

Petrik Loukola

REMOTE CONTROLLED CAR HEATER

USING A RASPBERRY PI

Technology & Communication

2015

FOREWORD

This thesis was made in 2015 at Vaasa University of Applied Sciences.

I thank my supervisor Mr. Smail Menani for support and advice. Thanks for Mr.

Jukka Matila and Mr. Ari Urpiola who helped in the technical field and also

thanks to my school mates Joakim Mattson and Sam Harry Szavar by giving great

advice. The schedule to make this project was very tight and without help from

the mentioned people this project would have been hard to finish in time.

Petrik Loukola

24 April 2015

5

VAASAN AMMATTIKORKEAKOULU

Tietotekniikan koulutusohjelma

TIIVISTELMÄ

Tekijä Petrik Loukola

Opinnäytetyön nimi Auton lämmittimien etäojhaus Raspberry Pi:llä

Vuosi 2015

Kieli Englanti

Sivumäärä 51 + 10 liitettä

Ohjaaja Smail Menani

Tämän opinnäytetyön tavoite oli suunnitella ja toteuttaa tegnologia, jolla voidaan

etäohjata auton moottori- ja sisätilanlämmittiä ja valvoa auton lämpötilaa

verkkoselaimen avulla Wi-Fi verkossa.

Idea tähän työhön tuli Suomen kylmästä ilmastosta. Suomessa talvet voivat olla

kylmiä ja, jos autoa aikoo käyttää, on suositeltavaa, että auton moottori ja sisätila

esilämmitetään ennen ajoa. Esilämmittäminen tekee ajamisesta turvallisempaa,

auto tuottaa vähemmän päästöjä, auton moottorin kesto pitenee ja auto myös

kuluttaa vähemnmän.

Tämän työn on tarkoitus helpottaa käyttäjiä auton esilämmittämisessä ilman, että

käyttäjän tarvitsee mennä joka kerta ulos kun auto esilämmitystä tarvitsee.

Tässä työssä käytetään Raspberry Pi tietokonetta, itse valmistamaa piirikorttia,

Defa PlugIn relettä ja DS18B20 lämpötila-anturia.

Tämän työn tavoitteet saavutettiin. Auton lämmittimien ohjaus ja lämpötila

tarkkailu etänä toimi kuten oli tarkoituskin.

Keywords Raspberry Pi, rele, Wi-Fi, etäohjaus, lämpötila

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Tietotekniikan koulutusohjelma

ABSTRACT

Author Petrik Loukola

Title Remote controlled car heater using a Raspberry Pi

Year 2015

Language English

Pages 51 + 10 Appendices

Name of Supervisor Smail Menani

In this thesis, the goal was to design and implement a technology with which the

user can control the car heaters and monitor the car temperature via Wi-Fi

network and web browser.

The idea for this project came from the Finnish cold climate. Winters in Finland

can be very cold and if the car owners want to drive their cars, it is recommended

to preheat the car engine and interior before driving the car. This will make

driving safer, the car will make less pollution, better for the engines lifetime, and

better for the gas consumption.

The benefit of this project is to help the user to set the car heaters on and off easier

from home without going out every time when the car needs heating.

This system was made by using Raspberry Pi computer, self-made PCB, Defa

PlugIn relay and DS18B20 thermometer.

The goals of this project were overall achieved. Controlling the car heaters

remotely and monitoring the temperature with web browser was working as

expected.

Keywords Raspberry Pi, relay, Wi-Fi, remote control, temperature

7

CONTENTS

TIIVISTELMÄ

ABSTRACT

1 INTRODUCTION .. 10

1.1 Project Background ... 10

2 USED TECHNOLOGIES .. 12

2.1 C Programming Language .. 12

2.2 PHP ... 12

2.3 JavaScript .. 13

2.4 Bash script ... 14

2.5 CGI ... 14

2.6 Apache Web Server .. 14

3 USED DEVIDES AND COMPONENTS .. 15

3.1 Raspberry Pi .. 15

3.1.1 Raspberry Pi Model B revision 2.0 ... 15

3.2 Defa PlugIn Relay ... 17

3.3 Waterproof DS18B20 Digital Thermometer .. 18

3.4 EDUP EP-N8531 .. 18

4 REQUIREMENTS ... 20

4.1 Analyzing the Requirements ... 20

5 SETTING UP THE RASPBERRY PI .. 24

5.1 Operating System .. 24

5.2 Wi-Fi ... 24

5.3 Hostname .. 24

5.4 Web Server.. 25

6 POWER AND MEASUREMENT UNIT .. 26

6.1 PCB schematic .. 26

6.2 Testing with Breadboard ... 30

6.2.1 DS18B20 Test ... 30

6.2.2 Defa PlugIn Relay Test ... 31

6.3 PCB Layout ... 33

6.4 PCB UV Exposure and Etching .. 34

6.5 Drilling and Soldering... 34

7 POWER CONSUMPTION TEST .. 36

8 MESSAGE SEQUENCE .. 37

9 THE CODE .. 39

9.1 Relay control ... 39

9.2 Displaying Temperature.. 42

9.3 Reboot and Shutdown ... 43

10 SYSTEM STRUCTURE AND IMPEMENTATION 45

11 TESTING AND VALIDATION .. 47

11.1 Preparations... 47

11.2 Test Equipment ... 48

11.3 Test ... 49

11.4 Analysis... 49

12 CONCLUSION AND FUTURE WORK ... 50

REFERENCES .. 51

APPENDICES

12.1 index.php

12.2 relay.sh

12.3 client.c

12.4 server.c

12.5 read_GPIO17.c

9

LIST OF ABBREVIATIONS

ADC Analog-to-digital converter

dBm Decibel-milliwatt

DC Direct connect

GPIO General purpose input/output

GPU Graphics Processing Unit

GUI Graphical user interface

HTTPd Hypertext Transfer Protocol Daemon

LED Light-Emitting Diode

Mbps Megabit per second

MHz Megahertz

NCSA National Center for Supercomputing Applications

OS Operating system

PCB Printed circuit board

SD Secure Digital

SDHC Secure Digital High Capacity

SoC System on a chip

UV Ultraviolet

Wi-Fi Wireless local area network

1 INTRODUCTION

People who live in colder climates are using car heaters to set the heating on so

the car would be warm before driving it. The mains reason to heat the car engine

and the interior space is that the driving would be safer, the engine would last

longer, there would be less pollution, less gas consumption and also it makes the

driving more comfortable. Because of the high cost of the heating systems, most

commonly the car owners have in the car the basic heating system which contains

the engine and the interior heater. This means that the user needs to go outside and

set the heating on/off by attaching the power cable to the car’s heating system.

