

Ivan Kupalov

Software Defined Networks Case Study

Bachelor’s Thesis

Data Networks Engineering

February 2016

Author (authors) Degree Time
Ivan Kupalov

Bachelor of Data
Networks Engineering

 February 2016

Thesis Title
Software Defined Networks Case Study 27 pages

22 pages of appendices
Commissioned by
Kymenlaakso University of Applied Sciences

Supervisor
Vesa Kankare, Senior Lecturer

Abstract
This thesis describes a process of creating a virtual environment and studying materials which
should help students to learn the basics of Software Defined Networks.

Software Defined Networks is a new approach to building networks which moves part
responsible for making routing decisions away from the network device to the centralised
controller. SDN are especially useful for cloud and datacenter environment and play important
role in creating Internet of Things.

The learning environment was built using virtualisation technologies. Virtual machine
containing SDN controller and simulated network was used. Network topologies were
developed to be used with lessons and challenges. Network simulation was done using
lightweight Mininet software. In order to choose the most suitable technologies research was
made and comparison of SDN controllers was conducted.

The studying materials include guides and challenges for students. An attempt to incorporate
theory explanations into the step by step guide was made to keep learning entertaining and
easy.

As a result, complete learning environment was made which can be used as a part of a
networking course or as an introduction into specialised SDN course.

Keywords
networking, SDN, OpenFlow, Mininet

CONTENTS
1 INTRODUCTION .. 4

2 PROJECT GOALS .. 5

2.1 Research on technology ... 5

2.2 Evaluating .. 6

2.3 Virtual environment for learning.. 6

2.4 Instructions and challenges .. 6

3 THEORETICAL OVERVIEW OF SOFTWARE DEFINED NETWORK 7

3.1 Traditional approach to networking and origins of SDN ... 7

3.2 Theoretical overview of SDN .. 8

3.3 SDN Controller ... 9

3.4 OpenFlow ... 11

4 VIRTUAL LABORATORY ENVIRONMENT .. 15

4.1 Overview .. 15

4.2 Choices .. 16

4.3 Similar projects ... 18

4.4 Implementation ... 18

5 STUDYING MATERIALS .. 20

5.1 Overview .. 20

5.2 Implementation .. 20

5.3 Feedback ... 22

6 CONCLUSIONS.. 23

6.1 Results ... 23

6.2 Challenges experienced .. 24

6.3 Ideas for future use .. 24

6.4 SDN technologies maturity .. 25

LIST OF REFERENCES .. 26

APPENDICES

Appendix 1. Lab Guide

4

1 INTRODUCTION

Due to the progress in computing many new products and services have

emerged. Every day a new application launches. Limits are being pushed and

common concepts of possibility are being changed (Vaughn, 2012).

New type of services requires new level of flexibility and dynamical

configuration. Devices have to be configurable on-the-fly. Services like

Amazon AWS or Google Cloud Platform require automatic scaling and

shaping of the network.

In the world of such high requirements it would be impossible to keep

everything static like it used to be. Better solutions were developed.

Virtualization is one of the major trends in ICT that helps to satisfy

requirements of the new world, especially ones of the cloud computing.

Virtualization of storage, hardware, operating systems and networks improved

uptime and flexibility. In all areas of IT there were special hardware and

vendor differences and in most cases they have been replaced with general-

purpose software, inter-vendor compatibility and virtualization.

The same process started to happen in networking. Standards in networking

are already in use but we are still far from the point where it is possible to buy

devices from any vendor and configure them in the same way or install

different operating system. Software defined networking follows virtualization

trend. Although, it is more than just virtualized network.

Another reason why software defined networks were designed is security

concerns. Cloud is a very attractive target for attackers because usually it

contains large amounts of sensitive data. Attacking a cloud may also help

hackers to infect programs which users download and get access to even

more resources and information.

Distributed Denial of Service attacks (DDoS) became more powerful and

frequent. “High-bandwidth, volumetric infrastructure layer (L3 & L4) attacks

increased approximately 30 percent” (Krishnan, Durrani and Phaal, n.d., p. 1).

DDoS Mitigation market is expected to grow by 18% 25% till 2017 according

to DDoS-IDC or by 25% according to DDoS-Infonetics.

5

Software defined network (SDN) gives real-time analytics and DDOS

mitigation capabilities. Client of ISP cannot always mitigate attack himself and

requires upstream help. If ISP can provide such a service it can be a new

source of revenue. The same applies to cloud data centers. Cloud is usually

expected to protect their customers from the DDOS attacks and can use

mitigation as a source of revenue.

One of the upcoming trends is Internet of Things (IoT). Internet of Things is a

network of embedded devices which exchange data between each other. It is

a common thought that IoT is a sign of the new revolution and it is a new

market for products and services. (Burrus, n.d.) IoT can provide massive

amounts of relevant data and potentially can change many areas of life.

Possible applications include warehousing, logistics, city planning, data center

infrastructure, energy use, “smart homes”. What IoT means for networking is

changed nature of traffic and increased complexity. Time has proved that one

of the most effective instruments to fight complexity is software. SDN may be

one of the ways to fight emerging challenges, it may help us to operate

networks in smarter ways.

Teaching future technologies is a task of a great importance. Today’s students

are tomorrow’s workers. Some of them will be responsible for making

important decisions and knowledge of more sophisticated methods may help

to choose the most appropriate network design.

This paper describes process of creating learning environment and learning

materials for the lesson explaining basics of software defined networks and

use of OpenDayLight controller.

 2 PROJECT GOALS

2.1 Research on technology

To be able to teach others and evaluate new technologies deep and extensive

knowledge is required. One of the ways to obtain it is to study theory, use

cases and make attempts to use technology. Doing that is vital for

6

accomplishing other goals. Making notes in the process of learning may be

helpful for making studying materials.

