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1 INTRODUCTION 

Cloud computing is rapidly flourishing and reshaping the academic computing. In 

the brave new IT world, the infrastructure is moving from the traditional dedicated 

way to the modern and dynamic cloud-based approach. Server virtualization 

commenced this move to cloud, and factors like globalization and outsourcing in 

which diverse teams need to collaborate in real time have accelerated the 

adoption of cloud-based applications. 

 

Physical servers connect to networking devices like switches and routers to 

establish network connectivity. Thus, when servers move from physical to virtual, 

the networking landscape is also required to change. In addition, the traditional 

way firmly combined applications, servers, and networking, but the present-day 

IT infrastructure expects servers and networking to gain maximum flexibility so as 

to support complex applications. 

 

Server virtualization gives cloud infrastructure a part of that flexibility. In order to 

fully enable the power of cloud computing, networking is required to be dynamic 

and scalable. Software-Defined Networking (SDN) and Network Function 

Virtualization (NFV) are two emerging technologies that get a lot of hype in the 

network industry nowadays, especially SDN. And they are said to deliver the 

flexibility and agility demanded by cloud computing. On the cloud platform side, 

OpenStack is also prominent. Since its launch in 2010, OpenStack has quietly 

become one of the fastest growing open source platforms for enterprise cloud 

infrastructure.  

 

When both OpenStack and SDN are advancing swiftly and becoming platforms 

for innovation, it is important to understand the key technologies at their 

intersection. The goal of this project is to gain technology and implementation 

insights into OpenStack and SDN and to see how well these open source 

software applications can play together. 
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2 CLOUD COMPUTING 

This chapter provides readers with the essential background to understand what 

cloud computing means, how it is classified based on service models and 

deployment models, and why it plays an important role in the IT sector. 

 

2.1 Cloud Computing in a Nutshell 

Cloud computing has probably got more attention over the past few years than 

any data center technology. However, if one ever tries to look for an authoritative 

definition of cloud computing, he will find out that the term entails lots of different 

notions. Even experts cannot agree on what constitutes the essence of this 

fundamental shift in technology. (Rhoton et al. 2014, 6.) 

 

The most commonly utilized definition was articulated by the National Institution 

of Standards and Technology (NIST 2010): 

“Cloud computing is a model for enabling convenient, on-demand network access 

to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released 

with minimal management effort or service provider interaction.” 

 

According to Kepes (2011), NIST also points out five essential characteristics that 

define a cloud, including: 

 

 On-demand self-service: End users can quickly sign up and get their 

wanted services without any postponements that have characterized 

traditional IT. 

 Broad network access: End users can access the service via standard 

platforms such as desktops, laptops, and mobiles. 

 Resource pooling: Multiple customers share a pool of resources. 

 Rapid elasticity: Capability to scale up to meet customers’ demands. 

 Measure Service: Metered billing is delivered to customers. 

 



9 

As stated by Rhoton et al. (2014, 7–8 ), an informal survey of blogs and tweets as 

well as published literature on the subject of cloud computing was conducted, 

and it helped reveal how end users define cloud computing. These keywords 

include: 

 

 Off-premise: The service is hosted and delivered from somewhere by a 

service provider, and it crosses both physical and security boundaries. 

 Elasticity: Resources can be scaled up and down rapidly as they are 

required. 

 Flexible billing: The charging and billing system must be flexible and vary 

in options. Customers can pay on a subscription basis, by actual 

consumption, or by the reservation of resources. 

 Virtualization: Cloud computing and virtualization go hand in hand. Cloud 

computing leverages various virtualization mechanisms and achieves cost 

optimization. 

 Service delivery: Cloud providers offer a great variety of cloud delivery 

models besides the three most common ones called Infrastructure as a 

Service, Platform as a Service, and Software as a Service. All of them 

usually provide programmatic interfaces in addition to user interfaces. 

 Universal access: Pool resources with high levels of resilience are 

available to any end users regardless of their locations. 

 Simplified management: Automatic provisioning, user self-service, and 

programmatically accessible resources help simplify administration to 

meet scalability requirements, expedite business processes, and facilitate 

integration into enterprise management frameworks. 

 Affordable resources: Most companies cannot afford to build a data center 

or a private cloud. Therefore, they need an inexpensive cloud service 

offered by some provider. 

 Multi-tenancy: Sharing resources is an important factor in achieving 

scalability and reducing costs, but cloud providers also need to ensure the 

isolation among tenants. 

 Service-level management: Cloud services that come with only minimal or 

non-existent commitments are still considered to be cloud services, but 
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they will typically not be trusted for mission-critical applications to the 

extent that others might. 

 

Nevertheless, neither the NIST formulation nor any interpretation of what cloud 

computing means is universally the definition. 

 

2.2 Service Models 

The most common classification uses the SPI (Software as a Service, Platform 

as a Service, and Infrastructure as a Service) model. They are often called the 

cloud computing stack because they are built on top of one another. 

 

Figure 1 below illustrates a clear distinction among SaaS, PaaS, and IaaS, but in 

reality, the differences are blurred. 

 

Figure 1. The cloud computing stack (Rackspace Support 2017) 

 

In order to help readers comprehend how these three components are pertinent, 

Qrimp (2008) utilizes a transportation analogy: 

 

“By itself, infrastructure isn’t useful – it just sits there waiting for someone to make 

it productive in solving a particular problem. Imagine the Interstate transportation 
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system in the U.S. Even with all these roads built, they wouldn’t be useful without 

cars and trucks to transport people and goods. In this analogy, the roads are the 

infrastructure, and the cars and trucks are the platforms that sit on top of the 

infrastructure and transport the people and goods. These goods and people 

might be considered the software and information in the technical realm.” 

 

Software as a Service (SaaS) delivers software applications over the Internet. It 

is said to be arguably the most mature model. All the services run on the cloud 

provider’s infrastructure; licensing, application maintenance, software upgrades, 

and security patching are all done by the provider. This model entails a significant 

commitment to a cloud provider compared to IaaS and SaaS because it is not 

trivial to switch from one SaaS provider to another. (Kepes 2011, 5–13.) 

 

SaaS can be considered as the prime candidate in some cases in which there is 

a significant interaction between the organization and the outside world, or there 

is a significant need for web or mobile access, or software is only used for a short 

time, etc. However, there are also situations where SaaS might not be 

appropriate, like when extremely fast processing of real-time data is needed, 

when legislation or other regulation does not allow data to be hosted externally, 

and so on. Salesforce and Netflix represent some of the best-known SaaS 

examples. (Sb.) 

 

Platform as a Service (PaaS) is a cloud computing service that provides 

developers with resources to develop, launch, deliver, and manage apps without 

the need of buying, setting, and maintaining the underlying infrastructure. PaaS is 

analogous to SaaS, but rather than providing software delivered over the web, it 

is the platform in which end users create software applications delivered over the 

web. (Sb.) 

 

PaaS is extremely useful when a lot of developers will be working together on a 

development project or there are external parties that need to interact with the 

development process. However, PaaS might not be ideal when, for example, the 

application needs to be highly portable with regard to where it is hosted, the 
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application performance requires customization of the underlying hardware and 

software, etc. Microsoft Azure, Google App Engine, and Force (delivered by 

Salesforce) are several well-known examples of PaaS providers. (Sb.) 

 

Infrastructure as a Service (IaaS) is the most common and simplest cloud 

delivery model. Rather than building a data center, purchasing servers and 

networking equipment, customers rent virtual machines, storage, networking, and 

operating systems fully outsourced by a cloud provider. The boundary between 

IaaS and PaaS is blurred, but PaaS typically offers more programmer-oriented 

services, like code libraries, development tools, middleware, and so on. Another 

distinguishing factor is that IaaS can be obtained as public, private, or a 

combination of the two: hybrid infrastructure. (Sb.) 

 

IaaS is a suitable solution for new organizations that do not have enough capital 

to invest in hardware, or for a specific line of business when there is a need of 

trial or temporary infrastructure, or when demand is capricious. There is a 

plethora of IaaS providers like Amazon Web Services, Google Compute Engine, 

and Rackspace. (Sb.) 

 

2.3 Deployment Models 

The SIP model classifies services based on the type of content that they offer, 

but the types of service providers can also be used for classification. In an ideal 

world, the consumer should be independent of the providers, so there is no 

reason to prefer one to another. That being said, relating to security, governance, 

invoicing, and settlement, consumers still need to consider what type of 

deployment model that a cloud provider provides. (Rhoton et al. 2014, 11.) 