The objective of this thesis is to help car users to set the car heating on/off from

home with a little bit less effort. With this system the user can remotely set the car

heating on/off with any given device that have access to the home Wi-Fi network

and have web browser installed on, considering that the user is keeping the power

cable connected to the power grid and to the car heating system. The user just

needs to open a web browser and type the right website address. On there the user

can see a button which will set the car heating on/off. Also, the website shows the

temperature from the interior of car.

There are two major car heating system providers in the Nordic area which are

called Defa and Calix. This thesis project is designed to work with the Defa

heating system, because the Defa products are used in the most vehicles.

1.1 Project Background

The idea for this project came from Finland’s cold climate. In Finland and in the

Nordic areas the winter can be very cold and a lot of the people own a car here

and it is recommended that cars will have heating systems fitted into the car. The

idea came one morning after waking up. The weather was very freezing and that

meant that it was better to go outside and set the car heating on before driving to

school. At that moment many people might not want to go immediately after

waking up into this freezing weather and set the heating on. At that moment an

idea came that how this could be done in an easier way from home without going

11

outside to the cold and the answer to that was to make a system which will set the

heating on/off remotely.

2 USED TECHNOLOGIES

2.1 C Programming Language

The C is general-purpose, procedural, imperative computer programming

language. The C was developed in 1972 by Dennis M. Ritchie at the Bell

Telephone Laboratories to develop the UNIX operating system. C is an outgrowth

of two earlier languages, called BCPL and B, they were also developed at Bell

Laboratories.

Computer professionals impressed with C’s various features and began to promote

the use of C. The popularity of C became widespread in the mid-1980s. Many C

interpreters and compilers were written for computers of all sizes and many

commercial application programs were developed. Numerous software products

that were originally written in other languages were rewritten in C, because it was

more advanced. Figure 1 shows a simple C code example what prints out text

‘Hello World’. /2/

Figure 1. Example of a C code

2.2 PHP

PHP is a server-side scripting language and it is designed for web development. It

was created by Rasmus Lerdorf in 1994. PHP was originally to help coders to

maintain personal home pages, but later the PHP grew from its purpose.

Nowadays PHP is known as HyperText Preprocessor and usually written in an

HTML context. PHP script is not sent to a user by the server like an ordinary

HTML page. Elements in HTML the script are left alone, but the PHP code is

13

rendered and performed. The PHP code in a script can produce images, write and

read files, talk to remote servers, query databases and many other different

functions what is capable to do. The output from PHP code is combined with the

HTML and then delivered to the user.

In Figure 2 a very simple PHP program is shown which display Hello World text

using the PHP echo statement. /13/

Figure 2. Simple example of a PHP code

2.3 JavaScript

JavaScript is a programming language that lets the user supercharge HTML with

interactivity, dynamic visual effects, and animation. Invented in 1995 by Netscape

it is nearly as old as the web itself. /8/

Figure 3. Example of a JavaScript

2.4 Bash script

Bash is a command-line interface for interacting with the OS. Bash is a default

shell on many GNU/Linux distributions and on Mac OS X. It was created by a

programmer named Brian Fox in the late 1980s. Bash like many other shells has

ability to run entire script of commands. It is known as Bash script or Bash shell

script. Bash script might contain just simple list of commands or might contain

loops, conditional constructs, functions, and more. /10/

Figure 4. Example of a Bash script

2.5 CGI

The CGI is Common Gateway Interface. It allows Web server to run applications

that communicate with Web pages. CGI is run on the server which makes it very

useful for applications that wants to have access to files and facilities available on

the server. The server is responsible for data transfer, managing connection and

network issues related to the client request, where the CGI script handles the

application issues, such as data access and document processing. /9/

2.6 Apache Web Server

Apache Web Server is a web server application. It is commonly referred to as

Apache. Apache helps to deliver web content to be accessed through the Internet.

It is originally based on the NCSA HTTPd server. The development of Apache

started in early 1995 after work on NCSA code stalled. Apache overtook NCSA

HTTPd. It became the first web server software, to serve over 100 million

websites in 2009. Apache is the most popular HTTP server in use and it is

developed and maintained by an open community developers. In 2013, Apache

has served 54.2% of all websites. Apache Web Server’s original author is Robert

McCool and it is written in C language. /1/

15

3 USED DEVIDES AND COMPONENTS

3.1 Raspberry Pi

The Raspberry Pi is a series of low cost credit card-sized single-board computers

developed in the United Kingdom by the Raspberry Pi Foundation with the

intention of promoting the teaching of basic computer science in schools.

The Raspberry Pi is a computer that plugs into a computer monitor or TV, and

uses standard keyboard and mouse. It is a small device that enables people of all

ages to explore computing, and to learn how to program in languages like Scratch,

Python and C. It is capable of doing everything a desktop computer is expected to

do, from browsing the Internet and playing HD video, to making spreadsheets,

word-processing and playing games.

Figure 5. Raspberry Pi logo /11/

3.1.1 Raspberry Pi Model B revision 2.0

For this thesis the Raspberry Pi Model B revision 2.0 (figure 3.) was used. It is the

higher-spec variant of the revision 1.0. It has 512-MB RAM. RPi have 2 * USB

2.0 ports, 1 * HDMI, 1 * RCA, 1 * 3.5 mm jack, 1 * 10/100 Ethernet LAN and 1

* SD card slot. The SoC (system on a chip) is Broadcom BCM2835. This contains

an ARM ARM1176JZFS, floating point, running at 700 MHz, and VideoCore 4

GPU. The GPU is capable of BluRay quality, using H.263 at 40 Mbps. It has fast

3D core which can be accessed using the supplied OpenGL ES2.0 and OpenVG

libraries. For programming C/C++, Perl, Java, PHP/MySQL, Scratch can be used

and many other that can run under Linux. The Raspberry Pi’s power consumption

is 700mA and 3.5W. In Figure 6 there is a 2 € coin to refer how small this

Raspberry Pi really is. /11/

Figure 6. Raspberry Pi Model B revision 2.0

Figure 7. Raspberry Pi Model B revision 2.0 device connections

17

Figure 8. Raspberry Pi Model B revision 2.0 pinout

3.2 Defa PlugIn Relay

DEFA PlugIn relay (12V) (Figure 9) is used for controlling the interior and engine

