

Antti Karjakin

Storing Data to Persistent Memory of Mobile
Phone

Helsinki Metropolia University of Applied Sciences

Master’s Degree

Information Technology

Master’s Thesis

8 June 2015

 Abstract

Author(s)
Title

Number of Pages
Date

Antti Karjakin
Storing Data to Persistent Memory of Mobile Phone

83 pages + 1 appendices
8 June 2015

Degree Master of Engineering

Degree Programme Information Technology

Instructor(s)

Mika Ruottinen, Product Development Manager
Ville Jääskeläinen, Head of Master's program in IT

The performance and visual appearance of mobile phones have been and still are devel-
oping fast. This development has made it possible to consider a smart phone as a daily
tool for many people. Mobile phones are usually carried along everywhere, even for places
where network connection is not available.

A native mobile application is capable of showing the data stored to the mobile phone even
when the network connection is not available. Browser based software was not able to do
the same effectively before the HTML5 standard.

Granlund Oy is Finnish company specialized in design, consultancy and software services.
In the company a maintenance management application called Granlund Manager is being
developed and distributed as a SaaS solution. The Granlund Manager needed a mobile
application that could be used without network connection.

The objective of this thesis was to get acquainted with an offline data support in the mobile
applications. The application can be native, hybrid or HTML5 based. The thesis focused on
storing and viewing the data and it researched how the offline capability can be imple-
mented when working with HTML5 based applications.

The study started by defining the requirements of the application that needs the offline
capability. From the offline capability point of view storing the data and securing HTML5
application logic were covered. Also a brief lookup for detecting the network connectivity of
a mobile phone was studied. The data storing mechanism that existed before the HTML5
standard was researched. Then solutions from the selected platforms were covered before
covering the options offered by the HTML5 standard.

The research indicated that the mobile market in Finland is divided slightly differently than
globally in the world. The market is divided so that the three most considerable options are
Google Android, Apple iOS and Windows Phone in that order.

The thesis indicated that it is possible to store data into the persistent memory of a mobile
phone and that data can be viewed without a network connection in all of the selected mo-
bile platforms. The thesis also proved that an HTML5 based application can be as offline
capable as a native mobile application. A lot of knowledge on platform specific and HTML5
specific solutions was gained during the research process.

Keywords HTML5, persistent memory, mobile application

Contents

Abstract

Table of Contents

List of Figures

List of Listings

Abbreviations

1 Introduction 1

1.1 Company and Project Background 2
1.2 Objective, Scope and Structure of Thesis 2

2 Mobile Applications 4

2.1 Mobile Platforms in Finland 4
2.2 Native, Hybrid or HTML5 7
2.3 Application Structures 9

3 Storing Data Permanently to Client 11

3.1 HTTP 11
3.2 Browser Plug-ins 12
3.3 Mobile Platforms 14

3.3.1 Google Android 14
3.3.2 Apple iOS 15
3.3.3 Windows Phone 16

3.4 HTML5 17

4 Inspecting HTML5 Storages Usage 21

4.1 Internet Explorer 21
4.2 Mozilla Firefox 24
4.3 Google Chrome 25
4.4 Apple Safari 26

5 Detecting Internet Connection in Offline Capable Application 29

5.1 Google Android 29
5.2 Apple iOS 30
5.3 Windows Phone 31
5.4 HTML5 31

6 HTML5 Application Cache 33

7 Accessing and Saving Key Value Pair Data 37

7.1 Google Android 37
7.2 Apple iOS 39
7.3 Windows Phone 41
7.4 HTML5 42

8 Accessing and Saving Large Amount of Structured Data 45

8.1 Google Android 45
8.2 Apple iOS 53
8.3 Windows Phone 59
8.4 HTML5 62

8.4.1 Indexed Database API 62
8.4.2 Web SQL Database 71

8.5 Database Versioning and Migration in Mobile Environment 76

9 Summary and Conclusions 78

References 80

Appendices
Appendix 1. Core Data basics

List of Figures

Figure 1: Top 8 Mobile Operation Systems from Mar 2014 to Mar 2015 [26] 5

Figure 2: Top 8 Mobile Operating Systems in Finland from Mar 2014 to Mar 2015 [26] 6

Figure 3: Simplified web application command chain .. 9

Figure 4: Simplified mobile application command chain .. 10

Figure 5: Internet Explorers Internet Options dialog .. 22

Figure 6: Caches and databases settings tab under Website Data Settings dialog 23

Figure 7: additional storage prompt in the Internet Explorer .. 23

Figure 8: Firefox developer tools settings.. 24

Figure 9: Firefox developer tools Storage tab ... 24

Figure 10: Google Chromes Developer tools resources tab .. 25

Figure 11: View from the Safaris Resources tab in the developer tools 27

Figure 12: Safaris settings dialog with Privacy tab selected .. 27

Figure 13: Deleting saved data from a specific site in the Safari browser 28

Figure 14: Simple weather forecast and locations structured data sample 45

Figure 15: Creating a new project in the Xcode using Core Data 54

Figure 16: Adding empty data model to existing project in the Xcode 55

List of Listings

Listing 1 - Sample of testing network status in the Android [28] 30

Listing 2 - Sample of testing network status in the iOS [15] ... 30

Listing 3 - Sample of testing network status in the Windows Phone 31

Listing 4 – Adding event listeners to the online and offline events [23] 31

Listing 5 – Simple cache manifest file ... 33

Listing 6 – Simple cache manifest file with an additional comment line 34

Listing 7 – Adding a mime type on Apache and on the Windows environments 34

Listing 8 – Cache manifest file attached to simple html page 35

Listing 9 - Sample of adding a setting to the SharedPreferences 38

Listing 10 - Sample of reading a SharedPreferences .. 39

Listing 11 - Sample of reading from property list. .. 40

Listing 12 - Sample of saving the AppSettings property list. .. 41

Listing 13 - Sample of adding a setting to the IsolatedStorage [7] 42

Listing 14 - Sample of reading an IsolatedStorage [7] ... 42

Listing 15 - Sample of simple local storage tester ... 43

Listing 16 - Sample of reading the browsers local storage .. 43

Listing 17 - Sample of writing into the browsers local storage 44

Listing 18 - Sample of deleting local storage values .. 44

Listing 19 – Example of subclass from the SQLiteOpenHelper class 46

Listing 20 – Example of onCreate-method in the SQLiteOpenHelper subclass 47

Listing 21 – Simple onUpgrade-method in the SQLiteOpenHelper subclass 47

Listing 22 – Example of inserting values into the SQLite database 49

Listing 23 – Example of querying values from the SQLite database 49

Listing 24 – Example of using where clause in the SQLite database query 50

Listing 25 – Example of using where clause with arguments in the SQLite-query 50

Listing 26 – Example of using group by clause in the SQLite-query 50

Listing 27 – Example of using order by clause in the SQLite-query 51

Listing 28 – Testing if query returned any objects ... 51

Listing 29 – Transforming database row to actual object ... 52

Listing 30 – Using cursor and reading items out from the SQLiteDatabase 52

Listing 31 – Updating item in the SQLiteDatabase using items Id 53

Listing 32 – Inserting new object to the core data managed object context 56

Listing 33 – Querying object using from the Core Data Framework............................. 58

Listing 34 – Table of ToDoItems inside subclass of DataContext 60

Listing 35 – Class with a Table attribute attached and single string column 60

Listing 36 – Adding an object to desired table ... 61

Listing 37 – Deleting an object from the desired table ... 62

Listing 38 – Check if browser has support for indexed database api 64

Listing 39 – Opening indexed database .. 64

Listing 40 – Creating an object store to the indexed database 66

Listing 41 – Adding objects to the indexed database... 67

Listing 42 – Querying data from the indexed database ... 70

Listing 43 – Handling the data queried from the indexed database 71

Listing 44 - Sample of opening the browsers local storage ... 72

Listing 45 - Sample of adding new table to Web Sql Database 73

Listing 46 - Sample of adding new table and data using single transaction 74

Listing 47 - Sample of reading data from Web Sql Database 75

Listing 48 - Using where clause while reading data from Web Sql Database 75

Listing 49 - Deleting object by id from the Web Sql Database using where clause 76

List of Abbreviations

.NET .NET Framework developed by Microsoft

API Application Programming Interface

C# a programming language created by Microsoft

CMSS Computerized Maintenance Management System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HVAC Heating, Ventilation and Air Conditioning

IE Internet Explorer

JNLP Java Network Launch Protocol

LINQ Language Integrated Query

SaaS Software as a service

SQL Structured Query Language

SQLite relational database management system

SQL CE SQL Server Compact Edition

1

1 Introduction

Currently real estate companies that have many buildings and facilities rely on comput-

erized maintenance management systems (CMSS). The other option is to use some

sort of facility management software. Usually these software systems are desktop or

internet applications.

On the application background there is a data storage which can hold data in many

various forms. That data is collected and reported in many different ways. Some of the

data are collected and stored automatically but the main data is collected by users from

all around the facilities.

These facilities and buildings are having different kind of machines which take care of

HVAC (heating, ventilation and air conditioning) needs. Those machines contain differ-

ent kind of data which is read and stored to CMSS or to facility management software.

Modern HVAC machines contains an interface to collect that data automatically. How-

ever many current facilities and buildings especially old ones do not have modern

HVAC machines and all data needs to be collected manually.

People collecting that data to CMSS do not carry a laptop with them while working be-

cause laptops are too heavy, so another solution is needed. The solution could be a

handheld device with an application for storing data to the server and that could view

charts and reports from that data. Making a mobile user interface of the Internet appli-

cation for the handheld device is not a solution because there is no connectivity to

Internet in all places of the facilities.

The solution has a special need. The solution should be able to work both while it has a

connection to the Internet and while it has not. The main technological problem is how

to store data while the user is out of the network coverage area. This scenario is very

common, because many of the HVAC machines are located at the basement level or

on another area where it is not possible to use networks.

2

The solution should act as a network independent data collector. So people working on

buildings could go to a worksite and read the data and input it using a handheld device.

The Application should be able to handle the offline situation and store the data until

the device is back on the online status and ready again to download the collected data

to the server.

1.1 Company and Project Background

Granlund is a Finnish company specialized in design, consultancy and software ser-

vices. Granlund is the leading expert in all its specialty areas in Finland. The software

development department consists of two development teams. One of the teams has

the responsibility to develop a tool for maintenance management. That tool is known as

Granlund Manager.

Granlund Manager is a browser-based flexible maintenance management application.

It offers solutions for the following areas of maintenance: Maintenance activities and

maintenance manuals, energy management, long term planning and service requests.

Granlund Manager controls the life cycle, utilizes data models, motivates the users and

is able to monitor the quality of maintenance in real time. Granlund Manager is distrib-

uted mainly as a SaaS (Software as a service) solution and it serves nearly 300 organ-

izations in Finland and about 100 organizations abroad.

Granlund Manager was designed and developed to be used on the desktop browsers.

In the company the need of a mobile capable solution was detected. The needed mo-

bile application has to be capable of showing and storing data at places where there is

no network coverage available.

1.2 Objective, Scope and Structure of Thesis

The objective of this thesis was to research the mechanisms to store data to the persis-

tent memory of mobile phones. It covers data storing mechanisms of native and

HTML5 based applications. Offline capability in an HTML5 based application is also an

important object as the new standard gives tools to solve the need of an offline applica-

tion.

3

An overview on how to save data to mobile phones on selected mobile platforms is

covered along the research. Tools to manage browser based application resource us-

age are researched from the developers’ point of view. Mechanisms to recognize net-

work availability and HTML5 standard solution to save application logic to the mobile

phone are also researched.

The research question of this thesis is how to store data to persistent memory of mo-

bile phones, making it possible to use the application without network connection.

The research begun by inspecting the mobile operating systems market in Finland.

With that research the company wanted to be sure that the correct mobile platforms are

being covered during the research. Then a research about different mechanisms to

save data to mobile phones was done by using information from the literature and from

the internet. After the platform specific solutions were researched the possibilities of the

HTML5 solutions were studied. Based on the results gained from this research the de-

cision about implementing the offline capability will be made.

This thesis is written in eleven sections. Section 2 describes the research that was

done earlier to define the requirements for the offline capable application. Section 3

gives an overview of the theory and briefly introduces the options used before HTML5.

Section 4 presents tools to investigate resource usage in the browsers for developers.

Section 5 investigates how to identify the network availability on each platform. Section

6 researches the application manifest of HTML5. Section 7 and 8 examine solutions to

save different kind of data to a mobile phone and researches the database versioning

feature that is common for a few offline data solutions.

Section 9 presents the summary of the study and future steps for research and devel-

opment and also summarizes the study with conclusions.

4

2 Mobile Applications

This section describes what mobile operating systems are used in the world and in

Finland more particularly. It also explains how web applications work when compared

to mobile applications and the requirements given to the application are presented in

this section.

2.1 Mobile Platforms in Finland

In order to meet the challenges described in Section 1 the company decided that a new

mobile application is needed. One of the first questions was which platforms the appli-

cation should support. The company has not developed any mobile applications in the

past so all the research data was needed to help deciding the supported mobile plat-

forms.

When examining the smart phone mobile operating system usage worldwide it can be

clearly see that two operating systems (Google’s Android and Apples iOS) share al-

most four-fifths of the mobile market. This is shown in Figure 1 [26]. The Series 40 op-

erating system does not have all the capabilities that modern smart phones have so

technically Windows Phone is the third popular smart phone operating system.

5

Figure 1: Top 8 Mobile Operation Systems from Mar 2014 to Mar 2015 [26]

In the Finnish technology industry Nokia show the way a long time. This has affected

the Finnish mobile market and customer behaviour. Many Finnish companies still offers

Microsoft’s Lumia phones for the employees as phone benefit. This can be clearly seen

in the Finnish mobile operating system market as the Windows Phone is clearly in the

third place, as shown in Figure 2 [26].

6

Figure 2: Top 8 Mobile Operating Systems in Finland from Mar 2014 to Mar 2015 [26]

Being aware of the mobile operating systems market in Finland, designing and devel-

oping the mobile application to be compatible with the Android and iOS platforms would

not be enough. If the Windows Phone platform is not supported, almost one-fifths of the

mobile users could not use the developed application.

Devices with Android or Windows Phone operating system also tend to be cheaper

than iOS platform devices. So at the beginning it was stated that the application devel-

opment should be prioritised to work in the Android and Windows Phone platforms

rather than in the iOS.

When developing an application that is being piloted and tested in the Finnish market it

was quite clear that the application should work in all of the three major mobile operat-

ing systems.

7

2.2 Native, Hybrid or HTML5

The mobile application development applications can be divided into three categories,

native, hybrid and HTML5. Native and hybrid applications are distributed through plat-

form specific marketplaces such as Google Play, Apple Store and Windows Phone

Store. Native or hybrid applications that are not distributed through platform specific

marketplaces should not be installed to the mobile phones because of security risks.