 

Figure 2 below depicts four types of cloud computing deployment models 

including public cloud, private cloud, hybrid cloud, and community cloud. 
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Figure 2. Cloud computing deployment models (Fu 2017) 

 

Public cloud represents true cloud hosting. It delivers cloud services over a 

network for public usage and renders services and infrastructure to various 

customers. Public cloud is the best choice for business requirements in which 

managing load spikes, hosting SaaS-based applications, utilizing interim 

infrastructure for developing and testing applications are required. This model 

helps reduce capital overheads and operational costs. (CloudTweaks 2012.) 

 

Private cloud is solely used by one organization since it is safeguarded by a 

firewall governed by an IT department (Fu 2017). It offers a tremendous level of 

security and control, but it does not bring much in terms of cost efficiency, 

because the company still needs to purchase, build, and maintain their own 

infrastructure. It can be hosted internally or externally as it can be owned, 

managed, and operated by an organization, a third party, or a combination of 

them. (Somepalle 2015.) Private cloud is an obvious choice when security, 

control, and data privacy are paramount to an organization. 

 

Hybrid cloud is the combination of public and private clouds that are bound 

together but still remain as individual entities. Using this model, customers can 

take full advantage of security and data privacy inherited from a private cloud 

while still making good use of cost benefits by keeping shared applications and 

data on a public cloud. One of the use cases of this model is to handle cloud 
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bursting in which a private cloud cannot handle load spikes and demands a 

fallback option to support the load. (CloudTweaks 2012.) 

 

A community cloud is shared by several organizations, such as banks and trading 

firms, with the same policy and compliance considerations but belongs to a 

particular community (Fu 2017). This model helps to reduce costs further 

compared to a private cloud because it is shared by a larger group. 

 

2.4 Why Move to the Cloud?  

When you are surfing on Facebook, you are using the cloud. When you are 

uploading photos into pins on Pinterest or browsing what others have pinned, you 

are in the cloud again. So why is everyone moving to the cloud? 

 

Deshmukh (2016) states: “The expression ‘Being in the Clouds’ brings us comfort 

and a sense of superiority. Cloud computing is moving increasingly to a 

destination with no return: the consolidation as an essential for the future 

existence of the Internet world.” 

 

Salesforce UK (2015) and Simplus (2014) make some good points in an attempt 

to answer that question: 

  

 Because everyone is moving to the cloud. “But everyone else is doing it” is 

not a good excuse for a seven-year-old to follow along with the crowd, but 

it does not hold true for a business owner; in fact, it is one of the best 

reasons to do something. Cloud computing allows not only businesses to 

stay competitive against each other in an equal playing field, but also small 

businesses to compete against large ones. 

 Because cloud computing means anytime, anywhere. It allows you to have 

access to your stored data whenever and wherever as long as you have 

access to the Internet. And because your data is stored in a cloud, anyone 

with permissions can access the data and work on the same project 

simultaneously. Therefore, it helps you to save time. 
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 Because it is always there. By utilizing cloud computing, companies do not 

need to worry about designing a disaster backup plan, because cloud 

providers will take care of it. 

 Because it is environmentally friendly. Cloud computing reduces the need 

for in-house servers as well as the constant climate control involved in 

maintaining them, so it helps to decrease oversized carbon footprints. 

 Because it alleviates security issues. Losing laptops is one of the billion-

dollar-business problems because of the sensitive data inside it. With 

cloud computing, you can access your data no matter what happens to 

your laptop. 

 

There is a ton of articles on the advantages and disadvantages of cloud 

computing for people who are considering adopting cloud technologies. However, 

the benefits that businesses can reap from cloud computing might easily 

outweigh the drawbacks. While their motivations and aims vary, businesses of all 

sizes and shapes are turning to cloud computing. 

 

3 OPENSTACK OVERVIEW 

This chapter gives readers a brief overview of how the OpenStack project was 

created, who were involved in the birth of OpenStack, what OpenStack is, and 

how OpenStack is evolving. 

 

3.1 OpenStack – the Birth 

Back in 2009, NASA was approached by the US Government to harness new 

technologies that would assist in the newly passed Open Government Initiate. 

NASA had already been developing NASA.net which was a unified technology 

platform used across all of NASA’s Web projects. NASA developers started to 

create a set of generic, on-demand, API-driven compute and storage systems, 

namely Infrastructure as a Service, though cloud computing was still in its 

developmental stage. The NASA.net team, which later called their project NASA 

Nebula, thought of a significant chance to become a cloud provider in their own 

right and shifted their focus on creating an open source cloud compute controller. 
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As IBM decided to outsource its PC operating system to Microsoft, the NASA.net 

team chose to foster an open-source community around Nebula’s code and 

release the code via a more indulgent license than the traditional and more 

restrictive NASA Open Source Agreement. (Bloomberg 2012.) 

 

On the other hand, Rackspace, the public cloud provider that was thinking about 

the same compute controller, was soon attracted to the nascent developer 

community. After an email exchanged, Rackspace and NASA decided to join 

forces, and the OpenStack project officially started in October 2010. (Bentley 

2015.) 

 

3.2 What is OpenStack? 

OpenStack is an open source platform that lets us build an Infrastructure as a 

Service (IaaS) cloud running on commodity hardware. It is a control layer sitting 

above all the virtualized layers and provides a consistent way to access 

resources regardless of whether the hypervisor technology used underneath is 

KVM, Xen, or VMware. OpenStack combines a large number of interrelated open 

source tools, which are known as projects, to deliver various components for a 

cloud infrastructure solution. Six of the projects that handle the core cloud-

computing services including compute, networking, storage, identity, and image 

can be bundled with a dozen of additional ones to deliver a desired cloud. 

(RedHat 2017.)  

 

OpenStack is written primarily in Python and available freely under an Apache 

2.0 license. Each OpenStack service provides a REST API so all the resources 

(compute, storage, and networking) can be managed through a dashboard. It 

gives administrators control while empowering users to provision resources 

through a web interface or a command-line client. (Fifileld et al. 2014, Preface 

XV.) 

 

OpenStack is developed and released around a six-month cycle. Every release is 

identified by a codename ordered alphabetically. Those codenames are cities or 

countries near the place where the corresponding OpenStack summit takes place 
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like Austin, Bexar, Cactus, Diablo, Essex, etc. (OpenStack 2017h.) OpenStack 

believes in open source, open design, and open development; all in an open 

community so anyone can participate (Fifileld et al. 2014, Preface XV).  

 

3.3 OpenStack – the Evolution 

The OpenStack project was closely managed by Rackspace and its 25 initial 

partners for the first two years. However, Rackspace decided to transfer the 

intellectual property and governance of the OpenStack project into a non-profit 

member-run foundation named the OpenStack Foundation. (Bentley 2016.) 

NASA has also stepped out of the OpenStack limelight because they preferred a 

role in the shadows for a number of reasons. Nevertheless, there is no reason 

why OpenStack will not become the core of cloud efforts at NASA and across the 

federal government. (Bloomberg 2012.) 

 

OpenStack is now backed by a big roster of IT vendors including Rackspace, 

RedHat, IBM, Intel, SUSE, Huawei, Canonical, Dell, HPE, Mirantis, and so on. In 

other words, a lot of companies have placed their bets on OpenStack. 

Furthermore, the OpenStack community included 68837 registered members, 

649 supporting organizations, 181 countries represented, 116 global user groups 

by the end of 2016 (OpenStack Foundation 2016, 8). It has become one of the 

fastest growing open source communities. 

 

Like Linux, OpenStack is a bit of miracle: not only because it was somewhat 

tangential to the agency’s mission, but the NASA bureaucracy was also unsuited 

to the creation of something openly shared with the rest of the world. And more 

remarkably, OpenStack, a project created by NASA, has quickly found its place 

among the giants in the technology world. “This could have fallen apart in a 

million different ways, from the beginning. In fact, it all seemed impossible,” said 

Rick Clark, who worked at Rackspace when OpenStack was in its infancy and 

now helps drive the project at Cisco. (Metz 2012.) Among Eucalyptus, Apache 

CloudStack, Open Nebula—all the open source cloud platforms that have 

matured, they chose to call OpenStack “the Linux of the Cloud”. 
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4 OPENSTACK ARCHITECTURE 

OpenStack, in short, is awesome, but one might wonder what the technology 

behind the OpenStack project is. This chapter covers a deep dive into the 

OpenStack architecture, its core services, what they are, and how they work. 

 

4.1 A Look under the Hood 

OpenStack embraces a modular architecture, so there are a lot of moving parts 

inside the project. The modular nature of OpenStack is highly appreciated by lots 

of users. “Install what you need. Saves a lot of cost. Tons of documentation 

available to do it yourself.” (OpenStack 2017a, 13.) 