heater on and off. It has one input for the power source. The two outputs are for

the interior and engine heaters. The relay is controlled on/off from the two +/- flat

connectors. /3/

Figure 9. Defa PlugIn relay

3.3 Waterproof DS18B20 Digital Thermometer

A pre-wired and waterproofed version of the DS18B20 sensor (Figure 10) was

sued in the thesis. The DS18B20 is 1-Wire digital thermometer and it is capable to

provide 9-bit to 12-bit Celsius temperature measurements. DS18B20 requires only

one data line to communicate with the microprocessor. The DS18B20 can use also

power directly from the data line. The power supply range is 3.0V to 5.5V. The

operating range for temperature measuring is -55°C to +125°C. DS18B20 is

accurate to ±0,5°C over the range of -10°C to +85°C. Every DS18B20 has a 64-

bit unique serial code and it allows multiple DS18B20 to work on the same 1-

Wire bus. The cable jacketed in PVC, so it is suggested to keep it under 100°C. /5/

Figure 10. Waterproof DS18B20 and pin configurations

3.4 EDUP EP-N8531

EDUP EP-N8531 is a wireless USB adapter. It allows the user to connect it to a

desktop, notebook or Raspberry Pi computer to a wireless network and access

high-speed Internet connection. The frequency range is 2.4-2.4835 GHz. EDUP

EP-N8531’s compliance Standard is IEEE 802.11b/g/n, so it uses the latest

Wireless Technology. It provides speed of up to 150Mbps. It can be connected to

the computer through USB and has a weight of 125g. It supports the network

19

protocol CSMA/CA with ACK. As security features there are 64/128/152 bit

WEB data encryption, WPA, IEEE 802.1X, TKIP and AES.

Figure 11. EDUP EP-N8531 /6/

4 REQUIREMENTS

The requirements for this project are that the user will be able to set the car engine

and interior heaters on/off remotely from a website. The website also needs to

display temperature so the user will know if the car needs heating or not. The

system needs to be made that it will work with the Defa interior and engine heater

products. An important thing what needs to be born in mind is that this system

should not get too expensive.

4.1 Analyzing the Requirements

First of all to control the Defa engine and interior heaters from a website is to

have a control unit inside the car which is capable of receiving commands from

the website and setting heating on/off. Also this unit will need to measure the

temperature which will be displayed on the website. This control unit will be

fitted inside the car so it is better to keep it as small as possible. To control the car

engine and interior heaters on/off, the control unit will need a switch that can turn

on/off higher currents, because car heaters takes power from the grid (AC 230V).

This can be done by using a relay. The Defa company already have a relay for this

type of use and it is called Defa PlugIn relay (12V). The control unit will also

need a temperature sensor to measure the temperature. One issue to solve was

where the control unit will get power, if it could be the car battery or use power

from the grid.

As the idea was to make this system work in home environment, the Wi-Fi

network was good enough and nowadays the work range of the Wi-Fi routers are

quite good. A drawback in using Wi-Fi network is if the user wants to use this

system outside of the home network, it can be hard, because not all places have

Wi-Fi and if even there is a Wi-Fi available near the car, the user needs to access

it first. Another way that this can be done is that the control unit would have its

own mobile network, but this would mean that the user needs to make a contract

with the network operator and pay monthly fees and eventually this system would

get quite expensive.

21

The obvious choice that the control unit will be was to use Raspberry Pi

computer, because they are very small, powerful and it uses 5V to operate. The

best thing of those is that the Raspberry Pi computers are very cheap. The

Raspberry Pi computers cost from 35 € to 50 €. The Raspberry Pi can have a web

server which means it can provide the user interface which will be a website. The

Raspberry Pi can receive temperature data and switching heating on/off by using

its GPIO pins. The GPIO pins are physical interface between the Pi and the

outside world. With these GPIO pins the user can make the Raspberry Pi for

example to receive data, send data or control switches, LEDs and relays. The

GPIO pins can be controlled with many different programming languages, such as

C, Python, Scratch and many more. Raspberry Pi model B revision 2 is a good

choice for this project. The Raspberry Pi model B does not take much power so

this power could be taken from the car battery. The power consumption of

Raspberry Pi model B is in normal use 3.5W and 700mA, a normal car battery is

around 50Ah and Defa relay takes 70mA when it is turned on. Altogether this

makes 50Ah / 0.77mA = 64.9h, so in theory the Raspberry Pi with the Defa relay

could run 2 days 17hours without charging the battery. The system could be fitted

with a maintenance charger, but this would increase the cost of the system a lot,

but to get the right power consumption value, the system needs to be first

operational, before thinking to add a maintenance charger.

The next step was to decide which temperature sensor it was possible to use. The

Raspberry Pi does not have ADC (Analog-to-digital converter) so it is better to

use a digital temperature sensor. It is possible to use an analog temperature sensor,

but it will require more electrical components to work than the digital sensor

would need. The sensor which is widely used by people in Raspberry Pi

computers is DS18B20 thermometer. It is a particularly popular sensor, because it

is inexpensive and easy to use, providing calibrated digital temperature readings

directly, so the DS18B20 was suitable for this project.

To make the Raspberry Pi computer work with the Defa PlugIn relay and the

DS18B20 it was necessary to have a custom circuit board between them, because

to control the Defa PlugIn relay from the Raspberry Pi’s GPIO pin it will need a

transistor and few other components to work. To read the DS18B20 temperature

sensor it will need one resistor between the sensor and GPIO pin. Also it is good

to add on this circuit a 12V to 5V DC converter, because it was planned to take

power from the car battery and between the car battery and Raspberry Pi it is

necessary to use DC converter, because the car battery gives 12 volts and the

Raspberry Pi operates on 5 Volts.

Now, the Raspberry Pi, Defa PlugIn relay, DS18B20 temperature sensor and

custom circuit board are chosen for this project, it is time to look how the message

sequence can be done. Between the user interface and the control unit, there are

many different ways to do the message sequence, because the Raspberry Pi is

capable of working with many different programming languages.