When trying to choose the right approach for the new application a few key elements

have to be considered. First, for which platforms the application is being targeted. Na-

tive applications have to be written separately to each platform. If there are more than

one targeted platform, the native approach means that as many applications have to be

developed. If the supported platforms cannot be restricted only to a few it could lead

into a lot of work: If the development team is not having enough experience on multiple

platforms learning them will take time.

Hybrid applications are share the same code base and usually some software is used

to compile the application to each platform. Because they share the code base there

could be some limitations with the features compared to the native applications [5].

Hybrid applications can also have a platform specific code. To gain advantage from this

feature there should be enough understanding on each platform where the application

is being developed. Just like when developing native applications.

Secondly, one should study how many native application features are needed and

whether there are alternative solutions to them. A native application feature can be

recognized for the need of using some hardware component. For example does the

application having support for the phones camera, so the application could ask the user

to take a picture and that picture could then be easily added to the application?

The third main element is the performance. Are there heavy operations that have to be

performed in the mobile phone? Or are there heavy animations presented in the appli-

cation? Native applications have more processor and memory available than the appli-

cations running in the mobile phones browser. Those two things have quite a signifi-

cant role what comes to animation smoothness.

8

The application monetization is also an important element. Before starting application

development the developers and the business people should share the idea how the

money can be collected from the developed application and how the application is be-

ing distributed to the clients.

Very early in the development it came evident that the main features of the application

have to work on all main mobile platforms in Finland (Windows Phone, Google Android

and Apple iOS). Sharing the application through marketplaces would mean a lot of ad-

ministrative work and some extra expenses yearly. When the application is in the mar-

ketplace the company will not have a full control when the application updates are be-

ing distributed to the end users. The HTML5 solution does not have any of these

downsides. It can be updated every day and the company has full control when the

updates are applied.

From the developers’ point of view, the development tools are rather important to be

considered. The development team was currently working with the Visual Studios and

using the C# language. Adapting new tools and techniques will lead into a longer de-

velopment period. It would be quite a steep learning curve if they had to start develop a

native iOS application.

High usability is also an important point in the application design process. Knowing the

fact that native applications can utilize the resources of the phone more effectively than

the browser based application a few HTML5 proof of concepts were made. With the

proof of concepts it could be substantiated that the HTML5 application can have suffi-

cient performance without too much impact on the usability. On each platform a link to

the home screen can be made to ease the access to the application and the application

seems more like a native application.

With these requirements and having the need that the application should work on all

three platforms there were enough reasons to choose the HTML5 application for the

project.

9

2.3 Application Structures

A common structure of a modern web application is that the business logic and data is

stored in the server and the view which the user is able to see is constructed combining

information from these two. This kind of simplified structure can be seen in Figure 3.

The view contains events that call business logic to make changes to the data. Con-

nection between the user’s browser and the server has to be available every time when

the user makes any action.

Figure 3: Simplified web application command chain

If the web browser is closed and opened again while there is no network connection

the page cannot be opened. If the page is in the browser cache it might be possible

open the page but it would be empty because the browser is not caching the data that

the page is viewing.

Mobile applications can use the same business logic and data as the web application.

The mobile application has its own view and events. The mobile application can be

implemented in the same way as the browser’s view but because mobile phones have

a lot smaller display than computers usually do another approach is used. The data

can be stored to the mobile application and then be viewed on smaller chunks. Applica-

tion network usage can also be lowered when the data is transferred to the mobile ap-

plication only when needed and only the necessary data changes are transferred

through the network.

10

Figure 4: Simplified mobile application command chain

After the data is transferred from the network to the mobile phone the application can

be closed and opened again. If the data is stored to the mobile phone the application is

able to show the data that is stored to the mobile phone immediately. Even if there is

no network coverage available the data can be viewed because all the necessary com-

ponents are stored to the same device. A simplified structure of a mobile application

can be seen in Figure 4.

In every mobile platform it is possible to develop a mobile application that does not

need network connections at all. All the data that this type of an application shows is

produced within the same mobile phone. For example a simple game can contain all of

its logic and data in the application itself that is installed to the mobile phone.

Options to save data to the user’s web browsers were very limited before the HTML5

standard was introduced. In the mobile platforms saving data to the actual device has

been possible a lot longer. With the mechanisms introduced in the HTML5 standard it

is now possible to store data to the user’s browser and build applications that could

work without network connection.

11

3 Storing Data Permanently to Client

The most common way how internet applications work is that most of the data is lo-

cated on the server and only the data that can be seen in the view is transferred to the

user’s internet browser (client side). When an application has to be usable without

internet connection it cannot rely on data or logic that is stored outside the application.

Without internet connection the application behaviour is limited. Resources that can be

accessed while a user is using the application without network coverage are limited,

too. The key data should be available and stored somewhere on the client side to en-

sure that the user can still work with the application while he or she has no internet

connection. Also the key components of the application logic should be available.

From a security point of a view it should be always considered more than once what

kind of data is saved into the actual devices memory. Very sensitive data should not be

saved without encrypting to devices that can be lost or stolen [6, 37].

3.1 HTTP

HTTP Cookies is the oldest technology that can save data from the server to the user’s

web browser. Support for HTTP cookies was introduced in the Internet Explorer 2, back

in the year 1995. A Cookie is a small data part that is sent from website to user’s net-

work browser.

When considering using cookies, the developer should know the limitations of cookies.

A cookie should not be larger than 4 096 bytes (as measured by the sum of the length

of the cookie’s name, value and attributes [18]), because that is the size that is set on

the specification. So if a developer makes cookies larger than 4 096 bytes there is a

risk that some browsers deny them.

The specification also states that every browser should have a capability to handle 50

cookies from each domain and also be able to handle at least 3 000 cookies in total.

12

Cookies are transferred between server and client on the every request that the

browser makes to the server [18]. They are also transferred inside HTTP headers so

using a lot of them will slow down the communication between the server and the cli-

ent.

If there are a lot of requests between a browser and a server, a huge number of cook-

ies will result a huge bandwidth usage. It will affect the network availability and running

costs for both participants. To the one that is serving the data and to the one that is

querying the data. A user must also have a very fast connection to ensure the smooth

data transitioning.

Cookies can also store some data to the client. They are counted as a possible offline

storage even if the amount of data they can store is not much.

3.2 Browser Plug-ins

Browser plug-in is a small component that will extend the web browsers capabilities.

Often the user has to install them separately. There are a lot of plug-ins available to the

desktop internet browsers, but the two most popular plug-ins are Adobes Flash and

Oracles Java. Google was developing their own plug-in called Gears from 2007 to

2010. Microsoft has been developing the Silverlight plug-in. Plug-ins has been avail-

able mainly for the desktop browsers only.

Some browser plug-ins have a mechanism to save data to the user’s computer and

also to read the data from the disk. Some plug-ins can read and write to separate files

too. These files can be used with other applications as well.

Adobes Flash introduced a mechanism called local shared object. It has also been

called as flash cookies because of their similarity to http cookies. There have been also

a lot of criticisms about their security. Mostly they were used to save some data of the

application to the user’s computer not all of it. For example a flash based game could

have a separate leader board for the local users only at the user’s computer.

With the Oracles Java it is possible to write Java applets that are placed on the web

page. These applets can have access to the user’s local files. The applet must request

permission from the user before it can access data on a user’s disk.

13

“The security model behind Java applets has been designed with the goal of protecting

the user from malicious applets.” [20]

In order to get access to the user’s local files the Java applet has to be started using

Java Network Launch Protocol (JNLP). The applet still needs the user’s permission

before it can really access the user’s local file system and read and write data to the

files.

Microsoft Silverlight also has a mechanism to read and write to local files. This feature

was introduced with the Silverlight 5. The user has to approve the Silverlight 5 applica-

tion as a trusted application before it can have access to all of the user’s files.

“Trusted applications are applications that you configure to require elevated trust.

These applications have special installation requirements, but can bypass some of the

restrictions of the default Silverlight security sandbox. For example, trusted applications

can access user files and use full-screen mode without keyboard restrictions.” [21]

Previous versions of the Microsoft Silverlight could access only files located under the

user folder (also known as C:\Users). The Silverlight 3 could save files to anywhere on

the users local file system by using the save file dialog. It can be used only for saving

files because the security model that Silverlight was obeying meant that the path where

the file was saved was never transferred back to the actual application.

In 2007 Google released their own browser plug-in called Gears. It extended the

browser’s capabilities to the new levels. It offered a way to store some of the files to a

local file system and they could be retrieved while there were no network connections.

As the HTML5 standard was developed Google decided to stop working with the Gears

plug-in and they ended its development in February 2010.

The plug-in was earlier preinstalled on the Google’s Chrome browser. It was removed

from the base install in the release of version 12.0.742.91 in June 2011.

14

3.3 Mobile Platforms

Mobile applications can be used without internet connection after they are installed to

the phone. The difference to the HTML5 applications is huge because only the data

that is located in the network is inaccessible. Applications different views and logic is

always accessible and can be used for smooth user experience even while working

without a network connection.

Many of the current html applications contain only the data they show and only small

part of the actual logic. Main business logics are held on the server side of the applica-

tion and never transferred into the user’s browser.

3.3.1 Google Android

The Android development environment contains multiple frameworks to store data to

the actual device. These are known as Shared preferences, Internal and External stor-

age and also as SQLite Database. The developer should handle them all and also

have knowledge which framework will give the best support and performance for the

application.

Shared preferences framework in the Android environment is a general framework that

allows saving and retrieving persistent key-value pairs of primitive data types. So it is a

lightweight mechanism to store a known set of values [1]. It is very handy when saving

application settings or user’s preference. For example if there is a possibility for a user

to decide if he wants to use metric or imperial units in the application the decision can

be saved into the shared preferences.

If the application needs to work with several files, for example if the main focus of the

application is on to handle media files (music, photos etc.) the developer has two op-

tions. To use the internal storage or external storage framework to gain access to the

files in the device.

By default, files saved to the internal storage are private to that application and other

applications cannot access them (nor can the user). When the user uninstalls the ap-

plication, these files are removed [2].

15

External storage is also used to store files, but unlike in the internal storage, files in the

external storage can be accessible outside of the application. It can be used even from

a desktop computer if the phone is plugged into the computer. External storage can be

located at the removable media or non-removable media (memory card in the mobile

phone).

Extra caution is needed when using external storage that is located at the removable

media. The user could somehow make the removable external storage inaccessible at

any point of the applications flow by removing the removable media from the phone.

In the previous version of Android applications to read or to write to the external stor-

age the application manifest must have a permission to read or write to external stor-

age. At this point the version 4.4 of Android does not need the permissions if the appli-

cation uses external storage files only for inside the application. Permissions must be

set in the application manifest if there is a reason to use the files which the application

was made outside the actual application. This is a good example how fast things de-

velop in the mobile field.

The database support on Android devices is built using SQLite framework. Any data-

base that is created in the application is accessible by any component inside the appli-

cation, but not outside the application.

3.3.2 Apple iOS

Apple has developed a few options to save data into the iOS devices. To save the sim-

plest data a property list can be used. Property lists holds data as key value pairs.

Property list is an xml file that is located in the applications resources folder.

The need of storing more complex objects than key value pair objects can be done

using the NSCoding protocol. With the NSCoding protocol objects can be serialised

and deserialized into the persistent memory. It is a good mechanism when there are

not many objects and the device performance is not affected too much.

16

When storing multiple objects the Apples solution is The Core Data Framework. “The

Core Data framework provides generalized and automated solutions to common tasks

associated with object life-cycle and object graph management, including persistence.”

[16]

Core Data framework is very powerful tool for iOS developer and every iOS developer

should be familiar with it. It is not a relationship database, it is more. With the help of

the core data model there is no need to glue code between the applications user inter-

face and its data model, because Interface Builder tool provides pre-built Code Data

controller objects.

Apple iOS includes also the SQLite library and it has the same limitation as in the An-

droid environment. Another applications SQLite database cannot be used with another

application. It can be found in the library frameworks and it is called libsqlite3.dylib.

3.3.3 Windows Phone

Isolated storage in the Windows Phone platform is a piece of space at the phone hard

disk. It offers unlimited data for every application (of course in the limitations of the

available data in the phone). Data inside an isolated storage is saved using the applica-

tion id, so the data belongs to a single application. Data in the isolated storage cannot

be shared between two applications.

When updating the developed application one considerable thing is that files that are

saved into the isolated storage are not updated from the marketplace. So on the every

application update the developer needs to manage the situation inside the application

logic if files are needed in the application constantly.

Database support in the Windows phone platform is done by using SQL CE (SQL

Server Compact Edition). It has also a support for LINQ to SQL. With the help of the

community there is also a possibility to use SQLite database with the windows phone 7

and 7.5.

The Windows Phone platform has its own database framework and it is more than rec-

ommended to use it. Community libraries can be strong when they have support by the

community but often they cannot compete with built in frameworks.

17

3.4 HTML5

The offline capabilities of HTML5 can be divided into two different logical components.

The first logical component focuses to store data into the user’s browser (and to the

user’s mobile phone at same time). The second logical component is the Application

cache that focuses to ensure that the application logic is available even when there is

not network coverage.

“The distinction is core application logic versus data. Application caching involves sav-

ing the application's core logic and user-interface. Offline storage is about capturing

specific data generated by the user, or resources the user has expressed interest in.”

[3]

While native mobile application logic is always available in the phone’s memory, web

based application logic is not available in the browser by default. The HTML5 enables

control for the developers to choose which files should be available always for the

user’s browser. Every logic part that is needed while the user uses the application

without network connection has to be in the application cache manifest. This ensures

that the application logic is saved into the user’s browser and can be used while the

network connection is not available.

The first offline data storage method that the HTML5 standard introduces is called web

storage. It is similar to Android’s shared preferences since it is also a key/value pair

mechanism. A big difference comes from the value types since the web storage sup-

ports only string values. So every object or a value that is stored to the web storage

must be serialized first.

The web storage is further divided into two separate parts, to the local storage and to

the session storage. Values that are stored into the local storage can be accessed from

every session that is opened from the current browser. So the value saved today can

be obtained tomorrow or later. Values that are stored into the session storage can be

accessed only inside the same session where they were added.

When the session ends (for example the user logouts from the service) the local data is

cleared. It is also cleared when the user closes the window where the HTML5 applica-

tion runs (even the actual session is still alive).

18

Web storages do have a drawback, they lack of transactions. It means that if the users

work with the application simultaneously using multiple browser tabs the data changes

are not synchronized between the tabs. When the user modifies data in the first tab

there is no mechanism to ensure that the second tab will have the same changes. That

could lead into confusing situations for the user.

