

Luis Alvarez Iglesias

HARMONICS OVER POWER LINES

MEASUREMENT

Algorithm in C and testing environment

Information Technology, Embedded systems

2015

ACKNOWLEDGEMENTS

I would like to take this opportunity to show gratitude to my thesis supervisor Jukka

Matila, Senior Lecturer in Vaasan Ammattikorkeakoulu, University of Applied Sci-

ences, for his continuous encouragement to learn and support in any stage of this

and any other project.

Also, I would like to present my most sincere gratitude to all VAMK’s teachers for

the valuable guidance in our learnings. Thank you for these years, certainly the most

valuable and enrichment experience so far.

3

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Luis Alvarez Iglesias

Title Measure Harmonics over power lines, algorithm in C, and

testing environment

Year 2015

Language English

Pages 105

Name of Supervisor Jukka Matila

This paper is intended to give an overview of measuring harmonic phenomena over

the neutral line in 3-phase 4-wire substation network when an earth fault is origi-

nated. It requires electrical and microcontroller interfacing background, but little

knowledge of harmonics.

The company VASPEC Oy sponsors the research and belongs to a project owned

by the same company to develop a reliable earth fault detection and location device.

Is based on Seppo Pettissalo’s original idea, and the result of the collaboration of

the named person and company together with VAMK and Technobotnia laborato-

ries during the last quarter of the year 2014.

The paper offers a solution to the need of a software algorithm in C language to

measure transients and rms currents over the 3 phases, and fundamental, 3rd, 5th

and 7th harmonic currents over the neutral line in 3-Phase 4-wire configuration.

Store and transmit the information altogether with the event’s timestamp given by

a real-time clock. It includes hardware, software and a testing environment solution.

An approach to the use of a Renesas RX63N microcontroller, interfacing an ADC

and an ADE7880 energy meter will be discussed in this document and alternative

methods are discussed. It will gather the required information providing the values

in less than 300 microseconds, process, transmit and serve the lectures to be dis-

played in a remote terminal in 0.6ms, repeating the process during a time period of

4

100ms is proved. The testing environment is provided by means of a desktop com-

puter’s soundcard and the use of MATLAB® to generate the fundamental and har-

monic waves.

Keywords: fundamental, harmonics, energy meter, power lines, neutral line,

driver.

5

CONTENTS

1 INTRODUCTION .. 11

2 LITERATURE REVIEW ... 13

2.1 Three-Phase four-Wire system ... 14

2.2 Interfacing power lines ... 15

2.2.1 Indirect current measurement methods 15

2.2.2 Direct voltage measurement method ... 18

2.2.3 Evaluating voltage level signals .. 19

2.2.4 Analog Front-End (AFE) .. 22

2.3 Microcontroller Unit (MCU) .. 23

2.4 Evaluating harmonics.. 24

2.4.1 Fourier series background ... 25

2.5 Evaluating transients ... 29

3 SELECTED RESOURCES .. 31

3.1 Hardware and Software resources .. 31

3.2 Selecting the AFE ... 33

3.2.1 Features of interest .. 34

3.3 Selecting an MCU ... 36

3.4 Software environment ... 37

3.5 The code .. 37

3.6 Communications protocols ... 39

3.7 Testing environment ... 39

4 METHODOLOGY AND IMPLEMENTATION ... 40

4.1 Explaining portability, Renesas MCU or ARM 43

4.2 Prototyping the AFE, ADE7880 input channels 43

4.3 Interfacing the Transients. Independent ADC .. 50

4.4 The software environment .. 51

4.4.1 Folders and files naming standard and structure 52

4.4.2 The data storage. A container for the information 53

4.4.3 The ADE7880 Driver .. 54

4.4.4 ADE7880 low level access, HAL ... 54

6

4.4.5 Public methods, high level access ... 55

4.4.6 SPI hardware access and Middleware layer 58

4.4.7 RTU communications. UART control .. 61

4.4.8 Real time clock .. 63

4.5 MATLAB® and SIMULINK® testing environment 63

4.6 PCB design.. 68

5 ANALYSIS AND RESULTS .. 73

5.1 ADE7880 driver and UART driver performance 73

5.2 Testing environment, ADE7880 driver and UART driver accuracy 82

5.3 A word about MCU and ADE7880 AFE vs. MCU ADCs performance 86

6 CONCLUSION .. 89

REFERENCES .. 91

APPENDICES .. 93

7

LIST OF FIGURES AND TABLES

Figure 1 Three phase normalized waveforms and voltage vectors 14

Figure 2 Three-phase four wire configuration .. 15

Figure 3 CT ... 16

Figure 4 Rogowski Coil schematics .. 17

Figure 5 Aliasing: Two different waves having the same sampled values 21

Figure 6 Analog integrator using OpAmp .. 22

Figure 7 Even vs. Odd function. Matlab plot .. 27

Figure 8 Plot of a transient .. 30

Figure 9 Graphical representation of the system... 42

Figure 10 Functional block diagram, from ADE7880 datasheet 44

Figure 11 Harmonic engine block diagram, fromADE7880 datasheet 45

Figure 12 Input current path low pass filter simulation schematic 46

Figure 13 Current low pass filter simulation Bode diagram R=5.1k C=2.2nF 46

Figure 14 Optimal current input low pass filter for a highest 7th harmonic index 47

Figure 15 Optimal current low pass filter Bode diagram with cuttoff at 3.5kHz . 47

Figure 16 Current input antialiasing filters schematic .. 48

Figure 17 Voltage input antialiasing filters schematic .. 48

Figure 18. ADE7880 Hardware registers access example 55

Figure 19 ADE7880 driver user sequence diagram .. 56

Figure 20 ADE7880 SPI Read operation of 32 bit register (Datasheet p.79) 58

Figure 21 SIMULINK® implementation .. 66

Figure 22 MATLAB® GUI to control frequencies a, b,c and d amplitude 67

Figure 23 Terminal console showing the data of a sequence of measures 68

Figure 24 AFE connections schematic .. 69

Figure 25 Fast acting optoIsolators, sample from Isolation circuits schematics ... 70

Figure 26 PCB Top layer .. 71

Figure 27 Single SPI reading scope by DSOX2012A .. 74

Figure 28 Grouped SPI readings in one cycle, scope by DSOX2012A 76

Figure 29 LCD showing the execution times of cases ‘t1’, ‘t2’ and ‘t3’ 78

Figure 30 LCD, execution times when ‘t2’ incurs in delay 81

file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237451
file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237452
file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237457
file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237467

8

Figure 31 Currents when input of a, b, c and d frequencies amplitude is 0.5 83

Figure 32 Scope of the test signal, four frequencies with an amplitude of 0.5 84

Figure 33 Not filtered testing signal.. 85

Figure 34 PCB Bottom layer ... 102

Figure 35 PCB Top layer .. 102

Figure 36 Silkscreen top layer... 102

Figure 37 Silkscreen bottom layer .. 102

file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237482
file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237483
file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237484
file:///D:/SkyDrive/VAMK/Thesis/Thesis%20Luis.docx%23_Toc431237485

9

LIST OF APPENDICES

Appendix 1: Code structure and naming convention 97

Appendix 2: Data container 98

Appendix 3: Recommended approach for Harmonic Calculations 96

Appendix 4: SPI driver access from ADE7880 driver 99

Appendix 5: PCB Schematics 100

ADE7880 and connector socket 100

OptoIsolators 101

Appendix 6: PCB layout and silkscreens 102

Appendix 7: Soundcard Datasheet 103

10

LIST OF ABBREVIATIONS, ACRONYMS, SYMBOLS

ADC Analog to Digital Converter

AFE Analog Front-End

CAN Controller Area Network

CLCK Clock, refers to signal or pin

CMOS Complementary metal–oxide–semiconductor

CMT Compare Match Timer

CS Channel select

CT Current Transformer

dB decibels

DFT Discrete Fourier Transform

DMA Direct Memory Access

DMIPS Dhrystone Millions of Instructions per Second

DSP Digital Signal Processor

ESD Electrostatic discharge

FFT Fast Fourier Transform

GND Ground

HAL Hardware Abstraction Layer

IAN Current Phase A (where A can be A, B, C or Neutral) Negative

IAP Current Phase A Positive

11

IDE Integrated Development Environment

MCU or µC Microcontroller unit

MISO Master In Slave Out

MOSI Master Out Slave In

MSB Most Significant Bit

MSPS Mega Samples per Second

NMOS Negative-channel Metal-Oxide Semiconductor

PCB Printed Circuit Board

RMS Root Mean Square

RTC Real Time Clock

RTU Remote Terminal Unit

SMD Surface Mounted Device

SNR Signal to Noise Ratio

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver-Transmitter

11

1 INTRODUCTION

Measuring ground fault currents is part of the protection devices of the power lines

in a substation network. The current magnitudes of these faults depend on the im-

pedance of the fault and the grounding solidity and resistance. There are effective

protection devices for low impedance faults, which produce a high fault current and

require the isolation of the line to avoid any further damage. On the other hand,

high impedance faults on multigrounded systems, still represent a challenge for pro-

tective devices. Its lower current may allow the line to continue to operate and the

unbalanced currents may be tolerated by the asymmetry of the power lines. In any

of the cases, a quick evaluation of the possible fault is necessary.

Measuring faulty current harmonics can extend the available information and ex-

hibit detailed information about the power lines state. Harmonics are certainly a

common measure to determine the quality of the power in the grid. They offer val-

uable information to evaluate a fault or the origin of an asymmetry. For this reason,

a reliable harmonic measurement is needed in any protective device. Moreover, the

faster the better. In case of a fault, should the line be isolated, there is a small time

gap between the fault detection and the reaction, and it is vital to retrieve as much

information as possible to determine the origin. And further, the more harmonic

indexes under scope, the better.

A property of a 3-Phase 4-Wire network is that every disturbance in any single

phase will appear reflected in the neutral line. This may be exploded to simplify the

complexity of any sensing device by sensing the current and harmonics over the

neutral line. Additionally, any ground fault, low or high impedance, generates tran-

sients. These transients, are spikes produced by the capacitance charge-discharge

produced whenever a line contacts a grounded object, favouring the discharge of

the line capacitance, and charging whenever the contact is removed. They can have

a very high frequency and they have to be measured at a high sample rate (Imrs,

2006) and they will be used as the trigger event of the evaluation measurements.

The research establishes an accurate method to retrieve, in the case where transients

appear followed by asymmetric faults, the mentioned information:

12

- fundamental rms current values of the 3 phases

- neutral line transients’ peak instantaneous current value

- Total current, 3rd, 5th and 7th harmonic currents over neutral line.

This information is fetched and made ready to evaluate in a time period lesser than

300µs.

The model presented here includes an energy meter as DSP to interface the power

lines, although other approaches are reviewed. This DSP is controlled by a higher

level MCU using SPI communications protocol. Other MCU functionalities imple-

mented are to control a 16bit ADC that measures transients over the neutral line,

and to transmit the recorded data, altogether with a time stamp given by a real time

clock, to a remote terminal, the information is served to the remote terminal unit in

0.5ms.

13

2 LITERATURE REVIEW

The application of electronics to substitute the old electro-mechanic devices to

measure power over the grid has brought accuracy and simplified grid quality con-

trol and management. It is not a long time ago when the MCUs became an important

component in substation automation at the end of last century, and nowadays it is

difficult to imagine a design without implementing them. Smart meters demand has

grown rapidly and with it the development of energy meters.

Energy meters provide information about power and power quality and all the re-

quired information about the energy of the line under scope. More advanced meters

provide more than one phase sensing and harmonic calculations.

Harmonics measurement over power lines in substation networks help not only to

keep track of healthy lines, but provide useful information in case of failures that

can help to determine their origin and location. As harmonics are spread all over

the network in all directions, they can be read in the nearest substation or by a device

for this purpose in the proximity.

Due to the high cost of a switch gear, whose life is reduced every time it trips, and

the possible economical repercussion to the affected area, the false trips have to be

avoided. Although the timeframe to trigger a counter action has to be granted as

short as microseconds in the case of a low impedance fault, the gathered specific

amount information is a valuable tool to provide the correct reaction. A high im-

pedance fault allows more relaxed time of reaction and in many cases can be toler-

ated by the network, but damages may occur if the normality is not restored.

An important part of this information is given by the harmonics over the power

lines, it is essential not only to measure the quality of the power, harmonics can be

analysed for a wide range of reasons, like to avoid damages to power systems due

to the overheating produced by the rise of the apparent power or to help to determine

the origin of a fault. This latest is the area that drove to the case of study in this

paper. Although a high impedance is initially assumed, and a timeframe of 150ms

14

is given, it is worth to consider lower impedance faults with a reduced reaction time

interval.

2.1 Three-Phase four-Wire system

A system where the three phases have their independent lines and an additional

neutral or returning line is known as three-phase four-wire system. It is a common

method in distributed electric power networks. Is characterized for having three

electrical conductors carrying symmetric alternate current where the phases are

shifted one third of the period, or 120º, and an additional neutral line as a reference

line where the sum of the three voltage vectors, in an ideal case of a balanced sys-

tem, is zero.

Figure 1 Three phase normalized waveforms and voltage vectors

This system have properties that favours its implementation. One of them is that

any imbalanced load in any phase will reflect the unbalanced current over the neu-

tral line. As a result, better voltage regulation is achieved and the system may con-

tinue working even in case of fault condition. In this manner, any fault can be ex-

posed by sensing the neutral line.

15

Figure 2 Three-phase four wire configuration

In the case of a low impedance fault, such as a shortcut, the grid requires to be

protected in the shortest possible time due to the high current drawn and the damage

that may occur. Actual protective devices may react in microseconds to secure the

grid. When a high impedance fault occurs, the drawn current levels are lower and

they may be in acceptable levels avoiding a shutdown of the faulty network. This

behaviour difficult the diagnosis of the problem and the cause of the fault cannot

be easily determined and as long as this exists, other signals may appear as a side

effect that can reduce the efficiency of the transported power.

2.2 Interfacing power lines

From the power line to the RTU different components are involved, but all has to

begin from a connection of the power line to the energy meter front-end. The meth-

ods are differentiated as direct (physically connected to the line), or indirect (no

physical connection), and regarding the technology, as resistive (direct), transistor

(direct) and Magnetic (indirect).

2.2.1 Indirect current measurement methods

Indirect current measurement means that there is no physical connection with the

measured voltage line, the sensor is isolated from the line and it is an accurate

method when the current is too high to be measured with a directly connected in-

strument. There are three main technologies where the measurement device pro-

vides isolation from the line, current transformers (CT), Rogowski Coil and Hall

16

Effect devices. All of them provide a voltage level signal at the output that is pro-

portional to the current flowing through the line under scope

CTs are useful when measuring AC, transients or switching mode DC, since it

senses the changing magnetic field produced by the AC oscillation. The CTs use

the power line as the primary of a transformer, with 1 to a few turns that, its flowing

current (I in Figure 1), induces an alternating magnetic field in the core (B in Figure

1), producing an alternating current in the secondary. As the induced current is the

result of the relationship between the primary’s number of turns (single turn), and

secondary’s turns (N), the output current (A in Figure 1) is calculated

𝐼𝑜𝑢𝑡 =
1

𝑁
∙ 𝐼

Equation (1)

where

𝐼𝑜𝑢𝑡 is the output current at both ends of the secondary in a closed circuit

𝑁 is the number of turns of the secondary

𝐼 is the current flowing through the power line

Placing a low value burden resistor in parallel with the load and closing the sec-

ondary winding circuit will convert the given current to a voltage signal that can

be calculated, knowing the desired output voltage, by ohms law.

𝑉𝑜𝑢𝑡 = 𝐼𝑜𝑢𝑡 ∙ 𝑅𝑏𝑢𝑟𝑑𝑒𝑛

Equation (2)

Figure 3 CT

17

where

𝑉𝑜𝑢𝑡 is the voltage drop over the burden resistor

𝐼𝑜𝑢𝑡 is the current flowing through the secondary winding

𝑅𝑏𝑢𝑟𝑑𝑒𝑛 is the value in ohms of the resistor closing the secondary circuit

A voltage level is easier to read for any instrumentation device or the input of an

ADC. Notice that if this burden resistor is not in place and the secondary winding

terminals are left open circuit while there is a current flowing over the primary, the

secondary will store the energy creating a high voltage and a dangerous situation.