2.2 Evaluating

The goals include making an attempt to evaluate new network technologies

and trying to check if they are ready for production and teaching or not.

Maturity of a technology means ease and cost of deploying and integration,

reliability and, the most important, that it has benefits over older technologies.

Suitable scenarios and environments for applying should be proposed.

2.3 Virtual environment for learning

One of the biggest obstacles for studying new technologies is getting and

trying out these technologies. One of the tasks of this thesis is eliminating this

barrier by making a pre-built virtual environment including both parts of SDN:

Virtual Network and SDN controller. Virtual environment has very strong

advantages over physical one including personal work and lower expenses.

With little effort labs can be used remotely. Potentially, gamification can be

applied.

There are some requirements for a virtual network. Devices in this network

should support specific SDN-related technologies and standards. Hardware

capabilities of workstations used in the classroom should also be taken into

consideration. Giving some flexibility for virtual environment may be future-

aware solution.

2.4 Instructions and challenges

Almost every learning process can be more effective when students are given

proper hints or instructions. Creating detailed and easy to understand lab

materials is one of the most important goals. Lab materials should include

step-by-step guides, basic theory and explanations how given examples are

related to real-life cases. Students are not expected to have deep knowledge

of software defined networking, when they start using materials with an

exception of some theoretical knowledge and basic networking knowledge.

7

 3 THEORETICAL OVERVIEW OF SOFTWARE DEFINED NETWORK

3.1 Traditional approach to networking and origins of SDN

Until the last few years all the networking resources, storage, computing and

network, were intentionally separated as well as systems used to manage

these resources. Data centers servers were focused on doing a specific task

such as mail servers or database servers.

Situation started to change with wide adoption of virtualization. Servers which

were running on a “bare metal” before became universal computing and

storage systems. The age of elastic computing has began. (Thomas D.

Nadeau, Ken Gray, 2013, p.2). It led to massive move of computing power to

datacenters.

Datacenter operators, which now were able to move entire operating systems

between machines, started to optimize utilization of machines based on metric

such as cooling and power. By packing all the operating machines together

operator was able to idle or power off big parts of data center. In the same way

operator could move resources by geographical demand.

Soon, the biggest players in IT field, especially the ones who experienced

exponential growth, such as Amazon, who were forced to increase their

computing resources preliminary, realized that they can increase utilization of

their computing power by selling it to customers and getting some of their

capital investments back. (Ma, 2014) This way, services like Amazon Web

Services or Google Compute Engine were invented. Thus, data centers

became multitenant. It created a new problem of separating big numbers of

potential tenants whose resources were spread across different virtual

machines.

Before, devices were connected using relatively simple flat networks which

were separated using layer 2 tools or layer 3 VPNs. Address spaces usually

were assigned from one address block. In contrast, in multitenant networks

each virtual machine should be assigned IP address and every VM has its

own unique hardware address. Moving of a virtual machine often means not

only address relocation but also changes in layer 3 routing.

8

While data centers were evolving, network equipment did not change much,

apart from improved fabric capabilities and speed since IP and MPLS

(multiprotocol label switching) technologies. These technologies allowed

network operators to manipulate networks in the way data center operators

manipulated virtual machines. Networking devices usually come with multiple

ways of management such as command line, XML/NETCONF or Simple

Network Management Protocol.

Traditional approach to building networks assumes that network nodes are

autonomous devices which are responsible for making decisions themselves.

Issues of this approach started to become more obvious when devices started

to become more complex. Some networking devices (such as Nexus series

developed by Cisco) became so powerful that they can run virtual machines.

The more complex the device is the more configuration it needs. Traditional IP

networks may be hard to manage. (Kreutz et al. 14-76, p. 1) It means that

more knowledge is required from the staff responsible for managing the

network. Human factor is one of the biggest drawbacks of the traditional

networks. First of all, salaries is one of the biggest expenses in many cases.

Secondly, people have limited capabilities in terms of working with

abstractions. In every engineering system level of complexity inevitably

increases. Software can give “Bird's-eye view“ of the network including

structure and statistics and also can alter the network automatically, in the

ways people cannot alter it. Networks no longer have to be manipulated by

programmers and not by special people. (Ward, 2013)

3.2 Theoretical overview of SDN

“Software-defined networks (SDN): an architectural approach that optimizes

and simplifies network operations by more closely binding the interaction (i.e.,

provisioning, messaging, and alarming) among applications and network

services and devices, whether they be real or virtualized.” (Thomas D.

Nadeau, Kenn Gray, 2013). Usually SDN Controller provides this binding and

orchestrating functions. One of the key differences of SDN approach is

9

flexibility of configuration, not point of applying it. Two approaches exist for

managing SDN networks: proactive and reactive.

Reactive approach implies that when switch receives unknown packet it sends

it to the controller with additional information. Controller should program switch

to handle such packets automatically afterwards.

In proactive mode switch is programmed by a controller ahead of time

according to its knowledge of the network.

Reactive approach makes network suitable for highly dynamic environments,

however, it introduces significant overhead and scalability problems. (Moshref,

Bhargava, Gupta, Yu, Govindan, 2014, p. 1)

One of the solutions which may help to address these issues is making SDN

network hybrid. Network can be configured in a way when most of the traffic

flows are predefined while giving network architect granular traffic control

when they need it. Hybrid approach can give both low-latency forwarding of

proactive approach and flexibility of reactive one. (Salisbury, 2013)

3.3 SDN Controller

SDN Controller’s interfaces can be divided into two groups: Northbound and

Southbound.

10

Figure 1. OpenDayLight Lithium Controller architecture (OpenDayLight.org,

n.d.)

Simplified architecture of typical SDN controlled is demonstrated on Figure 1.

Northbound APIs are facing applications. Controller can receive intentions or

commands from the applications and alter network in the appropriate way or

return information about the network. Also, applications can be notified by the

controller about certain types of events in the network. For example, DDOS

protection software can be notified about unusual activity and send signal for

change in the network topology to mitigate the attack.