 

 

Figure 3. OpenStack architecture (Cfheoh 2011) 

 

Figure 3 illustrates how simple end users can view OpenStack: there are large 

pools of compute, networking, and storage resources in a datacenter, and 

OpenStack controls them and gives end users the ability to provision those 

resources through a web interface. However, in order to provide that elegant 

look, a lot of services are needed to build up an OpenStack cloud. Figure 4 below 

shows a higher-level overview of OpenStack core services and their relationship 

with each other. It also clearly demonstrates what each service provides to boot 

up a running instance. 
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Figure 4. OpenStack conceptual architecture (OpenStack 2016a) 

 

OpenStack consists of dozens of independent parts which are called the 

OpenStack services. All of them authenticate through a common Identity service. 

Individual services interact with each other through public APIs, except where 

privileged administrator commands are needed. 

 

Internally, each OpenStack service comprises of several processes. All services 

have at least one API process listening, preprocessing, and passing API requests 

on to other parts of the service. That said, the Identity service is an exception as 

the actual work is done by distinct processes. An AMQP message broker is 

utilized for communication between the processes of one service. A service’s 

state is stored in a database. There are several message broker and database 

solutions, such as RabbitMQ, MySQL, MariaDB, and SQLite. (OpenStack 2017c.) 
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Users can access OpenStack via the web-based UI implemented by the Horizon 

Dashboard or via CLIs by issuing API requests. Ultimately, all the access 

methods issue REST API calls to OpenStack services. (OpenStack 2017c.) 

Figure 5 shows the most common logical architecture of an OpenStack cloud.
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Figure 5. OpenStack logical architecture (OpenStack 2017c) 
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4.2 Keystone 

Keystone is the OpenStack Identity service that provides authentication and 

authorization services throughout the entire cloud infrastructure. From an 

architectural perspective, Keystone is the simplest service in the OpenStack 

composition. (Khedher 2015, 4.) 

 

Keystone utilizes a combination of domains, projects (tenants), users, and roles. 

Tenant is the old term for a project. Starting from API version 3, the term ‘project’ 

is preferred. 

 

 A domain is an Identity API v3 entity. It is a collection of projects, groups, 

and users, and it defines administrative boundaries for managing 

OpenStack Identity entities. 

 A project is the base unit of ownership in OpenStack. All resources should 

belong to a specific project, and a project itself should belong to a specific 

domain. 

 A role is composed of a set of rights and privileges. 

 A user can be associated with projects, roles, or both. 

 

Keystone keeps a catalog of services and endpoints of all the OpenStack 

services. All the services have different API endpoints; this is advantageous as 

an end user only needs to know Keystone’s address to interact with the cloud. 

(Radez 2015, 2.) 

 

 

Figure 6. Keystone catalog (Deepakrghuge 2015) 
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Figure 6 is an example of how Keystone itemizes OpenStack services including 

itself. It knows all the IDs, regions, service names, service types, interfaces, and 

URLs. 

 

Keystone uses a number of authentication mechanisms including 

username/password, token-based. Additionally, it also has pluggable support for 

being integrated with an existing backend directory like LDAP or PAM. (Khedher 

2015, 4.) 

 

4.3 Glance 

Glance is the OpenStack Image service that serves as an image registry. After 

we are authenticated and authorized, we first need to have a disk image to 

launch a virtual machine. However, installing an operating system on every single 

machine is tedious. Cloud computing has streamlined the procedure by building a 

registry that contains pre-installed disk images. Glance is that registry in 

OpenStack. (Radez 2015, 4.) Figure 7 below illustrates Glance architecture. 

 

 

Figure 7. OpenStack Glance (Gupta 2013) 
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According to Radez (2015, 4), Glance includes the following components: 

 

 glance-api accepts API calls for images from end users or other services.  

 glance-registry stores, processes, and retrieves image metadata like size, 

type, format, and so on. 

 Glance database stores image metadata. It supports multiple backends, 

such as MySQL, SQLite, and MongoDB. 

 Glance stores, or Glance storage backends, support normal file systems. 

They can be Swift or Ceph RBD. 

 

Glance provides discovery, registration, and retrieval services for VM images. 

(OpenStack 2017i). Images stored in Glance have an operating system installed, 

but they have ssh host key, MAC address, and so on removed. They are generic 

disk images that can be used and launched over and over again. Image 

customization at startup can be done with cloud-init. (Radez 2015, 4.) 

 

4.4 Neutron 

Neutron, previously known as Quantum before the Havana release, is an 

OpenStack project that provides Network as a Service (NaaS). Prior to Quantum, 

OpenStack had a flat and simple networking architecture controlled by Nova 

networking, a subcomponent of Nova. Neutron allows tenants to create advanced 

virtual network topologies that include services like firewalls, load balancers, 

virtual private networks, etc. It is one of the most complex components among 

OpenStack projects since it is built around the core networking concepts. 
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Figure 8. OpenStack Neutron (OpenStack 2017d) 

 

The main process of the OpenStack Networking service is called neutron-server 

that is a Python daemon exposing Neutron API and passing tenant requests to a 

suite of plug-ins for additional processing (OpenStack 2017d). 

 

Figure 8 shows the architectural and networking flow diagram of Neutron 

components. These major components contain: 

 

 Neutron server (including neutron-server and neutron-*-plugin) accepts 

API requests from other OpenStack components and exposes all the 

internal networking details in terms of networks, subnets, ports, and so on 

(Packt 2017). The neutron-server communicates with a persistent 

database indirectly through plugins. These plugins use AMQP to assist 

with the communication. (OpenStack 2017d.) A plugin is a collection of 

Python modules that implement a standard interface. That interface 
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accepts and receives API calls, and connects with devices downstream. 

(Packt 2017.) 

 Message queue is responsible for routing messages between neutron-

server and agents as well as the database in order to store a plugin’s state 

for a particular queue (Khedher 2015, 11). 

 Agents: While the Neutron server acts as the centralized controller, all the 

networking commands and configuration are done on compute and 

network nodes. Agents are entities that carry out the actual work. They 

receive messages and instructions from the Neutron server via the 

message bus. (Sriram 2015.) There are several popular Neutron agents 

such as neutron-dhcp-agent providing DHCP services to tenant networks, 

neutron-l3-agent providing L3/NA forwarding for external network access 

of VMs on tenant networks, neutron-lbaasv2-agent providing load 

balancing services, and so on. (OpenStack 2017d.) 

 There could also be network provider services that provide additional 

networking services to tenant networks like SDN. 

 

Neutron provides networks, subnets, and routers as object abstractions. Each of 

them has functionality that mimics its physical counterpart. (OpenStack 2017e.) 

 

 

Figure 9. Neutron provider networks and tenant networks (OpenStack 2016b) 
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There are two network types implemented within Neutron: provider networks and 

tenant networks as shown in Figure 9. The major difference between them 

revolves around who provisions them. Users create and configure tenant 

networks for connectivity within projects, whereas OpenStack administrators 

create provider networks that are consumed by tenants. 

 

By default, tenant networks are fully isolated and are not shared among projects. 

Users have full control over networking topology. Virtual routers are responsible 

for routing traffic among networks within a project or between tenant networks 

and external networks. Within a project, Neutron fully provides users with self-

service subnet, DHCP, DNS, Layer-3 routing, firewall, load balancer, VPN 

modification. Tenant networks are not routable from the outside world, so users 

utilize floating IP addresses to access instances. OpenStack supports four types 

of network isolation and overlay technologies: flat, VLAN, GRE, and VXLAN. 

(RedHat 2014.) On the other hand, provider networks directly map to existing 

physical networks in the data center. Their network types are regularly flat or 

VLAN. 

 

Neutron API is pluggable, and it means users can write and use any plugins and 

drivers to extend network functionality. Neutron classifies plugins into two 

categories: core and service. Core plugins implement the core Neutron API. 

Service plugins provide additional services such as Layer-3 router, load balancer, 

VPN, firewall, and metering. (Rao 2015.) 

 

ML2 (Modular Layer 2) bundled with OpenStack is the most important core 

plugin. It supports a wide variety of Layer 2 technologies and allows multiple 

vendor technologies to coexist. Before ML2 got involved in the OpenStack big 

picture, Neutron was limited to use a single core plugin at a time. ML2’s purpose 

is to replace and deprecate two monolithic plugins: linuxbridge and openvswitch. 

Their L2 agents, however, continue to work with ML2. (Denton 2015, 55.) 
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Figure 10. Modular Layer 2 architecture (Denton 2015) 

 

ML2 introduces the concept of drivers. Drivers separate extensible sets of 

network types being implemented and mechanisms implementing these network 

types. Drivers are divided into type drivers and mechanism drivers as shown in 

Figure 10. Type drivers maintain type-specific network state and perform provider 

network validation and tenant network allocation. Supported network types 

include local, flat, VLAN, VXLAN, and GRE. Each mechanism driver manages a 

networking mechanism. A mechanism driver is responsible for taking the 

information established by the type driver and ensuring this information is 

properly applied. (OpenStack 2017f.) Multiple mechanism drivers can be 

simultaneously utilized. There are three mechanism driver types: agent-based, 

controller-based, and top-of-rack. 

