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Safety-critical software development imposes many requirements for the development 

methods and processes used. A lot of formal documents and design considerations have 

to be done. This results in longer development times and more expensive overall costs 

for software development projects. Having these requirements is still important because 

in the applications where the usage of safety-critical software development methods are 

required the possibility of failures causing major damage to people or material is high. 

 

Application lifecycle management is an activity under which the whole development 

process from first idea to end of maintenance is governed. Application lifecycle man-

agement (or ALM for short) is a version of product lifecycle management concept spe-

cifically used for the management of software projects. ALM is typically realized in the 

form of software suite of tools for governing the requirements, design, progress tracking 

and testing of software project. Also defect tracking and user feedback can be included 

under its scope. 

 

This thesis aims to apply the application lifecycle management concept to safety-critical 

software development. The aim is to introduce an ALM solution to Rocla software de-

velopment in as agile and easy-to-use way as possible. The aim is to be able to fulfill 

the requirements of safety-critical software development of forklift trucks with mini-

mum effort without compromising compliance with standards and regulations. 

 

During this thesis the specific requirements from standard applying for Rocla software 

development are analyzed. Rocla currently has 2 different types of software projects and 

the possible solution should be able to fulfill the needs of both of these types. In the 

scope of this thesis those development processes are studied and several different possi-

ble solutions ALM software suites that could be used with both of them are reviewed. 

Several personnel at Rocla R&D were involved in this evaluation. At the end of this 

thesis a selection of ALM suite based on experiences gained during evaluation work-

shop is made and a pilot project of trying JIRA and its sister products is started. 

 

  

Key words: Application lifecycle management, safety-critical software development, 

agile methods 
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Turvallisuuskriittisten ohjelmistojen kehittäminen asettaa monia vaatimuksen 

kehityksessä käytettäville menetelmille ja prosesseille. Kehityksen eri vaiheet on 

dokumentoitava tarkasti ja virallisesti ottaen huomioon erityisesti 

turvallisuusnäkökohdat. Tämä yleisesti tarkoittaa pidempää kehitysprojektien kesto ja 

huomattavasti kalliimpia kokonaiskustannuksia verrattuna normaaleihin 

ohjelmistokehityshankkeisiin. Näiden sääntöjen huomioon ottaminen ja noudattaminen 

on kuitenkin tärkeää koska turvallisuuskriittisten ohjelmistojen ongelmatilanteissa 

vahingot materiaalille ja laitteille puhumattakaan ihmishengistä voivat olla mittavat. 

 

Ohjelmistojen elinkaaren hallinalla tarkoitetaan toimintaa joka kattaa koko ohjelmiston 

kehitysprosessin ensimmäisestä ideasta alkaen aina ohjelmiston ylläpidon 

lopettamiseen. Tyypillisesti ohjelmiston elinkaaren hallintaan käytetään jotain 

ohjelmistokokonaisuutta joka kattaa vaatimusten hallinnan, suunnitelmien hallinnan, 

työn edistymisen seurannan ja testauksen hallinnan koko ohjelmistoprojektille. Myös 

julkaistun ohjelmiston vikailmoitukset ja käyttäjäpalautteet yleensä kirjataan tällaiseen 

järjestelmään. 

 

Tämän työn tarkoituksena on soveltaa ohjelmiston elinkaaren hallinta menetelmiä ja 

ratkaisuja turvallisuuskriittisen ohjelmistokehitykseen. Tavoittaa on tutkia eri 

vaihtoehtoja ohjelmiston elinkaaren hallinta järjestelmäksi ja valita jokin niistä 

käytettäväksi Rocla Oy:n ohjelmistokehitysprojekteihin. Työn tavoitteena on löytää 

ratkaisu jolla nämä vaatimukset voitaisiin täyttä mahdollisimman vähällä lisätyöllä 

verrattuna nykyisiin toimintatapoihin kutenkin täyttäen kaikki standardien määräykset. 