Southbound APIs are facing network. Protocols such as OpenFlow, BGP,

NETCONF, LISP, PCEP or SNMP can be used by southbound APIs. With this

protocols controller connects to devices to calculate information and configure

devices.

Controller platform is the core of the controller. Usually it contains models of

the objects in the network and plug-ins. Model is often changed by northbound

APIs and these changes can have effect on network.

In engineering popular term “single point of failure” stands for the part of the

system on which reliability of the whole system relies. In other words, if this

part stops working the whole system stops working as well. It is correct to say

11

that in some configurations SDN controller is the single point of failure. To

solve this issue techniques used for other types of servers may be used

because in fact, controller is a server. One of the popular techniques is

clustering. Most production-ready SDN controllers support clustering (such as

OpenDayLight and ONOS). Clustering is an advanced topic and will not be

discussed any further.

3.4 OpenFlow

OpenFlow is an open standard being developed by Open Networking

Foundation. It is the first standard interface for communications between

control and forwarding layers of SDN. The purpose of OpenFlow is to give

controller direct access to forwarding planes of network equipment.

Despite the fact that SDN is not directly connected to the OpenFlow protocol,

it is de facto standard for communications between controller and devices.

OpenDayLight controller website states that “while OpenFlow is a useful

protocol in many scenarios, SDN is not limited to OpenFlow or any single

protocol” (Opendaylight.org, 2016).

There are few technologies that can perform similar capabilities such as I2RS,

VxLAN and PCEP. It was considered that this technologies should be out of

the scope of the lessons although these technologies as well as BGP and

other southbound protocols.

OpenFlow allows move of the control plane from the device to the controller.

When an OpenFlow switch receive a packet for which it has no matching flow

entries, packet is being sent to the controller. After decision is made how to

handle the packet and information is being gathered controller can either drop

the packet or install flow entry to the switch.

OpenFlow switch is a device which supports communications with controller

using OpenFlow protocol and implements a flow table. OpenFlow was

designed to support experiments with existing networks, therefore, it can be

enabled only on certain ports of the device. This way device can support both

OpenFlow forwarding as well as traditional forwarding at the same time.

Researchers can test new routing protocols on a “slice” of real network. Slice

12

is a part of a network filtered by a common characteristic, for example,

communications from wireless hotspots only.

Flows on the devices are organized into tables. Each row in a table is a flow

installed on the device. Flows have match fields and action fields. Match fields

include Ethernet type, MAC source and destination addresses, IP addresses,

ports.

Each flow on the device is associated with a set of actions which should be

applied to all matching packets. Instructions can modify the packets state,

forward the packet to a port or pass the packet to another table or group.

Additional metadata can be added to the packet with passing. Each packet

has it is own action set and actions from this set will be applied if no further

processing is possible. The write and clear instructions provide ways of

manipulating the action set. The apply instruction make device apply action

immediately. The goto instruction passes the packet to another flow table.

The meter instruction applies a rate limiter and experimenter instruction

provides a way to develop custom extensions and action lists. Figure 2 shows

the list of OpenFlow instructions.

Instruction Description

Apply Apply action list immediately, bypass
action set

Clear Clear the action set

Write Action Add actions to action set

Goto Pass processing to another table

Meter Apply a rate limiter.

Experimenter Instruction extensions

Figure 2. List of OpenFlow instructions

13

Figure 3. OpenFlow instruction processing. (Flowgrammable.org, 2016)

OpenFlow can manipulate packet in different ways. Device can drop packet,

output it to one or more ports, set and push VLAN and MPLS tags, set ARP,

IPv4, IPv6, ICMP fields and TCP, UDP and SCTP ports. Figure 3 shows

relations between packet payload, instruction and action list in simplified form.

14

Figure 4. Action dependencies. (Flowgrammable.org, 2016)

OpenFlow standard defines in which order actions should be applied in terms

of dependencies as shown on the figure 4. L4 fields will be set first and L1

operations will be done last.

15

When an OpenFlow device establishes a connection to a controller, it

indicates which of the features it supports.

4 VIRTUAL LABORATORY ENVIRONMENT

4.1 Overview

Virtual environment in case of teaching SDN technologies has several

benefits. First, it is much cheaper than using real hardware with support of

SDN. Because SDN adoption is still quite low and SDN is mostly used in big

networks, hardware which supports SDN is expensive.

Second, hardware from different vendors has its own restrictions and

implementation details. Using virtual software switches gives possibility to

easily create and use network without burden of tuning SDN settings in real

hardware.

Third, virtual environment is extremely flexible. Making a new topology is as

simple as writing a new script. Platforms like Mininet are making providing all

needed infrastructure to simulate network.

Few requirements have to be met by environment to make it usable for

studying:

● Ease and speed of deployment

● Predictable outcome

● Ease of use

Thus, to meet these requirements, a decision was made to make a

preconfigured virtual machine. This virtual machine should include:

● Network simulation tools

● SDN controller

● Web browser

● A tool for making HTTP requests

● Network sniffer and protocol analyzer

16

Users should be able to make HTTP requests because HTTP API is one of the

easiest northbound controller’s interfaces. While it is not as simple to use as

web-based graphical interface it is much more reliable and stable.

Network sniffer should give students ability to investigate the network from the

different point of view and prove correctness of their guesses. It is used by the

tutorial to demonstrate connection between switches and the controller. Sniffer

is even more useful as the lab contains challenges.

4.2 Choices

There are many network simulation tools available. During the research three

major option were discovered: Cisco Virtual Internet Routing Lab (VIRL),

Mininet and virtualizing devices using images.

VIRL is a proprietary Cisco software which includes modifier images of real

networking equipment operating systems. It has many features such as

defining link parameters and graphical topology editor.