 

4.5 Nova 

Nova is the OpenStack compute service and the most original core component of 

OpenStack. From an architectural perspective, Nova is the most complicated and 

distributed component of OpenStack. 
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Figure 11. OpenStack Nova (Paternò 2015) 

 

In order to turn an end user’s API request into a running VM, a large number of 

processes, as shown in Figure 11, need to cooperate. As identified by Gupta 

(2013), these processes are: 

 

 nova-api is a RESTful API service that accepts and responds to end users’ 

requests. 

 nova-cert provides the certificate management. 

 nova-compute is primarily a worker daemon creating and terminating 

instances. It ensures that the state of new instances is maintained in the 

database. 
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 nova-console allows end users to access their instances console through 

a proxy. 

 nova-consoleauth provides authentication for nova consoles. 

 nova-conductor is a server daemon that enables OpenStack to function 

without compute nodes accessing the database. It conceptually 

implements a new layer on top of nova-compute. 

 nova-scheduler takes an instance’s request from the queue and 

determines where it should run, specifically which compute host it should 

run on. 

 queue provides a central hub for passing messages between daemons. 

The queue is usually implemented with RabbitMQ. 

 Nova database stores most of the build-time and run-time infrastructure 

state. 

 

Nova encompasses more server processes than any other project in the 

OpenStack composition, and each process performs a different function. 

Externally, Nova has a REST API like other OpenStack projects, while Nova 

components internally communicate via an RPC message passing mechanism. 

The RPC messaging is carried out by the oslo.messaging library that is an 

abstraction lies on top of the message queues. Most of the Nova’s major 

components can be distributed among multiple servers, and they have a 

manager listening for RPC messages. The only exception is nova-compute 

because it has a single process run on the hypervisor which it is managing. 

(OpenStack 2017g.) 

 

4.6 Horizon 

Horizon is the OpenStack Dashboard service which provides a web-based user 

interface to OpenStack services, such as Nova, Keystone, Neutron, as shown in  

Figure 12. 
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Figure 12. OpenStack Horizon (OpenStack 2017b) 

 

Originally, Horizon was started as a single app to manage OpenStack’s compute 

project. Therefore, all it needed was a set of views, templates, and API calls. 

After that, it gradually grew to support multiple OpenStack projects and APIs, 

therefore it was rigidly arranged into dash and syspanel groupings. (OpenStack 

2017b.) 

 

4.7 Cinder 

Cinder is the OpenStack Block Storage service. It is the replacement of the nova-

volume service since the Folsom release. 
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Figure 13. OpenStack Cinder (Hui 2013) 

 

Figure 13 shows Cinder structure. As stated by Hui (2013), Cinder consists of the 

four following daemons and two other components: 

 

 cinder-api handles, responds, and places requests in the message queue. 

 cinder-scheduler reads requests from the message queue, and schedules 

and routes them to the appropriate volume service. It can be a simple 

round-robin scheduling or more sophisticated through the use of filter 

scheduler depending on how it is configured. 

 cinder-volume manages the interaction with block storage devices. 

 cinder-backup provides the ability to back up a Cinder volume to various 

backup targets. 

 The database provides state information. 

 RabbitMQ server provides the AMQP message queue. 

 

Cinder allows users to create and delete block devices as well as to manage the 

attachment of block devices to VMs. The integration of Cinder with Nova handles 

the actual attachment and detachment. Cinder is suitable for performance-

sensitive scenarios like database storage, expandable file systems, and assisting 

a VM in getting access to raw block-level storage. (RedHat 2015, 11.) 
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4.8 Swift 

Swift is the OpenStack Object Storage service. It provides redundant and 

scalable distributed object storage. Distributed means that each piece of data is 

replicated across a cluster of storage nodes (Ukov 2012). Swift is primarily 

utilized to store and retrieve BLOBs, it means static data such as VM images, 

videos, photos, emails, files, backups, and archives. 

 

 

Figure 14. OpenStack Swift (Gupta 2013) 

 

According to Gupta (2013), Swift major components include swift-proxy, swift-

account, swift-container, and swift-object as shown in Figure 14. 
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 swift-proxy exposes the public API, provides authentication, and is 

responsible for handling and routing incoming requests. 

 swift-object stores, retrieves, and deletes objects. 

 swift-account is in charge of listings of containers. 

 swift-container handles listings of objects. 

 

Swift also provides a REST API to enable access to OpenStack files and 

organizes data in containers. It utilizes open source programs like Python and 

Rsync to perform day-to-day tasks, scan files for corruption, and relocate files in 

the event of node downtime or drive failure. Swift can be used with OpenStack or 

as a standalone product. (Olow 2017.) 

 

4.9 Other Projects 

According to OpenStack (2017a), OpenStack’s core services, including Nova, 

Neutron, Swift, Cinder, Keystone, and Glance, have grown to almost total 

adoption by all clouds in production. The runner-ups are Heat (Orchestration), 

Telemetry (Ceilometer), Rally (Benchmark Service), Ironic (Bare Metal), 

Designate (DNS Service), Manila (Shared File Systems), Trove (Database 

Service), Kolla (Containerized Deployment), Magnum (Containers Service), 

Murano (Application Catalog), Sahara (Data Processing), Barbican (Key 

Management), Mistral (Workflow Service), Zaqar (Message Service), and 

Congress (Governance Service). Nevertheless, they are only a few names 

among a great number of OpenStack projects that will be still increasing. Figure 

15 is a picture of OpenStack projects and their mascots. It shows us how fast 

OpenStack is growing, and how awesome the OpenStack community is. 
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Figure 15. OpenStack services and their mascots (Martinelli 2017) 

 

5 SOFTWARE-DEFINED NETWORKING 

This chapter discusses where we were before Software-Defined Networking, how 

it emerged in the networking industry, what it is, and where it is taking us. It also 

introduces several SDN-related technologies including OpenFlow, Open vSwitch, 
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and OpenDaylight. One of the most crucial parts in this chapter is how and where 

SDN fits into the OpenStack picture.  

 

5.1 Where were We before SDN? 

As stated by Stretch (2013), a traditional network is built and operated based on 

the three networking planes like shown in Figure 16 below: 

 

 Data plane (also known as forwarding plane) is where packets are 

forwarded from input to output. 

 Control plane is where information about the network is learned and 

gathered by using various protocols, such as STP, OSPF, etc. It 

determines how packets should be forwarded in the data plane. 

 Management plane enables network administrators to manage and 

configure the control plane using some mechanisms like CLI, SNMP, etc. 

 

The most obvious problem faced in the control plane is interoperability. Cloud 

operators clearly do not want single vendor lock-in; they want to optimize the cost 

and achieve flexibility. However, while standards exist for most protocols, each 

vendor supports the standards in a different way. Even for the same vendor, a 

protocol’s behavior might vary among releases. This challenge leads to 

incompatibility and limits the intelligence that can be built in a control plane. 

(Subramanian et al. 2016, 27–28.) 

 

Another issue of the control plane is scalability. Control plane entities (protocols 

and so on) run on networking devices, but those devices have limited compute 

resources. Therefore, this challenge might hinder the control plane processing in 

large-scale networks. Traditional scaling control plane methods were to either do 

a full hardware upgrade of network devices or to do a partial upgrade on control 

plane processor cards. In cloud computing, scaling up and down based on 

demand is one of the most crucial factors, so this issue is also a serious 

challenge. (Sb.) 
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Figure 16. Three networking planes (Ferro 2011) 

 

In the management plane, protocols like SNMP are helpful, but most vendors 

implement their own CLI and/or EMS for better user experience. For instance, 

CLI for Cisco ISO is incompatible with Juniper’s JUNOS CLI. Consequently, 

managing multi-vendor networks becomes burdensome due to it. (Sb.) 

 

Another challenge arose when NFV became trendy. Traditional applications 

require specialized networking hardware like load balancers and firewalls. With 

NFV, specialized networking functions are also available in virtual form. In other 

words, networking capabilities can be deployed like software applications 

regardless of the underlying actual hardware. In order for cloud platforms to 
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support NFV, networks need to be defined using abstractions which allow entire 

applications and related resources to be seen as software entities. (Sb.) 