Care is taken by the manufacturers’ design to efficiently couple primary and sec-

ondary circuits and to avoid core saturation by choosing the wrong burden resistor.

In this manner, CTs can provide in theory, a lossless current measurement, and the

signal voltage in a power line is large providing a noise immunity measurement

(Yarborough, 2012). The output has relatively low phase shift, from tenths of de-

grees to a few degrees in lower quality CTs allowing a direct connection with the

measuring device. Although the phase shift does not affect the measurement when

these are magnitudes. Designers have to ensure that the CT dynamic range is large

enough according to the requirements.

Figure 4 Rogowski Coil schematics

18

The Rogowski Coil shares the CT principles, an isolated line whose current flow

induces a proportional current in a secondary coil. The main difference resides in

the core, Rogowski Coil’s core is air, with a lower inductance, faster signal response

and very linear output.

Another useful property is that, theoretically, no matter the distance or location the

Rogowski Coil is placed relative to the conductor line whenever the signal line

passes through the toroid (Mäkinen, 2014) and it does not saturate. However, the

output signal of a Rogowski coil is proportional to the time derivative of the current

therefore requires an Integrator or using the non-integrated signal and process it to

adjust magnitudes and phase shift the signal by 90º. This due to the properties of

the Rogowski coil, where the induced voltage in the coil is proportional to the cur-

rent rate of change, and integration is required to obtain a voltage level proportional

to the current waveform.

𝑣𝑐𝑜𝑖𝑙 = −
µ0𝐴𝑁

𝑙

𝑑𝑖(𝑡)

𝑑𝑡

Equation (3)

where

𝐴 is the turn Area

𝑁 is the number of turns

𝑙 is the length of the winding

µ0 is the air permeability constant

𝑑𝑖(𝑡)

𝑑𝑡
 is the rate of change of the current through the loop

Hall Effect devices, the last listed method, is not analysed in this document as it is

not involved in this research.

2.2.2 Direct voltage measurement method

When directly measuring voltage levels, it is necessary to construct an attenuation

network of resistors in a voltage divider implementation, to accommodate the volt-

age level to the required input and limit the current flow. Although for security

19

reasons it is recommended to split the value of the inline resistor in a series of re-

sistors and calculate the related power dissipation.

2.2.3 Evaluating voltage level signals

In an ADC one or more input voltage levels who should be in between two input

reference voltage values, are translated in digital information. This voltage level is

compared in steps given by its resolution in bits, its value digitized in a binary for-

mat and output as a discrete value of an instantaneous input. A use may be applied

to record individual instantaneous values which give a description of the element

under scope. Nyquist-Shannon’s sampling theorem (Smith, 1999) stablishes that all

the sampling process maybe repeated at a sample rate at least twice faster than the

maximum frequency of the signal under scope, to obtain data samples enough,

forming a discrete signal with all the information of the original continuous signal,

allowing any wave to be reconstructed.

Relevant characteristics have to be satisfied when selecting an ADC for energy me-

tering purposes:

 The analog input bandwidth, will define the frequency limit above which

the signal is attenuated. When measuring harmonics of higher orders, they

should not be cut by the ADC limitations. A 50th order harmonic in 50Hz

will require at least a 2.5 kHz bandwidth. (Moulin, 2003)

 The sampling frequency, should be at least twice the desired bandwidth or

the signal will suffer aliasing, an effect for which higher frequencies cannot

be correctly read and get a wrong digital equivalent sample. (Moulin, 2003)

 The LSB precision, accuracy and the noise floor. Known the voltage range

under scope and the ADC resolution, we have the precision which is

𝑉𝐿𝑆𝐵 =
𝑉𝑟

2𝑏 − 1

Equation (4)

 where

 𝑉𝑟 input voltage range

 𝑏 bit resolution

20

This gives the value of the ideal resolution of the ADC in use. A different value is

given by the Dynamic Range, or SNR, of the signal and values are better read in

dB. In this manner, with the quantization error ideally uniformly distributed be-

tween −
1

2
 and

1

2
 of the LSB in all quantization levels, translated to dB, the Signal-

to-quantization-noise ratio (SQNR) is

𝑆𝑄𝑁𝑅 = 20𝑙𝑜𝑔10(2𝑏) ≈ 6.02 ∙ 𝑏

Equation (5)

where

 𝑆𝑄𝑁𝑅 Signal-to-quantization-noise ratio

 𝑏 bit resolution

Which is the same as to say that each bit of resolution contributes with approxi-

mately 6dB to the Dynamic range.

An ideal meter with a dynamic range of 2000:1 with a precision of 0.1 of the units

in use and a specified maximum error of 0.1% requires a minimum dynamic range

of 146dB, or an analog ADC with at least 25 bits of resolution:

𝑆𝑁𝑅 ≤ 20 log (
2000

0.1 ∙ 0.001
) = 146𝑑𝐵

Equation (6)

146𝑑𝐵

6 𝑑𝐵
𝑏𝑖𝑡⁄

≈ 25𝑏𝑖𝑡𝑠

The noise floor of the system becomes relevant to satisfy the specifications. To

have good accuracy, the noise floor of the selected system should lay over the bit

resolution or the system won’t satisfy the accuracy conditions. This is especially

relevant when evaluating signals arriving from a CT or Rogowski Coil since their

inducted voltage levels can be as low as microamperes, falling into the noise floor

21

level. For example a system like an energy meter DSP whose maximum ADC in-

put voltage is 0.5Vp and the noise floor is 1µVp, then the dynamic range is

500075.52:1, or 114dB, requiring at least 19 bit ADC:

20 log (
0.5

1−6
) = 114𝑑𝐵

114𝑑𝐵

6 𝑑𝐵
𝑏𝑖𝑡⁄

≈ 19𝑏𝑖𝑡𝑠

A different ADC technique is the sigma-delta ADCs (1-bit ADC) where the final

result comes from the successive bit approximation of the sampled value. These

ADCs have the attribute of oversampling, sampling multiple times faster than a

traditional ADC. This favours the sample quality because while the SNR is the

same as before, its energy is spread over a larger frequency range. As a result of

this, the RMS noise is less after filtering the signal (Maxim Integrated, 2003)

All the input signals should be filtered to avoid aliasing. An aliased signal is pre-

sent in all sampled systems regardless the ADC architecture. It means that any

sampled signal higher than the half of the sampling frequency will get a wrong

sampled digital value in the frequency below half the sampling rate.

Figure 5 Aliasing: Two different waves having the same sampled values

When using a passive first order RC filter, one has to consider that their attenua-

tion of 20dB/dec must be sufficiently high at the half of the sampling frequency.

However, when using a Rogowski Coil, these sensors have a 20dB/dec gain that

voids the 20dB/dec attenuation of the first order filter, thus the attenuation must

22

be offset again. Designing the LPF as a cascade set of filters or a second order fil-

ter will establish the attenuation again. On the other hand, it is known that

Rogowski Coil output requires an integration of its output, yet an integration pro-

duces a result, in frequency domain, of 20dB/dec and a -90° phase shift that have

to be accounted. Analog integrators design are easy to implement by means of an

OpAmp, but its design requires special care and the environmental conditions

have an important role in the operating lifetime.

Figure 6 Analog integrator using OpAmp

Implementing a digital integrator is possible by processing the sampled output of

the Rogowski coil. Having these models a closer output to the ideal, avoiding the

need of extra analog circuitry thus more stable over the time. In this manner, allows

its use as a CT but remembering to implement a second order filter at the input

(William Koon, Analog Devices, Inc, 2001).

2.2.4 Analog Front-End (AFE)

The selection of the required front-end hardware presents different options and spe-

cial considerations have to be taken when measuring harmonics. This will affect to

the performance, accuracy, reliability, complexity and cost.

Whenever a decision has to be taken regarding the price, the MCU with built-in

ADCs is the solution. It has the lowest prices and easy implementation due to a little

number of extra components needed to implement reducing cost, complexity and

the time to market. The selection of the MCU becomes important as it is required

to have a good DSP processing capability and ADC high sampling rate. Whenever

23

using MCU DSP the software complexity grows as it is needed to have a good

understanding of digital filtering and the manufacturer does not provide a DSP li-

brary or this is not free. Manufactures should provide with the information about it

as well as detailed information of the DSP processing performance. As a result, the

flexibility of the system is reduced as it may require an entire redesign to implement

an upgraded MCU.

In case of aiming performance, the components can be selected individually for

each function. ADC and DSP are implemented as individual entities, giving liberty

to select the components given a required accuracy. Although a high quality and

flexible device can be developed, this kind of implementation is expensive and

more complicated.

A third option is a solid-state Energy Meter interfaced with an MCU. Since the

apparition of electronic energy meters, they evolved from a single phase voltage

meter to a polyphase multifunction energy metering with DSP and harmonic mon-

itoring. These meters can be reduced to two types, analog front-end (AFE) ICs and

System on Chip (SOC) meters. The first kind provide the front-end to the power

line, allowing an external MCU to control them. The second includes a microcon-

troller. Each have benefits, as cost is in the case of a SOC and flexibility in AFE

ICs and cons, like upgradeability, the SOC cannot be modified easily (Mani, 2013).

And when referring to different manufacturers, they share similar architectures. A

set of inputs to interface with voltage and current sensors, ADC to convert the signal

value, a DSP to process the information and a MCU to manage the process and

peripherals. Discarding the SOC, a single energy meter can be interfaced by a low

cost MCU to handle the communications task.

2.3 Microcontroller Unit (MCU)

The MCU should be chosen after the AFE selection, if not embedded into it. Since

it is not the same CPU load to receive the processed values from an Energy Meter

and transmit it or to have to process harmonic calculations in a determined time

frame. The first may be accomplished by a low cost 8-bit MCU and the second may

require an MCU with DSP and floating point capabilities. Other aspects to consider,

24

regarding the performance, are like the use of an Operating System, if needed, with

real time capabilities, fault handling and diagnosis code or communications CRC

validation. Other constraints are cost, size or environment.

An implementation of an MCU interfacing an AFE requires peripherals and digital

I/O of which is relevant to know its type, CMOS, NMOS or Open Drain Control,

Pull-up Resistor control. Peripherals in a MCU include ADC that whenever plan-

ning to use these, should meet the requirements as mentioned. It is highly recom-

mended that these peripherals include the required communications controllers that

will be further used like UART, SPI, CAN, Ethernet, Parallel Data Capture unit and

DMA that will release the CPU load. Other parameters are, regarding to the CPU

architecture, the available memory space, word length, clock generation circuit, In-

terrupts Control unit, internal busses and pipelines. Whenever there are time con-

strains these parameters become crucial to control the application flow and perform

the task in the given time frame. Whenever the MCU AFE are ADCs and having

time constraints, it is important to count with DSP instructions that will reduce the

processing time.

2.4 Evaluating harmonics

A harmonic component of a fundamental frequency is another frequency that is an

integer multiple of this latest. Accordingly to this, any European power line trans-

porting electricity at 50Hz of fundamental frequency, will present harmonics at

100Hz, 150Hz, 200Hz and so on. As a consequence of this, the harmonics may be

identified by their index, that is the integer multiple of the fundamental, ergo the 3rd

harmonic index of a fundamental of 50Hz refers to the 150Hz component. They are

clearly differentiated from transients or spikes as a wave x times shorter than the

reference wave.

Harmonic analysis of the currents in power lines is the best method to measure the

quality of the transported energy. They give a description of the distortion of the

fundamental frequency, and in an ideal environment they are not present. Hence in

a real environment, harmonics indicate the real state of a transmission line. For this

reason we can understand harmonics as a continuous source of valuable data about

25

the instantaneous real state of a power line. Harmonic’s effects on the power line

are traduced as an increased RMS current needed to source any load and therefore

producing losses dissipated as heat. Another figure, related to the harmonics is the

Harmonic Distortion and the Total Harmonic Distortion. The first gives the relative

deviation of the signal respect the fundamental, the second is the percentage of the

harmonics regarding the fundamental, or how much of the current or voltage be-

longs to the harmonics in a power line.

From the mathematical point of view, a harmonic answers to the question of how

much component of an index x there is over a fundamental frequency y, and trans-

lating it to power lines, it gives the amount of energy that is carried by each fre-

quency. This can be achieved by decomposing the original waveform into all of its

frequency components by means of the Fourier series.

2.4.1 Fourier series background

Fourier series shows how any periodic function can be plotted by the sum of sinus-

oid functions. Whenever having a periodic function such that,

𝑓(𝑡 + 𝑇) = 𝑓(𝑡)

Equation (7)

For all 𝑡, maybe written as a Fourier series

𝑓(𝑡) =
1

2
𝑎0 + ∑[𝑎𝑛 cos(𝑛𝜔𝑡) + 𝑏𝑛sin (𝑛𝜔𝑡)]

∞

𝑛=1

Equation (8)

where

𝜔 =
2𝜋

𝑇
= 2𝜋𝑓

and the numbers 𝑎0, 𝑎1, … , 𝑎𝑛 𝑏1, 𝑏2, … , 𝑏𝑛 are known as the coefficients of the se-

ries. Having different coefficients for different functions 𝑓(𝑡).

26

The Fourier series coefficients can be calculated as follows,

𝑎𝑛 =
2

𝑇
∫ 𝑓(𝑡)cos (𝑛𝜔𝑡)

𝑇
2

−
𝑇
2

𝑑𝑡 𝑛 = 0,1,2 …

Equation (9)

and

𝑏𝑛 =
2

𝑇
∫ 𝑓(𝑡)sin (𝑛𝜔𝑡)

𝑇
2

−
𝑇
2

𝑑𝑡 𝑛 = 0,1,2 …

Equation (10)

If 𝑓(𝑡) is even, meaning 𝑓(−𝑡) = 𝑓(𝑡),

𝑎𝑛 =
4

𝑇
∫ 𝑓(𝑡) cos(𝑛𝜔𝑡)

𝑇
2

0

𝑑𝑡 𝑛 = 0,1,2 …

𝑏𝑛 = 0

and If 𝑓(𝑡) is odd, meaning 𝑓(−𝑡) = −𝑓(𝑡),

𝑎𝑛 = 0

𝑏𝑛 =
4

𝑇
∫ 𝑓(𝑡) sin(𝑛𝜔𝑡)

𝑇
2

0

𝑑𝑡 𝑛 = 0,1,2 …

(Mäkelä, 2013)

27

Figure 7 Even vs. Odd function. Matlab plot

in other words, as the electric current is an odd function, the Fourier series reduces

to

𝑓(𝑡) = ∑ [𝑏𝑛sin (
𝑛𝜋𝑡

𝑇
)]

∞

𝑛=1,3…

Equation (11)

And coefficient 𝑏𝑛, where

𝑓(𝑡) is the time domain function

𝑛 is the harmonic number (only odd values of n are required)

𝑏𝑛 is the coefficient or, regarding harmonics, amplitude of the nth harmonic com-

ponent

𝑇 is the time period the length of one cycle in seconds

Whereas this introduction to the Fourier Transform as a tool to decompose a func-

tion in the sum of sinusoids, an extension of its idea applied to non-periodic func-

tions is the Fourier Transform.

ℱ{𝑔(𝑡)} = 𝐺(𝑓) = ∫ 𝑔(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞

28

Equation (12)

As a result of the Fourier Transform, 𝐺(𝑓) gives the magnitude of 𝑔(𝑡) at a fre-

quency 𝑓. For the most known applications there are free sets of look up Transform

pair tables that one may use to get 𝐺(𝑓) from 𝑔(𝑡), to reduce the mathematical

calculation time. To evaluate the Fourier transform, the Discrete Fourier Transform

is widely used as it can be implemented in computer, MCU by numeric algorithms,

or by dedicated hardware, by analysis of a finite amount of data, samples taken

within the same period. It differs from Discrete Time Fourier Transform, also called

continuous, in that is has a finite input, with N samples, and output, resulting in

much easier and faster calculations.