At start the purpose was to do the message sequence by using Python and PHP

and it basically works, when the user presses a button on the website to set the

relay on/off, the PHP script saves a value ‘1’ or ‘0’ into the text file . Then the

Python script is checking every two seconds this text file and if the file have ‘1’ it

will set the relay ON and if the value is ‘0’ it will set the relay OFF. The problem

with this type of message sequence is that when the PHP script is re-writing the

value into the text file every time the button is pressed, it will break the SD card

eventually, because the SD cards has limited write cycles. SD cards write cycles

are usually around 100 000, which is a lot, and more likely it will never run out in

this system, but this is not very professional way to do it.

While doing research how to do the message sequence more appropriately without

breaking the SD card, an idea came that this could be done by using PHP,

JavaScript, CGI, Bash, and C. A short explanation of this more complex method

how this can be done is that when the user gives a command by pressing a button

on/off on a webpage made in PHP, it will make AJAX request to the Bash script

with CGI and the Bash script calls the client program made in C. This client

program will write ON or OFF into a named pipe. Another C program will read

this named pipe and if the value in the named pipe is ON, the program will set

GPIO pin on active state ‘1’ which will set the heating ON and if the value is

OFF, the GPIO is on state ‘0’ by setting heating OFF. A good thing with using

23

AJAX is that it updates only part of the web page, without reloading the whole

page. The temperature reading can be done by only using PHP.

5 SETTING UP THE RASPBERRY PI

The first thing to do was to install the operating system into the Raspberry Pi and

do a few main set ups.

5.1 Operating System

There were few operating systems where to choose from: Raspbian, Snappy

Ubuntu Core, OpenELEC, Raspbmc, Pidora and Risc OS. For this project the

Raspbian OS was chosen, because it is easy to use and it is quite fast and light.

Raspbian OS gets much more attention and development support from Raspberry

Pi Foundation than the other distributors for the Raspberry Pi. A big advantage is

that it has good selection of teaching and educational materials. It supports

recommend overclocking limits and future official hardware add-ons. Raspbian is

also fairly easy and fast to set up. /1/ /14/

5.2 Wi-Fi

No model of the Raspberry Pi is fitted with Wi-Fi, because the SoC does not

support native Wi-Fi, and if they would add an additional built in Wi-Fi chip the

RPi price would be highly increased. To get Wi-Fi working on Raspberry Pi, it is

necessary to use USB Wi-Fi dongle. The Wi-Fi dongle which was used in this

project is EDUP EP-N8531. To connect the Raspberry Pi with the specific Wi-Fi

network can be done by using terminal or Wi-Fi Config program.

5.3 Hostname

Stock Rasbian hostname raspberrypi was changed to carpcserver. It is better to

change Raspberry Pi’s hostname, so users could recognize right Raspberry Pi

from the Wi-Fi network and also to avoid name conflicts with the other Raspberry

Pi devices. To change the hostname is fairly simple, one only needs to modify

files hosts and hostname in the /etc/ directory.

25

5.4 Web Server

For this project it was essential to install the web server for the Raspberry Pi,

because the web server allows it to serve web pages and the controlling heating

and monitoring temperature is done from the web page. The web server which

was used for this project was Apache.

6 POWER AND MEASUREMENT UNIT

Power and measurement unit is an additional circuit board for the Raspberry Pi

and this chapter explains how this unit was made. The project started by designing

and making the circuit board for powering the Raspberry Pi, to control the Defa

PlugIn relay and temperature measurement by using the DS18B20 thermometer.

The PCB also contains 12V to 5V DC converter, because the Raspberry Pi will

take the power from car battery and the car battery is 12 volts and the Raspberry

Pi operates on 5 volts.

The control of the Defa PlugIn relay from the Raspberry Pi’s GPIO pin is done by

using a transistor to energize the coils of the relay. The relay also needs a 12V

power supply. This power is also taken from the car’s 12V battery, but it is better

to put a diode and capacitors between the power supply and the circuit to protect

the circuit.

To connect the waterproof DS18B20 temperature sensor with the Raspberry Pi,

the circuit board needs three position connector and one pull-up resistor.

To power the Raspberry Pi from the car battery it is better to use a buck converter

to reduce the voltage of a DC power, because it is very efficient. Originally the

purpose was to create a separate circuit board for the 12V to 5V DC converter

part, but it turned out that there is more than enough space to put everything on

the same circuit board.

The schematic and layout of the circuit board was made with PADS Logic and

Pads Layout. The actual circuit board was made in the school laboratory. There

were two different ways to make the circuit board by using etching method or

CNC mill, but the CNC mill in the school laboratory was broken at the time so the

etching method had to be used.

6.1 PCB schematic

Figure 12 shows the complete schematic of PCB and it was made with Pads Logic

software.

27

Figure 12. PCB schematic

Figure 13 shows temperature sensor connector for the waterproof DS18B20, the

resistor and Raspberry Pi 2x13 female connector. The temperature sensor is

(GPIO4) for data and pin 3 to Raspberry Pi pin 1 (3V3/ 3.3V) for power. The

resistor was used as a pull-up for the data-line and is required to keep the data

transfer stable.

Figure 13. Temp sensor part

In the relay control part of the circuit (Figure 14) is to control the Defa PlugIn

relay. The purpose of the transistor BC547C is to work as a switch to energize the

relay coil. When the user sets Raspberry Pi’s GPIO17 (pin 11) on active state (1),

the current flowing from the transistor’s Base to Emitter (B to E) and then the

relay coil current flows through the transistor from the Collector to Emitter (C to

E) by setting the relay ON. The LED D1 was added into the circuit to indicate

when the relay is on/off. As the Defa PlugIn relay is 12V, it will need a 12V

power source which is taken from the car battery. When the power comes from

the car battery to the relay, the capacitors are there to protect the circuit from

voltage spikes and the diode D2 protects against the reverse current.