How much disk space can a single site consume when using web storages from the

user’s disk where the browser runs? Current specification of web storage states that

“User agents should limit the total amount of space allowed for storage areas, because

hostile authors could otherwise use this feature to exhaust the user's available disk

space. User agents may prompt the user when quotas are reached, allowing the user

to grant a site more space.” [9].

If the application needs more data than is reasonable and effective to store into the

persistent memory using web storages developer should consider other HTML5’s off-

line data solutions.

For example, if the developer needs to save multiple instances of objects and view

them all to the user using some sort of a list. It would be very frustrating to store every

object with a key to local storage and then trying to retrieve every object by using the

key from the storage. The database like solutions are better because it is possible to

retrieve multiple items with a single query using where clauses etc.

In the beginning of the HTML5 standard the Web SQL Database was introduced as

part of HTML5 standard. The Web SQL Databases purpose was to offer a client-side

database that could be manipulated using already known and familiar SQL language.

The Web SQL Database was implemented with all the good and bad things from the

ordinary relation database. The schema must be defined upfront and every object in

the single table must match the table structure or the object cannot be inserted or up-

dated in the table. Looking from another angle the rigid data structure means that it is

easier to maintain the integrity of the database objects.

19

Web SQL supports indexes like an ordinary SQL database so search performance is

usually fairly good and it can be improved by adding indexes. The Web SQL API was

developed as an asynchronous API so queries and data manipulation is not locking the

user interface. The user is able to interact with the user interface while the queries are

made. Not a single user wants to use an application that is constantly unresponsive.

The development of Web SQL database specification has been stopped in November

2010 because all of the interested implementers used the same SQL backend. Stan-

dardisation could not be made when everyone was using the same backend. As the

Web SQL database standardisation document states: “This document was on the W3C

Recommendation track but specification work has stopped. The specification reached

an impasse: all interested implementors have used the same SQL backend (Sqlite), but

we need multiple independent implementations to proceed along a standardisation

path.” [12]

The developers should not consider Web SQL as an option to store client-side data

because the working group states that: “Implementors should be aware that this speci-

fication is not stable.” [12]

The competing solution for the Web SQL standard was introduced in 2009 and it is

called Indexed Database API. The first public draft was developed by Oracle [24] and

first it was called WebSimpleDB API. In present day it is mainly known as Indexed Da-

tabase API [13].

Indexed Database API development started after the first versions of web storage and

Web SQL Database was completed. With gained knowledge the working team could

focus to implement it using strengths from the two earlier solutions. In the development

they have also been focusing to solve the weaknesses that were found out from the

earlier solutions.

The Indexed Database contains collections of objects in stores. These object stores

have not constrains between each other. Because there are no constraints between

stores object structures does not need reservations to pair objects together. This also

means that there is no need to define object stores upfront.

20

When the database can be used without defining its structures upfront the database

can be taken to use much faster than the ordinary relation database. Making simple

offline demos or proof of concepts can be set up very fast and changes can be imple-

mented fast because the databases agile model.

Web storages and Indexed Database solutions are effective when the data is mainly

structured data or text. When there is a need to save large binary content for example

files or images the developer should consider using the HTML5 standards FileSystem

API.

In the FileSystem API development the working team has focused on solving five dif-

ferent use cases that are: persistent uploader, application with lots of media assets,

audio/photo editor, offline video viewer and offline mail client. The working team fo-

cuses also on the ability to share data with other applications outside of the browser.

[25]

The use cases can be summed together with one common feature. Every one of them

stores large amount of data to the user’s disk. That data is then utilised in the applica-

tion for some heavier operation. For example the user’s emails are stored to disk so the

user can view them when he or she has no network coverage. The user could also

store a large video file to the disk and then view it later with some another application.

21

4 Inspecting HTML5 Storages Usage

Some of the browsers have preinstalled tools to inspect the usage of the sites. This

chapter is dedicated to browser features. From the browser features the research was

looking out the possibilities to inspect the usage of Application Cache, IndexedDB,

WebSQL, LocalStorage and SessionStorage from the browser itself without using other

development tools.

4.1 Internet Explorer

Internet Explorer has a minimalistic view for the offline data that websites have stored

into the device’s disk. How much space sites have allocated and the settings for the

website cache and databases sizes can be inspected and set in the Website Data Set-

tings dialog Caches and databases tab.

Website Data dialog can be found accessing option “Internet Options” under browsers

Tools menu. From the opened Internet Options dialog one chooses the Settings button

under Browsing history title. This can be seen in Figure 5.

22

Figure 5: Internet Explorers Internet Options dialog

Figure 6 presents the opened “Website Data Settings” dialog. From the opened dialog

one would select “Caches and databases” tab to inspect usage of sites and setting limit

how much space sites can allocate before user has to accept the disk usage. The de-

fault setting value for Internet Explorer is 10 MB.

23

Figure 6: Caches and databases settings tab under Website Data Settings dialog

Currently Internet Explorer does not offer any tools to inspect the data that is stored in

the browser. It can only show how much data has been stored and offers a single solu-

tion to delete it and that is all.

When disk usage is exceeded a prompt is displayed that will request the user input to

allow or disallow extra disk usage. Figure 7 presents the prompt that the Internet Ex-

plorer will show.

Figure 7: additional storage prompt in the Internet Explorer

After the user has allowed the site to exceed the usage the prompt is not displayed

again. The user should always consider why the site tries to save more data than the

default quota is if it is not clearly explained in the application.

24

4.2 Mozilla Firefox

Firefox introduced developer storage tools in its release of version 34. This storage tool

allows inspecting the data that the browser has been saved from the websites. In the

older Firefox it is possible to use a plug-in that offers tools to inspect the browser stor-

ages.

In the version 34 there is a dedicated Storage panel in the developer tools. The default

setting for the panel in the developer tools is that the storage tab is not active. To acti-

vate it the user has to first open the developer tools (F12) and then open the settings

panel from the icon shown in Figure 8.

Figure 8: Firefox developer tools settings

From the settings tab the storage must be checked. Immediately after checking the

storage setting a Storage tab is presented in the developer tools. A view of the storage

tab is presented in Figure 9.

Figure 9: Firefox developer tools Storage tab

25

It is possible to inspect all of the storages listed in the storage tab. With the default

storage inspector it is not possible to clear the storages. All but the indexed database

storages can be cleared by removing all the data from the browser history.

To permanently delete the Firefox’s indexed database it can be done by deleting the

.sqlite files from the disk. These files are located in the users Firefox folder in the com-

puters application data folder. In Windows 7 by default these files are located in the

“C:\Users\USERNAME\AppData\Roaming\Mozilla\Firefox\Profiles*.default-

*\storage\persistent\” path. Where the USERNAME- is the current user’s name and the

profile is default. Every site that uses indexed database has its own folder under the

persistent folder.

4.3 Google Chrome

With Google Chrome it is possible to inspect the saved data from the Application

cache, IndexedDB, WebSQL and Local- and SessionStorages. They can all be in-

spected from the resources tab in the Chromes developer tools. Chomes resources tab

is presented in Figure 10.

Figure 10: Google Chromes Developer tools resources tab

26

The disk availability in the Chrome is superior compared to the disk availability in the

Internet Explorer. “Each app can have up to 20% of the shared pool. As an example, if

the total available disk space is 50 GB, the shared pool is 25 GB, and the app can have

up to 5 GB. This is calculated from 20% (up to 5 GB) of half (up to 25 GB) of the avail-

able disk space (50 GB).” [22]

From the indexed databases it is possible to clear the object stores one by one using

the right click on the mouse from the top of the indexed database store. The right click

will open a small menu with a single command clear. It will clear the selected indexed

database store.

From the Local and Session storage and from the Cookies it is possible to delete saved

data by one row a time. After selected the site from the left panel the right panel will

show every key-value pair that the site is stored. Unwanted key-value pair can be se-

lected and pressing the delete button from the keyboard or the delete icon from the

bottom of the right panel will delete the selected row.

Using only the default tools that are built in the browsers the Chrome offers currently

the most advanced tool to monitor and control the data that is stored inside the

browser.

4.4 Apple Safari

Apples desktop safari has similar developer tools than Firefox and Chrome have. The

developer resources view can be opened from the Develop menu by choosing the

“Show Page Resources”. Safaris developer tools are able to show data from the Cook-

ies, Indexed databases, local- and session storages. Safaris resource view is pre-

sented in Figure 11.

27

Figure 11: View from the Safaris Resources tab in the developer tools

The Safaris developer tool is only capable to view the saved data. The entire saved

data from a single page can be removed using the preferences menu. To do this, one

would open the Safari preferences (from the Mac’s top menu Preferences is found un-

der the Safari title). From the opened preferences dialog the Privacy tab is chosen.

There is a possibility to remove all data of the website using the button that is in the

dialog. The preferences privacy tab is presented in Figure 12.

Figure 12: Safaris settings dialog with Privacy tab selected

28

Clearing data only from a single page can be done by clicking the “Details...” button

from the dialog. This dialog is presented in Figure 13. From the opened dialog there is

a search field where it is possible to type the pages domain which data is wanted to be

removed. When the appropriate domain is in the list it can be selected and then the

Remove button must be clicked. The data that domain has saved is being deleted. All

the saved data from the cache, from the cookies, from the databases and from the

storages have been removed.

Figure 13: Deleting saved data from a specific site in the Safari browser

Tools to inspect and manipulate data that is stored to the browsers memory are handy

when developing applications that run in the browser. There is no reason why normal

user should normally inspect or manipulate data that is saved from the different web-

sites.

29

5 Detecting Internet Connection in Offline Capable Application

Applications that have offline capability also need a mechanism to detect the state of

the internet connection, whether the user’s handheld device have the internet connec-

tion or not.

The internet connection detection is almost as important a feature in the offline capable

application as the data handling. Although if in a certain point there is a network con-

nection it does not mean that it is available in the next application step.

It should be considered when there is enough information that the phone has a network

connection. Is it enough when the phone has a connection to the network or should

also be checked that the internet connection can be made. Nowadays mobile applica-

tions transfer data from the internet and to the internet quite a lot more than for exam-

ple five years ago. It must be also remembered that when the mobile phone is con-

nected to the network there could be some cases that internet connection is not set up

or the internet connection speed is low.

One commonly used way to identify the internet connection inside a mobile application

is to ping some host at the internet and check if that succeeds. When developing appli-

cation which is entirely in the hands of single company it would be reasonable to ping

one of addresses that belongs to that company.

If the application collects data from numerous locations then it would be reasonable to

test if the ping can reach some widely used and trusted service like for example the

Google. Keeping in mind that there are nations where it cannot be reached even if the

internet connection works normally.

5.1 Google Android

In the Google Android platform, network connection can be checked using Connectiv-

ityManager class. That class contains method getActiveNetworkInfo. It will return the

first found connected network interface or null. Also the ACESS_NETWORK_STATE

permission has to be added to the Android applications manifest. Example of testing

network status in the Android application is presented in Listing 1.

30

ConnectivityManager connManager
= (ConnectivityManager) getSystemSer-
vice(Context.CONNECTIVITY_SERVICE);
NetworkInfo activeNetworkInfo = connManager.getActiveNetworkInfo();
boolean isNetwork = activeNetworkInfo != null && activeNetwork-
Info.isConnected();

//to the application manifest
<uses-permission an-
droid:name="android.permission.ACCESS_NETWORK_STATE" />

Listing 1 - Sample of testing network status in the Android [28]

Listing 1 presents the actual test of the network interface and the permission that

should be added to the Android application manifest.

5.2 Apple iOS

Testing the network connection in the Apples iOS platform is slightly more complex

than in the other platforms. Apple distributes a sample application that demonstrates

how to check and monitor the network state of an iOS device [15].

With the help of that sample project it is possible to make a simple network status

check. First a reachability-object is needed. That object contains a method curren-

tReachabilityStatus which will return a NetworkStatus object that contains the informa-

tion about current connection. Example of testing network status in the iOS can be

seen in Listing 2.

Reachability *networkReachability = [Reachability reachability-
ForInternetConnection];
NetworkStatus networkStatus = [networkReachability currentReachabili-
tyStatus];

if (networkStatus == NotReachable) {
 NSLog(@"There IS NO internet connection");
} else {
 NSLog(@"There IS internet connection");
}

Listing 2 - Sample of testing network status in the iOS [15]

As presented in Listing 2 the returned networkStatus object can be compared to the

NotReachable enumeration.

31

5.3 Windows Phone

Windows phone platform offers NetworkInformation class for identifying the network

access. NetworkInformation-class has a method called GetIsNetworkAvailable. It does

not have any parameters and it will return a boolean value indicating if the phone is

connected to the network or not. Network availability test in the Windows Phone appli-

cation can be seen in Listing 3.

var isNetWork = NetworkInterface.GetIsNetworkAvailable();

if (isNetWork)
{
 Debug.WriteLine("There IS network connection");
} else {
 Debug.WriteLine("There IS NO network connection");
}

Listing 3 - Sample of testing network status in the Windows Phone

The Windows Phone’s GetIsNetworkAvailable inspects only the network availability. It

is possible that the user can dial with the phone but the internet connection is not avail-

able, so the check is not totally accurate.

5.4 HTML5

In HTML5 or in the browsers the online can be tested using JavaScript and the naviga-

tor object. The navigator object contains information about the browser. It has a prop-

erty called onLine. Example of using the property is presented in Listing 4.

function updateOnlineStatus(event) {
 if(navigator.onLine) {
 //application has network connection

 } else {
 //application does not have network connection

 }
}

document.body.addEventListener('online', updateOnlineStatus);
document.body.addEventListener('offline', updateOnlineStatus);

Listing 4 – Adding event listeners to the online and offline events [23]

32

It is possible to hook the application code to monitor the network status using

JavaScript. The application should add event listeners to the online and offline events.

These events occurs when the onLine-property changes. This can be made using ba-

sic JavaScript. The application should add event listeners to the document body or to

the window for these events with an event handler. Example of monitoring the events is

presented in Listing 4.

As researched it is possible to test the network availability in the selected mobile plat-

forms as well as in the HTML5 based solutions. Testing the network availability does

not give the accurate details for example about the speed of the current network.

When developing a native application it would be possible to benefit from the extra fea-

tures available in the native platform. For example in the iOS environment it is possible

to identify accurately what kind of network interface have connection. The Wi-Fi inter-

face or some other interface which speed is not as fast as Wi-Fi interface’s.

The information about the connected interface could be utilised in the application de-

velopment. For example images transferred to the user could have better resolution or

if the application transfers and shows video the connection speed is affecting to the

result even more. In the HTML5 development it is not possible to get details about the

connected interface so another solution should be researched.