As the result of experiments with VIRL it was concluded that it is unstable and

requires significant memory resources (four CPU cores, CPU virtualization

extensions, 8 GB of DRAM for VM, 70 GB space of disk). More, VIRL is

distributed using subscription model. One more disadvantage is a difficulty of

linking SDN controller to the devices. It can be done in two ways. First method

is putting SDN controller VM inside VIRL. It means deeper virtualization level

and can cause performance issues. Second method is making connections

from devices to the outside of VIRL to the separate VM which means that

additional effort should be put into making topologies as well as resource

overhead of running two virtual machines. This method brings unnecessary

complexity

Experience of working with virtualized device images was quite good and

allowed almost all possible scenarios. Setbacks of this method are still

relatively high memory consumption and slow start. Every device requires

additional configuration in order to work with OpenFlow. All difficulties of

connecting SDN controller still take place while using this approach.

17

Mininet is an open-source flexible software which was created with support of

OpenFlow in mind. It is de facto standard for teaching and making

experiments with OpenFlow and SDN. Mininet supports different types of

underlying controller technologies. For the purpose of this lab open vSwitch

was chosen as open source, popular, reliable and efficient solution.

After consideration, Mininet was chosen as a network simulation software. It

has few advantages such as fast startup time and low resource requirements.

Device, topologies and links behaviour can be easily changed by scripting.

More, mininet interfaces can be easily listened by network sniffer.

Setback of Mininet are defined by the fact that it is switch-oriented software

thus Layer 3 features such as MPLS or routing protocols should be

implemented on the controller. Since the labs will be OpenFlow focused

features of the SDN controllers such as BGP-speaker, VPN tunneling or

MPLS configuration are out of the main focus of the lab and their lack is not

significant.

SDN controller for the lab should satisfy few requirements:

● It should be free, ideally open-source

● It should be ready-to-use without extensive knowledge of

programming

● It should have enough documentation and studying materials

available

● It should be stable

OpenDayLight Beryllium was chosen as the SDN controller for the lab as one

of the most popular options which means more materials and tutorials are

available. It satisfies all the requirements but had some problems with stability

as it was discovered later.

As for other controllers, ONOS controller was not stable enough during testing

and crashed after launch. Floodlight controller and Beacom controller had

scarce documentation and did not provide enough studying materials.

NOX/POX, Ryu and Cherry controllers required knowledge of programming to

operate them which conflicts with requirements of the lab.

18

Chromium browser and Postman add-on were chosen as web browser and

http request tool. Postman has a feature that allows sets of requests to be

stored and reused. It can be used for making sets of requests to SDN

controller which students can use and customise. It is important since

requests are made through REST API and have long URLs and hard to

remember request bodies.

Special build of Wireshark with support for OpenFlow 1.3 protocol was used

as a packet analyser. It is open source popular solution.

It is a common practice to make pre-built virtual machine for the purposes of

making SDN learning materials. However, by making customised solution few

benefits can be achieved:

● Smaller size by removing unused components and using special file system

● Tested versions of software give predictable outcomes which can be

compared by students with their own results

● Predefined state of the SDN controller ensures predictable results

4.3 Similar projects

“OpenFlow Tutorial” by Brandon Heller and Yiannis Yiakoumis. Tutorial shows

usage of Mininet and use of various controllers from programmer’s

perspective. For the reason that tutorial being developed is targeted on ICT

students it would be preferable to avoid programming if possible.

Flowsim is a web-based learning environment. Project description promises to

help to study OpenFlow without the need of configuration. However, there are

concerns that simulations is accurate enough. Also, it is not possible to get

inside the real distribution and change its contents. It should be possible with

the real SDN controller.

4.4 Implementation

Virtual environment gives some freedom of experimentation and unburdens us

from managing state. Developing an environment is just two steps: configure

virtual machine like the real machine and export it.

19

As a base for the virtual machine Ubuntu 14.04 Server was used as a

distribution that is guaranteed to work with both OpenDayLight and Mininet.

Server distribution was chosen to make image as small as possible. Parts of

XFCE were used as desktop environment because of their small size and low

hardware requirements.

Opendaylight controller was downloaded using pre-built distribution from the

official website. Installing it was as simple as unzipping archive. ODL proved

to be unstable so multiple versions were tested to find the most stable release.

Some ODL versions work only with specific versions of Java Runtime

Environment (JRE). More, by default Ubuntu ships with the Open JRE. ODL

developers recommend using Oracle JDK for better performance. It was

concluded that it makes sense to install Oracle JDK.

Then, some OpenDayLight packages were installed to allow student to work

with DLUX web interface and let ODL manage the network out-of-the-box.

Including these packages have several advantages. First, set-up is easier and

faster. Second, lab will continue to work even if packages and distribution are

no longer supported. Third, user of the lab will not make the mistake during

installation. Fourth, the results should be closer to the ones in the instructions.

Mininet, open vSwitch and Wireshark installed by building from sources to get

the most recent version and to have OpenFlow support in Wireshark. This

bundle is provided by the Mininet developers.

Custom topology for Mininet were created. Mininet uses Python as scripting

language for writing topologies. Topologies are developed in the imperative

way which is easy but not simple. It could benefit from making topologies

declarative.

Any difficulty unrelated unrelated to the subject of the lesson should be

removed if possible. Launch scripts were made in Bash to help students start

faster without the need to remember launch commands. With it, even students

who does not have extensive experience of using command line can use the

lab.

20

Desktop icons were made for the browser, Postman program and

documentation. No icon were made for Wireshark because it has to be

launched with root privileges.

5 STUDYING MATERIALS

5.1 Overview

Studying materials play very important role in educational process. Quality of

instructions is as important as quality of instruments used and in tandem they

can provide enjoyable and useful learning experience.

One more component that can make studying better is challenges. It is not

unique to networking but it can be easily applied there and it was proven by

many projects in KyUAS.