 

Työssä analysoidaan Rocla Oy:n kehitykseltä vaadittavat seikat. Rocla Oy:ssä tehdään 

tällä hetkellä kahdentyyppisiä ohjelmistokehitysprojekteja ja mahdollisesti valittavan 

järjestelmän on kyettävä täyttämään näiden molempien erityiset vaatimukset. Useita eri 

ratkaisuja ohjelmiston elinkaaren hallinta järjestelmäksi tutkittiin useiden henkilöiden 

voimin. Tämän arvioinnin perusteella päädyttiin aloittamaan pilotointi projekti JIRA:N 

käyttöönotosta. 

Avainsanat: ohjelmiston elinkaaren hallinta, turvallisuus kriittinen ohjelmistokehitys, 

ketterät menetelmät 
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ABBREVIATIONS AND TERMS  

 

 

ALM Application Lifecycle Management 

Aton PDM Product data management system made by Modultek. Very 

popular in Finnish manufacturing companies. 

CAN bus Controller area network bus. Typically used in vehicle appli-

cations. 

MCFE Mitsubishi-Caterpillar Forklift Europe B.V. 

MN Mitsubishi-Nichiyu Forklift CO., LTD. 

MSDN Microsoft Developer Network. Website that provides re-

sources in the form of documentation and downloads of Mi-

crosoft products. Special subscriptions are also available. 

Under these subscriptions developers can freely download 

and use a plethora of Microsoft tools. These tools can in-

clude, depending on the subscription level, e.g. Windows 

operating systems and different development tools. 

PDM Product data management system. Common acronym used 

for systems used for storage, version control and distribution 

of product data. 

PL Performance level. Performance level is measurement scale 

for safety-criticalness of a feature defined in EN ISO 13849-

1. From least to most severe these levels are a, b, c, d and e. 

In documentation these levels are commonly referred with 

the abbreviation PL. (EN ISO 13849-1, 2008) 

PLM Product lifecycle management 

PLr Required performance level. See description of PL. PLr ab-

breviation is commonly used in standard documentation in 

context where a certain PL is required. (EN ISO 13849-1, 

2008) 

SaaS Software-as-a-service. Common term when referring to 

software that is provided on subscription base and is accessi-

ble via internet. Typically also not installed on customer 

premises but in providers cloud. 
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SIL Safety Integrity Level. Level used in some standards to im-

ply the severity of requirement. Similar to PLr. 

SLM  Software lifecycle management 

SRP/CS Safety-related part of a control system. This abbreviation is 

commonly used in standard documentation when talking 

about parts of control system. E.g. a single controller in dis-

tributed system. (EN ISO 13849-1, 2008) 

TFS Team Foundation Server. Common acronym used when talk-

ing about Microsoft ALM solution. 
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1 INTRODUCTION 

 

Agile software development has been established as de-facto standard of software de-

velopment for the whole industry. First implementations of agile emerged in the 90’s 

which lead to publication of the Agile Manifesto in 2001 after which almost everyone 

has strived to change their methods toward more agile ways. One of the main concepts 

of agile development is to produce working software in small increments. In practice 

this means that the software has to be usable and working after implementing each fea-

ture or set of features. This enables testing and feedback on what to improve in very 

tight loops enabling quick responses to changes and customer needs. This is in contrast 

to old waterfall model where a working product is usually delivered so late in the pro-

ject that no real changes to it can be done anymore. (Wikipedia, Agile software devel-

opment, 2015) 

 

Lifecycle of a software starts with initial project planning and ends when the customer 

stops using the product. In-between these points there are several different phases with 

possibly different resources working on the project. Without good process definition 

and working documentation this can cause a lot of extra work. Application lifecycle 

management (ALM) is an idea of handling and documenting the activities during the 

lifecycle of a product in an efficient and controlled way with predefined tool or set of 

tools. This idea has been driven by tool vendors who provide software suites that inte-

grate all these activities under one product. (Kääriäinen, 2011) 

 

In safety-critical software development the ALM is especially important due to the re-

quirements imposed on the product by different standards and regulations. The safety of 

the product has to be proven with documented design requirements, specifications and 

then proven with test results against the initial requirements. In practice this traditional-

ly means using waterfall model with monolithic documentation in different phases of 

project with complex and cumbersome software suites. In recent years this traditional 

model has been challenged and several companies have started studying and implement-

ing agile methods in safety-critical software development to increase productivity. 