ℱ{𝑥(𝑛)} = 𝑋(𝑘) =
1

𝑁
∑ 𝑥(𝑛)𝑒−

𝑖2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

𝑓𝑜𝑟 𝑘 = 0, 1, . . . , 𝑁 − 1

Equation (13)

where

𝑥(𝑘) a complex number series of 𝑁 samples such that 𝑥0, 𝑥1, 𝑥2 … 𝑥𝑘 … 𝑥𝑁−1 and

𝑥𝑖 = 𝑥𝑟𝑒𝑎𝑙 + 𝑖𝑥𝑖𝑚𝑎𝑔

𝑁 number of samples 𝑘 ranging from 0 to 𝑁 − 1, repeated periodically such that

𝑥(𝑘) = 𝑥(𝑘 + 𝑁)

To reduce the complexity of the equation above, one may refer to Euler’s identity

for complex numbers analysis, stating that for any real number 𝑥

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 ∙ sin (𝑥)

Equation (14)

Using known fast Fourier transform (FFT) algorithms, result in shorter time and

less processing power. Cooley and Turkey introduced this algorithm in 1965, lim-

iting the input to a power of two size and generating two N/2 sequences to speed

29

up the process, the DFT of the even indexed part of 𝑥(𝑘) and the odd indexed

part. The resultant lecture of this is such that 𝑥(𝑘) gives the value of the 𝑁𝑡ℎ fre-

quency index.

Referring this to harmonic measurements, less calculations are required, since

only the magnitude of a few frequencies of index 𝑁 with value 𝑥(𝑘) are required.

As 𝑥(𝑘) is a complex number, it has a real and an imaginary part

𝑍 = 𝑥 + 𝑖𝑦

𝑍 = |𝑍| ∙ 𝑒𝑖𝜃

𝑥 = 𝑅𝑒[|𝑍| ∙ 𝑒𝑖𝜃] = |𝑍| ∙ 𝑐𝑜𝑠𝜃

𝑦 = 𝐼𝑚[|𝑍| ∙ 𝑒𝑖𝜃] = |𝑍| ∙ 𝑠𝑖𝑛𝜃

Equation (15)

where

𝑍 is a complex number

𝑥 is the (Re) real part

y the (Im) imaginary part

𝑖 = √−1; 𝑖2 = −1

|𝑍| or 𝑍 modulus or the magnitude

𝜃 the phase angle

And, as in most of the cases when the harmonics are measured, not always the phase

angle is needed, only the magnitude, having reduced calculations involved. As with

the FFT, there are available algorithms to implement in this case. A remark to the

Goertzel algorithm that can perform frequency detection using less computational

power than the FFT (Banks, 2002)

2.5 Evaluating transients

Transients, in power lines, are transitory, non-lasting bursts or oscillations of energy

as a response to a change from a previous state. Generally called spikes, they can

be voltage, current or energy and they disappear if the power is disconnected for a

short period of time. There are many situations that cause overvoltage transients,

30

lightning strikes, shortcut, trip of a circuit breaker, a tree occasionally touching the

line or an animal contact among other. Earth faults, as the shortcuts, are sources of

transients in their initial instants, from microseconds to a few milliseconds. The

main characteristic is the overvoltage spike with a very high bandwidth and a very

short time span.

Figure 8 Plot of a transient

These overcurrent or overvoltage signals carry information that can be analysed by

measuring devices. They require a very high bandwidth and amplitude tolerance,

and in general, different circuitry and signal processing properties than the harmon-

ics. Due to the random nature, the variability of the sources and the difficulties to

define their amplitude, duration and energy content, they are not analysed in this

paper, and only their amplitude is measured altogether with their time span.

31

3 SELECTED RESOURCES

Here is stated a method to solve the problem proposed by VASPEC Oy when trying

to find an efficient low cost digital method to measure transient currents and har-

monics in power lines on earth-fault conditions. The research had to include an

MCU to perform the calculations and the communications, written in C language,

interface the signals by ADCs and provide a low current testing environment, mean-

ing to provide the signals at the ADC input voltage level.

The solution presented in this research was built by means of an ADE7880 solid-

state Energy Meter, an Analog Devices Inc. product, interfaced with a Renesas

YRDKRX63N board with a RX63N MCU by means of SPI communication at

2MSPS. The MCU transmits the data over UART to an RTU and the faulty condi-

tions are simulated by means of a PC running MATLAB® and a soundcard used to

output a wave signal composed of a fundamental frequency of 50Hz carrying a 3rd,

5th and 7th harmonics generated by the SIMULINK® DSP and transmitted through

a wire connected to the soundcard’s jack input to the ADE7880. The software so-

lution is Eclipse-based Renesas e2studio Integrated Development Environment

(IDE) and the project’s code written in C. The solution works as expected meeting

all the requirements specified by VASPEC Oy.

3.1 Hardware and Software resources

The resources required for all the stages of the research are identified firstly, as

related to the AFE and MCU, secondary as related to prototyping and PCB design

and thirdly as related to the testing environment

First, the selected AFE to prototype in breadboard and later to implement in a PCB

and a Renesas YRDKRX63N MCU board:

- ADE7880

- Renesas YRDKRX63N MCU board

- -CT Yhdc SCT-013-030 30A input 1V output

The selected MCU resources have a code implementation:

32

- MCU, start-up code

- SPI interface, 2 independent interfaces

- UART interface, 1 interface

- RTC

- CMT, 2 units

- ADC, 12 bit

- Digital I/O

The selected external resources have a code implementation:

- ADE7880 Energy Meter

- Switches

- LEDs

- Okaya display

Other tools related to the MCU used to code and debug were:

- Eclipse-based Renesas e2studio IDE

- Segger J-Link hardware debugger

Second, the testing environment, which is based in MATLAB® to generate the

50Hz fundamental with harmonic waves with a final implementation using SIM-

ULINK®. A multichannel sound card, Realtek ACL650 (Appendix 7: Soundcard

Datasheet appendix 7.5) is used to output the signals for at least as many AFE inputs

as used, three phases and neutral line currents and one phase voltage.

Third, prototyping and PCB design. An initial design over breadboard is proto-

typed, all the components placed include:

- Input current passive low pass RC filters with a 𝑓𝑐 of 14KHz and a maxi-

mum phase shift of -1.4 degrees in the frequency range of the 7th harmonic,

350Hz

- Voltage line voltage divider circuit with a parasitic filter.

- Required ADE7880 circuitry as specified in Datasheet.

33

- 3.3 V linear regulated power supply, based in AMS1117-3.3 to power up

the breadboard

- 3.3 V dc-dc isolated regulated power supply ISF 0503A to power up the

AFE in the PCB

- Renesas YRDKRX63N board PMOD1 port interface

- CT will be used for testing purposes, Rogowski Coil will be used in a real

environment, requiring an Integrator.

The PCB prototype was completely designed with PADS in a dual layer board of

75mm x 62mm and completely manually routed for efficiency, containing as mayor

clusters:

- A socket to insert an ADE7880 previously soldered to a 2 x 20 inline pins

board body.

- All the required input filters

- 3 high speed quad line digital Isolators, one ISO7240 with 4 out lines, and

two ISO7241 with 1 input and 3 output lines, to isolate the ADE7880 side

of the board from the MCU side.

- A 40 pin socket connector to interface with the Renesas PMOD connector

and Raspberry Pi compatible

- Independent and isolated 5V to fixed 3.3V DC/DC converter ISF0503A to

power the ADE7880

3.2 Selecting the AFE

The option of an MCU fetching the data with ADC and processing it to obtain fun-

damental and harmonic values is a valid option and reduced cost. Whenever the

conditions of a high impedance fault, and consequently allowing longer time gaps

for processing, are the target of the implementation, this can be the primary option.

On the other hand, this choice requires a deeper level of understanding of harmon-

ics, FFT and a DSP library for the selected MCU if available, and deserves to men-

tion a word about the MCU ADC’s quality, whenever a low floor noise and higher

precision is required, the selectable number of MCU decreases and the price raises.

34

The ADE7880 energy meter was proposed and accepted before starting the devel-

opment of the project by all the parts and its analysis in this paper is articled post

factum. It has proven satisfactorily the energy and harmonic meter capabilities ful-

filling all the demands, response time, precision and accuracy. Comprehensive un-

derstanding of the harmonics is required but no mathematical implementation is

required as this AFE outputs the processed value.

The ADE7880 retail price of one unit in the market is 11.84€ (Farnell Oy, May

2015). The cost may represent the most important drawback of this IC and a further

research to compare with the performance of the select MCU DSP instructions, re-

garding to the required selected input currents in the given timeframe, with the mul-

tiple outputs of the energy meter at a 125kSPS.

The ADE7880 requires isolated environment, since the neutral voltage input GND

is internally connected to the IC GND. This means that the ADE7880 GND level is

the same as the measured neutral power line level, and a serious risk since they

represent a fatal health hazard. The result of this is the implementation of the

ISF0503A, a single output dc to dc voltage regulator with isolation up to 1000Vdc

that requires an input voltage from 4.5 to 5.5Vdc and outputs a 3.3V up to 0.3A,

enough for the ADE7880, and having a cost rounding 6€ (Farnell Finland, May

2015). This will allow to externally supply the power from any popular 5V 0.5A

converter. Moreover, all the external connections to the ADE7880 have to be iso-

lated, being those the SPI communication paths and other signals with a high band-

width. The addition of Silicon Dioxide Isolators with a high signal rate of 25MHz

provides the required high voltage block and GND isolation barrier, preventing

noisy currents to enter the other side of the circuitry.

3.2.1 Features of interest

The ADE7880 is compatible with 3-phase for 4-wire (Delta or Wye). This is espe-

cially relevant for the experimentation since the neutral line is the carrier of most

of the information, but the three phases are sensed simultaneously as well. Having

35

an independent computational block for harmonic information on neutral current

and phase data path, the output registers’ content can be fetched simultaneously.

Supplies RMS, active, reactive, and apparent powers, power factor, THD, and har-

monic distortion of all harmonics within 2.8 kHz pass band (up to the 63 harmonic)

on phase or neutral current and voltage, which is beyond the 7th harmonic as the

highest index of interest. Although the harmonic calculations are limited to one

phase or neutral at a time due DSP limitation, this is not a drawback since only

neutral current harmonics are of the interest of this analysis. Supplies RMS and

harmonic distortions of all harmonics within 2.8 kHz pass band on neutral current

with less than 1% error in harmonic current and voltage RMS, harmonic active and

reactive powers over a dynamic range of 2000 to 1 at TA = 25°C

Regarding to the ADC, equips 7 Sigma-delta (Σ-∆) 24bit ADCs with a sampling

rate of 1.024MHz. The ADC outputs are signed twos complement 24-bit data-words

and are available at a rate of 8 kSPS or every 125µs.

For communications it offers serial interfaces I2C, SPI or HSDC. For harmonics

reading, HSDC in burst mode reading is recommended although not used since it

burst into the line the content of all the registers in a row while only seven are

needed, three harmonic indexes of neutral current, RMS neutral current and three

phase RMS current.

Regarding its working modes of interest, as energy meter, where all fundamental,

apparent, reactive or accumulated instantaneous or RMS phase powers and their

components are calculated and many different properties of the signal, not relevant

to the research, can be computed. As a harmonic meter contains a harmonic engine

that analyses one phase at a time. Harmonic information is computed with a no

attenuation pass band of 2.8 kHz (corresponding to a -3 dB bandwidth of 3.3 kHz)

and it is specified for line frequencies between 45 Hz and 66 Hz. Neutral currents

can also be analysed simultaneously with the sum of the phase currents. Figure 82

at p.58 of the Data-Sheet presents a synthesized diagram of the harmonic engine,

its settings and its output registers. Working in its normal power mode, it draws a

36

maximum current of 5.8mA at 3.3V. Other reduced power modes can be selected

but not used since the wake-up delay affects significantly to the measurements.

3.3 Selecting an MCU

The YRKRX63N board equipped with a Renesas RX63N (R5F5631BDDFP MCU)

100MHz 32-bit MCU with on-chip FPU, 165 DMIPS, 1.65 DMIPS/MHz, with a

price rounding 13€ (Digi-key electronics Finland May 2015) was selected for pro-

totyping. Joins all the required capabilities in one MCU, due to the availability at

the moment of selection and the VASPEC’s predilection for Renesas MCU for their

long product longevity. This IC provides enough communication controllers, while

UART and SPI are used and Ethernet planned for a possible future implementation.

Includes PMOD connectors to support a variety of generic PMOD devices and will

be the port in use to interface the AFE. A later independent PCB design was not

necessary. The board is also equipped with a Segger J-Link hardware debugger that

offers valuable information, for example, to optimize the hardware-software inter-

face or to trace the SPI communication by visualizing the registers content.

A DSP library is provided by the manufacturer with 5 different categories of func-

tions, like filtering or transforms like DFT or FFT, optimized to work with the MCU

and their compilers. The code is light, the largest function is less than 1kByte and

the largest stack memory requirements are less than 100 Bytes. These give opti-

mized code for interfacing directly with the CPU DSP instructions resulting in the

lesser CPU clock cycles per function.

Other relevant properties are its large built in flash memory of 1MB and RAM of

256kB, or the availability of several Real-time OS, like FreeRTOS, EmbOS or

µC/OS II and µC/OS III. This option, an RT OS, is not in use at this level of the

project. The retail cost of 1 unit of this MCU rounds 11€ in the market.

Other options are quickly assessed and, with a similar price and characteristics, was

selected an ARM Cortex M4 (STM32F405RGT6 MCU), a 32bit RISC 168MHz

MCU, 210 DMIPS, 1.25 DMIPS/MHz, perfectly capable for DSP instructions and

37

a price rounding 12€ (Farnell Finland May 2015). The immediate availability of the

YRDK63N board for prototyping was the reason to select this latest.

3.4 Software environment

One of the project’s requirements dictates the language, all MCU implementation

has to be written in C. Although regarding MCUs’ programming language, where

the language limitations come due to the available compilers, C, or embedded C, is

the most universal language in the industry environment (Blaza & Wilson, 2011)

followed by C++ with less than the half of the designs compared to C. For this, one

may find C/C++ compilers for all of the most used MCU on the market and this is

the case for Renesas, having toolchains for these languages in their products.

Renesas provides the complete software environment by providing IDEs with their

compiler and linker into them. One is their relatively new eclipse based e2Studio

IDE integrating their proprietary compiler and linker into the large eclipse IDE en-

vironment and providing communication with the hardware debuggers. The KPIT

GNU toolchain is a solution to the economic limitation of the proprietary solution.

A version control system, Apache Subversion ™ software mostly known as SVN is

used as a centralized repository following the traces of all the changes, branches

and trunks. The project files repository is stored in VAMKs server and no installa-

tion is required as it is already integrated in schools IT services.

3.5 The code

The code requires special attention whenever the source code has to be maintained

along the time or delivered and maintained by third part teams. Most of the code is

commented using block comments and the less by inline comments, this avoids the

possibility to comment big portions of the code allowing a clear debugging. Every

file has a header text introducing the name, the version and description of its con-

tent. After this, in the case of a source file, ‘.c’ file, each section is divided by a

comment block defining itself, system and project includes block, macro definitions

block, local function declarations, global variables, and a new block per each func-

tion in the file. Not always all the blocks are needed. The function header block

38

comment includes the name, a description, list of arguments and return. A header

file ‘.h’ includes blocks for macro definitions, variable type definition, and public

function declarations.

The ADE7880 driver is documented by means Doxygen to facilitate its maintaina-

bility and understanding. Doxygen facilitates the code documenting by means of

selected tags around the inline comments. Although a powerful tool to ease the task,

the code should be clearly architected from the beginning and changes carefully

implemented by accounting the comments as well, otherwise Doxygen code might

become a second maintenance task.