 

5.2 A Brief History of SDN 

Software-Defined Networking first emerged from research work performed in 

2004 as part of a search for a new network management paradigm. The initial 

work was built on in 2008 by different groups. The startup Nicira, which was 

bought by VMWare, created a networking operating system named NOX. At the 

same time, Nicira worked with teams at Stanford University to create the 

OpenFlow switch interface. In 2011, the de facto standards body of the SDN 

space, the Open Networking Foundation, already got a broad support from a lot 

of big names in the networking industry including Cisco, Juniper Networks, 

Hewlett-Packard, Dell, Broadcom, IBM, and then later Google, Verizon, Yahoo, 

Microsoft, Deutsche Telekom, Facebook, and NTT. (Morreale et al. 2015, 28.) 

 

One of the most significant events in the history of the SDN technology occurred 

in 2012. In the opening keynote speech at the 2012 Open Network Summit, Urs 

Hölzle, senior vice president of technical infrastructure and Google Fellow at 

Google, presented how Google was using SDN to over 1,000 networking 

engineers. Mr. Hölzle informed the audience that Google had already built and 

used their own switches and SDN controllers in the internal backbone network 

that interconnected Google’s data centers. (Weissberger 2012.) That was how 

the concept of SDN has captured the attention of network engineers and the 

trade press. 

 

5.3 What is SDN and How Does It Address Traditional Networking 

Challenges? 

The SDN acronym seems to be everywhere these days. How it is defined may 

vary depending on the approach. That being said, ONF (2017), the user-driven 

non-profit organization that focuses on promoting the adoption of SDN through 

open standards development, defines: 
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“Software-Defined Networking is an emerging architecture that is dynamic, 

manageable, cost-effective, and adaptable, making it ideal for the high-

bandwidth, dynamic nature of today’s applications. This architecture decouples 

the network control and forwarding functions enabling the network control to 

become directly programmable and the underlying infrastructure to be abstracted 

for applications and network services. The OpenFlow protocol is a foundational 

element for building SDN solutions.” 

 

 

Figure 17. SDN architecture (SDX Central 2017a) 

 

The OpenFlow standard was recognized as the first SDN architecture which 

defined how the control and data planes could be decoupled and communicate 

with each other using the OpenFlow protocol (SDX Central 2017a). According to 

Braun and Menth (2014), the SDN architecture that consists of three layers as 

shown in Figure 17: 

 

 The infrastructure layer, also called the data plane, is the lowest layer. It is 

responsible for forwarding data, monitoring local information, and 

gathering statistics. 
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 The control layer, or the control plane, is responsible for programming and 

managing the data plane. It makes use of the information provided by the 

data plane and gives the data plane instructions. The control layer 

comprises one or more software controllers that communicate with the 

data plane through standardized interfaces, which are known as 

southbound interfaces. 

 The application layer contains applications that communicate with the 

control layer via APIs. The applications collect information from the control 

layer to build an abstracted and global view of the network for decision-

making purposes. These applications could be networking management, 

analytics, or business used in large data centers. The interface between 

the application layer and the control layer is referred as the northbound 

interface. 

 

SDN centralizes the control plane, and it is distinct from how the control plane is 

distributed and running on each networking device in traditional networks. The 

centralized control plane is fundamentally a software entity that is usually called 

the SDN controller. The mentioned interoperability issue is addressed to a large 

extent thanks to the centralization. The SDN controller programs the device using 

technologies like OpenFlow, so all devices whose vendors support OpenFlow 

can easily cooperate. The centralized control plane also addresses scalability 

challenge. SDN controllers are designed to run on popular hardware platforms or 

even as virtual machines. Therefore, the scaling of the control plane is 

independent of the data plane. (Subramanian et al. 2016, 29–30.) 

 

In the traditional network architecture, the management plane is already 

centralized. Now the SDN architecture whose the control plane is also centralized 

adds the missing piece to where the traditional network architecture lacks. An 

SDN controller can directly assist the interaction between the management and 

control planes. This is very vital to a large and multi-vendor network. And since 

management software now only needs to deal with a single centralized controller, 

meaning complexity is hidden from the management plane, more robust 

programmatic interfaces can be supported. It brings about network abstractions 
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exposing in the management plane, and cloud platform like OpenStack can make 

good use of it. (Sb.) 

 

The current landscape of SDN controllers includes a number of commercial 

products like NSX from VMware, ACI (Application Centric Infrastructure) from 

Cisco, VSC (Virtualized Service Controller) from Nuage Network, Juniper Contrail 

from Juniper Networks, and Big Network Controller from Big Switch Networks. 

There are also a large number of open source controllers including NOX that is 

the first OpenFlow controllers developed by Nicira, POX that is the Python-only 

version of NOX, NodeFlow, Floodlight, OpenDaylight, Ryu, OpenContrail, ONOS 

(Open Network Operating System), MidoNet, NodeFlow, OpenMUL, Beacon, 

Faucet, etc.  

 

5.4 How Does SDN Fit into the OpenStack Big Picture? 

Prior to Neutron, previously known as Quantum, OpenStack had a simple and flat 

networking environment without L3 or firewall support. The network constructs 

were baked into Nova which made it difficult to accommodate the changes 

happening in networking. Neutron was introduced to separate the networking part 

from other OpenStack service and provide different implementation choices of 

the abstractions in which Neutron server provides abstraction definition and 

management, while Neutron plugins do the actual implementation. (Rao 2015.) 

However, Neutron has been criticized for its complexity and deficiencies on 

several OpenStack user surveys (Martinelli 2015).  

 

Installing and operationalizing OpenStack is still a constant struggle, especially at 

scale, and Neutron is a major obstacle to the scalability and resiliency of 

OpenStack deployments. The reason is that Neutron does not have its own layer 

3 routing capability, but it uses a Linux kernel and Linux routing instead. In a 

large cloud environment with a lot of virtual networks, tenants, and applications, 

all traffic requiring routing and floating IP services need to be handled by the 

same Neutron L3 agent. Therefore, the agent becomes the choke point. While it 

is possible to deploy multiple pairs of L3 agents, it was proven to be very 

complicated even at moderate scale. Furthermore, there are two networks, 
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physical and virtual, to manage, which makes correlating issues seen in virtual 

networks to physical networks more perplexing and time-consuming. (Big Switch 

2015.) 

 

SDN solutions can distribute their own L2/L3 agents among OpenStack nodes to 

help eliminate Neutron L3 agent bottleneck issue. And SDN controllers centralize 

the management of physical and virtual networks, so it helps simplify managing 

and monitoring tasks. Additionally, SDN, as discussed above, exposes a myriad 

of network abstractions thanks to its centralized control plane, which makes it a 

perfect match for OpenStack. OpenStack supports RESTful APIs for every 

component. The integration of SDN into OpenStack can result in better 

networking abstractions and powerful programmatic APIs. The centralized 

management in SDN architecture also benefits a multi-vendor based cloud 

infrastructure like OpenStack. (Subramanian et al. 2016, 30–31.) 

 

5.5 OpenFlow 

OpenFlow is just an option among several control protocols in SDN, but it the 

predominant one. OpenFlow is a programmable network protocol designed to 

manage and direct traffic among routers and switches from multiple vendors. 

OpenFlow separates the programming of routers and switches from the 

underlying hardware. (Duffy 2011.) 

 

OpenFlow protocol defines the interface between an OpenFlow controller and an 

OpenFlow switch like in Figure 18. It allows the OpenFlow controller to instruct 

the OpenFlow switch on how to handle incoming data packets. (LeClerc 2013.) 
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Figure 18. OpenFlow architecture (Stanford 2010) 

 

There are two types of OpenFlow switches: pure (OpenFlow-only) and hybrid 

(OpenFlow-enabled). Pure switches have no legacy features or on-board control, 

and they wholly rely on a controller for forwarding decisions. Hybrid switches 

support OpenFlow in addition to traditional operations and protocols. Commercial 

switches mostly provide hybrid OpenFlow switches. (Azodolmolky 2013, 10.) 

 

The OpenFlow architecture consists of three parts: the data plane that is built up 

by OpenFlow switches, the control plane that contains OpenFlow controllers, and 

a secure control channel that connects these two planes (Braun & Menth 2014). 

 

An OpenFlow switch is a basic forwarding device that forwards packets according 

to its flow table. The flow table holds a set of flow table entries, each of them 

consists of rule (match fields), action (instruction), and stats (counters) as shown 

in figure 19. The match fields define the matching conditions of a flow. The 

instruction specifies how packets of that flow are handled—forward, drop, and so 

on. And the counters collect statistics about flows—number of received packets 

and bytes, as well as the duration of the flow. 
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Figure 19. Flow table entry (SDX Central 2017d) 

 

5.6 Open vSwitch 

Open vSwitch is one of the three popular virtual switches alongside VMware 

virtual switch and Cisco Nexus 1000V. Nicira, later bought by VMware, created 

Open vSwitch to meet the needs of the open source community since there was 

none feature-rich virtual switch offering designed for a Linux-based hypervisor, 

such as KVM and XEN. OVS has quickly become the de facto virtual switch for 

XEN environments, and now it is playing an important part in the OpenStack 

project as well as a prominent building block in SDN environments. (SDX Central 

2017c.) 
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Figure 20. Open vSwitch components (Braun 2014) 

 

Figure 20 illustrates OVS components and how they interaction with each other. 