It was concluded that the materials will include instructions and challenges.

Balance between making the lab too hard and too easy should be found as

well as balance between between making it too long and too short.

5.2 Implementation

As a result, of observation of other students it is remarkable that for student it

is hard to read all theory at once. Therefore, the theory parts are mixed with

the practical parts. Required concepts are introduced only at the point where

they are needed.

Simple topology of three switches and two hosts is used for the guide. First,

user is going to verify that controller is operating properly and layer 2 functions

are working. Then, one link is brought down and two hosts cannot reach each

other. It happens because no feature in controller tracks link state and change

flows accordingly. Student has to redirect traffic manually. First, instructions

are given how to add flow on one device and then student has to change all

other flows to make ping between hosts work. After the link is brought up

again behaviour of switches and traffic flow are observed and explained.

21

Guide starts with brief explanation of what SDN and SDN controller is and

what student will do following this tutorial. Also, explanations about lab design

are given.

Step one starts with launching the controller. Explanations are given on how to

shut down controller properly. It is important because unexpected shutdown

can make controller dysfunctional.

Step two explains managing packages in OpenDayLight. Students are told

how to install and list features (packages). This step is not required for the lab

but is important if the user will decide to experiment with controller on his own.

Step three explains basic Mininet usage and gives some troubleshooting

information.

Step 4 shows OpenDayLight web interface. Student make hosts ping each

other. This gives controller enough information to display switches in the

interface. This is the last preparation step, new steps start to give explanations

on the technologies themselves.

During Step 5 explains OpenFlow flows, shows how to modify them and how

to check flows in the controller model and on the device. Student gets flows of

one the switches first via controller and then on the virtual device. During this

step, students learns basics of communicating with controller using HTTP

REST API.

In Step 6 use of Wireshark for capturing OpenFlow packets. Student can see

how switches are sending ARP messages.

Step 7 is the first step in which student has to modify flows. One link is being

shut down and student is challenged to figure out why controllers cannot ping

each other despite having functional link between them. After that new flow

should be pushed to the device using controller. Sniffing will show that traffic

is flowing but only one way.

In the step 8, student is given the list of the flows which should be installed to

fix the network. Process is almost the same as the previous push but student

has to do it himself.

22

After applying the fix and bringing broken link back up new problem is

discovered: duplicate packets are received. In step 9, student is given

explanation on how to fix this but no detailed instructions are given.

Some steps in the tutorial were invented as the result of the struggles while

making the lab. This can possibly make experience of going through the lab

more challenging and interesting. More than a half of the work should be done

by the student himself. This kind of lab works best when aid by a teacher

because of its challenging nature.

5.3 Feedback

The work on the lesson and lab environment was done with few iterations.

Iteration cycle can be described as following: a student tries to follow the

instructions. In case if the student experience difficulties a note is made about

it.

Instructions and lab environment were tested on two students. Both students

are exchange students who did Bachelor degree in IT at KYAMK.

Most of the difficulties were related to the unclear instructions or missing

explanations.

Both students said that they found exercise interesting but slightly longer than

they expected it to be.

After collecting feedback, the following changes were made:

● Elaborate explanations about Karaf systems were removed

● Explanations about host discovery were added

● Section about global configuration using XML was removed

● More pictures were added to make instructions clearer.

● Instruction to not close terminals was added

● More detailed Wireshark instructions were given

● More detailed instructions on pushing additional flows were added

● During the pinging between virtual host student can see the message “0%

dropped”. As this may be confusing, explanations were given that this is a

desired result.

23

● During the tests it became clear that students may not have deep

understanding of HTTP protocol thus parts of the tutorial which involved

making HTTP request we made simpler and more approachable

It should be noted that students’ observation showed how important it is to test

materials and environment. Without any testing outcome would be harder to

use.

6 CONCLUSIONS

6.1 Results

Result can be considered as a success and the virtual environment can be

either used as-is for self-studying or it can be extended to be used in part of a

bigger course about SDN. This lab is unable to prepare one for the job in the

SDN field but it can serve as an introduction and help to understand what is

SDN and how OpenFlow works. Teaching SDN is inevitable and it is better to

be prepared for new technologies.

Using Mininet as a simulation tool proved that it is a robust, lightweight and

malleable tool for network simulations. It can be used for many types of

research and teaching. There is a reason to think that most teaching in the

networking field will be done using simulated networks. There is a huge room

for improvement. Simulated network can augment real ones for creation of

interesting scenarios.

Because most of the components of the lab are small the product is relatively

small and can be easily moved over the network. The lab contains only open-

source software and thus can be freely distributed and improved. These traits

make the product applicable in the wide range of scenarios.

Extending the lab does not involve any difficulties. Any topology can be added

using simple script and if some configuration should be applied to controller,

its folder can be just copied and altered as needed without the need to

compile whole virtual machine.

24

6.2 Challenges experienced

During the development of the lab many issues arouse. Most of them were

related to the immaturity of OpenDayLight and lack of up-to-date

documentation on it.

OpenDayLight project founded just in 2013 and the platform experienced at

least one major change. The biggest change is moving to Karaf platform.

Some materials about ODL produced before this move became irrelevant.

Even after the move platform is being actively developed.

Immaturity of ODL caused issues with using it. Some actions could break the

system completely. Not only ODL is unstable itself, but most of the

functionality is provided by the components which are developed separately.

This made reinstallation of the platform harder because some versions of

components could be unstable and it lead to unpredictable results. For this

reason, not all features of DLUX web interface are used and HTTP request

are made using Postman instead which hurts user interaction and makes

studying more confusing. There is a positive side-effect, though: http requests

are less likely to change than the user interface and the lab will stay actual

longer. Maturation of the platform should resolve most of these issues.

6.3 Ideas for future use

Right now the lab can serve only as an introduction or a first practical lesson

on SDN. Despite this, it has potential to be a foundation for a course on SDN.