(Vuori, 2011) 

 

This work examines how to combine the principles of agile methods, ALM and safety-

critical software development. 
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1.1 Customer  

 

This work is done for Rocla Oy which is a part of Mitsubishi-Caterpillar Forklift Eu-

rope B.V. (MCFE) which in turn is a part of global company Mitsubishi-Nichiyu Fork-

lift CO. LTD. (MN). Rocla Oy designs and manufactures electric warehouse and coun-

terbalance trucks for the European market. Rocla Oy also manufactures automated 

warehouse trucks which require no driver. These automated trucks are typically sold as 

a customized solution for specific customer. 

 

Rocla Oy has a long history as a traditional machine manufacturer. Software has not 

been a major factor in truck design until last few decades. The importance of software 

first started to rise with the automatic trucks. In them the core technology is software. 

All new manually operated trucks are designed as fly-by-wire with software controlling 

all aspects of the truck. With software being a relatively new addition to truck design 

the processes and conventions with it are not very mature and most modern methodolo-

gies have not yet been fully realized with current truck safety standard not yet requiring 

much formality from the design processes as it does from testing. 

 

1.2 Problem Statement 

 

Currently there is no clearly defined process for software development due to relative 

newness of the role of the software. Improvements in productivity and quality can be 

made by defining a process based on proven methods and taking it into use in the multi-

tude of software projects done. This is especially true in the future as the amount of 

software projects done is steadily increasing. 

 

The old safety standard for battery powered trucks has no strict standards on software 

development but this is bound to change in a new version which is currently in drafting 

phase. Current drafts of the new standard implicate the introduction of requirements for 

software development from EN ISO 13849-1. This imposes severe restrictions on how 

firmware of the control units of the trucks is developed and how the service tools used 

to configure, program and diagnose those controllers is developed. (EN 1175-

1:1998+A1, 2008.  EN ISO 13849-1, 2008) 
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This work focuses on developing an agile process for development of service tools used 

in configuration, programming and diagnosing the control units of truck. These tools are 

typically either desktop software which connects to trucks via some peripheral or 

handheld devices used to directly connect to truck.  

 

1.3 Project Goals 

 

The goal of this work is to define a process and a set of tools to use in development of 

desktop software for truck service tools in compliance with relevant parts of EN ISO 

13849-1. The process should follow the principles of agile software development for all 

the applicable parts. Having to comply with safety-critical software development stand-

ards imposes a lot of restrictions on the processes and activities done during develop-

ment when comparing to current trends in agile software development where strict pro-

cesses, gates, documentation etc. are being done less and less. 

 

Also the suite of tools to use in the development shall be evaluated and initial set of 

which to use shall be defined in this work. Tool selections shall be done with ideology 

of ALM with a toolset covering all phases of development with as good integration as 

possible. Due to resource restrictions this process should also be as lean as possible and 

has to be adaptable with minimal training or purchasing costs. 
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2 SOFTWARE DEVELOPMENT MODELS 

 

This chapter introduces a few commonly used software development models and ex-

plores their perceived advantages and weaknesses 

 

2.1 Waterfall model 

 

Waterfall model is the traditional method for software development where activities are 

done in phases from top down typically starting with requirement engineering phase. 

Before going to next phase there usually are some design criteria which have to be met. 