The HTML5 based solutions needs also more work what comes to the application logic

while the network is not available. The next chapter researches the HTML5 solution to

secure the application logic into the user’s browser.

33

6 HTML5 Application Cache

Implementing HTML5 application with offline support has two key parts. The first one

can be called as data storage. That is how and where the application data is stored and

how it is handled. Different data storage possibilities have been covered in the previous

chapters. The second key part is how to ensure that all the necessary files are availa-

ble for the application even when there is no internet connection.

HTML5 has a way to extend the traditional browser caching significantly. The traditional

browser cache stores only a few of the latest pages the user has visited into the

browsers memory. Those files have a time stamp and they are requested again if the

timestamp is too old. In the traditional cache developers had no control over what files

were stored and what were not.

The application cache manifest of HTML5 makes it possible to retrieve files beforehand

into the browsers cache. With the help of application cache it is possible to store all

necessary files into the user’s browsers and application can operate normally without

the internet connection.

The application cache manifest file is a file which lists all the files the application needs

to be operational without internet connection. The user’s browser will keep a copy of

those files to make the offline usage possible [17].

The simplest manifest file contains the title “CACHE MANIFEST” so browsers can iden-

tify that the file is the cache manifest file. The files in the manifest are listed with an

absolute URL or with absolute path to the actual files. Each file that the application

needs to operate without connection is listed on its own separate line. A sample file is

presented in Listing 5.

CACHE MANIFEST
todo.html
todo.css
todo.js

Listing 5 – Simple cache manifest file

34

If the first line of the file contains other than spaces, tabulars and text “CACHE MANI-

FEST” the browsers will ignore the manifest file. Even if the space between the cache

and manifest is something else than a single white space the file is ignored.

From the next lines it is possible to use comments in the manifest file also. If the devel-

oper wants to do so a new line has to be started with a number sign (#). A common

trick is using it to versioning the manifest file. Simply by writing a number on the com-

ment line or being a little bit more specific and writing it after a version word. Listing 6

presents the use of a version comment.

CACHE MANIFEST
#version 0.9
todo.html
todo.css
todo.js

Listing 6 – Simple cache manifest file with an additional comment line

The manifest file can have any name or file extension. What is important is that the file

is a text file and encoded using UTF-8. The file has to be served using a MIME TYPE

text/cache-manifest.

The application manifest files mime type may need to be added to the server’s configu-

ration file. In the Apache environment the mime type can be added using the .htaccess

file. In the Windows Internet Information Server the mime type can be added using the

applications web.config file. Adding the mime type to the server configuration file is

presented in Listing 7.

//in the .htaccess
AddType text/cache-manifest .manifest

//in the IIS web.config
<system.webServer>
 <staticContent>
 <mimeMap fileExtension=".appcache" mimeType="text/cache-
manifest"/>
 </staticContent>
</system.webServer>

Listing 7 – Adding a mime type on Apache and on the Windows environments

35

The manifest file is marked inside the page’s html tag using the attribute manifest. If a

wrong location is set or there is a type error in the manifest file name the browser will

get an http 404 error. If the 404 error occurs when the browser tries to read the mani-

fest file the application cache for this page will be deleted. Adding the manifest attribute

to the html tag is presented in Listing 8.

<!-- todo.html -->
<!DOCTYPE HTML>
<html manifest="todo.appcache">
 <head>
 <title>Todos</title>
 <script src="todo.js"></script>
 <link rel="stylesheet" href="todo.css">
 </head>
 <body>
...
 </body>
</html>

Listing 8 – Cache manifest file attached to simple html page

There are several important things to remember when using application cache. The

first is that all the listed files are always served from the application cache not from the

browser cache [19].

This means that the browser will first render the page from the cached files. When the

rendering is completed the browser then starts to look out if there is an updated mani-

fest or if the files listed in the manifest have been updated.

This may sound confusing but there is a reason why it works like that. If the user’s con-

nection drops during the load the browsers can finish the page rendering when the data

comes from the application cache.

With the help of the application caches Javascript-API the developer could notify the

user to refresh the page when there are newer files available. This has been already

seen in parts of the Googles web-solutions (Drive, mail etc). The solutions notify the

user to refresh the page because there are updates available.

Manifest structure and behaviour can be improved using CACHE, NETWORK and

FALLBACK attributes.

36

Files that are listed under the CACHE attribute are being cached. The cache attribute is

not mandatory and files that have to be cached can be listed also after the CACHE

MANIFEST title. Using the extra cache attribute could make the manifest file easier to

read.

Under the NETWORK attribute there are listed files that may come from the network if

they are not in the cache. Most applications uses an asterisk (*) here. So the applica-

tion developers do not need to list every file that the application would use [4, 146].

Under the FALLBACK-attribute it is possible to reroute the user to a specified URL if

the application is not have a network connection. For example it would be possible to

cache a single image and use that image on every place where an image would be

shown if the application would have network connection. There is a limitation as to how

much data can be saved so using a single image rather than each of the images would

save a lot of space from the memory.

37

7 Accessing and Saving Key Value Pair Data

As reported in Chapter 3 there are many different solutions and ways to save data to

the mobile phones persistent memory depending on the platform that developers work

with. This chapter introduces different mechanisms to save simple key value pair data

to the persistent memory of mobile phones.

7.1 Google Android

Androids option to save key value pair data to the persistent memory of a mobile phone

is called the SharedPreferences. SharedPreferences allows saving and retrieving

primitive data types using the SharedPreferences class that provides a general frame-

work to work with.

First using the getSharedPreferences- or getPreferences- method the SharedPrefer-

ences object is initialized. The guideline from Google states that getSharedPreferences

method should be used when the application is using multiple files to store the applica-

tions preferences [27]. The getSharedPreferences-methods the first parameter is the

name of the settings file and the second parameter is the mode.

The getPreferences method should be used when one settings file is enough for the

activity. All the settings are stored into the single file and that file can be accessed only

from the current activity. The getPreferences method needs a single argument that is a

mode. Current documentation states that MODE_PRIVATE (equals integer 0) should

be used and it is the only not deprecated value for the argument.

Now when the SharedPrefences object is created key values can be read from the

memory. To write key value pair data an editor is needed. The editor (SharedPre-

fences.Editor) can be created by calling the edit method under the SharedPreferences

object.

With the editor it is possible to write values. It has to be remembered to use correct

method for each primitive data type such as putBoolean and putString. These put

methods have two parameters. The first one is the name of the settings and the second

one is the actual value of the setting.

38

When the putBoolean or putString method is called the setting values are stored first to

the SharedPreferences.Editor only. To save the values to the persistent memory com-

mit- or apply-method have to be called from the editor. Commit-method writes changes

atomically into the persistent memory unlike the apply-method writes changes first to

the in-memory SharedPreferences and then performs asynchronous commit to the

persistent memory. Getting the sharedPrerences and the editor objects to save a boo-

lean type of setting to the persistent memory is presented in Listing 9.

// Restore preferences
SharedPreferences sharedPreferences = getPreferences(0);´

//get the editor by calling the edit
SharedPreferences.Editor editor = sharedPreferences.edit();

//add value to the shared prefenreces
boolean useThousands = true;

editor.putBoolean(“useThousands”, useThousands);

//apply the modification
editor.apply();

Listing 9 - Sample of adding a setting to the SharedPreferences

If there are multiple changes to the same preferences file with multiple editors the last

editor to commit will get its changes saved into the persistent memory. Commit-method

returns true if it successfully saved changes and the apply-method is just a void

method. The Android developer guide suggests that if the commit methods return value

is not used the developers should always use the apply-method instead.

Reading settings from persistent memory is a slightly straight forwarded than the writ-

ing. First the SharedPreferences object is needed, but after that primitive data-type get

methods can be called such as getBoolean or getString or equivalent. These get-

methods have also two parameters. The first parameter is the name for the setting and

the second is the default value. Default value is used if there is no value in the persis-

tent memory with the queried setting name. Restoring a setting value using Shared-

Preferences is presented in Listing 10.

39

// Restore preferences
SharedPreferences sharedPrefences = getPreferences(0);
boolean useThousands = sharedPrefences.getBoolean("useThousands",
false);

if(useThousands) {
 ...
}

Listing 10 - Sample of reading a SharedPreferences

The SharedPreferences of Android platform gives the developer a reasonable toolbox

to work with. It is designed to hold primitive values but complex objects could be saved

to it by serialising them first and saving the data using the string primitive data type.

7.2 Apple iOS

Apples iOS platform uses property lists as a method to save simple data from the ap-

plication to the persistent memory of a mobile phone or tablet. These property lists are

xml based files that are located in the applications resources folder. When the user

closes the application the developer should make sure that all the necessary settings

are written into the xml file.

Stored data in the property list can be from any objective-c primitive data type. The

Apple developers are however implemented methods to read and write into the prop-

erty list only for the NSArray and the NSDictionary classes. Both of these classes have

writeToFile:atomically and writeToURL:atomically-methods.

Keeping that in mind it would be reasonable and easier to store all the application set-

tings into single NSDictionary object that is saved into the applications persistent mem-

ory using property lists.

When dealing with property lists it is always good to remember that result in the disk is

an actual xml file. That is the reason why saving simple settings have more steps than

in the compared platforms.

First the path to the actual xml file is needed and before it can be determinate applica-

tion’s root path is needed. That can be found using NSSearchPathForDirectoriesInDo-

mains object with the NSUserDomainMask parameter.

40

When the rootpath is discovered it has to be appended with a property list name using

NSStrings stringByAppendingPathComponent method.

It is the developer’s responsibility to ensure that file exists on that location. If not, the

file should be made programmatically before the program can continue any further.

When the file is found and located from the disk the property list xml can be read out as

a NSData object. That NSData object can then be deserialized to NSDictionary and the

developer may now access its properties to read out the actual setting values. The ex-

ample of reading from property list can be seen in Listing 11.

// discover the root path
NSString *rootPath =
[NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES) objectAtIndex:0];

//append property list name to rootpath to get propertyLists path
NSString *plistPath = [rootPath
stringByAppendingPathComponent:@"AppSettings.plist"];

//read the actual file as NSData
NSData *plistXML = [[NSFileManager defaultManager]
contentsAtPath:plistPath];

//deserialise the xml file into NSDictionary
NSDictionary *temp = (NSDictionary *)[NSPropertyListSerialization
propertyListFromData:plistXML
mutabilityOption:NSPropertyListMutableContainersAndLeaves for-
mat:&format errorDescription:&errorDesc];

//retrieve setting value
NSString *programName = [temp objectForKey:@"ProgramName"];

Listing 11 - Sample of reading from property list.

When the user closes the program the current setting values have to be saved into

property list file or when the user closes the application settings view. Saving can be

implemented by the help of the NSDictionary and NSData classes.

41

Before saving can be done the property list file path must be discovered and appended

with the name of the property list file. With the correct path the settings, dictionary can

be serialized using the NSDictionary classes dataFromPropertyList-method. Data-

FromPropertyList will serialize the NSDictionary to NSData object and that NSData

object can be written into actual file that locates in the disk. The writing is done by us-

ing NSData class’s writeToFile-method.

//we are about to save the NSDictionary *settingsDict
NSString *error;

//get the applications root path
NSString *rootPath = [NSSearchPathForDirectoriesInDo-
mains(NSDocumentDirectory, NSUserDomainMask, YES) objectAtIndex:0];

//append it by adding our settings list name
NSString *plistPath = [rootPath stringByAppendingPathCompo-
nent:@"AppSettings.plist"];

//make NSData from our NSDictionary
NSData *plistData = [NSPropertyListSerialization dataFromProper-
tyList:settingsDict format:NSPropertyListXMLFormat_v1_0 errorDescrip-
tion:&error];

//write that file to disk
[plistData writeToFile:plistPath atomically:YES];

Listing 12 - Sample of saving the AppSettings property list.

The Apples developer library has more complex and detailed information about prop-

erty lists in the “Property List Programming Guide” [8]. An example of saving property

list to the disk can be seen in Listing 12.

7.3 Windows Phone

On the Windows Phone platform saving key value pair data can be done using the Iso-

latedStorageSettings class. This class is a Dictionary(TKey, TValue) that stores its data

into the persistent memory.

Before using the isolated storage and the IsolatedStorageSettings class a reference to

System.IO.IsolatedStorage library needs to be added to the program. To get access to

the applications settings file a call to the system class ApplicationSettings has to be

made. That system class can be found under IsolatedStorageSettings.

42

Adding key value pairs into the application settings can be made using the Applicatoin-

Settings class’s add-method. If the key that is added already exists in the application

settings an exception will be thrown. When keys are added there should be always a

check that the key is not already found in the application settings dictionary. Adding a

setting to the IsolatedStorage is presented in Listing 13.

//get settings
var appSettings = IsolatedStorageSettings.ApplicationSettings;

//aad value of useThousands setting
appSettings.Add(“useThousands”, true);

Listing 13 - Sample of adding a setting to the IsolatedStorage [7]

When reading from isolated storage there is a possibility that value is never added be-

fore trying to read it. So there should be always a check that queried key is in the set-

tings before trying to read it. And there should also be some kind of default value if the

read setting is not in the isolated storage. Reading a setting value from the Isolated-

Storage is presented in Listing 14.

//get application settings
var appSettings = IsolatedStorageSettings.ApplicationSettings;

//read the value of useThousands setting
var valueInSettings = appSettings[“useThousands”];

Listing 14 - Sample of reading an IsolatedStorage [7]

Even the Microsoft suggests that some sort of helper class should be used when deal-

ing with settings in the isolated storage. And they have written a very basic but a good

helper class for everyone to start with [8].

7.4 HTML5

HTML5 offers web storages to use with key value pair data. When dealing with the off-

line requirement key value pairs has to be saved somewhere so they are available

even after the solution is closed and opened again. When testing the application clos-

ing scenario it should be tested by closing the browser executable. Not by only closing

the tab where the application runs.

43

Web storages persistent memory option in the HTML5 standard is called as a local

storage. Comparing it to the mobile platforms solutions it has a slight limitation. It is

possible to save only string type values to the local storage.

Before using local storages the application should test if the user’s browser supports

local storages. Local storage API is stored to the localStorage variable that is found

from the window. This test can be done using pure JavaScript or by using some 3rd

party library like for example modernizr. Example of simple localStorage tester can be

seen in Listing 15.

//simple local storage tester
function IsSupportingLocalStorage()
{
 try {
 return 'localStorage' in window && window['localStorage'] !==
null;
 } catch (e) {
 return false;
 }
}

Listing 15 - Sample of simple local storage tester

When the local storage test passes and there is a proof that the browser has a support

for it the developer can read the setting values from the local storage by calling

getItem-method. The first parameter of the method is the name of the setting. Because

local storage is a JavaScript object like any other JavaScript object it is possible to use

it as an associative array also.

