information for every status, the console logs the current process,

sending the next order to the ABB robot. The robot’s actions of robot are shown in Figure

71.

. Problems = Javadoc £ Declarati

2 Console 2

5 Progress == Call Hierarchy

© X x| & Rl

clientMainClass (2) [Java Application] H:\Java 64bit\jdk1.8.0_161\bin\javaw.exe (2018845148 F455:55:27)

[The manufactoring order is being excuted:
ManufacturingOrders [referernce=M0/00008,
checkconn@0@

2 true

A 14, 2018 5:55:29 "% org.apache.http.

f“H: DIGEST [complete=false, nonce=null,

A 14, 2018 5:55:29 T4 org.apache.http.

F=IK: DIGEST [complete=false, nonce=null,

A 14, 2018 5:55:29 T org.apache.http.

7= : DIGEST [complete=false, nonce=null,
The product order has been sent to ABB!

WA 14, 2018 5:55:29 T4 org.apache.http.

73 : DIGEST [complete=false, nonce=null,

MA 14, 2018 5:55:29 T-F org.apache.http.

=i : DIGEST [complete=false, nonce=null,

A 14, 2018 5:55:29 T4 org.apache.http.

F*H: DIGEST [complete=false, nonce=null,

deadline_start=2018-04-19 10:52:22, product=BatteryModule, quantity=10.0, material_ava

impl.auth.HttpAuthenticator
nc=@] authentication error:
impl.auth.HttpAuthenticator
nc=0] authentication error:
impl.auth.HttpAuthenticator
nc=@] authentication error:

impl.auth.HttpAuthenticator
nc=0] authentication error:
impl.auth.HttpAuthenticator
nc=0] authentication error
impl.auth.HttpAuthenticator
nc=0] authentication error:

ABB robot has received product order succssfully!

A 14, 2018 5:55:29 T % org.apache.http.

7% : DIGEST [complete=false, nonce=null,

MAH 14, 2018 5:55:29 T4 org.apache.http.

M : DIGEST [complete=false, nonce=null,

A 14, 2018 5:55:29 T org.apache.http.

7=M: DIGEST [complete=false, nonce=null,
{"orderId":"1","productId”:"8","quatity":
MM 14, 2018 5:55:30 [*F org.
=M : DIGEST [complete=Ffalse,
WA 14, 2018 5:55:31 % org.
M : DIGEST [complete=false,
MA 14, 2018 5:55:32 T F org.
=M : DIGEST [complete=false,
I8 14, 2018 5:55:33 T4 org.
7 M : DIGEST [complete=false,
MA 14, 2018 5:55:38 T4 org.
7= : DIGEST [complete=false,
A 14, 2018 5:55:35 T-F org.
f“H: DIGEST [complete=false,
A 14, 2018 5:55:36 T F org.
=M : DIGEST [complete=false, nonce=null,
ABB has finished the task successfully
T

nonce=null,
nonce=null,
nonce=null,
nonce=null,
nonce=null,

nonce=null,

apache.http.
apache.http.
apache.http.
apache.http.
apache. http.
apache.http.

apache.http.

impl.auth.HttpAuthenticator
nc=0] authentication error
impl.auth.HttpAuthenticator
nc=0] authentication error:
impl.auth.HttpAuthenticator
nc=0] authentication error:

generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge

generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge

generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge

"9" ,"timestamp":1523717729349}

impl.auth.HttpAuthenticator
nc=0] authentication error:
impl.auth HttpAuthenticator
nc=0] authentication error:
impl.auth.HttpAuthenticator
nc=0] authentication error:
impl.auth.HttpAuthenticator
nc=0] authentication error:
impl.auth.HttpAuthenticator
nc=0] authentication error:
impl.auth.HttpAuthenticator
nc=0] authentication error
impl.auth.HttpAuthenticator
nc=0] authentication error:

Figure 71. Result capture (1)

Then, the robot program information is updated according to the order data received by

the ABB robot as shown in Figure 72.

| m_!zoo;remﬁ,mél_by_m_dm:viml

| T.ROB1/mMoverob x |

1 MODULE mMoverob
PERS
PERS

) B

num XCoordinate:
num YCoordinate:

generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge
generateAuthResponse
missing nonce in challenge

| 1200.100380 (station) x |

=0;
-O;

a | PERS
5 PERS
6 PERS
7 || PERS
|__pers
9 VAR num torque;

Figure 72. Result capture (2)

num ZCoordinate:=@; |
num orderld:=1; |

num productld:=8; |
num quatity:=9;
num_amountRead:=1;

(=il B R

After the ABB robot is assigned the new order and has finished its work, the mobile robot
moves according to the application’s control. The route followed is provided in Figure
73. The red point on this map, scanned from the real laboratory environment, represents

the mobile robot and changes in real time.

74

<
> am

et v

%

Figure 73. Mobile robot environment

After the ABB robot is assigned the new order and has finished its work, the mobile robot
moves according to the application’s control. The route followed is provided in Figure

73. The red point on this map, scanned from the real laboratory environment, represents
the mobile robot and changes in real time.

Figure 73 shows the Omron robot’s reaction during the experiment.

i
SRR

3
3l

1-2 !ﬂ w
PR ARRARE A
s DNNEAREY
FIAY NEREN

Figure 74. Omron robot reaction

75

In the application, the program calls the method to connect with the CMMO controller
and control the electric cylinder. The information in the console is given in Figure 75,

while the CMMO controller module reaction is shown in Figure 76.