29

Figure 14. Relay control part

The DC converter part (Figure 15) is to convert car battery 12V DC voltage to 5

volts. The easiest method to reduce the voltage of a DC power supply is to use a

linear regulator like the 7805. A problem with the linear regulator is that it wastes

energy as they operate by dissipating excess power as heat which is not very

efficient. A better way for this is to use a step down buck converter which is much

more efficient. The DC converter circuit is based on MC34063AP switching

regulator, which is a SMPS driver with ON/OFF control loop an it is designed to

work on the continues mode. /4/

Figure 15. 12V to 5V DC converter part

6.2 Testing with Breadboard

Before the actually circuit board was made, the circuit was tested by using a

breadboard. A breadboard is a construction base for prototyping of electronics and

is very useful for testing circuits, because to connect the components and wires it

does not need any soldering.

First the components and wires were attached on the breadboard, and then first

thing was to test the DC converter part of the circuit that it will give the right

voltage so it will not break the Raspberry Pi. The DC converter have a 5K

trimmer resistor (R3) to get the right voltage. By adjusting the R3 with a

screwdriver and using digital multimeter to measure voltage, the 5V could be

found. When the right voltage was found, then the Raspberry Pi could be added to

the circuit and the Defa PlugIn relay tested and the DS18B20 in action by

controlling them with GPIO pins. This testing can be done without coding. The

only thing requires is to power up the Raspberry Pi and start the terminal from the

Raspbian OS.

6.2.1 DS18B20 Test

First the DS18B20 temperature sensor was tested by writing the command into the

terminal to load the 1-wire communication device kernel modules:

31

sudo modprobe w1-gpio && sudo modprobe w1_therm

Then to see the list of the connected DS18B20 sensors, the following command

line needed to be written:

ls –l /sys/bus/w1/devices/

The DS18B20 temperature sensor used in this project appeared with an address in

the format 28-00000xxxxxx. All DS18B20 sensors have their own unique address.

The address of this specific DS18B20 sensor which was used in this project is 28-

000006155dc9. To display the temperature of this DS18B20 this command

needed to be written:

cat /sys/bus/w1/devices/28-000006155dc9/w1_slave

The temperate then was displayed on to the terminal screen. The DS18B20 gave

the temperature in milli-degree 24937 Celsius, which means that the temperature

is 24.937
o
C. The whole procedure is shown in Figure 16.

Figure 16. Testing the DS18B20 sensor with terminal

6.2.2 Defa PlugIn Relay Test

The next step was to test the Defa PlugIn relay with the Linux terminal and

WiringPi library. At first GIT needed to be installed with the following command:

sudo apt-get install git-core

Then with the following command to obtain WiringPi using GIT:

git clone git://git.drogon.net/WiringPi

Now changing directory:

cd WiringPi

Command to install the WiringPi:

./build

Now the WiringPi library was installed. The next step was to give the following

command to set the GPIO-17 pin on active state (1) which will set relay on:

gpio –g write 17 1

The Defa PlugIn relay worked as expected and also the indicate LED from the

circuit went on. The following command set the GPIO-17 into deactive state (0)

which will set the relay off:

gpio –g write 17 0

The whole procedure is shown in Figure 17.

Figure 17. Testing the Defa PlugIn relay with terminal

33

Now when all of the functions were working, it was time to make the actual

circuit board.

6.3 PCB Layout

The circuit board layout was done with the Logic Layout software. The circuit

board will be attached on top of the Raspberry Pi, so the circuit board has to be of

a certain size so it will fit and most importantly the components of the circuit

board must not touch the Raspberry Pi’s components, otherwise the short circuit

might happen and in the worst case both devices will break down. When placing

the components on the layout, it should be done in as rationally as possible.

Figure 18. PCB layout

After the circuit layout was ready then the layout needed to be printed on the

overhead projector film for the etching. It was also a good idea to print the layout

only with the components, because this was useful when doing the drilling and

soldering.

6.4 PCB UV Exposure and Etching

For the UV exposure and etching, a new PCB board, UV exposure unit and

etching machine were required. Before the etching, first the film with the layout

and the photosensitive PCB were put inside the UV exposure unit and then wait

that the photo process for the PCB is done.

When the UV exposure was done then it was necessary to get rid of unwanted

copper. This was done by putting the UV exposed PCB inside the acid tank of the

etching machine. The first circuit board failed, because the PCB was too long time

exposed to the UV light and this was fixed by keeping the second PCB inside the

UV exposure unit for a shorter time.

6.5 Drilling and Soldering

Now holes needed to be drilled for the electronic components. Drilling was done

by using a bench drill. When drilling the holes, it is better not to use too big drill

bits so that the soldering will be easier.

After the drilling, it was critical to cut the PCB into the right size, because if the

cutting is done after the soldering, the components might get damaged. The

soldering was done by using a soldering iron and tin wire.

After soldering, the PCB was ready for testing and the test was done with the

same method as with the breadboard by using a terminal earlier. The PCB was

working as it was supposed to. Figure 19 shows the PCB attached to the

Raspberry Pi.

35

Figure 19. The Raspberry Pi and the power and measurement unit

Figure 20 shows all the connectors of the power and measurement unit. The

power input (12V) is to power the Raspberry Pi from the car 12V battery and also

power the Defa PlugIn relay.

Figure 20. The PCB’s connectors

7 POWER CONSUMPTION TEST

Now that the Raspberry Pi had been tested with the power measurement unit, the

power consumption was tested next. The system requirements analysis was made

when this project started, the power consumption was around 770mA with the

Raspberry Pi and Defa PlugIn relay and the basic car battery is around 50Ah so it

was calculated that in theory the car battery would go flat in 2 days and 17 hours

if the Raspberry Pi and the Defa PlugIn relay are all the time on. Now when the

power consumption test was done with all the necessary components which

included the Raspberry Pi, the power measurement unit and Defa PlugIn relay, the

average consumption was 300mA. When the relay was in off mode, the

consumption was around 240mA. The Raspberry Pi’s power consumption is on

normal use 700mA, so the power consumption of the system is more than half

less. This is, because this system will not have to do a lot of tasks and it also does

not need the Ethernet and HDMI ports to operate which are consuming more

power.

When calculating again how long the average 50Ah car battery would last in this

system (50Ah / 0.3A = 166,7h), in theory it would last almost 7 days. Also the

relay will not be all the time on, so the battery will last even longer.

The test was done with 12V 62Ah car battery. The Raspberry Pi and relay stayed

on around 6 days in a row. The used car battery was already quite old, so it is not

so efficient anymore as the new ones are. If this system is in normal everyday use,

this would mean that it is not necessary to fit the car with a maintenance charger

which would increase the cost of this system a lot.