These criteria’s can include documentation, management approval, test results etc. Wa-

terfall is the first clearly defined software development method to emerge and the prin-

ciples were first described by Herbert D. Benington in 1956. (Wikipedia, Waterfall 

model, 2015) 

 

 

 

Figure 1. Waterfall model. (Wikipedia, Waterfall model, 2015) 

 

The typical phases of waterfall model include: 

- Requirement engineering 

- Software architecture and module design 
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- Implementation 

- Module, integration and system testing 

- Maintenance 

 

Advocating the use of waterfall model is that it causes development work to be done in 

a structured order with clear definition of what to be done in which order. Big part of 

the time used in the project is dedicated to creating requirements and software specifica-

tions documents before involving coding. The idea behind this is to do as much design 

up front as possible to minimize uncertainty and doing wrong things later in the project, 

mainly coding. Typically the cost of fixing a problem rises the longer it is left unattend-

ed. Also the big role of documentation imposed by this model is seen as good thing as 

typically software developers tend to create inadequate documentation which can lead 

to severe problems in maintenance phase of projects when the original developers are 

no longer available. (Wikipedia, Waterfall model, 2015) 

 

Critics of the waterfall model state that due to the sequential nature of the model it can-

not adapt to reality of changing requirements fast enough. In waterfall model a lot of 

work can be invested in implementing features before the end customer sees them. This 

can lead to a lot of wasted effort in such cases where the customer is not happy with the 

end product. Critics advocate having a process specifically aiming for constant change 

instead of rigid structure. (Wikipedia, Waterfall model, 2015) 

 

2.2 The V-model 

 

The V-model is an extension of waterfall model with some support for iterations built 

in.  The V-model approach consists mainly of the same higher level activities as the 

waterfall model. In V-model each the initial design activities (left side of the V) has a 

corresponding verification action (right side of the V) with coding being at the lowest 

level of the V. Each verification phase then has a link back to design process to see that 

the design requirement has been fulfilled. This is a step towards iterative approach from 

the traditional waterfall model due to having the idea that some part of initial design 

will be modified during the development process. (Wikipedia, V-model (software de-

velopment), 2015) 
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Figure 2. V-model. (EN ISO 13849-1, 2008) 

 

The V-model is heavily in use due to being easy to understand by project management. 

It is also seen as having all the advantages of sequential and disciplined methodologies 

of the waterfall model with added agility and response to changing requirements. V-

model is also very close to agile methods in the idea that things are iterated over in 

small blocks. In several cases it can be difficult to differentiate between the two models. 

(Wikipedia, V-model (software development), 2015) 

 

The model is criticised partly due to the same reasons as waterfall model as being too 

rigid and still not agile enough to adapting changing requirements. It is seen as too sim-

plified version of agile development with little correlation to how things are done in real 

life projects. It is also said that although the V-model has iterative methods in it, it fails 

to address the real problems early on. The first testing phases only include testing of 

low level software modules which are not yet presentable to end user for feedback. This 

can lead to it having the same problems as the waterfall model with spending a lot of 

time on work that can be subject to change once the customer gets to actually use the 

product and get a good understanding of what works and what does not. This can partly 

be countered by delivering mock-ups to customer for evaluation before the actual prod-

uct is implemented. This is however approaching a grey area where it could be argued 

that it is more of an agile method versus traditional V-model way of doing things. (Wik-

ipedia, V-model (software development), 2015) 
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2.3 Agile software development  

 

This chapter dives in to the world of agile software development. Agile methodologies 

are explained and the most common things that are done wrong are explored. Also the 

status of current adaptation of agile methodologies in the industry is represented. 

 

2.3.1 Overview 

 

Agile software development is not a single model but instead is an ideology of doing 

software in a way that rapidly delivers working software for customer evaluation and 

then adapts the design based on the feedback received. Also the up-front design is in 

some cases minimized to a point where no requirement or specification documentation 

is done before coding. Documentation is minimized to only what is essential. This leads 

to customer getting working product in small increments which he can then review and 

request changes to it. This continues until the product is finished. (Wikipedia, Agile 

software development, 2015. Manifesto for Agile Software Development, 2015) 

 