The portability of the ADE7880 driver becomes a high concern because the final

MCU target might differ from the initial prototype. Regarding to the AFE, this is

completely achieved by implementing a driver without specific CPU compiler in-

structions and isolating the hardware, both AFE and SPI communications by im-

plementing their respective HAL. This is not performed for the other peripheral

drivers since they are highly bound to the MCU and their specific registers with

single access and single register access to retrieve data, for example, an ADC re-

quires to write once several MCU specific registers to be configured and turned on,

and only one MCU specific register is read in order to collect the information.

Other measurements are adopted to facilitate the reading and understanding of each

part of it. Individual folders for each driver, HAL in those which require it, naming

convention to identify each section. The code’s file naming follows a predefined

structure such as each driver is wrapped into its own folder where the name identi-

fies the peripheral’s driver and its dependence. A folder’s name of a driver package

related to a Renesas built-in SPI controller is called “r_spi_rx600”. The initial “r_”

means that the driver targets a Renesas RX peripheral, and the “spi“_rx600” is the

name of the peripheral and is exclusive for the rx600 series. Other driver folder’s

name is “ade7880”, identifies a driver for the ADE7880 IC. No reference notation

at the beginning of the name means that the code inside is unbound to the hardware,

portable, requiring a HAL implementation and providing the hook code, found as

“r_ade7880” on the top of it.

39

3.6 Communications protocols

There are several different communication protocols required. In the first place, the

communications that take place among MCU and peripherals in a very short range,

less than 10cm that require of a protocol. In this case, SPI is selected for being

versatile and common, providing high speed communications. SPI is used by the

ADE7880 and the LCD. This latest is used for onsite debugging, displaying RT

information and allowing to set the voltage threshold value, not needed in a final

implementation. In the second place, the communications with remote devices, the

computer used for the testing environment, that receives, plots and stores the data

in case of an anomaly, and an RTU running SCADA that receives the information.

The computer receives UART signals meanwhile the SCADA RTU requires Ether-

net that is not required at the moment and so not implemented in this project.

3.7 Testing environment

A testing environment is required in order to assess the implementation on a re-

duced scale. For safety and legal reasons, students are not allowed to work with

voltage levels over 50V and the conditions had to be simulated at a smaller scale.

The test environment requires a computer running MATLAB® and a professional

sound card to generate the significant waves.

The specifications state fixed frequencies, the fundamental of the AC current is

50Hz, and harmonic frequencies appear at decimal multiples of a fundamental fre-

quency, being the harmonics of the 3rd order 3 times 50Hz, resulting in the compo-

nent of 150Hz, the 5th resulting in 250Hz and 7th equals to 350Hz.

The selected method was by means of SIMULINK® blocks. One block needed as

DSP with a matrix of 4 frequencies with independent amplitudes and the output

connected to a second block as the default audio device. Other methods were eval-

uated but discarded due to the simplicity and effectiveness of the chosen. Once the

SIMULINK® model was implemented, only a cable, soldered to a Jack connector

plugged into the soundcard’s output, was needed to feed the AFE input pins.

40

4 METHODOLOGY AND IMPLEMENTATION

Four different frequencies are generated by Simulink® and output from the sound-

card of a computer as an analog signal. Having then a fundamental of 50Hz and 3rd,

5th and 7th index harmonics, with a maximum amplitude of 1Vp-p and the possibility

to control the amplitude of each frequency independently or to modify the harmonic

indexes.

The signal is presented to the AFE neutral current differential input (INP and INN).

The same signal is used to feed the phase A, B and C current differential inputs

(IAP-IAN, IBP-IBN and ICP-ICN). This is only for testing purposes, to verify that

the data from the phase inputs is correctly read. Since only one signal is generated,

it is impossible to simulate a 3-phase 4-wire environment. In a real environment,

reading each phase and neutral line will allow to determine the faulty line and ana-

lyse the missing current with the neutral line current, as well as the phase angle of

each of them to approximate the origin of the fault. To finalize, the same signal is

presented at one of the phases voltage differential inputs (phase A is selected, VAN-

VAP). This is an ADE7880 requirement to use the signal as a time base for the

harmonic calculations engine. All the required LPF are calculated and placed to

each input.

The AFE is a SPI slave of the RX63N MCU with a 4 wire diagram. Only SPI pro-

tocol is used for all the communications despite the selected energy additionally

offers I2C and HSDC (High Speed Data Capture). To configure the ADE7880 to

perform harmonics calculations, one may, when from power off, follow the power

up procedure, establish SPI as the communications protocol and follow the recom-

mended approach for managing Harmonic Calculations.

Regarding to the RX63N MCU, and because the YRDKRX63N prototyping board

is used, no MCU PCB is designed for this research. The RX63N PMOD port is

configured to allow SPI communications by means of the SPI peripheral number 1

and the Signal Select Line 0, requiring four lines, CS, CLCK, MOSI and MISO.

The ADE7880 power mode select input pins PM0 and PM1 are connected to and

controlled by MCU digital output pins driven to the same PMOD port, as well as

41

the ADE7880 𝑟𝑒𝑠𝑒𝑡̅̅ ̅̅ ̅̅ ̅ input and HREADY output pins. The same POMD port offers

+3.3Vcc and GND to power the MCU side of the Isolators. The Raspberry Pi con-

nector offers IRQ0, IRQ1 and CF1 pins as well. All these signals are interfaced

through the required Isolators, and the PCB design presents 3 additional pins,

ADE_CF1, ADE_CF2 and ADE_CF2 as energy-to-frequency conversion output

pins that may be later used for calibrating purposes.

The software enables all the required hardware, reads an ADC and compares its

value with a maximum threshold value. Two methods are implemented to get the

ADC readings, by means of the external ADC peripheral or by means of the

ADE7880, this can be selected by modifying a definition in the header file named

‘definitions.h‘. Whenever the threshold value is crossed, a time stamp is retrieved

from the RTC, the CMT is turned on counting up to 10ms, the time of half of a

cycle of the fundamental frequency, triggering an interrupt at the end where all the

required values are read from the ADE7880. This is repeated during a predeter-

mined amount of time set to 100ms. During this time, the retrieved information is

available to be evaluated, with the possibility to trigger a reaction. If no reaction is

taken, the CMT will consume all the specified time frame. The information is

placed in the transmissions buffer and transferred to an RTU as soon as it is made

available. The RTU in this case is a computer receiving UART data that can be

formatted to be displayed on a terminal screen by sending strings of ASCII charac-

ters, or retrieved, stored, and plot in Matlab® by sending floating point values.

Other peripherals are used. The LCD uses SPI peripheral channel 0 and SSL3 and

it displays the RTC time, information about the last event and the threshold value.

Regarding the switches are programmed to set a new threshold value and to simu-

late a spike triggering all the measurement events. Another CMT timer is config-

ured additionally to measure the time spent in each SPI communication and the total

time of each cycle, from the detection of an over voltage to the moment the last byte

is shifted into the UART transmission register. A led is used to signal the events,

staying on until the information is transmitted to the RTU.

42

The next figure shows the graphical representation of the relationship of different

hardware parts and the MCU application with the software drivers to perform the

required actions.

Figure 9 Graphical representation of the system

43

4.1 Explaining portability, Renesas MCU or ARM

The ADE7880 driver prototyped here has its roots in a preliminary approach by

Sami Mahamoud Mahamoed for interfacing the ADE7880 with a Raspberry Pi to

retrieve power related values. Later was passed to in earlier stages of the project.

This has affected the design of this implementation. The Raspberry Pi is widely

used for educational purposes in VAMK, as it may serve as an introduction to MCU

embedded coding, Linux and OS programming. Having this in mind, the AFE

driver was designed to be completely portable and not bound to any particular CPU

or specific compiler instruction. It can be implemented in a standalone system or in

an OS. It can run in Renesas or ARM, Raspberry Pi is ARM v7, as it is not bound

to any of them. Only requires a middleware layer implementation that can be easily

written by following the same schema as shown here.

The PCB design reflects the same procedure and tries to follow the Raspberry Pi

compatibility by having a similar size (62.5mm width and 74.5 height), with smaller

area, and with a female 40 pin header that fits on the Raspberry Pi v2 IO male pin

header. A prototype carrying a compatible connector, may be attached to a Rasp-

berry Pi connector and the Renesas PMOD connector, using the latest, an adapter

cable made by following the schematics in Appendix 5: Schematics

ADE7880 and connector socket).

4.2 Prototyping the AFE, ADE7880 input channels

Before the PCB was designed, a prototype of the AFE board, input filters, connect-

ors and power source were located over a breadboard having all the required input

and output pins clearly distributed. Seven differential inputs of which five are re-

quired, fourteen lines to interface the MCU PMOD port and all the filtering capac-

itors and resistors were placed on top of it to start the MCU interface. Care should

be taken regarding ESD.

44

□ Neutral current processing path

Figure 10 Functional block diagram, from ADE7880 datasheet

In the functional block one may observe that the neutral current measurements en-

gine follows an independent path. Phase energy values share a common computa-

tional engine in which the neutral current does not interfere, and, regarding the har-

monics, this last has its own. This is could be a relative drawback in other kind of

implementations than this, since the ADE7880 has one DSP, meaning that either

one phase or neutral line harmonics can be measured at a time. The computational

block for harmonics calculations will allow to obtain a reading of the neutral current

RMS value. This is important since the engine can output three harmonics indexes

at a time but four are needed, the named 3rd, 5th and 7th, and the fundamental as well.

The fundamental component and related THD are only calculated for the phases,

they cannot be measured by the neutral line engine, obtaining the total RMS current

instead by reading the NIRMS register. There is no output either to the THD value

of the neutral current. Although there is no need to retrieve these values following

45

the given specifications, they can provide valuable information therefore appearing

as a relevant limitation for data analytics.

Figure 11 Harmonic engine block diagram, fromADE7880 datasheet

When using the ADE7880 the sample rate is fixed at 1024 kSPS, meaning that any

frequency higher than 512 kHz will generate aliases and the antialiasing input filter

has to take it into account, hence the input passive low pass filters are calculated at

this stage. These filters have to meet two requirements, by one hand, cut the non-

wanted high frequencies and, by the other, avoid as much as possible the phase

shift.

With the help of LTSpice, these filters can be simulated to find the best approach.

For testing purposes, an analog LPF with a cutoff frequency is calculated at 15 kHz

having attenuation of 31dB at 512 kHz and a phase shift of -1.5º. The ADE7880

recommends a cutoff of 5kHz (Analog Devices, 2014), one may observe that such

a filter can be built with an RC where R=15Ω and C=2.2µF. Its 0 attenuation band-

width does not go further than 300Hz and producing a phase shift of 4º at the fre-

quency of the 7th harmonic and up to 40º in the bandwidth of interest, while having

a 40dB attenuation at 512kHz. Two different approaches may follow, a first one,

the selected for testing purposes, having a relaxed RC values but allowing a higher

bandwidth respecting the original signal properties.

46

Figure 12 Input current path low pass filter simulation schematic

Figure 13 Current low pass filter simulation Bode diagram R=5.1k C=2.2nF

With the given RC values of 5.1kΩ and 2.2nF the cut-off frequency is 15 kHz, not

affecting the input bandwidth of the IC of 3.3 kHz. Having 30dB attenuation. The

target of these selected relaxed RC values is to avoid possible future testing envi-

ronment limitations when the case is to select higher harmonics indexes than the 7th

and keeping the original properties of the wave at higher frequencies.

In a second approach the RC values have been analysed to fit specifically a meas-

urement up to the 7th harmonic. In a final design with a fixed value of the 7th index

as the maximum harmonic, the recommended RC filter implements a resistor of

47

22kΩ and a capacitor of 2.2nF, having then an attenuation of 27mdB with a phase

shift of -5.4º at 350Hz, and an attenuation of 44dB at 512kHz.

Figure 14 Optimal current input low pass filter for a highest 7th harmonic index

Figure 15 Optimal current low pass filter Bode diagram with cuttoff at 3.5kHz

48

Where

INP Neutral current positive differential input

INN Neutral current negative differential input

ADE GND ADE7880 GND Voltage level

IAP & IAN, IBP & IBN, and ICP & ICN have the same configuration

Figure 16 Current input antialiasing filters schematic

Where

VN Neutral line Voltage input

VCP Phase C Voltage input

VAP and VBP voltage inputs have the same configuration as VCP

Figure 17 Voltage input antialiasing filters schematic

The ADE7880 ADCs have differential inputs that accept a maximum range of

±0.5Vp to preserve the precision and accuracy specified in its documentation. In

49

fact they support sporadic maximum differential voltages of 2V but anything above

±0.5Vp cannot be accepted as an accurate measure. Hence the CT or Rogowski Coil

outputs should be translated to values in this range before its output is sourced to

the ADE7880 current input pins. And the voltage inputs require an external resistor

placed in series and forming a voltage divider with the filter’s resistor (R14 or R17

in Figure 17 Voltage input antialiasing filters schematic) calculated as follows,

𝑅(𝑘Ω) = 10.2𝑉𝑝 − 5.1 ≈ 10𝑉𝑝

𝑅(𝑘Ω) ≈ 7𝑉𝑟𝑚𝑠

Where

𝑅 resistance in kΩ of the required input resistor

𝑉𝑝 maximum instantaneous input voltage

𝑉𝑟𝑚𝑠 input rms voltage

In the testing environment they are unnecessary since the input signals are pro-

vided by SIMULINK® and the amplitudes are a software variable.

Other I/O of interest are the communication paths, MOSI, MISO, clock signal

SCLK and signal select 𝑆𝑆̅̅ ̅ the power mode PM0 and PM1, interrupts , HREADY

and 𝑅𝐸𝑆𝐸𝑇̅̅ ̅̅ ̅̅ ̅̅ ̅ pins, all sourced to the MCU through the PMOD port.

Whenever this IC is measuring power lines requires isolation thus extra circuitry is

required. Since in this project there is already a 5V power supply that provide the

system with energy, the same is used, and a dc to dc isolated regulator is placed to

power the energy meter. Additionally, Texas Instruments ISO7240 high speed Iso-

lators are placed to protect the signal traces.

The required protection circuitry is not necessary when working with a testing en-

vironment. The test signals are, according to the ADE7880 ACD inputs, in the range

of ±0.5V and absolutely harmless, thus the energy meter receives the power form

the YRDKRX63N PMOD port which outputs 5V, and a common AMS1117 3.3V

is used to convert the voltage level. With the same, the optoIsolators are not required

50

and not implemented in the testing prototype, establishing a direct connection be-

tween the MCU and ADE7880. Regarding the current inputs, in a real case, most

of the CT and Rogowski coil in the market work with low output voltages, many

inasmuch as 1V range making them suitable to be directly connected to the energy

meter. This project has tested a CT which outputs 1V at a maximum current of 30A

directly connected with controlled maximum currents up to 3 Amps.

The Appendix 6 OptoIsolators, in the PCB design section, shows the schematics of

the required isolation circuitry as they are in the PCB which can work in any con-

dition, testing or real, with the only need of implementing the series resistor to the

voltage lines input.

4.3 Interfacing the Transients. Independent ADC

The transients appear whenever an event occur in the line, they are of unbalanced

nature, and so they might occur on an individual line not affecting the other. As a

3phase 4 wire always tries to reach a steady state, these unbalances are always re-

flected over the neutral line. For this reason, one fast and sensitive ADC is sensing

the neutral permanently. A threshold level is set by software that whenever crossed,

sets a flag that will trigger an avalanche of measurements to evaluate the situation.

The ADE7880 ADCs can perform measurements at 1MHz, implementing internal

registers to set threshold values to signal over currents and voltages in each phase.

Associated to the threshold level, an interrupt is triggered when any phase drops

below or grows more than the selected level. Additionally, voltage and current peak

detection register hold the respective named values. Although the interrupt signal

can be used to fetch the data immediately, the SPI communications might be a bot-

tleneck in tight timing requirements, for which my recommendation is to select a

MCU, with an ADC that meets the accuracy, precision and speed, among its pe-

ripherals and fetch the readings using a DMA channel. As the given timing specifi-

cations are relatively relaxed for the RX63N, there was no need to implement DMA

in the design, fulfilling any task, under any circumstance, into the expected timing.