37

8 MESSAGE SEQUENCE

This chapter explains how the message sequence works between the user interface

and the Raspberry Pi. The structure of the message sequence is shown in Figure

21.

The message sequence was made in PHP, JavaScript, Bash script and C. The user

interface was made in PHP (index.php) which contains also JavaScript and it is on

the web server. It can be accessed by using a web browser. The user interface has

a button to turn the heating on/off and also it displays the temperature from the

car.

The user presses the button to set the heating on/off from the user interface on the

web page. It will make an AJAX request which reads the state (ON or OFF) of the

button just pressed and sends it to Bash script using CGI. The Bash script

(relay.sh) calls C-program (client.c) and the client.c will write ON or OFF inside

the named pipe. The named pipe is created by another C-program the server.c and

this program is all the time checking inside the named pipe and if it contains

“ON” or “OFF”, it will then set the GPIO17 state to “1” or “0” to control the

relay. To make things more automated, when the Raspberry Pi starts, the server

program needs to start also so the user can control the heating immediately.

Every time the webpage is refreshed, the index.php is executing read_GPIO17.c

program which returns the state of the GPIO17 by giving the update status of the

relay button on the webpage. Without checking the state of the GPIO17 it will

always show the relay button in the “OFF” mode after refreshing the page.

To get the temperature displayed on the webpage, the DS18B20 returns 9 bytes of

data which is placed into the w1_slave file. The index.php reads this file and

displays the temperature value on the webpage. The webpage is refreshed every

15 min to give updated temperature value. /7/

Figure 21. Structure of the message sequence

39

9 THE CODE

This chapter shows the main commands for the message sequence. The user

interface (Figure 22) shows the temperate from the car and the button to set the

relay on. The shutdown and reboot buttons were added there to shut down or

reboot Pi safely. /12/

Figure 22. The user interface

9.1 Relay control

The relay control was made in PHP, JavaScript, CGI, Bash script and C. When

user presses the button to set heating on the user interface, the AJAX request is

made:

$.ajax({ type: "GET", url: "/cgi-bin/relay_control.sh", data: "state="+state});

It will call the relay.sh file and post value “ON” or “OFF” value. The Bash script

“cleans” the posted message for the client (client.c) and posts it to the client with

the command:

STATE=`echo "$QUERY_STRING" | sed -n 's/^.*state=\([^&]*\).*$/\1/p' | sed

"s/%20/ /g"`./client $STATE

The client program writes into the named pipe “ON” or “OFF”:

 if((fp = fopen(FIFO_FILE, "w")) == NULL) {

 perror("fopen");

 exit(1);

 }

fputs(argv[1], fp);

fclose(fp);

The server program opens the named pipe for reading and reads the “ON” or

“OFF” value into readbuf:

 while(1){

 fp = fopen(FIFO_FILE, "r");

 fgets(readbuf, 8, fp);

If the readbuf contains the “ON” value, it will set the GPIO17 on active state “1”,

which will set the heaters on:

 if(strcmp(readbuf, "ON")==0){

 gpio_file=fopen("/sys/class/gpio/gpio17/value", "w");

 if(gpio_file!=NULL){

 fprintf(gpio_file, "1"); // GPIO17 1

 }

 fclose(gpio_file);

 }

41

If the readbuf contains the “OFF” value it will set the GPIO17 on “0” state, which

will set the heaters OFF:

 else if(strcmp(readbuf, "OFF")==0){

 gpio_file=fopen("/sys/class/gpio/gpio17/value", "w");

 if(gpio_file!=NULL){

 fprintf(gpio_file, "0"); // GPIO17 0

 }

 fclose(gpio_file);

 }

There was a problem with the relay control button, because when the relay button

was in the “ON” mode and when the user refreshed the webpage, the button went

back to the “OFF” mode. It did not set the relay to “OFF”, but the problem was

that the user did not know if the heater was on or not. This was fixed by creating a

C-program which is reading the GPIO17 state. Every time the webpage is

refreshed the index.php executes read_GPIO17.c program and the read_GPIO17.c

returns the state of the GPIO17 with following command:

exec('sudo ./read_GPIO17', $retArr, $retVal);

The read_GPIO17.c program opens the value file from the /sys/class/gpio/gpio17

directory where the GPIO17 state is located and returns the state:

 gpio_file=fopen("/sys/class/gpio/gpio17/value", "r");

 if(gpio_file!=NULL){

 fprintf(gpio_file, "17");

 }

 ch = fgetc(gpio_file);

 printf("%c", ch);

 fclose(gpio_file);

 return ch-'0';

When the GPIO17 state is returned, the index.php checks if the returned value is

‘1’ it will set the relay button in “ON” mode:

if($retArr[1] == 1)

 echo '<div class="button" id="switch" style="background-color: green"

 onclick="relay_button(\'OFF\')"> ON</div>';

If the GPIO17 state is not “1”, it will set the relay button “OFF”.

else

 echo '<div class="button" id="switch" style="background-color: gray"

 onclick="relay_button(\'ON\')"> OFF</div>';

9.2 Displaying Temperature

The temperature reading and displaying was done in the PHP language and the

code is located in index.php. First the file needed to be found to read with

command:

$file = '/sys/devices/w1_bus_master1/28-000006155dc9/w1_slave';

All DS18B20 thermometers have their own unique addresses. The used

DS18B20’s address is 28-000006155dc9. Reading the file line by line:

$lines = file($file);

43

Figure 23. W1_slave file’s data

The temperature value is on second line (Figure 23) of the file and reading from

the second line is done with command:

$temp = explode('=', $lines[1]);

Now the following line gives it a better format that will be easier to read, because

the temperature is written into the file in milli-degrees.

$temp = number_format($temp[1] / 1000, 1, ',', '');

Then display the temperature value on the user interface:

echo $temp . " Celcius";

To give the updated temperature from the car the page refreshes itself in every 15

min (900 s). The refresh commands are located in index.php:

$url1=$_SERVER['REQUEST_URI'];

header("Refresh: 900; URL=$url1");

9.3 Reboot and Shutdown

The webpage also have reboot and shutdown buttons. These buttons were added

there to shut down or reboot the Raspberry Pi safely.