With the help of square brackets getItem-method can be written like localStor-

age[“settingName”]. Again it must be remembered that all the read values are type of

strings. Sample of reading a value from the local storage is presented in Listing 16.

//use test method to ensure compatibility
if(IsSupportingLocalStorage())
{
 //using the getItem method to read value
 var appSetting1 = localStorage.getItem("appSetting1");

 //using the square brackets to read value
 var appSetting2 = localStorage["appSetting2"];
}

Listing 16 - Sample of reading the browsers local storage

44

If key that is requested is not present in the local storage, a null is returned and there

are not any exceptions thrown.

Saving values into the local storage is as easy as reading. Again after testing the sup-

port for the local storage setItem-method can be called or with the help of square

brackets the string value can be written into the local storage. Of course it is possible to

write any value into the local storage once it is transformed to a string with an equiva-

lent method. Saving a value to the local storage can be seen in Listing 17.

//use test method to ensure compatibility
if(IsSupportingLocalStorage())
{
 //using the setItem method to read value
 var appSetting1value = “foo”;
 localStorage.setItem("appSetting1", appSetting1value);

 //using the square brackets to read value
 var appSetting2value = “bar”;
 localStorage["appSetting2", appSetting2value];
}

Listing 17 - Sample of writing into the browsers local storage

If the key already exists in the local storage with a value the previous value is overwrit-

ten in the background. If the key does not exist it will be added.

If there is a need to delete values in the local storage it can be made using the re-

moveItem-method which has the setting key as its parameter. If the setting name is not

given the method will do nothing. There is also a possibility to delete every setting in-

stance in the local storage by calling the local storages clear-method. Example of clear-

ing local storage and single item removing can be seen in Listing 18.

//this does nothing
localStorage.removeItem();

//this removes value by the key appSetting1
localStorage.removeItem(“appSetting1);

//this clears every key and value from the local storage
localStorage.clear();

Listing 18 - Sample of deleting local storage values

45

8 Accessing and Saving Large Amount of Structured Data

First of all, what is structured data? Structured data can be explained using a weather

forecast as an example. The weather forecast is given to a specified location. That

means that there are two elements, the forecast and the place. They are tied together

because the weather forecast is given to the exact place for example the weather fore-

cast of Helsinki. This kind of data structure is presented in Figure 14.

In the application there could be a selection field where all the places are listed. The

weather forecast could be queried from all the places in the list. When the user

chooses the place from the selection the weather forecast is shown. Underneath the

user interface there will be weather forecasts to different places.

Figure 14: Simple weather forecast and locations structured data sample

The application could store the queried weather forecasts to the phone and query only

the latest weather forecast from the internet. That would make possible to view the

queried forecasts when there are no network coverage. This chapter studies different

mechanisms to save structured data to persistent memory of a mobile phone.

8.1 Google Android

Saving large amount of structured data in the Android application can be done using

the SQLite databases. The Android developer guide states that “Android provides full

support for SQLite databases.” [10].

46

The developer guide suggest that when implementing the Android applications SQLite

database a subclass of SQLiteOpenHelper should be created and its onCreate-method

should be overridden. Example of a simple subclass can be seen in Listing 19.

The SQLiteOpenHelper is a helper class written by Android developers. It is designed

to manage database creation and version management. It has a monotonic version

number to ensure that exact database version is used with an exact version of the ap-

plication.

In the subclasses constructor a super-method should be called using the database

name and version as parameters. The version number parameter helps the platform to

decide if a new database is needed or could it use the previously created one. With the

database name it would be possible to divide the applications data into multiple data-

bases.

public class DbHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME = "db.testDb";
 private static final int DATABASE_VERSION = 1;
 //constructor of DbHelper class
 public DbHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }
}

Listing 19 – Example of subclass from the SQLiteOpenHelper class

In the overridden onCreate-method the Android developer guide suggests to call ex-

ecSQL-method to create tables. Table creation scripts are written with transact SQL

and put into the string variable. The SQLite database supports primary keys with auto-

matically incrementing values and other common transact SQL column properties. If

the application needs some default values they could be written into the database in-

side the onCreate-method. Example of overriding the onCreate method can be seen in

Listing 20.

47

public class DbHelper extends SQLiteOpenHelper {
 public static final String TABLE_TODO = "TODO";

 public static final String COLUMN_ID = "id";
 public static final String COLUMN_NAME = "name";

 public static final String CREATE_TABLETODOS = "create table "
 TABLE_TODO + "(" + COLUMN_ID
 + " integer primary key autoincrement, " + COLUMN_NAME
 + " text not null);";

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(CREATE_TABLETODOS);
 }
}

Listing 20 – Example of onCreate-method in the SQLiteOpenHelper subclass

If the application’s SQLite database has to be updated during applications lifecycle the

version number should be changed. Also an overridden onUpgrage-method should be

implemented in the subclass of the SQLiteOpenHelper class. Example of overridden

onUpgrade-method can be seen in Listing 21.

The simplest way to handle the database updating is to get rid of the old tables in the

database and then call the onCreate-method.

The Android developers guide states that database update should not be run in the

main thread since it could take some time to finish. The application users are not used

to wait long times.

public class DbHelper extends SQLiteOpenHelper {
 public static final String TABLE_TODO = "TODO";

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int new-
Version) {
 db.execSQL("DROP TABLE IF EXISTS " + TABLE_TODO);
 onCreate(db);
 }
}

Listing 21 – Simple onUpgrade-method in the SQLiteOpenHelper subclass

48

The database is not actually created to the disk yet. It is located in the phones memory

until getWritableDatabase or getReadableDatabase-method is called. The getWri-

tableDatabase-method opens or creates a database which can be then read and write.

The getReadableDatabase-method creates or opens a database which can only be

read. However, when the database is opened the onCreate or the onUpgrade-method

is called in the SQLiteOpenHelper subclass.

The database is now cached and will stay cached until the close-method is called. The

close-method should be called as soon as the database is not needed anymore. For

example if the database is opened when the application starts and some data is read

and displayed at the applications main screen. As soon as all the displayed data is

read out from the database the connection should be closed.

Inserting data into the Androids SQLite database can be done using the insert-method.

The method has three parameters, the name of the table where the values are in-

serted, the nullColumnHack parameter and the actual values parameter. The method

will return the row id for the inserted row, or “-1” if an error occurred. Error could occur

for example when the phone does not have enough free space available to store the

inserted data.

The SQLite database does not allow an empty row insertion without extra work. If there

is a need to insert an empty row then the nullColumnHack parameter is needed. The

values parameter is left null but the nullColumnHack parameter is used to determinate

the column where the null value is stored.

The actual values are stored as objects of ContentValues-class. The class stores val-

ues as key value pairs. Every column and their values are added to the ContentValue

object using the put-method. The put-method has two parameters, the key of the value

and the inserted value. In the database scenario the ContentValues object keys are the

names of the table columns. Listing 22 presents a simple example of adding values to

the SQLite database.

49

public static final String TABLE_TODO = "TODO";
public static final String COLUMN_NAME = "name";

…

ContentValues todoItemValues = new ContentValues();
todoItemValues.put(DbHelper.COLUMN_NAME, "fill travel bill");

db.insert(DbHelper.TABLE_TODO, null, todoItemValues);

Listing 22 – Example of inserting values into the SQLite database

Querying objects from the SQLite database can be done using the SQLiteDatabases

query-method. The method will return a Cursor-class object that point to the results of a

query. The cursor can be used to read all the rows from the result. The query-method

has seven parameters but for making simple query only the first two is needed.

The first parameter is the name of the table where the query is made and the second

parameter is the columns array which defines the table columns where data should be

returned. Example of data query can be seen in Listing 23.

private String[] allColumns = { DbHelper.COLUMN_ID,
DbHelper.COLUMN_NAME };

Cursor queryCursor = db.query(DbHelper.TABLE_BACKLOG, allColumns,
null, null, null, null, null);

Listing 23 – Example of querying values from the SQLite database

To simplify even more the column parameter could also be null, so it would return

every column from the table. But the Android developer guide does not recommend

using it so. The guide states that “Passing null will return all columns, which is discour-

aged to prevent reading data from storage that isn't going to be used” [10]. Mobile

phones have limited resources therefore every query should be done using a minimum

viable query.

The third parameter in the query-method is the selection parameter. It is used to form a

where-clause in the SQL-query. The selection should be written without the actual

where word. If the parameter is left null every row from the table is returned. Using

where clause in the query can be seen in Listing 24.

50

private String[] allColumns = { DbHelper.COLUMN_ID,
DbHelper.COLUMN_NAME };
private String whereClause = DbHelper.COLUMN_ID + “ < 10”;

Cursor queryCursor = db.query(DbHelper.TABLE_BACKLOG, allColumns,
whereClause, null, null, null, null);

Listing 24 – Example of using where clause in the SQLite database query

The fourth parameter is the arguments of the selection. It is used together with the se-

lection parameter. In the selection parameter it is possible to write the where clause

using question marks. Question marks are replaced with provided selection arguments

when the query runs. It will also help to escape the values (escaping a word value:

‘value’) so it prevents unintended escaping. This is also an easy way to set user input-

ted values into the SQL query. This kind of query is presented in Listing 25.

private String[] allColumns = { DbHelper.COLUMN_ID,
DbHelper.COLUMN_NAME };
private String whereClause = DbHelper.COLUMN_NAME + “ = ?”;
String[] userInputs = { "fill up a gas tank" };

Cursor queryCursor = db.query(DbHelper.TABLE_BACKLOG, allColumns,
whereClause, userInputs, null, null, null);

Listing 25 – Example of using where clause with arguments in the SQLite-query

The fifth parameter is the group by parameter. It is used to form a SQL Group By

clause. Like the selection parameter the actual group by words are excluded and if the

parameter is left null, rows are not grouped. Example of using group by clause in the

query can be seen in Listing 26.

private String[] allColumns = { DbHelper.COLUMN_ID,
DbHelper.COLUMN_NAME };
private String groupClause = DbHelper.COLUMN_NAME;

Cursor queryCursor = db.query(DbHelper.TABLE_BACKLOG, allColumns,
null, null, groupClause, null, null);

Listing 26 – Example of using group by clause in the SQLite-query

The sixth parameter is the having parameter. It is tied together with the group by pa-

rameter because when the group and having parameters are both used the having

parameter is formatted into SQL having clause. When using the having parameter the

actual having word is excluded like in the selection and group by parameters.

51

The seventh parameter is the order by parameter. It also excludes the order by words

from the query when the actual query is formatted. Order by parameter can be left null

but then default sort order is used. Using a lot of queries without order clauses could

lead into mysterious problems and different behaviour because the order of retrieved

items could vary. Using order by clause is presented in Listing 27.

private String[] allColumns = { DbHelper.COLUMN_ID,
DbHelper.COLUMN_NAME };
private String orderByName = DbHelper.COLUMN_NAME;

Cursor queryCursor = db.query(DbHelper.TABLE_BACKLOG, allColumns,
null, null, null, null, orderByName);

Listing 27 – Example of using order by clause in the SQLite-query

When the query runs and the cursor object is returned the Cursor is positioned before

the first entry. To start working with the objects that exists in the database the cursor

must be moved. It can be moved to a desired object or it can be moved to point to the

first item or to the last item in the result. This moving can be done by using cursor ob-

jects moveToFirst and moveToLast-methods.

These two methods have a handy extra feature. They will both return false if the query

result did not return any objects. Information could be used to end the application query

result handling as early as possible. Simple test if query returned any objects can be

seen in Listing 28.

Cursor cursor = database.query(DbHelper.TABLE_BACKLOG, allColumns,
null, null, null, null, null);

if(cursor.moveToFirst()) {
…
}

cursor.close();

Listing 28 – Testing if query returned any objects

When the cursor is moved to the first item the item can be read out to as an object. A

new object has to be created. To set the created objects property values from the da-

tabase object the values are queried out using the cursor object.

52

Reading the values can be done by using the primitive data type get-methods. For ex-

ample getInt-method will return a value from integer column. It has a single parameter

that is the index of the column where the integer value is read out. The column pa-

rameter is zero based so if the first column has the items unique id it can be read out

by calling getInt-method with column index zero. Reading database row values and

constructing a new object is presented in Listing 29.

private ToDo cursorToToDo(Cursor cursor) {
 ToDo t = new ToDo();
 t.setId(cursor.getInt(0));
 t.setName(cursor.getString(1));
 return t;
}

Listing 29 – Transforming database row to actual object

When the database object handling completes the cursor can be moved to the next

result item using the moveNext-method. The moveNext-method has the same feature

as the moveToFirst- and the moveToLast-methods. It will return false if there is no

more results. Information can be used again to complete the database object handling

as soon as every item is handled. Listing 30 presents the iterating through result items.

cursor.moveToFirst();

while (!cursor.isAfterLast()) {
 ToDo toDoItem = cursorToToDo(cursor);
 //do something with the actual object

 cursor.moveToNext();
}

cursor.close();

Listing 30 – Using cursor and reading items out from the SQLiteDatabase

Updating objects in the database can be done with the SQLiteDatabases update-

method. This method has four parameters. The first one is the table where the updated

item is located. Second parameter is the ContentValue container. The container has

key-value pairs to map the database column and the new value. Multiple columns can

be updated with a single update.

Third parameter is the where clause, it defines which of the table rows are updated. If

the parameter is left null every row in the table is updated so extra attention is needed.

Updating values with the where clause is presented in Listing 31.

53

public void updateToDo(ToDo t) {
 ContentValues values = new ContentValues();
 values.put(DbHelper.COLUMN_NAME, t.getName());

 database.update(DbHelper.TABLE_TODO, values, DbHelper.COLUMN_ID +
"=" + t.getId(), null);
}

Listing 31 – Updating item in the SQLiteDatabase using items Id

Fourth parameter is the values of the where clause. When dealing with different where

clauses and multiple columns in the where clause using the where parameter with the

where values parameter leads into more maintainable and readable code.

On the other hand, if the where clause has only a single column, like for example items

are updated based on their id-property. Then it would be easier to use only the third

where parameter with an injected value. The where clause and the where arguments

parameter work same way as in the query and update methods.

Deleting rows in the SQLiteDatabase can be done using the delete-method. The de-

lete-method has three parameters. The first one is the table, the second one is the

where-clause and the third one is the where clause arguments.

This method will return a number of rows that it deleted from the database with couple

of exceptions. If no where clause is used all the table rows are deleted and the method

will return a zero. If the developer wants to know how many rows there was it can be

done by using a “1” in the where clause. When it is used the method will return a num-

ber of deleted rows.