As stated by Braun (2014), OVS is composed of three main components: 

 

 ovs-vswitchd is the Open vSwitch daemon that is responsible for 

forwarding logic and remote configuration and visibility. 

 ovsdb-server is the Open vSwitch database server. 

 openvswitch_mod.ko is the kernel module that is in charge of path lookup, 

modification, forwarding, and tunnel encapsulation/decapsulation. 

 

The ovs-vswitchd daemon communicates with the OpenFlow controller using 

OpenFlow, with ovsdb-server using OVSDB protocol, with openvswitch_mod.ko 

over netlink, and with the system through the netdev abstract interface. 

 

According to Subramanian et al. (2016, 34–36), OVS provides a rich set of CLI 

utilities used for configuration, monitoring, and debugging: 

 

 ovs-vsctl connects to an ovsdb-server process, provides an interface to 

push the commands, and wait for ovs-vswitchd to finish reconfiguring. Its 



46 

commands are utilized to create OVS bridges, configure ports and 

interfaces, and set up the OpenFlow controller. 

 ovs-ofctl shows the current state of an OpenFlow switch including 

features, configuration, and OpenFlow table entries for monitoring and 

administering. 

 ovs-appctl invokes the commands supported by ovs-vswitchd and prints 

the daemon’s response on a standard output. 

 ovs-dpctl creates, modifies, and deletes OVS data paths implemented 

outside of ovs-vswitchd. 

 

OVS enables massive network automation through programmatic extension and 

also supports a wide variety of standard management interfaces and protocols, 

such as NetFlow, sFlow, IPFIX, RSPAN, CLI, LACP, and 802.1ag. OVS can 

operate both as a soft switch running within a hypervisor and as the control stack 

for switching silicon. (SDX Central 2017c.) 

 

5.7 OpenDaylight and OpenStack 

OpenDaylight project which was announced in 2013 is an open source SDN 

project hosted by the Linux Foundation. The project arose out of the SDN 

movement, and its purposes are to advance SDN adoption and create the basis 

for a strong NFV. (SDX Central 2017e.) 

 

The OpenDaylight Controller, which has been renamed the OpenDaylight 

Platform, supports OpenFlow protocol and other open SDN standards. It exposes 

open northbound APIs which are used by applications to collect information about 

the network, run algorithms to conduct analytics, and create new rules throughout 

the network. The OpenDaylight controller can be deployed on any hardware and 

operating system platforms that support Java. (SDX Central 2017b.) 

 

Figure 21 below illustrates the architecture of Beryllium—the fourth release of 

OpenDaylight. 
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Figure 21. OpenDaylight Beryllium (Ramel 2016)
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OpenDaylight (2016a) sums up the fundamental software tools and paradigms 

that it utilizes, and they include: 

 

 Apache Karaf provides a lightweight runtime to install the Karaf features. 

OpenDaylight has no pre-installed features by default. 

 DLUX (OpenDaylight User Experience) is a web-based GUI that helps to 

manage networks. 

 NeXt (Network embedded Experience) is a developer toolkit that offers 

visualizations by providing tools to draw network-centric topology UI 

elements. NeXt can work with DLUX to build OpenDaylight applications. 

 MD-SAL (Model-Driven Service Abstraction Layer) is the OpenDaylight 

frameworks that enables developers to create new Karaf features in form 

of services and protocol drivers and connect them together. 

 

As seen in Figure 21, there are lots of Karaf features supported in the Beryllium 

release, such as AAA, BGP, BMP, DLUX, FaaS, LACP, NETCONF, OVSDB, OF-

CONFIG (OpenFlow Configuration Protocol, SNMP, and VTN. 

 

According to Makam (2014), ODL supports a layered architecture: 

 

 The northbound interface provides a rich set of APIs. Those REST APIs 

are primarily meant for integrating with cloud platforms like OpenStack. 

They can also be used to build GUI for ODL. 

 Controller platform layer is responsible for leveraging the SAL data model 

and providing fundamental SDN capabilities and networking functions like 

topology, performance monitoring, physical and virtual switch 

management, and ARP handling. Controller platform layer links 

northbound interfaces to southbound interfaces and handles the REST 

APIs exposed. It also supports use case-specific functionality which turns 

out to be a useful capability while integrating with OpenStack. 

 SAL is the most significant layer in the architecture because its major 

purpose is to map a diverse set of networking technologies from a 
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multitude of hardware vendors to a common abstracted data model. All the 

controller services operate on this abstract data model, thus ODL platform 

becomes a vendor-neutral controller. SAL and a lot of protocols which are 

used to communicate with networking devices make up the southbound 

interface. 

 

Figure 22 below shows a complete diagram of building blocks in the OpenStack 

and OpenDaylight integration. The idea basically is Neutron’s ML2 plugin 

interacts with ODL’s OVSDB Neutron application which in turn commands OVS 

using OVSDB protocol or OpenFlow protocol. OVS supports both OpenFlow 1.0 

and OpenFlow 1.3, and the latter supports multi-table capability that optimizes 

the number of tunnels needed between Open vSwitches. (Makam 2014.) 

 

 

Figure 22. Building blocks involved in OpenStack and OpenDaylight integration (Makam 2014) 
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6 PRACTICAL IMPLEMENTATION 

This chapter demonstrates how a proof-of-concept OpenStack cloud is built with 

Open vSwitch as the main Neutron ML2 plug-in. And then, OpenDaylight will be 

integrated into that OpenStack cloud to achieve an SDN-based cloud. 

 

6.1 Topology 

For a proof-of-concept environment, I build an OpenStack cloud with four nodes: 

one controller node, one network node, and two compute nodes. The controller 

and network nodes are virtual machines running on top of ESXi, while the 

compute nodes are bare metal servers. All of them use Ubuntu 14.04 as the 

operating system. 

 

The OpenStack cloud contains most of its core services: Keystone, Glance, 

Nova, Neutron using the ML2 plug-in with Open vSwitch, and Horizon. Since it is 

only a prototype, OpenStack is set up to use local disks for instances instead of 

Swift, Cinder, or Ceph; it also has neither Heat (orchestration) nor Ceilometer 

(Telemetry). 

 

The controller node runs Keystone and Glance services, management portions of 

Nova and Neutron, Horizon, as well as supporting services such as an SQL 

database, message queue, and NTP. The dedicated network node runs Neutron 

services. The compute nodes run the hypervisor portion of Nova that operates 

instances and management portions of Neutron, and they use the KVM 

hypervisor. 
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Figure 23. Network topology 

 

There are four simple networks used in the architecture as shown in Figure 23: 

the management network which is NAT’d for administrative purposes like 

package installation, security updates, DNS, and NTP, the tunnel network for 

internal VM traffic type GRE or VXLAN, the VLAN network for internal VM traffic 

type VLAN, and the external network providing Internet access to instances (the 

Internet). The management and external networks use 172.16.0.0/21 subnet, the 

tunnel network uses 10.10.10.0/24 subnet, and the VLAN network does not have 

any IP address range, because it only handles layer-2 connectivity. 

 

The controller node has only one management interface, the compute nodes 

have three interfaces for management, tunnel, and VLAN networks, and the 

network node has four interfaces.  

 

6.2 Deploying OpenStack 

This part covers how the OpenStack cloud is built and how to verify OpenStack 

functionality by launching an instance. Deploying an OpenStack means a lot of 
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repetition done for each service, so I will only discuss how I installed and 

configured Keystone and leave out other services for the sake of shortness.  

6.2.1 Setting up the Environment 

The external interface on each compute node uses a special configuration 

without any IP address assigned to it, so it needs to be configured to use no IP at 

all like below: 

auto eth4 

iface eth4 inet manual 

up ip link set dev $IFACE up 

down ip link set dev $IFACE down 

The NTP service is also needed on all nodes, so I install and configure chrony so 

that the /etc/chrony/chrony.conf file on each node contains the following 

line: 

server <NTP_SERVER/controller> iburst 

The controller node needs to use a hostname or IP address of an NTP server, 

whereas other nodes use the controller node as their NTP server. 