51

However, an independent 16bit ADC is given by the specifications as a valid reso-

lution although a 12bit ADC, available on the YRDKR63N board is accepted and

will be used for testing.

4.4 The software environment

The software solution is implemented in C language built in eclipse environment

e2studio using only generic C99 specification instructions and libraries. The propri-

etary RXC toolchain, the set of compiler, assembler and linker in use are provided

by Renesas as an evaluation version with a limitation of 128KB of linkable object

for non-commercial software, although a GNU solution is available under the name

of GNURX by KPIT. The software project uses Apache Subversion SVN repository

as a version control system stored in VAMK dependencies. It includes three differ-

ent build options, Debug using a RX GDB simulator, Hardware debugging using

Segger JLink hardware debugger and Release.

Hardware debugging is the most extensively used mode that, thanks to a connection

to the embedded Segger JLink debugger in the YRDKRX63N board allows access

not only to the software content but to the CPU and peripheral hardware registers

content. It is completely integrated in eclipse and works altogether with GDB giving

a detailed information. Hardware debugging requires of a connected device. When

there was no possibility to have a connection with the hardware, Renesas e2studio

provides a RX simulation environment that emulates the RX63 hardware and uses

GDB, useful thou limited compared with a hardware debugging session. The Re-

lease build is used only for demonstrating purposes.

To write the RX63N highly hardware dependent code and drivers the RX63N

Group hardware user’s manual (Renesas Electronics, 2014) is needed providing the

information to all of the available MCU registers and their properties. The start-up

environment, both, by Renesas or Kpit, provide with the lowest level hardware ac-

cess, a set of functions and header files with IO definitions to program and start

running the CPU in a way that the entry point to the programming becomes already

the user code.

52

The following code manages all the required MCU hardware, ADE7880 communi-

cations and RTU communications. The required peripheral drivers are initialized

and started immediately if needed. All the drivers but three, have very low level

access and their flow diagram is very direct, retrieving the content of a specific

register in a single function. Three other drivers require of a low level access to the

hardware or HAL and middleware software layer to read or write to the peripheral,

offering a set of public functions that can be call when inserting the driver in an

application. They are ADE7880, SPI and LCD drivers, although LCD is not part of

this research since it will not be part of any final solution.

The ADE7880 driver can be ported to another environment with little to nothing to

modify. Requires to implant a software layer following the same routines shown by

this code. Special care is taken with the SPI hardware driver, since has to meets the

requirements to work in an OS or having several devices accessing to it at the same

time. It is re-entrant and non-blocking at a basic level, two or more different de-

vices, and with or without OS, can be calling seamlessly the SPI driver. There is no

OS in this solution, but re-entrancy is required to handle the ADE7880 and the LCD

screen SPI simultaneous access. It was successfully tested in Renesas RX63N, with

no OS, and Raspberry Pi ARM v7 with Linux Raspbian OS.

4.4.1 Folders and files naming standard and structure

Following the same structure as all along the code, folders starting by ‘r_*’ are

specific Renesas application drivers to operate the peripheral indicated by the tail

name. As in this case ‘r_ade7880’ indicates that is the driver that provides control

and a set of functions and callbacks to drive the ADE7880 IC.

Inside the top folder, one may find subfolders named by the peripheral's name,

'ade7880', indicating that this is an external peripheral with its HAL and driver.

Files starting by the peripheral name 'ade7880_*' are specific HAL and hardware

related code, build to be independent to the µC and portable C code, such in a way

that only a set of files in the parent folder are required as middleware to allow other

systems’ specific code interact with the driver. Files starting by 'r_*' followed by

53

the peripheral's name, as 'r_ade7880*' belong to the middleware that provides ac-

cess to and from the Renesas MCU with the ADE7880 IC (see Appendix 1)

4.4.2 The data storage. A container for the information

A place to store it is provided as an object. This is a structure that provides memory

location for all valuable data. This container offers a place for the data that may be

collected from the energy meter and the time stamp of the measurement keeping an

easy and known form to retrieve what it is needed. An example of it can be seen in

the Appendix 2.

The structure is defined only once and local variable declarations to store the same

information are not needed. The container is allocated when the application is cre-

ated and is passed as a reference to other functions. One memory location provides

light code, avoiding the allocation of extra memory to store the same data each

function call reducing significantly the memory requirements of the application and

the clock cycles required to process the allocation and deallocation of each variable

and process, therefore obtaining a faster execution. Another consideration is that

the object is allocated only once and in the stack memory, which is of faster access

than the heap (Dobry, 1993).

Other positive aspect is the flexibility. Since the object is a parameter in all the

functions calls to the ADE7880 driver access, the functions always return the error

occurrence, therefore having more information than returning a single local variable

value. Moreover, the container makes the data always fully available wherever

needed, avoiding a long list of parameters in each function declarations with each

individual value.

The object allocates memory for one event’s data, does not audit the history of

events because each event is transmitted immediately to an RTU, where this will be

processed, relying then in the communications buffer. When required, one may al-

ways declare the object as a buffer, as an array of objects, which its iterations may

have to be handled. This will do the work of a local and volatile, storage requiring

54

larger amount of memory. If necessary, an external and non-volatile memory ac-

cess, like an SD-card, where to save the information to a file, should be imple-

mented.

There are drawbacks of having one object for everything that matters and all along

the code. The access to this object has to be handled carefully to avoid data corrup-

tion. This may appear, for example, when having concurrent access requests, at the

same time to the same memory location, one access may be writing what the other

is reading. When non handled interrupts may occur or using an OS with multiple

threads accessing the driver, one should protect the access to this memory location

with any of the known techniques, i.e. disabling interrupts, setting flags or locking

mechanisms like semaphores when using OS. This is not happening in the imple-

mentation proposed here since event interrupts don’t occur while in the window

frame of an event’s information retrieval. The transients ADC readings relinquish

the execution to the information retrieval algorithm segment and is not attained

again until the process finish.

4.4.3 The ADE7880 Driver

Provides high level access to all the available registers of the ADE7880. While the

individual registers can be read or write independently at the low level access, it

provides two public functions at a higher level, that perform all the operations

needed for this implementation and most of the common operations for an energy

meter, not including operations like energy-to-frequency measurements, or calibra-

tion registers access, although any register can still be read individually.

4.4.4 ADE7880 low level access, HAL

The ADE7880 provides known hardware memory locations or registers, infor-

mation which is provided by the manufacturer. These registers are mapped in the

file ‘ade7880_registers.h’ that follows the hardware datasheet registers list section

preserving the naming convention. Registers bit length varies, 8, 16, 24 and 32 bits,

signed or unsigned. Wherever possible, bit access level is provided to favour the

55

access to configuration registers. This is achieved by generating unions as new var-

iable definitions as follows:

Figure 18. ADE7880 Hardware registers access example

Defining the address of the register with a name offers readability to the code and

simplifies the hardware access. A default value can be defined simplifying the task

of writing to the defined address. The bit access is provided by a new variable def-

inition, ‘CONFIG_reg_u’, resultant of the union of the two members, one for whole

access and one for bit access. The first gives all bit range, named ‘uint16_t

REG_ALL’ in the previous figure, announces that it is a 16 bits register and provides

access to the whole content at once. Next line after it is the declaration of the second

member of the union, a structure named ‘bits’ which provides a name to each bit

available in the register.

4.4.5 Public methods, high level access

The two most important operations are writing the ADE7880 configurations and

reading the measurement from it. For this reason, the driver offers two public func-

tions to handle the access to the energy meter. These hide lower level access like

registers or SPI communications form the user side. They are performed by the

56

functions ‘ADE_command_handler()’, which perform configuration operations and

ADE_measure(), that retrieves the measured values. Their signatures are as follows:

error_list_et ADE_command_handler (uint32_t pid, uint32_t cmd, uint8_t arg,...);

error_list_et ADE_measure (uint32_t pid, uint8_t cmd, uint8_t channel,
 uint16_t samples, void *result);

The public functions share common features in their signature. The output or return

is the error occurrence which references are contained in ‘error_list_et’ enumer-

ation defined into ‘ade7880_configuration.h’ for its identification, where 0 means

no error and up to 14 different errors are defined. This output is propagated along

the code from its origin to the caller, and by caller we understand the user applica-

tion that originated the request to the energy meter. Regarding the input parameters,

‘uint32_t pid’ belongs to the process identifier, a 32 bits integer unique ID that is

exclusive of the caller and required to implement the multiple access to the SPI

driver from the ADE7880 and the LCD. And ‘uint32_t cmd’ which is a set of indi-

vidual instructions for configuration processes defined by ‘config_cmd_et’ enumer-

ation or measurement options defined by ‘measurement_cmd_et’ enumeration de-

fined into ‘ade7880_srv_cmd_handler.h’. Regarding the command handler signa-

Figure 19 ADE7880 driver user sequence diagram

57

ture, it additionally requires a variable list of arguments. Declared after the com-

mand instruction, different configurations require a different number of o parame-

ters and the code’s documentation or a quick review to each case into this function

gives the information about the correct set arguments. The distinct measurements

parameters are unambiguous, requiring in this order, the channel, ‘uint8_t chan-

nel’ referring to one of the three phases, A, B or C, or the neutral line, ‘uint16_t

samples’ referring to the number of times the measurement is read and later aver-

aged and one last, ‘float *result’ which is a float pointer to the memory location

where the measured value is stored.

The measured values are always stored in the provided container, whose location is

passed as a reference all along the code to the ADE7880 SPI received buffer, where

the measured value is extracted from the received SPI bit stream and placed in the

given location. Passing a pointer to the measurement as an input parameter gives

the freedom to use the output return to signal the occurrence of errors and produces

a lighter code. Precautions have to be taken when working with an OS to protect

the access to this memory location with a semaphore to avoid data corruption or

using atomic access. This is not the case in the RX63N application where the im-

plementation follows a determined sequence after an IRQ occurrence, which fin-

ishes before the next IRQ can be triggered. Inside the IRQ, when reading the meas-

urements, follows a sequence with no possibility to corrupt the data. Additionally

gives the freedom to build an object, a structure variable in C language, with capac-

ity to all the required information, avoiding the creation of individual variables with

each portion of data.

The data container is a set of new type definitions linked from a lower to a higher

level. The file ‘definitions.h’ provides with a specific example of modelling this

data object. The following is the structure, in a human readable form, for stored

measurements and its related timestamp (Appendix 0):

container.which_phase.phase_specific_measurement.measured_value

container.which_phase.phase_specific_measurement.time_stamp

58

This favours the use of a pointer to the location of the ‘container’, offering the

access to store to or retrieve required data from anywhere the pointer is referenced.

This pointer is casted as a null pointer allowing the user to build its own container

without modifying the code, but requires to understand how the transmission and

reception SPI buffers are built, otherwise follows the pattern given here.

4.4.6 SPI hardware access and Middleware layer

The ADE7880 driver has to be bounded with the hardware SPI driver. Having de-

fined an action like read a measurement or write a configuration command, the

ADE7880 driver’s SPI buffer have to be build, the access to the SPI hardware driver

has to be safely acquired and granted and the ADE7880 driver’s transmission buffer

transferred to the hardware SPI buffer registers in a command operation, and read

back the hardware SPI registers from the ADE7880 receiver buffer for a measure-

ment operation. Basically the first operation is unidirectional, the MCU sending a

bit stream with a write command byte (1 byte as 0x00 in hexadecimal notation), the

destination memory address byte and a value to write to the ADE7880 register ad-

dress. Whereas the second is a bidirectional communication that follows the same

pattern, but sending a read command byte (1 byte as 0x01 in hexadecimal notation),

and an address to read from, expecting something in return from the ADE7880 im-

mediately after this sequence, see Figure 20. This transmission is handled by the

hardware registers of both devices, energy meter and MCU. The drivers provide a

safe and exclusive access to these registers. Therefore, the AFE driver has to be

aware of the MCU SPI hardware driver.

Figure 20 ADE7880 SPI Read operation of 32 bit register (Datasheet p.79)

59

The AFE driver is unaware of the hardware SPI driver, this is masked by an inter-

mediate middleware layer between both of them. This layer is bound to the given

hardware and its SPI driver, requiring some additional rework to port it to another

platform. Provides GPIO translation and ADE7880 boot up sequence until SPI is

stablished and locked into its configurations as the communication protocol. The

major functions provided by this middleware layer are SPI driver read or write:

int8_t R_ADE_SPI_Read (uint8_t *data, uint8_t usBytes, uint32_t pid);
int8_t R_ADE_SPI_Write (uint8_t *data, uint8_t usBytes, uint32_t pid);

They are implemented into ‘r_ade7880_drv.c’ with other required functions and,

under the same folder, ‘r_ade7880_gpio.c’ holds the GPIO configuration. Other

 The architecture of the SPI reads or write functions is simple. First step tries to

obtain a channel’s lock to the SPI peripheral, this lock mechanism is implemented

in the peripherals driver returning true or false, and, as the LCD uses a different

channel, this is true unless the call is originated by an IRQ or it is an OS with mul-

tiple applications requiring access to the same SPI channel. Secondly, when the

channel’s lock is obtained, assert the required RX SPI channel Signal Select pin,

the LCD uses a different one, therefore the ADE7880 SPI channel CS pin should

always be inactive before this operation. Third step proceeds to read or write to the

SPI driver, and when this execution finalizes, the CS pin is deselected and, finally,

the lock is released. The CS pin is asserted manually for the freedom that gives to

choose any of the I/O pins, but it could be also triggered automatically by config-

uring the MCU SPI registers to perform that operation, skipping then steps two and

four.

The SPI hardware access is controlled into the SPI hardware driver. After initiali-

zation, it offers direct hardware access in read or write functions. These functions

receive a pointer to the location of the transmission buffer and in case of a reading

operation, another pointer to the storage’s location for the incoming data. Around

these functions a simple traffic control is built that follows the simplicity of Peter-

son’s algorithm. The turn is managed with a global variable as a flag that is set in

60

an atomic instruction and the inside control is given by an array as long as the num-

ber of channels, 3 in this case, that, if the semaphore is obtained, and its channel

slot is free, stores the application ID that obtained the semaphore into its channel

slot. In this manner, the driver is re-entrant and non-blocking as other SPI hardware

channels are allowed to write to their independent hardware registers while their

slot is free. More complex algorithms like Bakery algorithm (Shankar, 2013) are

not implemented.

These middleware layer functions are made available to the AFE driver by means

of function pointers and it is mandatory to initialize them before the driver is made

available. The diagram shown in ¡Error! No se encuentra el origen de la referen-

cia. reveals the methodology implemented to maintain the driver unaware of the

link to a dedicated SPI hardware driver.

The ADE7880 SPI handling occurs inside ‘ade7880_spi_protocol.c’ and has as

main functions:

error_list_et ADE_SPI_read (uint16_t target_register, uint8_t reg_len,
int32_t *result, uint32_t pid);

error_list_et ADE_SPI_write (uint16_t target_register, uint32_t value,

uint8_t reg_len, uint32_t pid);

These functions call, in their code lines, to the known middleware layer methods to

access to the SPI hardware driver without knowing about them. To achieve this,

two function pointers are declared locally with the names of

‘ADE_SPI_WRITE_CALLBACK’ and ‘ADE_SPI_READ_CALLBACK’ into the driver’s file

‘ade7880_spi_protocol.c’:

int8_t (*ADE_SPI_WRITE_CALLBACK) (uint8_t *data, uint8_t usBytes, uint32_t pid) = 0;
int8_t (*ADE_SPI_READ_CALLBACK) (uint8_t *data, uint8_t usBytes, uint32_t pid) = 0;

Two other public functions receive the address of the targeted outsider function as

parameter and assign it:

void ADE_SPI_WRITE_callback_set
(int8_t (*func)(uint8_t *data, uint8_t usBytes, uint32_t pid))

{
 ADE_SPI_WRITE_CALLBACK = func;
}

void ADE_SPI_READ_callback_set

61

(int8_t(*func)(uint8_t *data, uint8_t usBytes, uint32_t pid))
{
 ADE_SPI_READ_CALLBACK = func;
}

The compiler does not complain because they are locally known, but their memory

addresses content are initially undetermined, remaining disconnected before they

are initialized by calling ‘ADE_SPI_READ_callback_set’ with the address of the

function ‘&R_ADE_SPI_Read’ as its only required parameter, and calling

‘ADE_SPI_WRITE_callback_set’ with ‘&R_ADE_SPI_Write’ as its parameter. Then at

some point in the code, whenever the driver is initialized and before the SPI hard-

ware is made available to it, the ‘ADE_SPI_´xxxx´_callback_set’ functions have to

be called in the ADE7880 SPI middleware layer:

void R_ADE_ADE7880_driverCallbacks (void)
{

ADE_SPI_WRITE_callback_set(&R_ADE_SPI_Write);
 ADE_SPI_READ_callback_set(&R_ADE_SPI_Read);

 …

}

At this point ‘ADE_SPI_read’, the driver’s internal SPI read function, uses

‘ADE_SPI_READ_CALLBACK’ to communicate with the SPI hardware, that its memory

address targets ‘R_ADE_SPI_Read’ that will execute and follow the five mentioned

steps to achieve SPI hardware access.