Agile development evolved overtime with people growing more and more frustrated 

with old models of development seeing them taking too much time away from deliver-

ing the customers what is important. Big change towards incremental development hap-

pened during the 90’s leading to publication of the “Manifesto for Agile Software De-

velopment” in 2001. The manifest outlined the ideology and key principles behind agile 

software development on which the modern variations are still based on. (Wikipedia, 

Agile software development, 2015. Manifesto for Agile Software Development, 2015) 
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2.3.2 Iteration and feedback 

 

Figure 3. Iterative development model (Wikipedia, Iterative and incremental develop-

ment, 2015) 

 

In the heart of agile is doing development in iterations. Even though several different 

methods of doing agile software development exist, what they all have in common is 

iterative approach to software development. Iterative development is not unique to agile 

development and has been around longer than agile. Iterative development has been 

mentioned in literature as early as the 80’s pre-dating the emergence of agile methods. 

(Wikipedia, Iterative and incremental development, 2015) 

 

In practice iterative development means that the end product is defined in small blocks 

implementable in short amounts of time. After each iteration the software is left in a 

state where it can be packaged and tested for release to customer or as close to it as pos-

sible. Sometimes it can be even released to end users for actual usage. Essentially itera-

tion covers all the stages of traditional waterfall and V-models in a miniature size. After 

iteration feedback from customer is gathered and required modifications to the product 

are planned. These iterations are then repeated until the product is ready. 

Each of these iterations can be broken down to smaller iterations for development team 

to handle internally. For example doing a complex UI for customer can be broken down 

to doing small parts of it at a time even when not releasing to the end customer. (Wik-
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ipedia, Agile software development, 2015. Wikipedia, Iterative and incremental devel-

opment, 2015.) 

 

The critics of agile development say that doing design in these small blocks can cause 

the big picture to be lost and the architecture of an application to become a complete 

mess. In some part this is a misconception as even if you do not fully draw up the archi-

tecture of an application in a single go you still have to do an architectural design in the 

beginning even if it is not completely finished in e.g. the first iteration of development. 

Nevertheless architectural decay can indeed be a big problem when doing agile devel-

opment but there are several methods that are commonly used to counter these prob-

lems. One of the most used ones is a constant refactoring and evaluation of architecture 

alongside code refactoring at the end of iteration. This activity incorporates the idea of 

looking at the big picture at the end of iteration and adapting the architecture as needed. 

If done right this iterative approach and constant architectural evaluation while the ap-

plication matures can be seen as advantage over traditional methods of architectural 

design.  (El-Khawaga, Galal-Edeen, Riad, 2013) 

 

Big advantage of iterative approach is that the software is in a state of being more or 

less ready at the end of iteration which allows rapid deployment when necessary. This is 

in heavy contrast to traditional methods where the product testing and packaging for end 

user is done in a one big block at the end of development. This allows for rapid de-

ployments in cases of emergency. (Wikipedia, Agile software development, 2015. Wik-

ipedia, Iterative and incremental development, 2015.) 

 

Compared to traditional methods this way of doing things also incorporates a lot more 

visibility on the state of the project. In traditional models it can be as long as months 

without developers producing anything concrete on which the status of the project could 

be measured on. In this respect agile builds on top of iterative methods by removing the 

traditional documentation and formal processes with direct communication with the 

stakeholders. (Wikipedia, Agile software development, 2015) 

 



18 

 

 

Figure 4. Basic agile process. (Vuori, 2011) 

 

2.3.3 Pitfalls of agile software development 

 

 

Picture 1. The agile manifesto. (Manifesto for Agile Software Development, 2015) 
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Ironically the biggest problems in doing agile development come from the agile mani-

festo itself. People tend to overemphasize the ideas on the left side and completely es-

chew the ones on the right even though the manifest itself states they still have value. 