Then a specific OpenStack repository needs to be enabled. I use the Liberty 

release, so I add the repository for Liberty and install OpenStack client on all 

nodes as follows: 

# apt-get install software-properties-common 

# add-apt-repository cloud-archive:liberty 

# apt-get install python-openstackclient 

Most of the OpenStack services use an SQL database to store information. In 

order for the /etc/mysql/conf.d/mysqld_openstack.cnf file to instruct 

other nodes to access the database via the management network, I install and 

configure MariaDB on the controller node as well as set the default storage 

engine and the UTF-8 character set in the following way: 
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[mysqld] 

bind-address = <controller-ip> 

default-storage-engine = innodb 

innodb_file_per_table 

collation-server = utf8_general_ci 

init-connect = 'SET NAMES utf8' 

character-set-server = utf8 

OpenStack also uses a message queue to facilitate inter-process communication 

among services, so I install RabbitMQ on the controller node. After that, the 

RabbitMQ broker is told to create a user named openstack and set permissions 

for that user as follows: 

# rabbitmqctl add_user openstack <rabbitmq_password> 

# rabbitmqctl set_permissions openstack “.*” “.*” “.*” 

At the moment, the environment has host networking, NTP, OpenStack packages 

and client, SQL database, and message queue set up. And OpenStack core 

components are ready to be installed. 

6.2.2 Installing and Configuring Keystone, Glance, Nova, Neutron, and 

Horizon 

As mentioned above, Keystone is the OpenStack Identity service that provides 

authentication and authorization services. OpenStack services support multiple 

security options such as password, policy, and encryption. To ease the 

installation process in this work, I will only use the password method. Throughout 

the deployment process, an administrator token will also be needed. The 

passwords (GLANCE_DBPASS, KEYSTONE_DBPASS, NEUTRON_DBPASS, 

NOVA_DBPASS, etc.) and the token can be manually created or randomly 

generated by using a tool such as OpenSSL like below: 

openssl rand -hex 10 

We need to create a database for Keystone with proper access granted as 

follows: 
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CREATE DATABASE keystone; 

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' 

IDENTIFIED BY 'KEYSTONE_DBPASS'; 

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' 

IDENTIFIED BY 'KEYSTONE_DBPASS'; 

Then Keystone package and its dependencies are installed. After that, the 

Keystone configuration file located at /etc/keystone/keystone.conf needs 

to be edited to contain the admin token generated above, the database access, 

and some other configurations. The following line includes the names of 

Keystone package and its dependencies: 

# apt-get install keystone apache2 libapache2-mod-wsgi 

memcached python-memcache 

The Keystone database is empty at the moment, so we need to populate it with 

base data with the following command: 

# su -s /bin/sh -c “keystone-manage db_sync” keystone 

At this point, a Keystone database with its complete set of tables should be 

created. By default, Keystone comes with a SQLite database located at 

/var/lib/keystone/keystone.db, but we do not need it, so it can be 

deleted. 

Keystone manages a catalog of OpenStack services, so we need to create 

service entity and API endpoints for Keystone. Keystone uses port 5000 for 

public and internal access and port 35357 for admin access. 

$ openstack service create --name keystone --description 

“OpenStack Identity” identity 

$ openstack endpoint create --region RegionOne identity 

public http://controller:5000/v2.0 

$ openstack endpoint create --region RegionOne identity 

internal http://controller:5000/v2.0 

$ openstack endpoint create --region RegionOne identity 

admin http://controller:35357/v2.0 
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Keystone utilizes a combination of domains, projects, users, and roles for 

authentication as said above, so we need to create them which will be used for 

administrative operations by the admin user by executing the following 

commands: 

$ openstack project create --domain default --description 

"Admin Project" admin 

$ openstack user create --domain default --password-prompt 

admin 

$ openstack role create admin 

$ openstack role add --project admin --user admin admin 

We also need to create a project called service that consists of a unique user for 

each OpenStack service like below: 

$ openstack project create --domain default --description 

"Service Project" service 

For the following operations, we will need an admin credential file with the 

content as follows: 

export OS_PROJECT_DOMAIN_ID=default 

export OS_USER_DOMAIN_ID=default 

export OS_PROJECT_NAME=admin 

export OS_TENANT_NAME=admin 

export OS_USERNAME=admin 

export OS_PASSWORD=<admin_password> 

export OS_AUTH_URL=http://controller:35357/v3 

export OS_IDENTITY_API_VERSION=3 

For Glance, Nova, and Neutron, the installation and deployment process is 

almost the same as that of Keystone. 

The next step is to create OVS bridges on the network and compute nodes and 

add the corresponding physical interfaces as ports on the OVS bridges with the 

following commands: 

# ovs-vsctl add-br br-tun 

# ovs-vsctl add-port br-tun eth1 

# ovs-vsctl add-br br-vlan 

# ovs-vsctl add-port br-vlan eth2 
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# ovs-vsctl add-br br-ex 

# ovs-vsctl add-port br-ex eth3 

Henceforth, compute and network nodes should have fully functional networking 

stacks like shown in Figure 24 and Figure 25 below. Besides, each compute 

node will have an OVS agent running, while the network node will have an OVS 

agent, an L3 agent, a DHCP agent, and a metadata agent running like described 

in the OpenStack architecture. 

  

Figure 24. Compute node networking layout 
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Figure 25. Network node networking layout 

We can also obtain a brief overview of the OVS database contents on the 

compute and network nodes by using ovs-vsctl show command as shown in 

Figure 26 and Figure 27 below.  
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Figure 26. OVS bridges on network node 
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Figure 27. OVS bridges on compute node 

For Horizon, we need to install the package that provides the dashboard by using 

the following command: 

# apt-get install openstack-dashboard 

Then the Horizon configuration file located at /etc/openstack-

dashboard/local_settings.py needs to instruct Horizon to use OpenStack 

services on the controller node, to allow all hosts to access Horizon, to configure 

the Keystone API version that we want to use when logging into the dashboard, 

to choose which Neutron services to enable, and so on. The dashboard is 
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available to access at http://<controller-ip>/horizon afterward. The 

login screen can be seen in Figure 28 below. 

 

 

Figure 28. OpenStack login screen 

 

6.2.3 Launching an Instance 

First, we need to download and upload CirrOS image to Glance like below. 

CirrOS is a minimal Linux distribution designed as a test image. 

$ wget http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-

x86_64-disk.img /tmp 
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$ glance image-create --name "cirros" --file /tmp/cirros-

0.3.4-x86_64-disk.img --disk-format qcow2 --container-format 

bare --visibility public 

Then we need to create a flat external network and its subnet by executing the 

following commands: 

$ neutron net-create ext-net --router:external True --

provider:physical_network external --provider:network_type 

flat 

$ neutron subnet-create ext-net --name ext-subnet --

allocation-pool start=172.16.2.50,end=172.16.2.100 --

disable-dhcp --gateway 172.16.0.1 172.16.2.0/24 

A VXLAN network can be created in the same way for a project named demo as 

follows: 

$ neutron net-create demo-net --tenant-id <demo-project-id> 

--provider:network_type vxlan 

$ neutron subnet-create demo-net --name demo-subnet --

gateway 200.200.200.1 200.200.200.0/24 

After that, a router that connects the demo network to the external network is 

created by using the following commands: 

$ neutron router-create demo-router 

$ neutron router-interface-add demo-router demo-subnet 

$ neutron router-gateway-set demo-router ext-net 

Several qrouter and qdhcp namespaces will appear on the network node as 

shown in Figure 29. A network namespace is a logical copy of the networking 

stack that has its own routers, firewall rules, and network interface devices. A 

qdhcp namespace provides IP addresses to instances via its DHCP service. 

Every network whose the associated subnets have DHCP enabled has a qdhcp 

namespace. A qrouter namespace represents a virtual router and is in charge of 

routing traffic to and from instances. (Denton 2015, 58.) 

 

Figure 29. Neutron network namespaces 
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There is a security group by default named default. We can add additional 

rules to allow ping and SSH access to the instance like below: 

$ nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0 

$ nova secgroup-add-rule default tcp 22 22 0.0.0.0/0 

A key pair whose public key is injected into a newly created instance is needed 

so that we can get access to the instances. The public key can be uploaded with 

the following command: 

$ nova keypair-add --pub-key ~/.ssh/id_rsa.pub demo-key 

It is now ready to launch an instance like in Figure 30. Available flavors can be 

listed by using nova flavor-list command, and net-id is the ID of demo-

net obtained by using neutron net-list command. 
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Figure 30. Launching an OpenStack instance 
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After associating a floating IP with the running instance, we should be able to 

access it using SSH. When two instances are created and ping each other, we 

can see that there are several OVS flows, and the OVS database also gets 

updated on the network and compute nodes like shown in Figure 31 by using the 

same ovs-vsctl show command. Each OVS database on these nodes will be 

kept up-to-date with other nodes’ information like IP addresses and a lot of virtual 

network interfaces related to instances (tap devices, veth pairs, Linux bridges, 

and OVS bridges; their corresponding prefixes are tap, qvb, qvo, qbr, qr-, qg-

, and br). A detailed discussion on what these interfaces are, how they work, and 

how they connect each other is beyond the scope of this project. 
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Figure 31. OVS bridges, ports, and flows on the network node 
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6.3 Integrating OpenDaylight into OpenStack 

ODL node is also a virtual machine like the controller and network nodes, but it 

has two interfaces: one belongs to the management network so that it can talk to 

other nodes, the other one belongs to the tunnel network. 