"<form action='' method='post'>

<input type='submit' name='shutdown' value='Shutdown RPi' />

<input type='submit' name='reboot' value='Reboot RPi' />

</form>";

if (isset($_POST['reboot'])) {

shell_exec("sudo reboot");

}

if (isset($_POST['shutdown'])) {

exec("sudo shutdown -h now");

}

45

10 SYSTEM STRUCTURE AND IMPEMENTATION

This chapter explains the system structure and implementation. Figure 24 shows

how the system is fitted into the car. The power comes from the power grid

(230V) which powers the motor heater and the interior heater. The grid cable is

attached to the 12V Defa PlugIn relay’s input and the engine and the interior

heater cables are attached to the relay’s outputs. The control unit represents the

Raspberry Pi and the power and measurement unit. For the safety, it is best to put

the control unit inside the car so it will be kept as dry as possible. The relay is

controlled on/off by the control unit. When the relay is in the active state, the

power from the grid is let trough to by setting the heating on. The control unit gets

power from the car battery and it is essential to add a fuse to protect the control

unit from overload. 1A fuse is enough for this. The waterproof DS18B20

temperature sensor is attached to the control unit. The switch is there to turn

control unit on.

Figure 24. Device diagram

47

11 TESTING AND VALIDATION

During the development of this system, the testing was made several times in the

Wi-Fi network of the laboratory by using the Raspberry Pi + power and

measurement unit, Defa PlugIn relay, web browser and a 12V car battery. The

tests were overall successful, but the testing described in this chapter was done in

the car environment. Before doing the actual testing some preparations were done

for the Raspberry Pi and the Power and measurement unit.

11.1 Preparations

Before testing the system in the car environment it was better to protect the

Raspberry Pi and the power and measurement unit from dust and moisture by

fitting them into a protection case and also to use more appropriate wires to

connect the devices with each other. The case that was used to protect the

Raspberry Pi and the power and measurement unit is made by TEKO and the case

is built to protect electronic devices. The wires used to connect the devices with

each other were particularly made for car environment. The protections could be

done in a better way, but as this is on a prototype level this was enough. Figure 25

shows the protected Raspberry Pi + Power and measurement unit with the more

appropriate wires.

Figure 25. Control unit

11.2 Test Equipment

The following equipment was used in the testing:

Raspberry Pi model B revision 2.0

Power and measurement unit

Defa PlugIn relay (12V)

Car battery (12V)

Car with Defa engine and interior heater system

Android smartphone

Power switch

Fuse case + 1A fuse

49

11.3 Test

First, the devices were connected into the car. When the devices were connected

the test was done by starting the Raspberry Pi by pressing the power switch on.

The Raspberry Pi automatically started the web server and the server.c program

and after the server was up, it was time to test the heaters. The IP address of the

Raspberry Pi had to be typed from the smartphones web browser and both devices

have to use the same Wi-Fi network. The webpage displayed the temperature and

when the heating button was pressed, the engine and the interior heaters started.

After the test, the Raspberry Pi was turned off safely from the webpage.

Figure 26. Testing with the car

11.4 Analysis

The heating was remotely set on from the user interface and the interface

displayed the temperature without problems. The functions were tested several

times without any issues except that one when the Raspberry Pi did not find the

network that was used on this test. The test was overall successful.

12 CONCLUSION AND FUTURE WORK

All goals were achieved and all functions were working as expected. As this

system is on the prototype level, there are many things to improve such as adding

a timer function to the heating.

The security of this system must be improved, because the webpage does not have

a password and anybody who has access to the same Wi-Fi network can control

the heating and also the code part could have been written in a more efficient way,

such as making the temperature reading in real-time.

The system also could be more user friendly, because now when the user wants to

make this system up and running, first he needs to press the button to start the

Raspberry Pi and then put the power cable to the heaters. Also when the user

wants to shut down the Raspberry Pi, the user needs to open the webpage and

press Raspberry Pi shutdown button. This could be done by only putting the

power cable for the heaters which would make a wake up signal to the Raspberry

Pi to start up and when the user wants to turn the Raspberry Pi off, the user just

takes the power cable from the car heaters and the Raspberry Pi would notice it

and then shut itself down. If the Raspberry Pi is turned off without proper

shutdown, the SD card can eventually be damaged.

Also the user might want to use the heaters without this remote system, so this

system should have a switch to bypass the relay.

When there is enough cold weather to start the heating, the control unit could send

a notification email to the user.

Considering the tight schedule of making this project all worked very well.

Nevertheless, there are a lot of things what needs more developing, but that is for

the future work.

51

REFERENCES

/1/ Apache homepage. Accessed 15.4.2015. http://httpd.apache.org/

/2/ Byron Gottfried. 1996. Programming with C. McGraw-Hill.

/3/ Defa homepage. Accessed 20.3.2015. http://www.defa.com/

/4/ Denkovi homepage. Accessed 2015.4.22. http://denkovi.com

/5/ DS18B20 datasheet

/6/ EDUP. Accessed 21.5.2015. http://www.edupdriver.com/edup-ep-n8531-

mini-150mbps-802-11ngb-usb-wireless-nano-adapter/

/7/ KMtronic. Accessed 19.4.2015. http://kmtronic.com/raspberry-pi-

ds18b20-connect-to-gpio.html

/8/ McFarland, David Sawyer. 2011. JavaScript & jQuery: The Missing

Manual, 2
nd

 Edition. O'Reilly Media.

/9/ NCSA HTTPd Development Team. Accessed 19.4.2015.

http://www.diam.unige.it/informatica/documentazione/httpd_docs/cgi/

/10/ Newham, Cameron. 2005. Learning the bash Shell, 3rd Edition. O'Reilly

Media.