4.4.7 RTU communications. UART control

The driver built on top of the UART hardware registers allows bidirectional buff-

ered byte transfer at 115200sps. Interrupts are triggered when the transmission reg-

ister is empty placing buffered data into it and when the reception buffer is full for

retrieving the incoming byte, though there is no use for this latest at the moment.

Any data sent to the driver is treated as a byte stream, one may use it to transmit

ASCII characters to display in a terminal screen or a binary transmission sent byte

after byte. As the measured values are real numbers, the use of floating point vari-

ables is extensive to allocate them, and their ASCII representation and transmission

may represent a challenge and inefficient communications. For that reason, the data

62

which is meant to be received and interpreted by MATLAB® software is sent as

floating point of 32bit resolution in binary format, four bytes of binary data. To

obtain a byte division, a new variable is defined as the union of a float member and

a string of 4 bytes, giving the flexibility to manipulate the data as a float and send

it to the UART buffer as a string. Otherwise, data transmitted to a terminal screen

is initially formatted and buffered to a string by means of ‘sprint()’ C library func-

tion and the resultant formatted string is thrown to the UART buffer.

The transmission buffer is initially set to 4092 bytes, this does not represent a prob-

lem for its allocation and can be safely increased as the MCU has up to 128KB of

RAM memory and the code itself uses only 22KB. The buffer is calculated and big

enough to handle all the possible incoming data. As the code inserts no delay be-

tween an event and the next while expecting the situation to be handled at any mo-

ment, data is continuously gathered and placed to the transmissions buffer in se-

quences of 10ms during 100ms. Data transmitted to MATLAB® consist of at an

estimated amount of 7 different float values, the three phases plus neutral currents

and three harmonic currents indexes, of 4 bytes each plus a delimiter character mak-

ing a total of 35 bytes, while each data string transmitted to a terminal program have

an average of 25 bytes times 7, making 175 bytes per event, having 11 events per

sequence of 100ms, plus the formatting strings that add an extra overhead of about

400 bytes resolving to a total transferred data of 2.71KB. With a transmission speed

of 115.2Ksps the buffer should empty in 23.5ms, in a window of 100ms between

events.

The transmission buffer is a circular buffer where any string can be placed at any

time. A global variable follows the index to position any incoming new byte and

the number of bytes to transmit. When the transmission register is empty, it begins

by placing the next byte in the index order into the UART transmission register and

storing the remaining bytes. The UART bus is programmed to start transmitting

automatically whenever a byte is placed in its register and triggering an interrupt

whenever the last bit in the register has shifted out. The service of this interrupt,

will place the next buffer’s byte in the register following the index order and de-

creasing the number of bytes to transmit. As strings are transmitted, a flag controls

63

when any new string should be shifted immediately into the register or placed in

the buffer. When the last byte in the buffer is put into the register by the interrupt,

the flag is released. Under the previously estimated conditions, the buffer should

never be full, although in that case, new information is hold in queue until the IRQ

released a new position. This is a blocking situation that should never happen or

should be handled as required.

4.4.8 Real time clock

The time the events occur is recorded according to the content of the RTC registers

available as a MCU peripheral. Using the main clock or a sub-clock pre-scaled to

128Hz as counting source, it can generate an interrupt as fast as 1/256 seconds,

sufficient precision for the 10Hz of maximum event frequency in the system, alt-

hough the resolution in use is given in seconds.

The registers can be read at any moment. Having independent registers for each

value, seconds, minute, hour, day, month and year, all of them are read sequentially

with the events occurrence, no interrupt is required, despite a method was imple-

mented for this purpose to program possible periodic actions. All the registers are

of 8 bits unsigned or less but the year which is 16 bit unsigned, and a structure is

defined to store them all and provide space for a string, built with all the registers

content, formatted with the use of ‘sprint()’ to retrieve and print or transmit the

complete date time at once.

4.5 MATLAB® and SIMULINK® testing environment

The MATLAB® license of VAMK’s school allowed its use for the research and its

implementation took place by using the same concept. Setting timers to populate

the result of the mathematical formulae of the respective sine waves to the sound-

card. This showed a problem regarding to the timers reload and the output to the

soundcard that could not be solved and the result was the disappearance of the out-

put during an undefined interval of time while timers were probably, but not con-

firmed, reloading.

64

Before adopting this environment, other solutions where examined. A first testing

environment was built with a second MCU and a 4 channel 16bit DAC with parallel

input for quick data transfers. An interrupt sets the indexes of the sine lookup tables

to feed the output pins with the resultant amplitude. The main drawback with this

implementation is the additional required hardware and the limitations of a µC re-

garding high speed processes. Other proven issues were the asynchronies or delays

added by the latencies of the interrupts handlers that distorted the wave generation.

The idea, initially simple was having a concept problem, while an interrupt with a

higher priority is being serviced, avoid other lower priority interrupts to take place,

losing its turn and showing at a different frequency, lower than expected. This was

practiced with a Renesas MC16/62P 24MHz MCU. A pre-emptive RT OS could be

used but the available MC16 µC-OS II was not made precisely for the 62P series

needing to port the code. A simplest approach with the same MCU was to calculate

the least common multiple of the four involved frequencies, which for 50, 150, 250

and 350 is 5250 and use a single timer with a single interrupt where the four fre-

quencies indexes where processed 5250 times per second, this means, once every

191.57µs. Although feasible, it is a challenging speed to the mentioned MCU.

Changing the MCU for a faster model or use a DSP could be a solution too, but the

idea was discarded in early stages. Additionally, this type of implementation is

noise sensitive.

A first MATLAB® approach was built using timers to calculate the instantaneous

vector of the waveform, and throwing its result to the soundcard. Some issues

merged in this implementation, for an unknown reason, the wave generation was

halted for a short period of time but enough to distort the result, perhaps the OS was

affecting the process. And based in the previous schema, this time implementing a

third party DSP library. Solving partially the problems of the previous, others arise

with the use of a 32bit DSP in a 64bit machine. Additionally, a GUI was built to

dynamically control the required frequencies and amplitudes.

Finally, SIMULINK® proved itself as effective as simple, although not exempt of

issues that have no solution at the moment. Those do not affect the output wave and

its apparent continuous signal, but limiting the available channels of the soundcard.

65

The odd frequencies in the array list were output through the front right channel of

the soundcard and the even through the front left, while the remaining output chan-

nels were silent. This forced the use of both channels as only one to every input of

the AFE, and, despite having a single multichannel soundcard, its output can be

only considered as a mono signal, and the same single signal was connected in par-

allel to the AFE inputs affecting the signal filtering and therefore the measurements.

MATLAB® and SIMULINK® software offered in Technobotnia facilities under

VAMK’s license are installed in a remote application server, a different machine

with a different hardware and probably not recognising properly the sound hard-

ware of the local machine where it is actually running.

The testing environment is built from the basis of MATLAB® with SIMULINK®

and a soundcard Realtek 6 channels ALC662. It does produce the four waves, alt-

hough not including advanced capabilities. As said, limitations in the soundcard’s

output, probably caused by having the software running in a remote machine, did

not allow to output different signal through different output channels. Other issue

is the noise appearing at the output of the soundcard signals, which is almost irrel-

evant since most of this noise has a very high bandwidth that is cut by the filters

and although they add energy to the total current, the FFT result at the given fre-

quencies is not altered.

To produce the signals, SIMULINK® is used implementing only two source block

objects, a sine wave DSP and a To Audio Device. The former requires little config-

uration, see picture Figure 21 SIMULINK® implementation, where in the Ampli-

tude section, the amplitudes may be input as an array of four variables [a b c d], the

Frequency section receives an array of the same length with the values of the fre-

quencies of interest [50 150 250 350]. The use of variables at this point will help

the task of varying them dynamically, by assigning them directly in MATLAB’s

input console or by the help of a GUI built for the same purpose. In the sample time

box the maximum allowed by the soundcard is set. The other block requires less

configuration, where device can only be set to the one found by the OS, the OS’s

primary and Speakers selection, being them all located in the remote computer and

not allowing to select the local machine’s soundcard. The length of the queue and

66

the length the waves are played in time can be set, and pressing play in the toolbar

will start generating the waves.

The amplitudes, as they are meant to play in the soundcard, are hardware dependent,

therefore one signal of a determined amplitude will have a different level using a

different soundcard requiring to be corrected to obtain the same output. The result-

ant wave is a voltage signal, therefore its output should never be higher than the

AFE limitations, in the range of ±0.5Vp. Although the ADE7880 can stand up to

±1V as a maximum transient limit, nevertheless its ADC 24bit registers cannot go

further than ±5,326,737 (from 0xAEB86F to 0x514791 nominal values) at the full-

scaled input signal of ±0.5Vp. Hence the amplitude should be monitored to avoid

AFE damages.

Figure 21 SIMULINK® implementation

67

Figure 22 MATLAB® GUI to control frequencies a, b,c and d amplitude

The GUI, seen in the previous figure, facilitates the task of modifying the ampli-

tudes by providing 4 vertical sliders and a graphical representation of the output

signal with its maximum voltage output displayed in the y-axis. The GUI allows to

power on and off the signal generation and although initially was providing the

capability to modify the fundamental frequency from 50Hz to 60Hz and fine tune

them with a horizontal slider, there is no use for them in this research.

To present the RTU’s received data, two methodologies can be used. One is a ter-

minal console window displaying the incoming information to the UART RTU

port, the same MATLAB’s computer using a UART to USB converter. The second,

another MATLAB® code, used to plot in real time the received measures as a

graph, whereas the energy carried by each frequency can be visually compared. The

first option was selected as optimal having all the data as lines of strings in the

screen.

68

Figure 23 Terminal console showing the data of a sequence of measures

4.6 PCB design

The schematics and PCB design is performed by means of Mentor Graphics soft-

ware PADS. The PCB is intended to be a portable platform, providing support to

hold the energy meter, its isolated power source and every other component re-

quired to have an ADE7880 testing board and providing a 40 pin female connector

compatible with Raspberry Pi and Renesas PMOD port, this latest requiring an ad-

ditional adapter, all in a dual layer format of 75mm x 62mm.

Presented in a dual layer format, all components are SMD with the exception of the

pin headers and high voltage input connectors. Both layers use intentionally a dif-

ferent plane, the bottom layer, where the AFE and its PSU altogether with power

related traces are placed is flooded with ground plane to allow a same reference

potential and reduce the conductive noise by reducing the ground connections im-

pedance. The top layer where all communications traces and the fast acting optoI-

solators are, is flooded with a power plane adding in this way a distributed inter-

plane capacitance between both planes and therefore better high frequency decou-

pling. Each plane is divided in two different planes to provide electrical isolation.

One part of each plane belongs to the AFE isolated powered supply side and another

to the MCU powered side. The OptoIsolators electrically divide both, AFE and

MCU, sides of the planes in both layers and therefore, the planes are physically

divided under the location of the optoIsolators and being a mirror one to each other

layer. Regardless these measurements, the PCB should be placed in an isolating

case and avoid direct contact when in use due to the risk of shock. An EMI test was

69

not executed as this is a standalone device for testing purposes and bypass capaci-

tors are placed regarding device manufacturer recommendations.

Figure 24 AFE connections schematic

Regarding the AFE connections, a number of issues have to be addressed. One has

to account that the ADE7880 requires an external 16.384MHz crystal to set the

clock of its DSP. To save space and keep it and its load capacitors near, this is

placed in the bottom layer under the centre of the ADE7880 socket, having in this

manner, a reduced path. The power mode pins (PM0 and PM1) are internally pulled,

and therefore when setting each one of them to a low state by an MCU IO pin,

current will be sank to ground, for that reason it is recommended use and enable

pins with pull down resistors, although the current that ADE7880 IO draw is as low

as 80nA. This is not a problem with many modern MCUs such as RX63N that use

tristate IO pins, sinking out current to ground when low or sourcing it when high,

having additional pull up and down resistors. This acquires relevance when booting

up the energy meter since this pins have to be kept in high state during this process

and before any communication can be established. In case of a simultaneous boot

up, MCU has to grant that IO can be kept high or in high impedance, state not

sinking current to ground during the ADE7880 power up time, otherwise unpredict-

able AFE behaviour may occur. If this condition cannot be granted, one may trigger

70

the ADE7880 hardware reset after MCU boot up by setting reset pin (ADE_RE-

SET) to low at least 10µs. Said this, having this short period for a reset signal is

very recommendable to pull up this pin up and filter any noise that may trigger a

fake reset signal by adding additional circuitry, in Figure 24 AFE connections sche-

matic, resistor R24 is placed to pull up the pin, and capacitor C29 as filter. Addi-

tionally, the socket J8 for ADE_CF1, ADE_CF2 and ADE_CF3 is placed as a pulse

output, since the power measures may be converted to frequency and measured

from these outputs, and helping the calibration process. Additionally AFE IO volt-

age high level is 3.3 volts, the same as RX63N and Raspberry Pi, for other MCUs

with other voltage levels, they should be translated to this level to avoid IO hard-

ware damage.

Figure 25 Fast acting optoIsolators, sample from Isolation circuits schematics

The four channels optoIsolators have a bandwidth of 25MHz while the selected SPI

transmission speed is set to 2MHz although the maximum allowed by the ADE7880

is 2.5MHz. At this speed there were neither detected communications loss nor trans-

mission errors. Figure 25 Fast acting optoIsolators, represents the schematics of one

of the three in use, where both sides are clearly identified with their own voltages

VCC1 and VCC2 and ground levels. Two of these Isolators are bidirectional, hav-

ing three and one channel in each direction, selected due to the characteristics of

the SPI protocol having signal select (SS), MOSI and clock as MCU outputs and

MISO as input, as well as other input and output signals.

71

The 40 pin header is compatible with the new Raspberry Pi 2 and older Raspberry

Pi 2 B, being always backwards compatible with the help of an adapter, needed as

well to connect to the YRDKRX63N board.

The PCB board provides a standard female micro-usb type B jack connector as in-

put power, and requires only one external power supply of 5V, of at least 500mA.

The integrated voltage regulator provides an isolated GND and an output of 3.3V

up to 300mA although the AFE requires only 28mA working in normal mode.

Traces are of two different widths, power related traces width is 0.500mm and all

other traces are 0.250mm. Clearance rules allow a minimum separation of

0.250mm, the maximum angle for the traces is 45 degrees and pads include thermals

where required.

Figure 26 PCB Top layer

In Figure 26 PCB Top layer, the separated power planes are easily seen, with the

MCU power plane at the left and the bigger ADE7880 power plane to the right side,

separated under the fast acting optoIsolators. The ADE7880 comes in a 40-lead lead

frame chip scale package (LFCSP), and the PCB offers a 0.5mm Pitch 40 Pin DIP

72

SMD socket to mount, with the ADE7880 previously soldered to a 0.5mm Pitch 40

Pin (20x2) QFP/QFN to DIP adapter that takes the most of the space but provides

flexibility, easing the task of replacing an energy meter. This socket is pin to pin

compatible with other energy meters, ADE7854, ADE7858, ADE7868 and

ADE7878 from the same manufacturer.