8.2 Apple iOS

In this chapter the focus is in the Core Data framework. The developer should be famil-

iar with the Objective-C language to understand given examples. Also knowledge

about iOS memory management will help to understand the Core Data framework solu-

tion.

54

The easiest way to do a simple Core Data application is to start with a new project and

on the project creation the use core data setting should be applied. Applying the core

data setting on a new project creation dialog is presented in Figure 15. With the core

data setting on a new project creation the project will be created with core data frame-

work built into it. Project will also contain an empty data model and some default code

in the project’s AppDelegate and on its view controller classes.

Figure 15: Creating a new project in the Xcode using Core Data

The Core Data Framework can be also added to existing project, but all the necessary

pats has to be added step by step what is included when creating a new project using

the setting “use core data”.

Adding Core Data Framework to existing project can be started by adding the Core

Data Framework to the project. After the framework is added the empty data model can

be added. The data model can be added through File, new, file menu (shortcut com-

mand+N). From the opened “choose template for you new file” dialog one should select

Core Data under iOS. In that group is a data model file. The example of a data model

as a file type can be seen in Figure 16.

55

Figure 16: Adding empty data model to existing project in the Xcode

After the data model is added the next step is to add the Core Data basics code. One

approach to this is to make empty Core Data project and copy the necessary parts

from it to the new project. In the empty project there are three properties in the

AppDelegate header file. The first one is the managed object context which is returned

to use after it is tied to the persistent store coordinator.

The second property is the managed object model. It is application’s model which the

controller uses. The third property is the persistent store coordinator which is used to

save the model state to the persistent memory.

Also in the AppDelegate.h there should be the actual Core Data import and two private

methods. The first method is the saveContext method which is called in the app dele-

gate when the application will terminate. The second method is the applicationDocu-

mentsDirectory method. This method will return the directory which the application

uses to store the core data store file.

The core data basics code in the AppDelegate class is presented in Appendix 1.

56

The Core Data framework will now handle the database opening and closing and sav-

ing it to the persistent memory of a mobile device. When the developer updates the

application and changes the model users who had already the previous version of the

application will need a migration code to traverse their data through the update.

When inserting objects with the Core Data Framework the object is created using the

NSEntityDescription class’s insertNewObjectForEntityForName method. This method

has two parameters. The first parameter is the name of the model which will be in-

serted and the second parameter is the managed object context. Inserting new object

using the managed object context is presented in Listing 32.

//helper class which contains the save method has a pointer to the
managedObjectContext
NSManagedObjectContext *context = [self managedObjectContext];

NSString *thingTodo = @”Todo item 1”;

//creating the new entity
Todo *todo = (Todo *)[NSEntityDescription insertNewObjectForEntityFor-
Name:@”Todo” inManagedObjectContext:context];

//set the text to the created object
[todo setThingTodo:thingTodo];

//saving the object to the context
if(![context save:&error])
{
 NSLog(@”Unresolved error %@ %@”, error, [error userInfo]);
}
else
{
 NSLog(@”added a new todo: %@”, thingTodo);
}

Listing 32 – Inserting new object to the core data managed object context

Core Data framework can be used with multiple context, but the developer should con-

sider carefully when to move from one context to multiple contexts. Using multiple con-

texts will heavily effect the development if the developers are not familiar with it be-

cause it will make debug harder and more complex.

Although if the application is used to export or import large amount of data. It is better

to have multiple contexts. The first context is used with the application’s main thread

and the second context is used to handle the data. This approach will ensure that the

user’s actions are still performed in the application. In this thesis only the single context

use case is covered with the Core Data Framework.

57

After the new empty object is inserted the object properties can be set. To make sure

that the new object contains the added properties the save-method should be called

from the managed object context.

Querying objects from the Core Data frameworks managed object context can be done

using the executeFetchRequest-method. The executeFetchRequest-method has two

parameters that are the NSFetchRequest and the NSError. To create an NSFetchRe-

quest object a help from the NSEntityDescription and from the NSPredicate class is

needed.

It does not matter what is the order when creating all the necessary objects. In the ex-

ample first the NSEntityDescription object is created using the entityForName-

initializer. The entityForName has two parameters, the name of the entity and the man-

aged object context.

The NSPredicate object works like a where clause in the SQL environments. The

NSPredicate object is initialized using its predicateWithFormat. It has a single parame-

ter and that is the where clause. In this example a Todo items entry date is compared

to the date that the user is given. The comparing clause is given as NSString object.

When the NSEntityDescription and the NSPredicate objects are initialised the

NSFetchRequest object can be initialized. The NSFetchRequest objects entity and

predicate properties are set using the setEntity and setPredicate-methods. They both

have a single parameter and that is the object that will be placed to the property. Previ-

ously initialized NSEntityDescription object is set to the NSFetchRequest class’s entity

and the initialized NSPredicate object is set to the NSFetchRequest’s predicate.

Before the actual fetchRequest is executed, a nil (objective-c’s null is nil) NSError ob-

ject is needed for the second parameter of the contexts executeFetchRequest method.

With the NSError object the executeFetchRequest method can be called and it will re-

turn the NSArray object as a result. It can contain single or multiple objects depending

of the used NSPredicate object. Making a query using the managed object context is

presented in Listing 33.

58

//a class method is beign used when querying objects from the context
+(Todo *)getTodoWithContext:(NSManagedObjectContext *)context withEn-
tryDate:(NSDate *)date {

 NSEntityDescription *entityDescription = [NSEntityDescription en-
tityForName:@"Todo" inManagedObjectContext:context];

 NSPredicate *predicate = [NSPredicate predicateWithFor-
mat:@"entryDate == %@", date];

 NSFetchRequest *request = [[NSFetchRequest alloc] init];

 [request setEntity:entityDescription];
 [request setPredicate:predicate];

 NSError *error = nil;

 //the actual item request
 NSArray *array = [context executeFetchRequest:request er-
ror:&error];

 if(array == nil) {
 NSLog(@"getTodoWithContext:withEntryDate fetch failed");
 abort();
 }

 //handle the result
 ...
}

Listing 33 – Querying object using from the Core Data Framework

Updating and deleting items in the Core Data Framework can be done after the queried

objects are handled. In the update the appropriate item is fetched from the managed

object context. The properties of the item are changed using the set-methods for the

entity properties. When the properties are changed managed object context save-

method should be called. The save-method has a single parameter and that is the ob-

ject of NSError class.

Deleting items from the Core Data Framework context can be done using the de-

leteObject-method from the managed object context. It has a single parameter and it is

the object that is deleted. After the appropriate item is fetched and forwarded to the

deleteObject-method the context must be saved by calling the already mentioned save-

method again.

59

8.3 Windows Phone

In the Windows Phone platform structured data can be saved into the persistent mem-

ory using the support of Local Databases. The application’s local database file is lo-

cated in the application’s own local folder in the memory of a mobile phone. Windows

phone applications uses LINQ to SQL for all database operations [11]. And that is

really for all the operations and all the operations only. Transact-SQL is not supported

in the Windows Phone environment at all.

The Windows Phone application and the application’s local database share the same

process. This limitation effects the database connections when the application tomb-

stones. Every underlying database connection is closed at that very same moment.

After returning the application back to use every suddenly closed query has to be made

again.

When implementing the local database a subclass of DataContext-class is needed.

That DataContext can be found in the System.Data.Linq library and the library should

be at the project. If the project does not have the Linq-library a reference must be

added. The database can be created in the main application constructor using the im-

plemented subclass of DataContext.

In the main application constructor a new instance of the subclass can be created. And

that subclass object should have a method DatabaseExists. If that method returns false

the application database has been never created and it should be created now. Data-

base creation is done by calling CreateDatabase-method from the instance of a sub-

class.

Tables of the database are defined in the DataContext-subclass. Local database

should always have at least a single table. Table definitions are made using properties

inside of the subclass. Properties are stamped with a type Table. Defining subclass of

DataContext class with a single table is presented in Listing 34.

60

public class ToDoDataContext : DataContext
{
 ...
 // Specify a single table for the to-do items.
 public Table<ToDoItem> ToDoItems;
}

Listing 34 – Table of ToDoItems inside subclass of DataContext

These table properties have an entity type. These entities are also classes that repre-

sent tables in the underlying database. To make a database entity class a new class

should be implemented. That class has to have an attribute TableAttribute which is in

the System.Data.Linq.Mapping library.

Table columns are properties of a table class with a Column-attribute attached. These

properties can be integer or string or other strong typed variables. Example of a class

that represents table with a column can be seen in Listing 35.

[Table]
 public class ToDoItem
{
...
 [Column]
 public string ItemName
 {
 get;
 set;
 }
}

Listing 35 – Class with a Table attribute attached and single string column

Adding a new object to subclass of DataContext is done by using data context tables

InsertOnSubmit-method. It has a single parameter that is the object which will be

added. The added object has to be type of the collection inside the table collection. In

this example it is typed as ToDoItem. So a new ToDoItem has to be created and then it

can be added to the table.

61

Before the added object can be queried from the database table SubmitOnChanges-

method has to be called. This method computes which of the objects are added, up-

dated or deleted and executes the changes as a single command. With the help of

SubmitOnChanges-method multiple changes can be made before actually changing

the data in the actual database table. This can give performance boost if it is used

right. There is rarely a need to call SubmitOnChanges-method after every change. List-

ing 36 presents how to add an object to the local database.

//instance of the database
var toDoDB = new ToDoDataContext(ToDoDataContext.DBConnectionString);

// Create a new to-do item based on the text box.
ToDoItem toDo = new ToDoItem { ItemName = “Todo thing nro 1” };

// Add a to-do item to the local database.
toDoDB.ToDoItems.InsertOnSubmit(toDo);

// Save changes to the database.
toDoDB.SubmitChanges();

Listing 36 – Adding an object to desired table

Querying objects from the local database tables is done by using Language-Integrated

Query (LINQ). “Language-Integrated Query (LINQ) is an innovation introduced in Vis-

ual Studio 2008 and .NET Framework version 3.5 that bridges the gap between the

world of objects and the world of data.” [14]

Explaining it would need at least its own chapter or a detailed introduction in this thesis

so it is not covered. There are lot of good examples out there that explain how to use

the LINQ. Almost every developer who works with Microsoft development tools is famil-

iar with it.

Updating objects in the local database can be done by querying the actual objects from

the database. Then changed their properties and called the SubmitOnChanges-

method. When the Windows Phone application is implemented using the preferred

guide lines, like the binding object values to the user interface the actual update

method does not contain anything else.

62

Deleting objects from the local database is done by using the tables DeleteOnSubmit-

method. It has only a single parameter that is the object to be deleted. Again it has limi-

tation that it has to be type of the collection where it is deleted from. Deleting an object

from the local database is presented in Listing 37.

private void RemoveToDoItem(ToDoItem toDoForDelete)
{
 // Remove the to-do item from the local database.
 toDoDB.ToDoItems.DeleteOnSubmit(toDoForDelete);

 // Save changes to the database.
 toDoDB.SubmitChanges();
}

Listing 37 – Deleting an object from the desired table

The Local Database shares many features and development features from the .NET

based internet application development. A development team with knowledge about

traditional .NET development could get familiar with the local database development.

8.4 HTML5

As already explained in Chapter 3, in the beginning of HTML5 standard there was two

ways to support large data masses in the memory of a mobile phone browser. In this

chapter first the preferred Indexed Database API is covered and the older Web SQL

Databases then. If the HTML5 solution needs to support older phones alternative data

storage could be implemented using Web SQL Databases but it should be avoided.

8.4.1 Indexed Database API

The Indexed Database API is the newest developed feature what comes to storing

large numbers of objects locally in to the browsers. It is pretty easy to start using it.

Adding, updating and deleting records are a quite straight forward procedure. The diffi-

cult part comes from the indexes which provide query functionality to the database.

Database efficiency can be dramatically improved by using correct indexes.

63

The developers must adopt a little what comes to storing objects into indexed database

when compared to the transient SQL database. Tables are called object stores. Single

database can have multiple object stores like the relational database can have multiple

tables. When creating the actual indexed database it does not contain any object

stores, like when creating the SQL database it does not contain any tables.

Object stores can be changed later. But it can be made only by using a versionchange-

transaction. As the indexed database is created or opened the method contains a ver-

sion number. With the help of that version number the onupgradeneeded-method is

called. Inside the onupgradeneeded method it is possible to change the database

structure.

It should be heavily considered what are tried to achieve in the version change. There

is always a possibility that the user leaps through a version, because he has been us-

ing the software only occasionally. So making very strict steps on the database up-

grades could lead very shortly to lots of boilerplate code that could have lot of special

problems with such of combinations that are more than money worth to figure out and

then possibly fixed.

Before trying to perform any indexed database operations the application should test if

the user’s browser is capable to use the indexed database API. This can be achieved

with a help of third party library or with a few simple tests. The most basic test is to test

that current window has indexedDB variable defined. The suggested next step (also

very recommendable) is to check that the window has an IDBTransactionType variable

set to the correct one (depending from a browser that is used). A simple check for

browsers indexed database support is shown in Listing 38.

64

//testing if browser has indexedDB defined
if (!window.indexedDB) {
 //browser does not support indexedDB!
}

//android browsers handle things a bit different
if (window.webkitIDBTransaction != null) {
 if (window.webkitIDBTransaction.READ_WRITE != null) {
 //set the old version of transctionType to use
 idbClass.indexedDB.transactionType = win-
dow.webkitIDBTransaction.READ_WRITE;
 }
}

Listing 38 – Check if browser has support for indexed database api

The indexed database is created or opened using asynchronous open-method under

indexDB-class. When the open-function is used for the first time the database is cre-

ated. Otherwise previously created database will be opened. The open-method will

return an IDBRequest object. With the help of the IDBRequest object it is possible to

implement specified tasks to different events such as onsuccess and onerror. Example

of opening indexed database can be seen in Listing 39.

//define the database version
var dbVersion = 1;

//call the asynchronous open-method
var request = indexedDB.open("Todo", dbVersion);

//setting the onsuccess method to notify that indexed database is
ready
request.onsuccess = function(e) {
 alert(“Database ready to use!”);
}

//setting the onerror method to notify that there was a problem
request.onerror = function() {
 alert(“Problem opening indexed database!”);
}

Listing 39 – Opening indexed database

65

After the database is created the object stores can be created to the database. Object

stores can be added only inside the onupgradeneeded-event that can be found from

the IDBRequest-object. This event is called when the database is created or when the

database version is changed. For example if a new index is needed for an object store

the database version must be changed to ensure that the onupgradeneeded-event is

raised when the user opens the application next time.

The actual object store is created using createObjectStore-method. That method has

two parameters. The first parameter is the name of the object store and the second

parameter is the keypath to the objects in the objects store. The keypath is explained

as: “Defines where the browser should extract the key from in the object store or index.