More topologies and challenges can be added. The lab can work with real

devices or with other types of simulations. For example, VIRL can be

launched in a separate virtual machine and be connected to the controller

using bridge.

Advanced topics such as clustering can be taught. There are a lot of

southbound protocols controller can work with, for example, BGP can be

used.

It is possible to use controller as part of the Service Provider Networks course.

There is a lot of configuration to be done and big network is used. Students

25

can see the difference between manual configuration and using software

based solutions.

Altered lab can be used as part of the Network Security or Hacking courses.

Cases such as DDoS attack mitigation can be simulated. It can be done as a

challenge: some part of students are doing an attack on the network while

another tries to mitigate it.

6.4 SDN technologies maturity

At this moment, SDN technologies are still very young and their application is

still limited to the specific use cases. While stability of different SDN

controllers may differ there is still lack of materials on the topic available,

especially on edge-cases.

Implementing SDN makes most sense in multi-tenant data centers, provider

networks and in dynamic environments right now. In the future, we can expect

increased adoption across different types of networks because of the benefits

SDN gives such as flexibility, transparent overview of the network and

research capabilities.

SDN adoption is also likely to increase demand in programmers with

knowledge of SDN who can build a connection with high-level services and

network.

In a dynamic environment, we can expect increased demand for networks

architects who can plan and invent new types of networks on the fly to be

implemented right away.

Combining SDN with machine learning can lead to new self-learning networks

which can be improved by tries and feedback.

26

 LIST OF REFERENCES

Burrus, D. (n.d.). The Internet of Things Is Far Bigger Than Anyone Realizes. [ONLINE]

WIRED. Available at: http://www.wired.com/insights/2014/11/the-internet-of-things-

bigger/ [Accessed: 1 May 2016].

Chen, C. DDoS Attack Detection & Mitigation in SDN, 2015

http://www.slideshare.net/chaochen5245961/cc3736-slides

D. Nadeau, T. and Gray, K. (2013). SDN - Software Defined Networks. Sebastopol, CA

Distributed ONOS - ONOS - Wiki. 2016. Distributed ONOS - ONOS - Wiki. [ONLINE]

Available at: https://wiki.onosproject.org/display/ONOS/Distributed+ONOS. [Accessed:

04 September 2016].

Flowgrammable. 2016. Instructions & Actions. [ONLINE] Available at:

http://flowgrammable.org/sdn/openflow/actions. [Accessed: 13 April 2016].

Grady, J., Price, C., Christiansen, C. and Richmond, C. (2013). Worldwide DDoS

Prevention Products and Services 2013-2017 Forecst. 1st ed. Framingham, MA USA:

International Data Corporation, p.3.

Kreutz, Diego et al. Software-Defined Networking: A Comprehensive Survey.

Proceedings of the IEEE 103.1 (2015): 14-76. Web.

Krishnan, R., Durrani, M. and Phaal, P. (n.d.). Real-time SDN Analytics for DDoS

mitigation. Brocade Communications, p.2. Available at:

http://opennetsummit.org/archives/mar14/site/pdf/2014/sdn-idol/Brocade-SDN-Idol-

Proposal.pdf [Accessed: 1 May 2016].

Ma, Chloe. SDN Secrets Of Amazon And Google [ONLINE] InfoWorld (2014): Web.

Available at: http://www.infoworld.com/article/2608106/sdn/sdn-secrets-of-amazon-

and-google.html [Accessed: 2 Nov. 2016].

http://www.slideshare.net/chaochen5245961/cc3736-slides
https://wiki.onosproject.org/display/ONOS/Distributed+ONOS
http://flowgrammable.org/sdn/openflow/actions/
http://www.infoworld.com/article/2608106/sdn/sdn-secrets-of-amazon-and-google.html
http://www.infoworld.com/article/2608106/sdn/sdn-secrets-of-amazon-and-google.html

27

Moshref, Masoud; Bhargava, Apoorv; Gupta, Adhip; Yu, Minlan; Govindan, Ramesh,

Flow-Level State Transition As A New Switch Primitive For SDN, University of

Southern California, 2014. [ONLINE] Available at:

http://dl.acm.org/citation.cfm?id=2631439 [Accessed: 25 September 2016]

OpenDayLight FAQ. 2016. OpenDayLight FAQ. [ONLINE] Available at:

https://www.opendaylight.org/faq. [Accessed: 22 September 2016].

OpenDaylight Project, OpenDaylight Controller:MD-SAL:Architecture:Clustering 2016

[ONLINE] Available at: https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-

SAL:Architecture:Clustering. [Accessed: 04 September 2016].

Ram (Ramki) Krishnan, Muhammad Durrani, Brocade Communications, Real-time

SDN Analytics for DDoS mitigation,

http://opennetsummit.org/archives/mar14/site/pdf/2014/sdn-idol/Brocade-SDN-Idol-

Proposal.pdf

Salisbury, Brent. Openflow: Proactive Vs Reactive. NetworkStatic., 2013. [ONLINE]

http://networkstatic.net/openflow-proactive-vs-reactive-flows [Accessed: 25 September

2016]

Vaughn, M. (2012) Virtualization makes big data analytics possible for SMBs.

[ONLINE] TechTarget. Available at:

http://searchservervirtualization.techtarget.com/feature/Virtualization-makes-big-data-

analytics-possible-for-SMBs [Accessed: 2 November 2016].