73

5 ANALYSIS AND RESULTS

Measuring the effectiveness of the implementation is achieved by several processes.

The goal is to measure the SPI speed and signal quality, the single measure time,

the grouped measured time and the total window frame time, from the event is trig-

gered to the moment the last byte of information is placed in the output UART

register buffer. The testing environment generated wave is seen as well.

5.1 ADE7880 driver and UART driver performance

 The SPI transmission is seen with the help of the digital analyser of a DSOX2012A

oscilloscope where the speed of a single transmission, only one register reading

from the AFE, and a group of them, seven registers in total, which are the total

current, three harmonics and three phases current, are shown. A single register read-

ing always involve three bytes of overhead and two or four bytes of payload de-

pending on the targeted register. Measurements are stored in four bytes registers so

a single SPI transmission always requires 7 bytes. The payload is always what the

slave device places in the MISO line, in this case in the next clock cycle after the

last bit of the MOSI has shifted in. the MOSI line carries the overhead bytes, con-

sisting of one byte with the type of operation, read or write, and two bytes with the

target register address. The next scope shows this sequence, where D0, in red, is the

Channel Select line which enables the slave device, the AFE, SPI transmission, and

is active low. Above this, D1 shows the SPI transmission clock, set to 2MHz, where

from each bit can be counted in each byte. D2 is the MOSI line, and D3 is the MISO.

74

Figure 27 Single SPI reading scope by DSOX2012A

The transmission endianness is MSB first, one may read the transmission starting

from left to the right as a human reads a number. As the transmission starts by CS

shifting from high lo low, followed by the SCLK signal and the first MOSI byte,

we start analysing the MOSI line, D2. A look to D1, the SCLK signal one may count

the 7 bytes easily thanks to the delay introduced between each byte. The master sets

data on the MOSI line starting with the first high-to-low transition of SCLK, and

the SPI of the ADE7880 samples data on the low-to-high transitions of SCLK. The

first byte in D2, from the left to the right, after CS goes from high to low, indicates

the operation type, bit 0, which is a 1, means a read operation, as the datasheet

specifies, 1 for read operations and 0 for writing. The total bit sequence is

01110001b which corresponds to 0x71, this is because the device ID is assigned to

be 0x70 in case of having multiple AFE and using I2C protocol. Notice that it is

recommended to avoid using this combination, upper seven bits as 0111000b, to

avoid confusion when not using I2C protocol, although it is not relevant while only

using SPI in 4 wire mode where CS pin exclusively targets one destination. The

75

next two bytes are the target register and they content is 01000011b and 11000000b

which in hexadecimal notation is 0x43C0, and, as the datasheet indicates, refers to

the AIRMS memory register, referring to phase A, current RMS value.

Immediately after the last address bit has shifted into the AFE, the MISO line starts

transmitting back to the MCU when the next SCLK high-to-low transition occurs.

While the first two bytes contain only 0, the next two are 00000101b and

00000110b representing 0x00000506, which in decimal notation represents the

number 1286. The datasheet, in the registers list, specifies that this register is a 24-

bit signed or unsigned register that is transmitted as a 32-bit word with four or eight

MSBs, respectively, padded with 0s. And the Current RMS Calculation section

specifies that this is a 24-bit signed registers accessed as 32-bit registers with the

eight MSBs padded with 0s. The same section specifies that at the full-scale input

signal of 0.5V, the ADCs produce an output code of approximately ±5,326,737,

where the equivalent RMS is 3,766,572 (0x39792C) when the integrator is not in

use and the gains are set to 0. Using the proportionality equation throws a result of

171µV at the AFE input which now have to be converted to the real RMS current

by knowing the properties of the CT in use to interface the power line, 30A input,

1V output giving a result of 5.13mA flowing in the power line at the moment of the

measurement.

In Figure 27 Single SPI reading scope by DSOX2012A one may see that the time

for the SPI transmission required was, approximately 39µs, almost 8 divisions at

5µs/div. While the SPI clock is 2MHz and theoretically, 7 bytes at this speed, should

be transferred in 28µs, what we see is the delay caused for the reload of the SPI

registers whenever a byte is shifted in. This process time, if critical, may be reduced

by using the whole SPI register space, where RX63N offers 4 long word registers

of 32 bits, instead of shifting byte by byte, which is the simplest implementation

but not the best in terms of performance.

One complete single cycle set of SPI requests, measuring the currents and harmon-

ics, seven values once, can be seen in the next scope, where the total time for this

cycle can be calculated as approximately 290µs, almost 6 divisions at 50µs/div.

76

Although compressed in the picture, the clock signal D1 follows the same byte pat-

tern, showing the MOSI and MISO bytes of each measure. The signal in CS D0

shows the transitions from high to low whenever a new AFE register is retrieved.

The slight delay that can be seen in between each low period is the transition time

that the MCU spends in returning from the call to the ADE7880 driver to obtain a

value to the next call to obtain another value, which is a fraction of each time divi-

sion.

Figure 28 Grouped SPI readings in one cycle, scope by DSOX2012A

This scope Figure 28 Grouped SPI readings in one cycle, scope by

DSOX2012Amay determine the effectivity of the implemented ADE7880 driver

where the time that requires to access to a register, return and access again to an-

other register in, both read, operations take less than 10µs.

To evaluate the performance of the communications to a RTU, the transmission

buffer and UART communications, a timer counter is enabled to measure different

actions’ time of execution. By one hand, a first scope, let’s call it ‘t1’, where the

77

performance of the driver is measured by counting the time of one grouped SPI

transmission, this serves to confirm, by another method, what so far was seen in

Figure 27 Single SPI reading scope by DSOX2012A. Another scope, ‘t2’, is set to

measure the time of the same grouped transmission until the UART driver returns

after placing the last byte in the transmissions buffer, measuring in this way the

time that takes to measure and make the information available in a RTU. A last

scope, ‘t3’, is set from the event detection until the UART driver call returns after

placing the last byte in the transmission buffer. This means the total time of the ten

grouped transmissions, from the event triggering action, to the moment the last re-

quested value of the last measurement cycle is placed in the output transmission

buffer is shown.

The conditions are, for each test case ‘t’, as follows. Measuring ‘t1’, the fifth meas-

urements cycle out of ten was randomly chosen. The time counter starts measuring

when the measurements cycle function is called and ends after the last call to the

ADE7880 driver has returned. To measure ‘t2’, the first cycle, right after an event

is detected, is chosen to avoid any data from previous measurements in the UART

transmission buffer that could have an influence in its performance. The third case,

‘t3’ measures from the moment an event is detected until the call to transmit

measures to RTU function has returned. The LCD shows the results although the

write operation is performed at the end of the whole process to avoid computing its

processing time.

The additional MCU’s 16bit timer is configured as an up counter using the periph-

eral clock (PCLK 48MHz) prescaled by 8, giving a precision of 1/6 µs per clock

period, counting up to 60000 clock cycles, triggering an interrupt every 10ms that,

when serviced, adds one to the global variable that holds the number of timer inter-

rupts counter. The values are shown in Figure 29 LCD showing the where ‘t1’, ‘t2’

and ‘t3’ match the scopes described above and their values are execution time in µs

of each scope.

78

Figure 29 LCD showing the execution times of cases ‘t1’, ‘t2’ and ‘t3’

The first line displaying ‘t1= 295.5µs’ confirms the oscilloscope’s data, having ad-

ditional µs, that may come from the extra processing clock cycles required by the

calculations. Being ‘t2=574.0µs’ the most significant figure, showing that the time

of 0.574ms to serve the seven measured values to an RTU. In this implementation

means that there are 9.4ms available to evaluate the data and execute the desired

action before the next avalanche of measurements is executed and transferred. The

next row shows ‘t3=99210.3µs’ scope displaying the total time in µs of ten cycles

of measuring and transmitting, corresponding to the chosen window frame of

100ms, measuring 10 times starting from time 0, plus the transmission time of all

the measures and extra formatting characters. Although the requirements specify an

available frame as long as 150ms and to effectively measure the harmonics at least

once, this solution provides with ten times more information in 2/3 of the time. If

only one measure is accounted, the time is reduced by 1/100. Despite complying

with the requirements, the gap of 0.2ms between the data is gathered by SPI in

approximately 0.3ms and served to the RTU in 0.5ms may be reduced significantly

as later is explained in further improvements. The analysis of the data over 200

events offered the next statistical results:

Sample size n = 200

Frequency table for t1:

𝑥𝑘 𝑓𝑘 𝑓𝑘

79

295.5 200 1

Frequency table for t2:

𝑥𝑙 𝑓𝑙 𝑓𝑙

574.0 200 1

Frequency table for t3:

𝑥𝑚 𝑓𝑚 𝑓𝑚

99210.3 1 0.005

98338.8 190 0.95

98338.3 1 0.005

97150.7 1 0.005

97099.3 2 0.01

97098.7 3 0.015

97098.2 1 0.005

97096.5 1 0.005

Where

𝑥𝑧 is the list of observed values

𝑓𝑧 is the number of times the value is observed

𝑓𝑧 =
𝑓𝑚

𝑛
 is the relative frequency

The mean value for t1:

𝜇(𝑡1) = ∑ 𝑓𝑘 ∙ 𝑥𝑘
𝑘

= 1 ∙ 295.5 = 295.5𝑚𝑠

The mean value for t2:

𝜇(𝑡2) = ∑ 𝑓𝑙 ∙ 𝑥𝑙
𝑙

= 1 ∙ 574.0 = 574.0𝑚𝑠

The mean value for t3:

80

𝜇(𝑡3) = ∑ 𝑓𝑚 ∙ 𝑥𝑚
𝑚

= (0.005 ∙ 99210.3) + (0.95 ∙ 98338.8) + (0.005 ∙ 98338.3)
+ (0.005 ∙ 97150.7) + (0.01 ∙ 97099.3) + (0.015 ∙ 97098.7)
+ (0.005 ∙ 97098.2) + (0.005 ∙ 97096.5) = 98293.8035𝑚𝑠

 The variance for t1:

𝑣𝑎𝑟(𝑡1) = ∑ 𝑓𝑘 ∙ (𝑥𝑘 − µ(𝑡1))2

𝑘
= 1 ∙ (295.5 − 295.5)2 = 0

The variance for t2:

𝑣𝑎𝑟(𝑡2) = ∑ 𝑓𝑙 ∙ (𝑥𝑙 − µ(𝑡2))2

𝑙
= 0

The variance for t3:

𝑣𝑎𝑟(𝑡3) = ∑ 𝑓𝑚 ∙ (𝑥𝑚 − µ(𝑡3))2

𝑚

= (0.005 ∙ (99210.3 − 98293.8035)2)

+ (0.95 ∙ (98338.8−98293.8035)2)

+ (0.005 ∙ (98338.3−98293.8035)2)

+ (0.005 ∙ (97150.7−98293.8035)2)

+ (0.01 ∙ (97099.3−98293.8035)2)

+ (0.015 ∙ (97098.7−98293.8035)2)

+ (0.005 ∙ (97098.2−98293.8035)2)

+ (0.005 ∙ (97096.5−98293.8035)2) = 62674.096

Standard deviation of t1:

𝛿(𝑡1) = √𝑣𝑎𝑟(𝑡1) = 0

Standard deviation of t2:

𝛿(𝑡2) = √𝑣𝑎𝑟(𝑡2) = 0

Standard deviation of t3:

81

𝛿(𝑡3) = √𝑣𝑎𝑟(𝑡3) = 250.348𝑚𝑠

This information reveals that the SPI transfers use exactly the same amount of CPU

clock cycles for each transmission. This is the expected result due to the fact that

this operation is mostly performed by the SPI peripheral and its memory registers,

involving little CPU load. By the other hand reveals that whenever the UART trans-

mission is involved to transmit a single set of measurements, performs as good as

the SPI peripheral. Although when several sets of measurements are performed,

case ‘t3’, making higher use of the UART transmission buffer, the performance is

slightly reduced, increasing the total time in 8ms, from the expected 90.5ms (the

tenth and last measurements cycle is triggered after 90ms of the event, expecting to

add no more than 0.5ms of a single transmission) up to 98.3ms.

To confirm the delay added by the UART transmission buffer, the same test is per-

formed but ‘t1’ case is executed in the second cycle of measurements execution,

after 10ms of the event, and ‘t2’ case is performed during the fifth cycle, after 40ms

of the event. The result seen in Figure 30 LCD, execution times when ‘t2’ incurs in

delay shows the UART transmission buffer as the responsible of the delay, requir-

ing almost 1ms more in the same operation.

Figure 30 LCD, execution times when ‘t2’ incurs in delay

To a further improvement, the ADC may trigger an interrupt whenever a reading is

made available, instead of reading in polling mode. Its resultant value evaluated

82

inside the interrupt which deactivates itself in case of the detection of an event. As

long as the ADC measures will not be needed again upon the end of the measure-

ments frame, when this interrupt has to be enabled again. It is recommended to keep

the ADC running to avoid its own registers settling time each time it is started. This

interrupt has to relinquish the control to the MCU’s process. UART transmission is

interrupt driven as well and should have a higher priority, allowing the UART trans-

mission buffer to progress when required. Furthermore one may use the available

DMA channels to transfer the measured data directly into the UART transmission

buffer, releasing the processor cycles required to perform the operation and speed-

ing up the process. This is not the case and these optimizations are not implemented

being the processing time fast enough to the purpose of this research.

5.2 Testing environment, ADE7880 driver and UART driver accuracy

A set of signals are produced and measured by the energy meter, its data transmitted

and displayed in the terminal console, while an oscilloscope, connected to the

soundcard output gives the plot of the wave and shows the resultant FFT in the same

scope.

The test conditions are, in all the cases, the mentioned signals interfaced to the INP

and INN AFE’s input pins and the same signal to the VAP and VAN input pins to

serve as the base signal for the DSP. Nothing is connected to the phases’ input.

Console scopes show ‘idx’ as the index of the of each set of measurements occur-

ring every 10ms, followed by the seven measured values, IN TOTAL as neutral line

total current, HX, HY and HZ RMS as the RMS values of the three harmonics indexes

and Ph_A, Ph_B and Ph_C IRMS as the RMS current of the three phases, these latest

are not connected for this test as only current and harmonics over the neutral are

required. Oscilloscope scopes show the analog signal in probe no.1 in a yellow trace

and its related FFT in magenta colour.

The test case shows the result of a measurement where the amplitudes of the fre-

quencies a, b, c and d are set to the same dimensionless value of 0.5. This evidences

the necessity of amplitudes calibration by showing slightly different results, again,

probably due to hardware limitations, in this case, in the lower frequencies range as

83

these present a slight attenuation. The selected configuration simulates a total RMS

current of 7.73 A, where the 3rd harmonic has a value of 0.55322, the 5th 0.74390

and the seventh 0.75348 as seen in Figure 31 Currents when input of a, b, c and d

frequencies amplitude is 0.5.

Figure 31 Currents when input of a, b, c and d frequencies amplitude is 0.5

The next Figure 32 Scope of the test signal, four frequencies with an amplitude of

0.5 shows the plot of the signal and gives the values of the produced voltage RMS

that simulated the current flowing through a Rogovski Coil or a current transformer.

The collage made at the left of the picture shows two columns. The left one shows

the data from the cursors. Cursors X1-Y1 are placed over the fundamental at 50Hz

and X2-Y2 over HZ at 350Hz, shows ∆X of 300Hz as expected between both fre-

quencies. ∆Y reveals the attenuation of 4.375dB at the lower frequency with respect

to the higher. The right column shows measures instead of cursors belonging to the

same scope, where Freq(1) proves that the frequencies are correctly generated with

a fundamental at 50Hz. Regarding the amplitudes, the FFT shows that the value of

the highest frequency Max(M) is 17.4dBv.

84

Figure 32 Scope of the test signal, four frequencies with an amplitude of 0.5

As there is no calibration performed during this test, the analysis is performed tak-

ing the total current as the reference for the value of the harmonics.