A valid key path can include one of the following: an empty string, a JavaScript identi-

fier, or multiple JavaScript identifiers separated by periods. It cannot include spaces”

[29].

The createObjectStore-method creates and returns the object store that it created in-

side the connected database. The createObject-Store-methdod can be called only

within a versiochange-transcation. Otherwise the InvalidStateError-exception is thrown.

An example of object store creation can be seen in Listing 40.

66

//using the same request object than in the previous listing
request.onupgradeneeded = function (e) {
//the opened database can be fetched from the parameter e
var db = e.target.result;

// A versionchange transaction is started automatically so define the
onerror-method
e.target.transaction.onerror = function() {
 alert(“Problem inside versionchange transaction!”);
}
//if the object store is already defined remove it before adding it
back
if (db.objectStoreNames.contains("TodoStore")) {
 db.deleteObjectStore("TodoStore ");
}

//create the object store using the Todo-objects timestamp as the key
var store = db.createObjectStore("TodoStore", { keyPath: "timeStamp"
});

Listing 40 – Creating an object store to the indexed database

A big difference here compared to the usual databases is that table columns or object

properties are not defined. The object store inside the indexed database is interested

only that stored objects have the keypath values.

When the createObjectStore-method returns the created object store, it could be filled

with default values using put-method. It is also possible to define more indexes to the

object store to achieve better performance or make indexes that would help making

effective searches to the object store.

Inserting objects into the object store can be done by using add or put-methods. Both

of them have one required parameter and that parameter is the actual object that the

developers want to save to the object store. If the object already exists in the object

store and the developer is using add-method then a ConstrainError event is rised.

Again the object store only compares values that are defined for the keypath for it. In-

serting objects to the indexed databases object store is presented in Listing 41.

67

//using the same request object than in the previous listing
request.onsuccess = function(e) {
 var db = e.target.result;

 var tx = db.transaction([“Todos”], IDBTransaction.READ_WRITE);

 var store = tx.objectStore("TodoStore");

 store.add({title: "Do thing 1", timestamp: 201503311200});
 store.add({title: "Do thing 2", timestamp: 201503311201});
 store.add({title: "Do thing 3", timestamp: 201503311202});

 tx.oncomplete = function() {
 // All requests have succeeded and the transaction has committed.
 };
}

Listing 41 – Adding objects to the indexed database

When using the put-method it will update the existing object in the database or add a

new one if it does not exist. The database can generate index keys by itself or the de-

veloper could specify each objects key using the second optional parameter in the put

and in the add methods.

Deleting objects from the object store can be made using the delete method. It has a

single parameter and that is the key of the object. For example objects are stored into

the object store using the timestamp as a keypath. Deleting objects can be done by

calling the delete-method and giving the appropriate timestamp as a parameter.

An entire object store can be cleared using the object stores clear-method. The object

store will clear itself on a separate thread. So it will not lock the user interface while it

empties itself.

Querying objects in the indexed database object store can be made using the get-

method. It has a single parameter and that is the value of the queried object key in the

object store. It is a handy method if the developer needs only a single object from the

object store.

When the indexed database is used more like ordinary database and there are lot of

objects and the developer needs a lot of objects as a result then the indexed database

cursor (IDBCursor) must be used.

68

To control what values the cursor returns the developer must be familiar with the key

range (IDBKeyRange) of the indexed database. This is the biggest difference what

comes to many ordinary relational databases. It can be a little confusing in the begin-

ning but when starting to study the indexed database an extra attention should be

given to KeyRange mechanism.

The get-methods result of indexed database object can be also achieved by using the

key range and key range method only. The difference here is that the cursor may re-

turn multiple objects if it is used with an index that is not used as key path.

For example, if there are categories in the todo list. For example the home and the

work categories are made and the todo items are divided into these categories. It

would be possible to query only work related todo items using single query. That query

could be made using an index that points to the selected group and then fetch the

items from the indexed database store using the only-method.

Adding new indexes to the object store can be made using the createIndex-method in

the object store. The method has three parameters. The first one is the name of the

index, the second one is the keyPath for the index to use and the third one is the op-

tionalParameters.

69

Now it must be remembered that every object in the database must have the keyPath

values defined in the store creation. Indexes rely on the data that is on the object store.

Their keyPath values are not mandatory but indexes cannot return objects which does

not have the keyPath properties.

Index keyPath can contain multiple properties from the objects. For example it would

be possible to create index to the todo object store using the name and timestamp.

Under the research process of this thesis a problem was encountered. The problem

was that Microsoft’s Internet Explorer (not even the latest version, the IE 11) could not

handle the multidimensional indexes under indexed databases. When creating the

multi column indexes in the Internet Explorer using the object stores createIndex-

method everything looks working normally. Any indications (unwanted errors or events)

that would alert the developer are not shown.

Adding new objects to the object store was also working fine. Objects were added to

the object store and there were not any errors shown or any error events fired.

Problems start to arise when the program was written so it would use the index as part

of a query that fetches objects from the object store to the user interface. When the

query was processed the browser invoked a data error event.

Multi column indexes were not implemented to the Internet Explorer 10 at all and this

thesis research indicated that the Internet Explorer 11 does not work properly.

Web browser in the Windows Phone Lumia product family inherits from the desktop

Internet Explorer browser. Multi column indexes problem was pretty severe in the re-

search process because Lumias are so popular in Finland and the application should

work on the Windows platform also.

When writing this thesis it was not possible to install better alternate browser to the

Lumia phone. There is an alternate browser in the Windows Phone Marketplace, but it

does not support indexed database at all.

70

The risen problem was resolved by adding a property to the object store objects. The

new property contains the values from the both property that would be normally used

with the compound index. Then a new index had to be made. An index that uses only

the created property which have both of the values what the compound index would be

used normally.

This will slightly affect the performance of the indexed database queries and there are

reasons why indexed database was designed to support multi column indexes.

When the indexed database has an appropriate index a query can be made. A simple

query is executed by using the indexed databases transaction, key range and cursor

opening.

First a transaction is needed to the correct indexed database using at least read ac-

cess right. From the indexed databases transaction an object store where the queried

data exists is opened. The second step is to get the appropriate index from the object

store using index-method. Index-method has a single parameter and that is the name

of the queried index.

The third step is to create the IDBKeyRange. For example the developer wants to

query Todo items only from the precise moment. There should be an index to the Todo

object store that points to the timestamp-property. By using IDBKeyRanges only-

method it is possible. The only-method has single parameter and that is the value

which is used in the query.

From the selected index the openCursor-method is called. This method has single pa-

rameter that is the IDBKeyRange which is used on the query. Querying data from the

indexed database is presented in Listing 42.

var trans = db.transaction(["ToDos"], IDBTransaction.READ);
var objectStore = trans.objectStore("todoStore");

var index = objectStore.index("timeStamp");

var rangeTest = window.IDBKeyRange.only(201503311200);

index.openCursor(rangeTest).onsuccess = function (e) {

Listing 42 – Querying data from the indexed database

71

The onsuccess events implementation function can contain a parameter that will be

initialized as an object of the success event. From the event the returned data can be

found under the events target property. The target property contains a result property.

If the result property exists then it has a value property that contains the actual object

from the Indexed Database.

After handling the item that is returned from the Indexed Database requests continue-

method can be called and the cursor will move to the next item. When all the items in

the result are handled a return should be called to end the onsuccess-event. An exam-

ple of handling items can be seen in Listing 43.

index.openCursor(rangeTest).onsuccess = function (openEvent) {
 var result = openEvent.target.result;

 if(!!result === false) {
 //no result / all the lines read
 return;
 }

 var todoItem = result.value;

 //do something with the item
 todoitemHandler(todoItem);

 //continue reading results
 result.continue();
}

Listing 43 – Handling the data queried from the indexed database

8.4.2 Web SQL Database

Web SQL queries remresembleind a lot transact-SQL queries. That is because the

browsers use SQLite as their backend implementation.

Before using Web SQL, the application should inspect if the current browser that ac-

cesses the application supports Web SQL databases. In the simplest way this can be

tested by checking if JavaScripts openDatabase-variable is specified. There are also

third party libraries that provides methods to tests the browsers Web SQL capabilities.

72

After ensuring the support for the Web SQL databases the actual database can be cre-

ated. To create the Web SQL database the OpenDatabase-function should be called.

The OpenDatabase-function returns a handle to the actual Web SQL database. If this

is the first time when this database is opened it will be created. Otherwise it opens the

previously created database.

The OpenDatabase-function has five parameters that are the name of the database,

version of the database, the display name of the database (also known as human

readable database name), estimation of the database size and lastly the callback-

method what will be called when the database has been successfully created.

The OpenDatabase callback-method is called only when database is created not when

it is opened. So for example if the database must have some data before using it this

could be the place where to determinate if the database was recently created or not.

The database size is given in bytes. So for example when trying to estimate that the

application’s database could consume up to 5 megabytes it has to be transformed to

bytes. Because units used in the information technology the five has to be multiplied

with a square of 1024. Example of opening a Web SQL database can be seen in List-

ing 44.

//using local variable to help estimating database size
var dbSize = 5 * 1024 * 1024;

//open the database
var testDatabase = openDatabase("Todo", "1", "Simple Todo planner",
dbSize, todoDbCreatedSuccesfully);

//the callback method for the openDatabase
function todoDbCreatedSuccesfully() {

}

Listing 44 - Sample of opening the browsers local storage

After the database has been created or opened it can be used. Database needs table

or tables where the data can be put into. After the database is created or opened every

action to database is made using the database handles transaction-method. That

method can be used with one to three parameters.

73

The first parameter and the most important in the transaction-method is the SQLTrans-

actionCallback. The second parameter is SQLTransactionErrorCallback for handling

errors when errors occur. The third parameter is SQLVoidCallBack. All these parame-

ters are inherited from the SQLTransaction interface.

The SQLTransaction interface has an executeSql-method which is used for all the data

manipulating in the Web SQL database. The executeSql-method can be used with one

to four parameters where the first parameter is the actual sqlStatement. The sqlState-

ment is the only required parameter.

The second parameter is the SQL statements arguments in an object array. The third

parameter is optional call back for success call back and the fourth one is used as error

call back method.

The created database will need some tables to work with. Creating tables to the

opened database can be done with a simple create table transact-SQL statement.

There can be only one table with a desired name in the database so there is a possibil-

ity to exception when the database is opened next time. A good way to avoid this is

have table exist check before the actual table create transact SQL. Adding a table to

the Web SQL database is presented in Listing 45.

//testDatabase variable is the handle for the opened database

//add new table to database if it is not already existing
testDatabase.transaction(function(tx) {
 tx.executeSql(“CREATE TABLE IF NOT EXISTS Todo(ID INTEGER PRIMARY
KEY ASC, Task TEXT)”);
}

Listing 45 - Sample of adding new table to Web Sql Database

After the tables are created data can be added to them. For example some default data

what is needed in the application. To add data to the Web SQL database table it can

be done by using same executeSql-method. The default data should be inserted only

when the table is created not on every application opening.

It would be possible to check if the table does not exist and then continue forward from

there with some flag that indicates that default data must be added. Another type of

solution can be made using the transaction-method from the webSql database handle.

74

As already mentioned, the transaction function has one mandatory and three optional

parameters. Those parameters are the SQLTransactionCallback, SQLTransactionEr-

rorCallback and SQLVoidCallBack. The decision about adding default values could be

made inside a single transaction. That transaction could be implemented as a separate

call back method and that method could be called when the database is opened.h

Inside a single transaction it is possible to make a single SQL command or multiple

commands. If every SQL command inside a single transaction only reads the data

readTransaction-method could be used. When using the readTransaction-method the

database mode has to be read-only. And when using the plain transaction-method the

mode must be read/write. Example of using multiple SQL clauses in single transaction

is presented in Listing 46.

var addTableAndData = function(db) {
 db.executeSql(‘CREATE TABLE IF NOT EXISTS Todo(ID INTEGER PRIMARY
KEY ASC, Task TEXT)’);
 db.executeSql('INSERT INTO LOGS (id, log) VALUES (1, "Todo sample
1")');
 db.executeSql('INSERT INTO LOGS (id, log) VALUES (2, "Todo sample
2")');
};

//testDatabase variable is the handle for the opened database
testDatabase.transaction(addTableAndData);

Listing 46 - Sample of adding new table and data using single transaction

Reading objects from the webSQL database is done by using appropriate transact SQL

clauses as executeSql statements. For queries without where clause executeSql-

method can be called with a single parameter. If there is need for single or to multiple

where clause then the values of the where clause should be added using the second

statement arguments parameter. Reading data from web sql database is presented in

Listing 47.

75

//do something with the Todo items
var readAllFromTodoComplete = function(db, result) {
 if(result.rows && result.rows.length > 0) {
 ...
 }
}

//actual transact sql statement
var readAllFromTodo = function(db) {
 db.executeSql(‘SELECT * FROM Todo’, [], readAllFromTodoComplete);
};

//testDatabase variable is the handle for the opened database
testDatabase.transaction(readAllFromTodo);

Listing 47 - Sample of reading data from Web Sql Database

The where clause is written normally but the arguments of the where clause should be

converted to a question marks as placeholders. SQL injection is a truly security risk

even in the actual web applications and it could be used to break the HTML5 applica-

tion as well. Even the standard states that: “Authors are strongly recommended to

make use of the ? placeholder feature of the executeSql() method, and to never con-

struct SQL statements on the fly.” [12]. Listing 48 presents the use of a where clause in

the query.

//actual transact sql statement
var readSingleFromTodo = function(db, todoId) {
 db.executeSql(‘SELECT * FROM Todo WHERE ID = ?’, [todoId]
};

//testDatabase variable is the handle for the opened database
testDatabase.transaction(readSingleFromTodo(testDatabase, 1);

Listing 48 - Using where clause while reading data from Web Sql Database

Like other actions in the Web SQL database also deleting objects from the database is

done by using the executeSql-method. Deleting objects is done by using the delete

from statement, familiar from the transact SQL. It is important to write the correct where

clause if there is no need to delete every item in the database table. Example of delet-

ing objects is presented in Listing 49.

76

//actual transact sql statement
var deleteFromTodoById = function(db, todoId) {
 db.executeSql(‘DELETE FROM Todo WHERE ID = ?’, [todoId]
};

//testDatabase variable is the handle for the opened database
testDatabase.transaction(deleteFromTodoById(testDatabase, 3);

Listing 49 - Deleting object by id from the Web Sql Database using where clause

8.5 Database Versioning and Migration in Mobile Environment

Different mobile platforms have different solutions to save lots of data but the solutions

have a common part, the database versioning. This mechanism can be found in the

SQLite solutions (Android SQLite and Web SQL) and it can be also found in other

(Windows Phones SQL CE and Indexed Database API) solutions.