Ward, D. 2013. Foreword by David Ward. In: D. Nadeau, T. and Gray, K. (2013). SDN -

Software Defined Networks. Sebastopol, CA

https://www.opendaylight.org/faq
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering
http://opennetsummit.org/archives/mar14/site/pdf/2014/sdn-idol/Brocade-SDN-Idol-Proposal.pdf
http://opennetsummit.org/archives/mar14/site/pdf/2014/sdn-idol/Brocade-SDN-Idol-Proposal.pdf
http://networkstatic.net/openflow-proactive-vs-reactive-flows/
http://searchservervirtualization.techtarget.com/feature/Virtualization-makes-big-data-analytics-possible-for-SMBs
http://searchservervirtualization.techtarget.com/feature/Virtualization-makes-big-data-analytics-possible-for-SMBs

Appendix 1/1

LAB GUIDE

OpenDayLight SDN Controller Lab
Guide 1

Objectives

After going through this tutorial you will understand basic concepts of SDN, get skills of

configuration and use of OpenDayLight and basic knowledge of OpenFlow. Also you will

understand how to use pre-defined Mininet topologies, will use Postman and Wireshark as

instruments.

Topology

Studying environment

This Lab guide is intended to be used with prepared virtual machine, which includes pre-

installed ODL controller, network simulator Mininet, packet analyser Wireshark, browser

Chromium with Postman add-on.

Ubuntu credentials:

user: lab, password: lab

ODL credentials::

user: admin, password: admin

Theory background

You’re going to work with Software Defined Network controller and few SDN-enabled

virtual switches. Each switch has multiple tables similar to routing tables. They’re called

flow tables and they’re used by the controller to determine which action should be taken

(send through the port, drop, pass to another table or send packet to the controller). Flow

tables can match packets using different fields.

We’re going to manipulate flow tables by making request to the controller.

Steps

Step 1 Launching the controller

First launch ODL controller.

To do it open terminal and and issue following command

./distribution-karaf/bin/karaf

After some time you should see the following prompt message:

This is a OpenDayLight console. It is used to manage controller.

You may want to make a terminal window wider.

On any stage pressing Tab will make controller autocomplete typed command.

To stop the controller do one of the following:

type

system:shutdown

or type

logout

or press Control-D.

You should keep OpenDayLIght and Mininet terminal windows open until the end of the

tutorial, otherwise you will stop one of them.

Step 2 Features installing

To make controller do certain tasks certain features have to be installed. To list all

available features type

feature:list

To filter only installed features

feature:list -i

Virtual machine is distributed with pre-installed features but to install them following

command can be used:

IT IS NOT RECOMMENDED TO INSTALL FEATURES IN THE LAB ENVIRONMENT

It may lead to unpredictable results

This command is just for the reference.

feature:install odl-l2switch-switch odl-restconf-all odl-mdsal-

apidocs odl-dlux-all

Following features are:

odl-l2switch-switch will add switch capabilities to our controller and will allow our simulated

devices be ruled by the controller.

odl-restconf-all will add REST HTTP interface and will allow to change models of the

controller using HTTP requests

odl-mdsal-apidocs will install API explorer which will allow us to browser through the API of

the controller

odl-dlux-all will install DLUX web interface

After installing features verify that they’re present in the controller

feature:list -i

Part of the output.

Step 3 Mininet network

While it may take some time to install and launch new features we can launch our network

simulation.

Open another terminal tab or window and type

./start_topo.sh

Followed by password ‘lab’.

If output will include ‘cannot connect to remote controller’ please type ‘exit’ and try again

later. Usually it means that controller didn’t boot properly.

This script launches Mininet network with custom topology.

—controller remote by default assumes ip=127.0.0.1 and ports 6633 and 6653

(OpenFlow).

Step 4 DLUX web interface

To access DLUX web interface open web browser and open url:

127.0.0.1:8181/index.html

Log in to the DLUX interface with username and password admin.

In case of failed login try to wait more.

DLUX web interface contains 4 sections: Topology, Nodes, Yang UI and Yang Visualiser.

Topology displays current operational topology discovered from messages sent to

controller.

Nodes represent information about each single device (flow information may not work

properly).

Yang UI allows to view and change models of the controller (we’re gonna use HTTP

requests instead).

Yang Visualiser allow to view models as graphs.

Due to instability of DLUX only first two sections will be used in this tutorial. You’re free to

explore them yourself.

Right now we can use only switches and we don’t see any hosts. That’s because no ARP

requests were sent by the hosts and sent to the controller.

Go to the Mininet prompt and type

pingall

The following result should be visible:

0% dropped means that all packets reached their destination.

This will make all hosts to ping each other. We could also do

h1 ping h2

h1 in the front tells Mininet to do this command from the perspective of the host h1.

We could do

h1 ifconfig

To view all interfaces of h1.

Ping should be successful.

After pinging press Reload button in DLUX topology interface. Hosts should be seen now

(hosts’ IPs can be seen by hovering over them).

Step 5 OpenFlow

Flow defines what action should device take upon receiving a packet. Flows are separated

into the tables. Each flow has a priority, match and action fields. In case if packet had no

match in the current table it is processed using the next one. If packet had no match in any

table default action is taken. In ODL default action is configured in XML configuration is out

of scope of this tutorial. Specification states that only the flow with the top priority will be

used in case of overlapping flows.

A purpose of the odl-l2swtich-switch package is to provide layer 2 switching functionality to

the devices. By default it installs flow for the shortest path. We can check installed flows in

2 ways: HTTP request to the controller and issuing command on the device.

Note: You can reach REST API using Yang UI in case if it works for you.

Example of using Yang UI

Open Postman app.

From the left panel choose ODL collection and select get operational flows request.

Press send.

Example of using Postman to send HTTP requests.

After making this request we should see flow table 0 of the switch 1. Look at the URL and

try to understand how it’s formed. openflow:1 stands for the first device while number in

the end is indicating the number of table on the device.

Since we requested the operational topology, we see some flows even through we didn’t

install any yet. Flows whose id start with #UF$TABLE are installed automatically. In this

case they’re installed by l2switch feature.

We’re interested at match and instructions fields of flows.

One of them have matches packets with ethernet-type 35020. It matches all LLDP packets

(more information about ethernet types can be found here

http://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml). Look at the

instructions section of this list. It has one action which states that output-node-connector

should be CONTROLLER. What this flow does is sending all LLDP packets to controller.