Conversion of total current to RMS:

7.733𝐴

√2
= 5.468𝐴𝑅𝑀𝑆

Conversion of Max(M) in dBv to a scalar magnitude:

20𝑙𝑜𝑔10(𝐺) = −17.4𝑑𝐵𝑣

𝐺 = 10
−17.4

20 = 0.135

Current RMS of the 7th harmonic component at 350Hz:

5.468𝑥0.135 = 0.738𝐴𝑟𝑚𝑠

Current at 350Hz as the 7th harmonic shown by the energy meter is 0.753Arms and

analysis of the signal produced by the testing environment without calibration

shows 0.738Arms. The error found is the 2% while the datasheet confirms that the

maximum error is of 1% in a dynamic range of 1:1000. Although MATLAB is

85

producing the expected result, the linked soundcard hardware was not the ideal en-

vironment, having the software executed in a remote machine with a different hard-

ware adding a delay to the response time. Moreover it is difficult to determine if

errors are introduced by one or another as in the case of the frequencies, the span

more than 50Hz having a high Q-factor, meaning that the frequency range of ±50Hz

of the centre frequency has elevated energy when what it is needed is higher energy

concentration in the frequencies of interest, this may be due to a probable output

bandwidth limitation in the lower frequencies of the audio range of 20Hz to 20KHz.

However, the use of a software solution to implement the testing environment pro-

vides portability and a quick adaptability to new test conditions.

Figure 33 Not filtered testing signal

The scope above shows the output of the testing environment signal, only funda-

mental is generated, before the low pass antialiasing filter and in normal resolution

acquisition mode. The noise is evident, and part of the energy is carried by it. The

FFT shows the same property of a poor Q-factor as another cause of energy loss in

the neighbour frequencies.

86

5.3 A word about MCU and ADE7880 AFE vs. MCU ADCs performance

The use of the ADE7880 offers the advantages already seen but at the expense of a

higher cost. Moreover, regarding to frequency component analysis, its output is

limited to the fundamental and its multiples due to the use of FFT in its DSP com-

putational block. The next lines are intended to give a brief theoretical comparison

of an AFE by means of an energy meter versus a MCU to directly interface the

power lines.

The MCU interfacing the power lines through CTs and voltage dividers by means

of its embedded ADCs represents a cheaper solution, and, when requiring to analyse

specific frequencies other than harmonics of 45Hz-65HZ, the energy meter is not

an option anymore. Another advantage is the speed at the data is served, interfacing

the internal ADCs with a DMA channel provides much faster transmission speed

than the energy meter SPI. On the other hand, other requirements have to be ac-

counted in this option. The selected MCU embedded ADCs have to comply with

the prerequisites for this task, precision, accuracy and speed, because if one has to

interface external dedicated ADCs, the cost raises, been higher that a single energy

meter. When the MCU is selected, the required front end circuitry has to be de-

signed accordingly. The development process may be longer since more mathemat-

ical calculations are involved having a higher risk of error and buggy code.

Regarding to the processing time, most of the actual MCU come with an integrated

DSP and public software libraries which will speed up the process, otherwise one

may implement the analysis based in the theory presented in chapter 2.3 of this

research. At this point, using an FFT library, which they usually implement an op-

timized version of the known algorithms, like Cooley and Turkey’s algorithm, one

is still limited by the number of points in the transform which is of the power of

two number that defines the number indexes, and the frequencies under scope may

lay in these indexes. The other approach, whenever only a few values and not a full

FFT set of magnitudes is needed, and/or a frequency other than the harmonics is

involved, is to find suitable sampling frequency, decide the indexes number, one

may construct a set of constant cosine lookup tables (only the real part is needed),

87

and, by means of a timer triggering an interrupt at this given fundamental frequency,

keep track of the index that, whenever it matches an index multiple of a frequency

under scope, implement an algorithm that performs the Discrete Fourier Transform

calculation shown in the theory chapter 2.4.1, to the value given by the ADC and

obtain the magnitude of the frequency at that index.

According to RX63N, and the RX DSP library documentation, its FFT algorithm

may perform a complete Discrete Fourier Transform of real-valued input array in

151110 clock cycles without error checking, and 175483 with error checking

(RENESAS, n.d.). Analysing the worst scenario, from the detection of an event

until a value is stored into the MCU memory, the time required, taking 50Hz as the

base frequency, is 20ms to sample the data and another 1.83ms required by the DSP

library with the MCU working at 96MHz, its maximum clock frequency. At this

point 21.83ms are spent in the process. The process of data retrieval and storage

may take additional CPU clock cycles that are not evaluated but accounting them

by rounding up to 22ms. Whereas this is still in the range of 150ms provided by the

specifications, representing a valid solution. Additional optimizations may be ap-

plied as the signal’s fundamental is a periodic and odd function, the second half of

the period is the same, but inverted, as the first half, therefore, discarding it, the

sampling time may substantially be reduced to the half, 10ms, making a transform

in 12ms.

As stated, this approach is theoretical and not a definite statement, no test was prac-

ticed, only tries to show a preview of a comparison of interfacing the power lines

with a MCU interfacing an energy meter dedicated DSP versus directly with MCU.

The comparison shows that this solution is valid for the purpose and at a lower

cost1. If there exists a need to evaluate other frequencies than harmonics, the former

is not a valid option, being this last, the choice. Although the drawbacks have to be

accounted and the use of a DSP library has a learning curve. Moreover, there is a

1 No research was procured,

88

greater need of knowing the theory or mathematical background behind it, further-

more, there is additional work to select the proper MCU and ADCs to keep the

required accuracy and precision and other signal filtering study is required to

properly interface these elements.

89

6 CONCLUSION

This paper has shown a method to solve the problem presented by VASPEC Oy by

interfacing a power line with an ADE7880 energy meter as a front end and a

Renesas RX63N microcontroller to retrieve and store in a short term the phase and

neutral currents of the power lines fundamental (50Hz) and their 3rd, 5th and 7th

harmonic component values. The selected microcontroller facilitates the communi-

cations with the ADE7880 by using a SPI channel at 2Mbps and to a remote termi-

nal unit by means of UART channel at 115200Kbps.

It is proved that the selected approach can effectively and precisely measure the

fundamental and harmonics frequencies altogether with each phase RMS current

and make the information available for processing in a RTU in 574 µs and repeat

the measures every half a fundamental cycle until a selected timeframe is consumed

or a counter measure action taken. However the measuring process can be dynam-

ically adapted, for example until the tamper situation is finished or handled. The

frequencies are generated by the testing environment provided with MATLAB®

and SIMULINK®, and the RTU receives and displays the measurements triggered

by the testing frequencies total current surpassing the selected threshold voltage.

Although the use of Microsoft remote application server and MATLAB® in a re-

mote session where both have a different hardware configuration is not recommend-

able, the related amplitudes require to be reconfigured and calibrated for each dif-

ferent hardware.

Other implantations were studied and, theoretically proved as effective as the one

shown here, where the front end in use is provided by the same microcontroller, yet

the solid and precise ADE7880 energy meter avoids further mathematical calcula-

tions simplifying the code and saving valuable processing time. However, the lim-

itations of the ADE7880 regarding the neutral line harmonics engine and the use

FFT to perform the harmonics analysis, represent a drawback whenever, i.e. other

frequencies than multiples of the fundamental are involved, in which case, if the

processing time is not an impediment, and MCU with adequate integrated ADCs is

90

a valid option, having a reduced cost while introducing a slightly longer developing

time.

A further recommended research may be conducted by introducing an analysis of

the phases and neutral line phase shifting, where the drift to capacitive or inductive

shift offers richer information of the fault and the faulty line, helping to determine

the origin and cause of the event.

91

REFERENCES

Analog Devices. (2014). ADE7880 Datasheet Rev. C. Polyphase Multifunction

Energy Metering IC with harmonic monitoring.

Banks, K. (2002). The Goertzel Algorithm. Retrieved from embedded.com

Blaza, D., & Wilson, R. (2011). Embedded Market Study. Retrieved from

Electronics Embedded Ecosystem: Embedded.com

Dobry, B. K. (1993). Programming in C. Hawaii: wiliki.eng.hawaii.edu .

Imrs, P. (2006). TRANSIENT BASED EARTH FAULT LOCATION IN . Espoo:

Doctoral Dissertation.

Mäkelä, J. (2013). Fourier series. Jarmo Mäkelä Lectures in Advanced Analysis.

Mäkinen, S. (2014). Toroidal Coil in Measuring Alternating Current at a Distance.

Retrieved from Scientific Research Publishing: http://www.scirp.org

Mani, H. (2013). Analog Devices Products. Retrieved from Application note AN-

639 rev.A: www.analog.com

Maxim Integrated. (2003, 01 31). MaximIntegrated. Retrieved from Demystifying

Delta-Sigma ADCs: http://www.maximintegrated.com/en/app-

notes/index.mvp/id/1870

Moulin, E. (2003). Measuring Harmonic energy with a solid-state energy meter.

Retrieved from METERING INTERNATIONAL issue 3-2003:

www.metering.com

Renesas Electronics. (2014). RX63N Group User's Hardwar Manual (Rev.1.80).

Retrieved from RENESAS 32-Bit MCU RX Family / RX600 series.

RENESAS. (n.d.). RX DSP Library version 3.0 (CCRX) for High-performance

Embedded Workshop (Application note R01AN1800ES0100 Rev.1.00).

92

Smith, S. W. (1999). The scientist and enginee's guide to Digital Signal Processing.

California: California Technical Publishing.

ToolsPractice, M. E. (2010). IoT & Embedded Software Development. Retrieved

from What languages do you use to develop software?:

http://blog.vdcresearch.com/embedded_sw/2010/09/what-languages-do-

you-use-to-develop-software.html

William Koon, Analog Devices, Inc. (2001, 04 12). Current sensing for energy

metering. Retrieved from analog.com media:

http://www.analog.com/media/en/technical-documentation/technical-

articles/16174506155607IIC_Paper.pdf

Yarborough, B. (2012, 01 06). Components and Methods for Current Measurement.

Retrieved from Power Electronics: http://powerelectronics.com/power-

electronics-systems/components-and-methods-current-measurement

93

APPENDICES

Appendix 1: Code structure and naming convention

94

/r_ade7880 (1)

|_r_ade7880_config.h (2)

|_/src (3)

 |_ade_driver.h (4)

 |_ /ade7880 (5)

 |_ade7880_registers (6)

 |_ade7880_configuration (7)

 |_ade_spi_protocol (8)

 |_ade_src_cmd_handler (9)

 |_r_ade7880_drv (10)

 |_r_ade_gpio (11)

1. Folder containing middleware, driver and HAL

2. Renesas SPI to ADE Hook configuration file: This file provides different

definitions to serve as ADE7880 general standard configuration values for

its two main different working modes, as an energy meter or as a harmonics

meter. To understand what these values refer to, one should cross-check

them with the datasheet. Any change here will directly affect to any

ADE7880 measurement, for that reason is highly recommended to read the

document before manipulating the values. The values here are standard to

measure currents with a C.T. and one may use them as they are but, to a

proper accuracy and performance, the device should be calibrated as men-

tioned in the datasheet.

3. Driver’s source folder

4. Provides access to the driver from outside. To implement this driver in an

application granting the access to the public functions, one should include

the file "ade7880_driver.h" into the application requiring of it.

5. Driver and HAL folder

6. HAL definitions

7. Specific ADE7880 IC configuration definitions

8. Builds the transmission and Reception buffers and communicates via SPI

by means of the function pointers received from the middleware layer

9. Provides public functions to interact with the IC.

10. Middleware driver layer to allow ADE7880 access to the SPI driver by

means of callback functions passed as pointers to the driver

11. Middleware driver layer to allow ADE7880 driver access the GPIO pins

95

Appendix 2: Data container

96

Appendix 3: Recommended approach for managing Harmonic Calculations with

ADE7880

The recommended approach to manage the ADE7880 harmonic calculations is the

following:

1. Follow boot up procedure and SPI selected as communications protocol

2. Set up Bit 2 (CF2DIS) in the CONFIG register. Set CF2DIS bit to 1 to use

the CF2/HREADY pin to signal when the harmonic calculations have set-

tled and are updated. The high to low transition of HREADY signal indi-

cates when to read the harmonic registers. Use the burst reading mode to

read the harmonic registers as it is the most efficient way to read them.

This is done in the following way (1): -Set bit 2 of 'CONFIG' register, ad-

dress 0xE618, as 1 so CONFIG = 0x0006 (CONFIG register is 16bits) -

Write the register at least twice (in case you write the register individually,

if sequentially, write twice only the last). -Read the last written register to

check that it was a successful write.

3. Choose the harmonics to be monitored by setting HX, HY and HZ:

a. Write 'HX' 0xEA08 (8bits) with the desired harmonic index (i.e. 1

for Fundamental)

b. Write 'HY' 0xEA09 (8bits) as i.e. 5 to measure the 5th harmonic.

c. Write 'HZ' 0xEA0A (8bits) as 7, 7th harmonic.

4. Select all the HCONFIG register bits.

5. Write 'HCONFIG' 0xE900 (16bit), i.e. with update rate of 1ms (HCONFIG

= 0x0047)

6. Initialize the gain registers used in the calculations. Leave the offset regis-

ters to 0.

7. Write 'GAIN' 0xE60F 16bits register initially as 0.

Additionally, selecting the desired harmonics at each index is done here. One

should pay attention that the EM Absolute Maximum Number of Harmonic indexes

is 63 (actually 2800 / Fundamental line frequency). This is due to its properties in

97

which its Measurement Bandwidth (-3 dB) is 3.3KHz. Read the EM data-sheet for

more information.

8. Select phase or neutral line to monitor. Options: NEUTRAL_LINE,

PHASE_A, PHASE_B or PHASE_C.

9. Number of samples per reading: From one single reading to as many as de-

sired and the average of the total readings is calculated in the following way:

(sum up all the readings) / (number of readings)

10. Set CF2DIS bit in CONFIG to 1 to use CF2/HREADY pin to wait for a new

calculation to be completed and its register has settle for HRCFG &

HSTIME.

11. Set HRCFG bit in HCONFIG: 0(Default) = waits HSTIME to settle and

triggers HREADY : 1 = Triggers HREADY immediately

12. Set HSTIME bits in HCONFIG: (Default) 01 = 750ms of settle time: 500ms

(00): 1 sec (10): 1250 ms (11).

13. Set HRATE bits in HCONFIG:(Default) 000 = the update rate of the har-

monic registers. 000 = 8kHz

14. Set ACTPHSEL bits in HCONFIG: (Default = 00 phase A) to select the

phase voltage used as time base for harmonic calculations. The selected

phase has to be connected to its input pins.

Regarding to the Integrator, in case of using a di/dt current sensor, the EM has its

own integrator which can be activated.

15. If Rogowski coils are used, enable the digital integrators in the phase and

neutral currents: Bit 0 (INTEN) set to 1 in the CONFIG register. Initialize

the DICOEFF register to 0xFF8000 before setting the INTEN bit in the

CONFIG register.

16. Start the DSP by setting Run register to 1.

17. Read the registers in which the harmonic information is stored using the

burst or regular reading mode at high to low transitions of CF2/HREADY

pin.

98

18. CF2/HREADY pin can be programmed as an interrupt (read Datasheet Con-

figuring Harmonic Calculations Update rate p.63-64) and its value is stored

and can be read in 'STATUS0' register 0xE502 32bits.

19. For neutral line monitoring read to 'HXIRMS' 0xE889 (32bits), 'HYIRMS'

0xE891 (32bits) and 'HZIRMS' 0xE899 (32bits) (before proceeding with a

reading one must follow the procedure to initialize and turn on the

ADE7880 DSP)

99

Appendix 4: SPI driver access from ADE7880 driver

100

Appendix 5: Schematics

ADE7880 and connector socket

101

OptoIsolators

102

Appendix 6: PCB layout and silkscreens (real size 62.5mm x 7.45mm)

Figure 35 PCB Top layer Figure 34 PCB Bottom layer

Figure 36 Silkscreen top layer Figure 37 Silkscreen bottom layer

103

Appendix 7: Soundcard Datasheet