/11/ Raspberry Pi foundation’s homepage. Accessed 28.3.2015.

http://www.raspberrypi.org/

/12/ Santoro, Rosario. Accessed 15.3.2015.

http://rosariosantoro1.altervista.org/wp2013/remote-controlling-room-lights-

through-raspberry-pi/?doing_wp_cron=1427967473.9817600250244140625000

/13/ Welling, Luke & Thompson, Laura. 2003. PHP and MySQL Web

Development, Second edition. Sams.

http://httpd.apache.org/
http://www.defa.com/
http://denkovi.com/
http://www.edupdriver.com/edup-ep-n8531-mini-150mbps-802-11ngb-usb-wireless-nano-adapter/
http://www.edupdriver.com/edup-ep-n8531-mini-150mbps-802-11ngb-usb-wireless-nano-adapter/
http://kmtronic.com/raspberry-pi-ds18b20-connect-to-gpio.html
http://kmtronic.com/raspberry-pi-ds18b20-connect-to-gpio.html
http://www.diam.unige.it/informatica/documentazione/httpd_docs/cgi/
http://www.diam.unige.it/informatica/documentazione/httpd_docs/cgi/
http://www.raspberrypi.org/
http://rosariosantoro1.altervista.org/wp2013/remote-controlling-room-lights-through-raspberry-pi/?doing_wp_cron=1427967473.9817600250244140625000
http://rosariosantoro1.altervista.org/wp2013/remote-controlling-room-lights-through-raspberry-pi/?doing_wp_cron=1427967473.9817600250244140625000

/14/ Zwetsloot, Rob. Accessed 21.5.2015.

http://www.linuxuser.co.uk/reviews/top-4-raspberry-pi-os

http://www.linuxuser.co.uk/reviews/top-4-raspberry-pi-os

 1(10)

APPENDICES

12.1 index.php

<html>

<head>

<title>Remote heater</title>

</head>

<?php

/* Read and dislay DS18B20 temperature */

$file = '/sys/devices/w1_bus_master1/28-000006155dc9/w1_slave';

$lines = file($file);

$temp = explode('=', $lines[1]);

print "Car interior temperature: ";

$temp = number_format($temp[1] / 1000, 1, ',', '');

echo $temp . " Celcius";

/* Read the relay state */

exec('sudo ./read_GPIO17', $retArr, $retVal);

echo '<body>';

if($retArr[1] == 1)

 echo '<div class="button" id="switch" style="background-color: green"

 onclick="relay_button(\'OFF\')"> ON</div>';

else

 echo '<div class="button" id="switch" style="background-color: gray"

 onclick="relay_button(\'ON\')"> OFF</div>';

/* Shutdown and reboot Buttons */

echo

"<form action='' method='post'>

<input type='submit' name='shutdown' value='Shutdown RPi' />

<input type='submit' name='reboot' value='Reboot RPi' />

</form>";

if (isset($_POST['reboot'])) {

shell_exec("sudo reboot");

}

if (isset($_POST['shutdown'])) {

exec("sudo shutdown -h now");

}

echo '</body>';

 3(10)

echo '</html>';

/* Auto Refresh webpage every 900 second (15 min) */

$url1=$_SERVER['REQUEST_URI'];

header("Refresh: 900; URL=$url1");

print '
';

?>

<style>

div.button{

 height: 150px;

 width: 300px;

 margin: 10px;

 border-radius: 10px; }

</style>

<script src="jquery-1.11.2.js"></script>

<script>

function relay_button(state){

 if(state=="ON"){

 $("#switch").html("ON");

 $("#switch").css("background-color", "green");

 $("#switch").attr("onclick", "relay_button('OFF')");

 }

 else{

 $("#switch").html("OFF");

 $("#switch").css("background-color", "gray");

 $("#switch").attr("onclick", "relay_button('ON')");

 }

<!-- AJAX request -->

 $.ajax({ type: "GET", url: "/cgi-bin/relay_control.sh", data: "state="+state});

}

</script>

 5(10)

12.2 relay.sh

#!/bin/bash

echo "Content-type: text/html"

echo '<html>'

echo '<head>'

echo '<title>Relay manager</title>'

echo '</head>'

echo '<body>'

STATE=`echo "$QUERY_STRING" | sed -n 's/^.*state=\([^&]*\).*$/\1/p' | sed

"s/%20/ /g"`

./client $STATE

echo '</body>'

echo '</html>'

12.3 client.c

#include <stdio.h>

#include <stdlib.h>

#define FIFO_FILE "/tmp/RELAY"

int main(int argc, char *argv[]){

 FILE *fp;

 if (argc != 2) {

 printf("USAGE: client [string]\n");

 exit(1);

 }

 if((fp = fopen(FIFO_FILE, "w")) == NULL) {

 perror("fopen");

 exit(1);

 }

fputs(argv[1], fp);

fclose(fp);

return(0);

}

 7(10)

12.4 server.c

#include <stdio.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <unistd.h>

#include <linux/stat.h>

#define FIFO_FILE "/tmp/RELAY"

int main(void)

{

 FILE *fp;

 char readbuf[8];

 printf("Run relay control C... ");

 FILE* gpio_file = NULL;

 gpio_file=fopen("/sys/class/gpio/export", "w");

 if(gpio_file!=NULL){

 fprintf(gpio_file, "17");

 }

 fclose(gpio_file);

 gpio_file=fopen("/sys/class/gpio/gpio17/direction", "w");

 if(gpio_file!=NULL){

 fprintf(gpio_file, "out");

 }

 fclose(gpio_file);

 printf("OK\n");

 umask(0);

 mknod(FIFO_FILE, S_IFIFO|0666, 0);

 while(1){

 fp = fopen(FIFO_FILE, "r");

 fgets(readbuf, 8, fp);

 if(strcmp(readbuf, "ON")==0){

 gpio_file=fopen("/sys/class/gpio/gpio17/value", "w");

 if(gpio_file!=NULL){

 fprintf(gpio_file, "1"); // GPIO17 1

 }

 fclose(gpio_file);

 }

 else if(strcmp(readbuf, "OFF")==0){

 gpio_file=fopen("/sys/class/gpio/gpio17/value", "w");

 if(gpio_file!=NULL){

 9(10)

 fprintf(gpio_file, "0"); // GPIO17 0

 }

 fclose(gpio_file);

 }

 else{

 printf("Unknown command\n");

 }

 fclose(fp);

 }

 return(0);

}

12.5 read_GPIO17.c

#include <stdio.h>

/* read GPIO 17 state */

int main()

{

 unsigned char ch;

 printf("GPIO init...\n");

 FILE* gpio_file = NULL;

 gpio_file=fopen("/sys/class/gpio/gpio17/value", "r");

 if(gpio_file!=NULL){

 fprintf(gpio_file, "17");

 }

 ch = fgetc(gpio_file);

 printf("%c", ch);

 fclose(gpio_file);

 return ch-'0';

}