This way controller know states of the links.

Do not be confused with two order fields in instructions section. One of them means that

apply-actions section should be used first (OpenFlow has not only output actions but has

other types of actions).The second one is significant to action list inside apply-actions

block.

http://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml

Let’s look at two other flows on the switch. One of them matches packets from port 1 (port

going to the host) and sends it to the port 2 (to switch 2) and to the controller. Packets

from this port are sent to the controller because it’s a host port. Likely it’s ARP handler

feature which installed this rule. This way controller discovers hosts (like we saw on the

step 2).

Let’s look at the flows on the device itself. We’re using Mininet with open vSwtich -

software switches.

Open new terminal tab and type

./dump_flows.sh

This script uses a command sudo ovs-ofctl -O OpenFlow13 dump-flows s1

In the output we can see all flows we’ve seen in the RESTCONF output plus one more. It

says that packets which didn’t match any other flow should be dropped. It is a default

behaviour and can be changed statically through XML files.

Step 6 Wireshark sniffing

Open new terminal window (or use the one without Mininet or ODL running) and type

sudo wireshark

This will launch Wireshark packet analyser with root privileges.

In the interface list choose lo and press start. Filter packets by typing of into the field on

the top. Now you see all messages between devices and controller. Mostly it’s metrics.

Change the filter to arp and of. Now go to the terminal window with Mininet running and

do two following commands:

h1 arp -d 10.0.0.2

h1 ping h2 -c 3

The first one deletes entry for host 2 from ARP table, the second one is a regular ping.

After that come back to the Wireshark window. Now we should see some packets.

We see OpenFlow packets which contain ARP messages inside them.

Step 7 Static flow

Go to the Mininet window and type

link s1 s2 down

Try to ping between h1 and h2. Does the ping work?

Go to the DLUX web interface and check the topology. It should look like this now.

Use Wireshark to capture interface s1-eth3 and check if ARP or ICMP packets are sent

through the link. Try to think of a reason why. Press round grey button on the left, stop the

capture, uncheck all interfaces and check s1-eth3. Start the new capture (you don’t have

to save the old capture).

The solution to the problem lies in the flow. If you will check the operational flow table now,

you will see that it did not change. Our controller miss features that track if the link is down

and change flows accordingly. Dynamic flows are out of scope of this tutorial.

To put a static flow to the switch we’re going to push our model to the controller. After that

controller automatically creates and sends update signal to the devices.

To push a flow switch to the Postman window and get config flows for the device

openflow:1. Request is written for this switch by default so you can just launch it.

Examine the output below the request. It should say that data model is missing. This is

because we did not create any model for it.

To push flow into the device choose Push flow command and choose the Body

section below the URL.

Request body looks similar to response body.

Request body has to be consistent with URL - if you change the device, flow id or the table

in the URL you should change them in the table and vice versa.

In this case we’re pushing a flow on the device openflow:1 to the table 0 and flow id is 4.

Send request. Result should be with empty body and status code 200.

Note that for changing flows we’re sending HTTP PUT request to the controller. It means

that we’re changing the flow tables.

Troubleshooting note: check authentication of the request. It should be Basic, login and

password both admin.

 After sending the request check port s1-eth3 in Wireshark (leftmost grey circle button with

list inside). Stop the capture. Uncheck previous interface and check s1-eth3. Start the

capture. You don’t have to save the captured data.

If pings from h1 to h2 are still going you should see ARP packets originating from h1.

Check Mininet. Are pings successful? Think of a reason why. Use Mininet and check the

flows to answer the question. The answer is on the next page.

If you will check openflow:3 switch, you will see, that there’s no models associated with it.

Step 8 Adding more flows

Try to fix the ping using the same technique as before. At the end, you should have the

following flows:

Input Output

openflow:1:1 3

openflow:3:1 2

openflow:3:2 1

openflow:1:3 1

The first number of the input port name is the number of the device, the second number is

the number of the port itself. Use the given example and change:

• device port number in the URL

• flow number in the URL

• match port in the body

• output port in the body

Flows on openflow:2 are installed by l2switch and ping should work even without creating

a model for this switch. Do not add flows on the s2 yet. Don’t forget to change the

flow id when you’re adding a new one (they are device local).

After applying all flows from end to end, pinging should work.

Step 9 Flow priority

Bring the link up and observe how network works.

In Mininet:

link s1 s2 up

Try to ping.

h1 ping h2

Following results should be observable.

To see all interfaces in Wireshark now choose Capture - Refresh Interfaces.

Host h1 receive duplicated responses. Try to answer why. Use Wireshark and check

flows.

Operational flows on s2 send packets to both interfaces. They have priority value set to 2

by default. The template used in the Postman template has the priority value set to 100.

To fix the problem complete the flow on the device s2. According to OpenFlow switch

specification, in case of using wildcard and overlapping flows, switch should only use the

flow with the highest priority.

Note: during the experiments s1 was sending the packets through interface eth-2 but the

packet count didn’t change. It is probably the implementation problem.

After redirecting traffic from s3 to h2 and vice versa duplicated ping packets should be

gone.

Summary
After finishing this tutorial, you should have understanding how controller is manipulating

network using OpenFlow. Some aspects of the OpenFlow are left out, such as multiple

table handling. This tutorial gives just a glimpse on capabilities of OpenDayLight controller.

Behaviour of l2switch feature can be changed, e. g. by default switches are dropping

unmatched packets but they can also flood them to all the ports or ingress interface. ARP

packets can be sent to a controller or redirected. Ability to choose between Reactive and

Proactive approach is one of the biggest advantages of advantages of SDN.

OpenDayLight can use many protocols instead of OpenFlow, such as BGP, NETCONF

and PCEP. They give full control of the network.