The principle of the database versions is that when the database is opened its version

is compared to the version that was given in the opening request. If the versions match

the database is opened and given to use. If the requested version is newer than the

one that is stored to the devices memory something has to be done.

When starting the application development this is not important and the developer can

quite freely update the version number while the features are developed to the applica-

tion. Things get more complicated when the first version of the application has been

delivered to the clients.

After the first version is released and first users have been using the application the

database version changes are important on every update. If the application is updated

frequently and the database change on each update it is possible that users leap

through a version. The code implementing the database version change should be ca-

pable not only to do a single update but to do multiple updates on a single run.

77

What should and can be done on the database version change? Adding new tables or

some fields is not a big deal. But if a large update with data manipulation is done it is

possible that the update could take more time than the user is willing to wait. Android

suggests that the migration should be done on a separate thread so the user is not

disturbed if the migration takes more time than wished.

Migration situations should be designed so that they are easy to maintain and that they

perform in a reasonable time. It could be taken as far as when the database version is

changed the old database is deleted and the new one is constructed from the begin-

ning. This approach has a drawback if there is data that cannot be obtained from other

sources.

78

9 Summary and Conclusions

The research demonstrated that every mobile platform has quite a unique way of sav-

ing data to the persistent memory of the mobile phones. If a native application is being

developed the guidelines given by the operating system development team should be

obeyed. The frameworks that are shipped alongside the operating system are more

advanced and usually have better performance than the community libraries.

Mobile applications are usually developed using agile software development methods.

The application is developed piece by piece and often shipped feature by feature.

When working with data that is saved into the persistent memory of the phone, the da-

tabase versioning should be taken seriously. How to handle the different cases, how to

traverse through multiple versions and how to perform the database changes so that

the user is not disturbed too much? With native applications the developer has slightly

more advanced techniques available to perform long and heavy operations compared

to the HTML5 based applications.

Developing a mobile application that supports multiple platforms is not an easy case.

With HTML5 it is possible and fairly easy to have a native application kind of feel, user

experience and usability. The finished application and the updates can be shipped to

users instantly. Developing the mobile application with the HTML5 is not all the time as

easy as developing a native application. When the application also has to fulfil special

needs that rely on hardware components things get complicated.

During the research it was noticed how fast mobile phones are developing. For exam-

ple in a case where a user adds photos to an internet application. The photos were

taken with the camera of a mobile phone. HTML5 standard introduces an input control

attribute that enables the camera in the phone to be used as a source of a photo. This

feature did not work at all in the Windows Phone environment when the research be-

gan. But the Cyan update that was released by Microsoft added the support for the

Windows Phones.

During the research it was found out that even using the latest standard to store the

data can have pitfalls. Again it was the Windows Phone environment that has problems

since the support for the indexed database does not support all the features.

79

When comparing two mobile phones that have almost identical hardware specification

the one with the Android operating system feels smoother to use and for example

scrolling long lists is faster than in the phone running the Windows Phone operating

system.

Alongside the research of this thesis a HTML5 based application was developed to the

Android, iOS and Windows Phone platforms. The knowledge gained from the research

will be used to add the offline support for the application. The key role of HTML5’s Ap-

plication Cache must be taken into account when adding the offline support.

The objective of this thesis was to get acquainted with offline data support in the mobile

applications. The application could be native, hybrid or HTML5 based. Different

mechanisms to store data to the user’s device were covered in the theory section. The

old techniques from the html based solutions were also covered. Specific solutions

from current mobile platforms were inspected and also new possibilities offered by the

HTML5 standard were researched.

Actual mobile environments (Googles Android, Apples iOS, Microsofts Windows

Phone) each have their own way to save actual data into the persistent memory of

handheld devices. They each have a preferred solution given by the operating system

developer. The HTML5 offers the same behaviour using only the internet browser in

the mobile phone.

The HTML5 standard is developing fast and it should be taken seriously as a competi-

tor for the native mobile applications. When storing data to the user’s browser only the

preferred and still approved mechanisms should be used.

The objective of the thesis was fulfilled. The notable part being the indication that off-

line data can be stored using only the HTML5 based solution. With the gained knowl-

edge the offline capability will be added to the existing HTML5 based application at

Granlund.

80

References

1 Jain, Chetan K. jQuery Mobile Cookbook. Olton Birmingham, GBR: Packt Pub-

lishing Ltd; 2012.

2 Smutny P. Mobile development tools and cross-platform solutions in: 13th

International Carpathian Control Conference (ICCC), 2012.

3 Olson S, Hunter J, Horgen, Turid H. Professional Cross-Platform Mobile De-
velopment in C#. Hoboken, NJ, USA: Wiley; 2012.

4 Chuan S. HTML5 Mobile Development Cookbook. Olton Birmingham, GBR:

Packt Publishing Ltd; 2012.

5 Xamarin Development Center Documentation - Building Cross Platform Appli-
cations. URL: http://developer.xamarin.com/guides/cross-

platform/application_fundamentals/building_cross_platform_applications/. Ac-

cessed 17 January 2015.

6 Renegar B D, Michael K, Michael M G. Privacy, Value and Control Issues in
Four Mobile Business Applications on Mobile Business, 2008. ICMB '08. 7th

International Conference on; July 2008

7 The Microsoft Developer Network - How to create a settings page for Win-
dows Phone 8. URL: http://msdn.microsoft.com/en-

us/library/windows/apps/jj657972.aspx. Accessed 8 February 2015.

8 iOS Developer Library - Property List Programming Guide. URL:

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Propert

Proper/QuickStartPlist/QuickStartPlist.html#//apple_ref/doc/uid/10000048i-CH4-

SW5. Accessed 9 February 2015.

9 The World Wide Web Consortium (W3C) - Web Storage. URL:

http://dev.w3.org/html5/webstorage/. Accessed 8 February 2015.

81

10 Android Developers Guide – Storage Options. URL:

http://developer.android.com/guide/topics/data/data-storage.html. Accessed 15

February 2015.

11 The Microsoft Developer Center - Local database for Windows Phone 8. URL:

https://msdn.microsoft.com/en-

us/library/windows/apps/hh202860%28v=vs.105%29.aspx. Accessed 15 Febru-

ary 2015.

12 World Wide Web Consortium – Web SQL Database. URL:

http://dev.w3.org/html5/webdatabase/. Accessed 15 February 2015.

13 World Wide Web Consortium – Indexed Database API. URL:

http://www.w3.org/TR/IndexedDB/. Accessed 16 February 2015.

14 The Microsoft Developer Center – Introduction to LINQ. URL:

https://msdn.microsoft.com/en-us/library/bb397897.aspx. Accessed 8 March

2015.

15 iOS Developer Library – Reachability. URL:

https://developer.apple.com/library/ios/samplecode/Reachability/Introduction/Intro

.html. Accessed 15 March 2015.

16 Mac Developer Library - Core Data Programming Guide. URL:

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreD

ata/cdProgrammingGuide.html. Accessed 16 March 2015.

17 World Wide Web Consortium - Offline Web applications. URL:

http://www.w3.org/TR/2011/WD-html5-20110525/offline.html. Accessed 20 March

2015.

18 HTML5 Rocks by Google - "Offline": What does it mean and why should I
care?. URL: http://www.html5rocks.com/en/tutorials/offline/whats-offline/. Ac-

cessed 10 January 2015.

82

19 A List Apart - Application Cache is a Douchebag by Jake Archibald . URL:

http://alistapart.com/article/application-cache-is-a-douchebag. Accessed 27

March 2015.

20 Oracle Java Documentation - What Applets Can and Cannot Do. URL:

http://docs.oracle.com/javase/tutorial/deployment/applet/security.html. Accessed

28 March 2015.

21 The Microsoft Developer Center – Silverlight Trusted Applications. URL:

https://msdn.microsoft.com/en-us/library/ee721083(v=vs.95).aspx. Accessed 28

March 2015.

22 Google Developers - Managing HTML5 Offline Storage. URL:

https://developer.chrome.com/apps/offline_storage. Accessed 29 March 2015.

23 Mozilla Developer Network – Online and offline events. URL:

https://developer.mozilla.org/en-US/docs/Online_and_offline_events. Accessed

29 March 2015.

24 World Wide Web Consortium - WebSimpleDB API. URL:

http://www.w3.org/TR/2009/WD-WebSimpleDB-20090929/. Accessed 30 March

2015.

25 W3C Editor's Draft – File API. URL: http://dev.w3.org/2009/dap/file-system/file-

dir-sys.html. Accessed 30 March 2015.

26 StatCounter – Global Stats. URL: http://gs.statcounter.com. Accessed 5 April

2015.

27 Android Developers Guide – Saving Key-Value Sets. URL:

http://developer.android.com/training/basics/data-storage/shared-

preferences.html. Accessed 17 February 2015.

28 Android Developers Guide - Determining and Monitoring the Connectivity
Status. http://developer.android.com/training/monitoring-device-

state/connectivity-monitoring.html. Accessed 18 February 2015.

83

29 Mozilla Developer Network - Basic concepts of Indexed Database. URL:

https://developer.mozilla.org/en-

US/docs/Web/API/IndexedDB_API/Basic_Concepts_Behind_IndexedDB#gloss_k

eypath. Accessed 20 February 2015.

Appendix 1

1 (6)

Core Data basics

//

// AppDelegate.h

// testCoreData

//

// Created by Antti Karjakin on 19/03/15.

// Copyright (c) 2015 Antti Karjakin. All rights reserved.

//

#import <UIKit/UIKit.h>

#import <CoreData/CoreData.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (readonly, strong, nonatomic) NSManagedObjectContext

*managedObjectContext;

@property (readonly, strong, nonatomic) NSManagedObjectModel

*managedObjectModel;

@property (readonly, strong, nonatomic) NSPersistentStoreCoordinator

*persistentStoreCoordinator;

- (void)saveContext;

- (NSURL *)applicationDocumentsDirectory;

@end

Appendix 1

2 (6)

//

// AppDelegate.m

// testCoreData

//

// Created by Antti Karjakin on 19/03/15.

// Copyright (c) 2015 Antti Karjakin. All rights reserved.

//

#import "AppDelegate.h"

@interface AppDelegate ()

@end

@implementation AppDelegate

- (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // Override point for customization after application launch.

 return YES;

}

- (void)applicationWillResignActive:(UIApplication *)application {

 // Sent when the application is about to move from active to inactive state. This can

occur for certain types of temporary interruptions (such as an incoming phone call or

SMS message) or when the user quits the application and it begins the transition to the

background state.

 // Use this method to pause ongoing tasks, disable timers, and throttle down

OpenGL ES frame rates. Games should use this method to pause the game.

}

Appendix 1

3 (6)

- (void)applicationDidEnterBackground:(UIApplication *)application {

 // Use this method to release shared resources, save user data, invalidate timers,

and store enough application state information to restore your application to its current

state in case it is terminated later.

 // If your application supports background execution, this method is called instead of

applicationWillTerminate: when the user quits.

}

- (void)applicationWillEnterForeground:(UIApplication *)application {

 // Called as part of the transition from the background to the inactive state; here you

can undo many of the changes made on entering the background.

}

- (void)applicationDidBecomeActive:(UIApplication *)application {

 // Restart any tasks that were paused (or not yet started) while the application was

inactive. If the application was previously in the background, optionally refresh the user

interface.

}

- (void)applicationWillTerminate:(UIApplication *)application {

 // Called when the application is about to terminate. Save data if appropriate. See

also applicationDidEnterBackground:.

 // Saves changes in the application's managed object context before the application

terminates.

 [self saveContext];

}

#pragma mark - Core Data stack

@synthesize managedObjectContext = _managedObjectContext;

@synthesize managedObjectModel = _managedObjectModel;

@synthesize persistentStoreCoordinator = _persistentStoreCoordinator;

Appendix 1

4 (6)

- (NSURL *)applicationDocumentsDirectory {

 // The directory the application uses to store the Core Data store file. This code uses

a directory named "ak.testCoreData" in the application's documents directory.

 return [[[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory

inDomains:NSUserDomainMask] lastObject];

}

- (NSManagedObjectModel *)managedObjectModel {

 // The managed object model for the application. It is a fatal error for the application

not to be able to find and load its model.

 if (_managedObjectModel != nil) {

 return _managedObjectModel;

 }

 NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"testCoreData"

withExtension:@"momd"];

 _managedObjectModel = [[NSManagedObjectModel alloc]

initWithContentsOfURL:modelURL];

 return _managedObjectModel;

}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {

 // The persistent store coordinator for the application. This implementation creates

and return a coordinator, having added the store for the application to it.

 if (_persistentStoreCoordinator != nil) {

 return _persistentStoreCoordinator;

 }

Appendix 1

5 (6)

// Create the coordinator and store

 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:[self managedObjectModel]];

 NSURL *storeURL = [[self applicationDocumentsDirectory]

URLByAppendingPathComponent:@"testCoreData.sqlite"];

 NSError *error = nil;

 NSString *failureReason = @"There was an error creating or loading the applica-

tion's saved data.";

 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType

configuration:nil URL:storeURL options:nil error:&error]) {

 // Report any error we got.

 NSMutableDictionary *dict = [NSMutableDictionary dictionary];

 dict[NSLocalizedDescriptionKey] = @"Failed to initialize the application's saved

data";

 dict[NSLocalizedFailureReasonErrorKey] = failureReason;

 dict[NSUnderlyingErrorKey] = error;

 error = [NSError errorWithDomain:@"YOUR_ERROR_DOMAIN" code:9999

userInfo:dict];

 // Replace this with code to handle the error appropriately.

 // abort() causes the application to generate a crash log and terminate. You should

not use this function in a shipping application, although it may be useful during devel-

opment.

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 return _persistentStoreCoordinator;

}

Appendix 1

6 (6)

- (NSManagedObjectContext *)managedObjectContext {

 // Returns the managed object context for the application (which is already bound to

the persistent store coordinator for the application.)

 if (_managedObjectContext != nil) {

 return _managedObjectContext;

 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];

 if (!coordinator) {

 return nil;

 }

 _managedObjectContext = [[NSManagedObjectContext alloc] init];

 [_managedObjectContext setPersistentStoreCoordinator:coordinator];

 return _managedObjectContext;

}

#pragma mark - Core Data Saving support

- (void)saveContext {

 NSManagedObjectContext *managedObjectContext = self.managedObjectContext;

 if (managedObjectContext != nil) {

 NSError *error = nil;

 if ([managedObjectContext hasChanges] && ![managedObjectContext

save:&error]) {

 // Replace this implementation with code to handle the error appropriately.

 // abort() causes the application to generate a crash log and terminate. You

should not use this function in a shipping application, although it may be useful during

development.

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);

 abort();

 }

 }

}

@end