The adept lynx robot is controlling to pick up!
Interrupted: Parking

Patrolling route PickRoute once

WaitState: Waiting 5 seconds with status "Waiting"
WaitState: Waiting completed

Finished patrolling route PickRoute

Control electric cylinder to move up!

Figure 75. Result capture (3)

Figure 76. CMMO controller reaction

When the electric cylinder finishes a single cycle and has picked up the battery module,
the mobile robot executes its tasks again by moving out of the operating space. The record

of this in the console is provided in Figure 77.

The adept lynx robot is controlling to leave!

Patrolling route LeaveRoute once
Finished patrolling route LeaveRoute

Figure 77. Result capture (4)

76

Finally, the manufacturing order, which was previously selected for execution, is updated

as given in Figure 78. Thus, factory staff can identify which order should first be dealt

with.

nufacturing Orders / MO

Ma

MO/00008

Product
Quantity To Produce

Bill of Material

Product
BatteryConnector
BatteryFram

BatteryCell

Figure 78. Selected order status

Deadline Start

Responsible

Source

To Consume Reserved
10.000

1

Moves

Consumed

1.000

8 000

77

9 SUMMARY

Nowadays, applications for optimizing factory work flow are becoming increasingly
popular. The main idea behind this thesis is the design of a system for controlling different
robot types for completing work lines. As the middle level, the special MES
(manufacturing Execution System) functions like a bridge connecting the ERP system,

Odoo, and the execution module, the robots.

Prior to the Odoo module’s development, the Odoo server and related database must first
be prepared. Then, the required materials must be logged in the manufacturing module
and an order list organized. In this application, the program can obtain the next
manufacturing order according to the deadline through the XML-RPC web services.

After order acquisition, the execution components are initialized. In the ABB robot
module, order information is assigned to the ABB robot’s program deployed in the
RobotStudio based on the REST web services. The Omron mobile robot then goes to the
specified place under the application’s control according to the map scanned from the lab.
When the mobile robot finishes its tasks and stops, the CMMO controller lifts the
electronic cylinders up and down to pick up the battery module. After the mobile robot

leaves the specified place, the manufacturing order in Odoo is updated as done.

When this application’s basic program was mostly finished, the supervisor Dr. Liu
provided valuable suggestions regarding the strategy module. Taking his insights into
consideration, the scheduling algorithm based on priority table as well as going through

all points in the shortest path were researched and added as future features.

During content analysis, greater algorithm knowledge was acquired. Furthermore, the
details for several robot types were documented, allowing the user to master certain skills
involved in controlling them. It is thanks to the accumulation of these materials that this

project could be realized.

Finally, the thesis as well as the final project worked out well. This process provided the

user with an unforgettable experience.

10 REFERENCES

11/ Odoo Web API. Accessed 1 April 2016

https://www.odoo.com/documentation/10.0/api integration.html

12/ XML RPC web services in Odoo

https://doc.odoo.com/6.0/developer/6 22 XML-RPC web services/#idl

13/ Enterprise resource planning. Accessed 24 December 2016

https://en.wikipedia.org/wiki/Enterprise resource planning

141 Diagram showing some typical ERP modules. Accessed 25 August 2013

https://en.wikipedia.org/wiki/Enterprise resource planning#/media/File:ERP Modules.

png
/5/ Odoo download page.

https://www.odoo.com/page/download

16/ Odoo install page

https://www.odoo.com/documentation/11.0/setup/install.html

17/ ABB Robot manual

http://developercenter.robotstudio.com/blobproxy/devcenter/Robot Web Services/html

/index.html
18/ Diagram showing ABB Robot Web Services. Accessed 25 August 2013

http://developercenter.robotstudio.com/blobproxy/devcenter/Robot Web Services/html

/images/rws.png

19/ CMMO Controller manual. Accessed June 2015

https://www.festo.com/net/SupportPortal/Files/423889/CMMO-ST-EA-SY 2015-
06b 8039016q1.pdf

https://en.wikipedia.org/wiki/Enterprise_resource_planning#/media/File:ERP_Modules.png
https://en.wikipedia.org/wiki/Enterprise_resource_planning#/media/File:ERP_Modules.png
https://www.odoo.com/documentation/11.0/setup/install.html
http://developercenter.robotstudio.com/blobproxy/devcenter/Robot_Web_Services/html/index.html
http://developercenter.robotstudio.com/blobproxy/devcenter/Robot_Web_Services/html/index.html
http://developercenter.robotstudio.com/blobproxy/devcenter/Robot_Web_Services/html/images/rws.png
http://developercenter.robotstudio.com/blobproxy/devcenter/Robot_Web_Services/html/images/rws.png

110/ Features of the Omron robot. Accessed 2018

https://industrial.omron.us/en/products/ld-series#features

/11/ Adept Introduces Lynx Autonomous Mobile Platform. Accessed 23 Jan 2013

https://spectrum.ieee.org/image/MjlwNjAXNA.jpeg

/12/ Adept Lynx Platform User's Guide. Accessed January 2015

http://www.adept.com/main/KE/DATA/Mobile/Lynx UG.pdf

113/ XML-RPC Architecture of Odoo

https://doc.odoo.com/doc static/6.0/ images/tech arch.png

/14/ Diagram showing CMMO Controller. Accessed June 2015

https://www.festo.com/net/SupportPortal/Files/423889/CMMO-ST-EA-SY 2015-
06b 8039016qgl.pdf#page=14

https://industrial.omron.us/en/products/ld-series#features
https://spectrum.ieee.org/image/MjIwNjAxNA.jpeg
https://doc.odoo.com/doc_static/6.0/_images/tech_arch.png