After downloading and extracting the latest OpenDaylight release which is 

Beryllium at the time of writing, we can start OpenDaylight as a server process, 

then connect to the Karaf shell to install some needed Karaf features and their 

dependencies by using the following commands: 

$ ./bin/start 

$ ./bin/client 
$ feature:install odl-base-all odl-aaa-authn odl-restconf 

odl-nsf-all odl-adsal-northbound odl-mdsal-apidocs odl-

ovsdb-openstack odl-ovsdb-northbound odldlux-core 

Figure 32 illustrates the current architecture of the OpenDaylight and OpenStack 

integration. 
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Figure 32. OpenStack and OpenDaylight integration 

Since ODL is being utilized as the Neutron backend, it expects to be the only 

source of truth for OVS configuration, so we need to clean up all the existing 

OpenStack and OVS configurations to ensure ODL is in a clean state. The 

neutron-server service on the controller node and the neutron-openvswitch-agent 

service on all nodes need to be stopped, and the OVS agent also needs disabling 

so that it will not come back after a reboot as follows: 

# service neutron-server stop 

# service neutron-openvswitch-agent stop 

# service neutron-openvswitch-agent disable 

In order for OpenDaylight to be able to completely manage OVS, the existing 

OVSDB should be removed, and then we can set up ODL to be the manager of 

all nodes like below: 

# service openvswitch-switch stop 

# rm -rf /var/log/openvswitch/* 

# rm -rf /etc/openvswitch/conf.db  

# service openvswitch-switch start 

# ovs-vsctl set-manager tcp:<odl_management_ip>:6640 
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All the nodes with running OVS appear in DLUX like in Figure 33. 

 

Figure 33. DLUX 

We need to configure Neutron to use ODL by adding the opendaylight 

mechanism driver to its existing list. The configuration part for ODL can be seen 

below: 

[ml2] 

mechanism_drivers = opendaylight 

[ml2_odl] 

password = admin 

username = admin 

url = 

http://<odl_management_ip>:8080/controller/nb/v2/neutron 

The Neutron database needs to be dropped, recreated, and repopulated, too. 

After recreating networks, subnets, and routers, I create two instances as shown 

in Figure 34. 
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Figure 34. Running instances 

I access one of the instances by using SSH and ping the other, and it works as 

Figure 35 shows. That means ODL was successfully integrated into the  

OpenStack cloud. 

 

Figure 35. Ping check 

 

7 CONCLUSIONS 

 

The goal of the study was to see how the open source software applications that 

are getting a lot of hype could collaborate, more specifically, to build an SDN-

based OpenStack cloud. Overall, that goal was achieved, meaning an SDN 

controller named OpenDaylight Platform was successfully integrated into a 

prototypical OpenStack cloud. 
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Throughout the process, I experienced what people have been saying about 

OpenStack: deploying an OpenStack cloud is very hard, but scaling the cloud up 

is much harder without automation tools or support from some vendor. And SDN 

implementation in this study is still at a basic level because the OpenDaylight 

platform enables users to write their own applications for controlling networks by 

exposing RESTful APIs and OSGi interfaces, which is what I did not have enough 

time to carry out in this study. That being said, working with OpenStack and 

OpenDaylight showed me the enormous potential of the open source innovation. 

 

OpenStack is undoubtedly an awesome project, but due to its modular 

architecture, manually deploying OpenStack is time-consuming, error-prone, and 

tedious. There are dozens of core services that need to come together to get a 

production-ready OpenStack cloud, and it means a lot of repetition. By making a 

single mistake, we will have to troubleshoot, investigate log files, and probably 

end up starting over. However, since OpenStack is an open source project, we 

can fully and freely patch source code, fix bugs like what we do with a Linux 

distribution without needing to wait for support from any vendor. Furthermore, 

OpenStack is growing fast, the document for each release, each networking case 

is highly detailed and available, and the OpenStack community is extraordinarily 

large and helpful. And fortunately, there is also a wide range of selection for open 

source automation tools: Ansible, Chef, Puppet, and SaltStack. All of them are 

widely used for deploying OpenStack clouds even by commercial vendors: 

RedHat is using Puppet, HPE is using Ansible, SUSE is using SaltStack, and 

Rackspace is using Chef. All these great advantages help OpenStack become 

mature enough for production use at large scale. 

 

Unlike OpenStack, Software-Defined Networking is a bit more like a secret in 

reality. A great number of research papers, books, and articles on SDN are 

available for people getting interested in it, but there are hardly any real-life 

examples on how to implement it, how to use it, or how to make it work, although 

Mirantis has been adding several SDN plugins to their product for some time. 

Engineers, specialists, and cloud providers were still wary of this novel 

technology at first because it is a common case with new technologies: the initial 
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hype usually exceeds the reality of the situation. Nonetheless, according to a 

survey done by OpenStack in 2017, SDN/NFV was ranked second among the 

emerging technologies that interest OpenStack users (Figure 36). That means 

people are gradually accepting SDN. 

 

 

Figure 36. Emerging technologies that interest OpenStack users (OpenStack 2017a) 

 

Moscovici (2015) said, “In the new economy, it’s not the code that matters, it’s 

how you use it to connect people to things they need. From 3D printers to 

Docker, open-source-based innovation is fueling some of the hottest digital 

capabilities of our time. Finally, the golden age of open source has arrived. 

Companies 20 years ago built monopolies on licensed software; today, free and 

open-source code fertilizes economic growth. The way to win at tech is no longer 

to own code, but to serve customers, and service has open source at its roots.” 

The more people are willing to adopt open source technologies, the more great 

software like OpenStack will stand out from the rest to give users real benefits. 

 

As previously stated, this is only a proof-of-concept cloud. However, it can be 

considered as the foundation for further developments to achieve a production-

ready OpenStack cloud. There are several ideas that can be taken into account 

including: 

 

 High availability is one of the foremost factors when building a cloud 

because it helps reduce system downtime and data loss in the event of a 

single failure, and it also eliminates single points of failure. High availability 
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is implemented with redundant hardware. In this project, there is only one 

virtualized controller node, and there is a standalone network node. 

However, in reality, there are usually three bare metal controller nodes in 

which the networking services are running. 

 There are four simple networks used for the prototypical cloud, and the 

compute nodes use up to four NICs, but it should not occur in a 

production-ready cloud. A typical real-life OpenStack cloud needs several 

networks used for management, API, storage, guest, and external traffic. If 

we want to increase storage and compute capacities, we will not want to 

spend extra money on extremely expensive servers with that number of 

network ports, not to mention the high availability of the network. 

Configuring network bonding and using tagged and untagged VLAN can 

ease this issue. 

 The prototypical cloud also utilizes local disks on the hypervisors for 

running instances. While it is not a bad option in practice, it is still 

recommended to use one of the shared storage options including Cinder 

(block storage), Swift (object storage), Ceph (block, object, and file 

storage), NFS, ZFS to name a few. One of the benefits of having a shared 

storage backend is to facilitate the live migration process. 

 Adding more OpenStack services is a great idea, too. Heat used for 

orchestration, Ceilometer used for metering, Logstash used for logging, 

Monasca, InfluxDB, Icinga, Zabbix, and Nagios used for monitoring and 

trending, and Kibana used for data virtualization are some external tools 

that enrich an OpenStack cloud. 

 As said above, digging deeper into the SDN real-world use cases, writing 

some high-level OpenDaylight applications to control the network, and 

even switching to another open source SDN controller will make a good 

use of the APIs exposed by OpenStack and OpenDaylight Platform and 

bring benefits to the cloud. 

 Last but not least, there is a crucial fact that nobody wants to build an 

OpenStack cloud, even one on a small scale, by hand. The deployment 

process is immensely time-consuming, error-prone, and repetitive. That is 

the reason why we need an automation tool. Investing time in automating 
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the deployment process to get a desired cloud takes time, but once it is 

done, building and rebuilding a cloud will become easier than ever.  
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