“Individuals and interactions over processes and tools” does not mean you should have 

no processes or tools; instead you should have processes and tools to support individu-

als and interaction. “Working software over comprehensive documentation” does not 

mean you should not have any documentation at all, instead you should document only 

what is needed to support the creation of working software. “Customer collaboration 

over contract negotiation” does not mean you should not negotiate at all before starting 

development as not negotiating about the price and specifications would lead to cus-

tomer not knowing what the cost of what they are buying is. Own experience as a cus-

tomer has shown though that typically doing initial negotiations as light as possible and 

paying by the hour leads to cheaper overall costs. This does require heavy involvement 

from the customer in iteration of development. “Responding to change over following a 

plan” does not mean you should not have a plan at all; instead you should have a plan 

that is susceptible to change. 

 

A typical situation is where all the discipline is thrown out of the window and coders 

are left on their own to write code without any requirements or specification documen-

tation or organization of work with only vague requirements given in a meeting. Need-

less to say this leads to chaos. This approach is completely beside the point of agile. It 

could be argued that agile methods are a lot stricter on the organization of work than 

traditional methods. In waterfall model a developer could be left to work on a feature 

alone for several months with no collaboration or testing enforced. In agile development 

this is exactly the opposite when the developers have to produce something that works 

constantly with constant monitoring and measurement of the results of work. 

 

2.3.4 Agile adaptation 

 

Agile software development has been accepted as de-facto standard of software devel-

opment and almost every company that does software development has adopted some 

form of agile development. Although several established ways of doing agile develop-

ment have emerged (e.g. Scrum or Extreme Programming) a typical situation is adapt-

ing a hybrid model which takes the parts of different agile development methods 

deemed most useful for the company. The successful usage of agile methods in software 
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development has also lead to adaptation of agile methods into other fields of engineer-

ing. (Wikipedia, Agile software development, 2015) 
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3 APPLICATION LIFECYCLE MANAGEMENT 

 

This chapter explains the concept of application lifecycle management and takes a look 

at the key concepts it envelopes. 

 

3.1 Overview 

 

In short, application lifecycle management (ALM) means governing all the activities 

during the lifecycle of a software product from the initial planning to the end of usage. 

It is similar to product lifecycle management concept but the term is meant to mean 

specifically software applications. ALM covers monitoring and reporting all the design 

artefacts during the process including (but not limited to) requirements, specifications, 

source code, bug reports and test results. ALM as a concept emerged mainly from dif-

ferent software vendors offering tool packages for doing all these activities and so ALM 

system is used as a term to describe a suite of tools for this purpose. Atlassians JIRA 

and Microsofts Team Foundation Server are some of the most known commercial ALM 

solutions. (Wikipedia, Application Lifecycle Management, 2015) 

 

3.2 Key components 

 

As the concept of ALM is rather new and the most profound advocates for it are also 

selling commercial solutions to the problem, a neutral evaluation of tools and solution 

capabilities can cause problems. Commercial vendors tend to overemphasize the parts 

their solutions shines in and disregard the ones they are not so good at. For evaluation of 

ALM solutions there have been several studies but perhaps the most interesting of them 

is the “Towards an Application Lifecycle Management Framework” dissertation work 

by Jukka Kääriäinen in VTT which describes means and methods for neutral evaluation 

of ALM solutions in a form of ALM framework. (Kääriäinen, 2011) 
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Figure 5. Key functions of ALM system. (Kääriäinen, 2011) 

 

Kääriäinen, 2011, describes the key components of an ALM system as: 

 

 Creation and management of lifecycle artefacts 

ALM wraps around the concept of lifecycle artefacts. A lifecycle artefact can be 

for example a requirement, design specification, test case or test result. As a 

minimum requirement and the most important thing, an ALM system must sup-

port creation of these artefacts. (Kääriäinen, 2011) 

 

 Traceability of lifecycle artefacts 

In order to trace which requirement is satisfied by which design specification 

and which test in turn verifies it an ALM system needs to have a way to link de-

sign artefacts to each other. These links typically include linking requirements to 

design specifications all the way to test results and releases. Dates, authors and 

status changes of all these artefacts need to be recorded in ordered to see the 

chronological progress of each feature. (Kääriäinen, 2011) 

 

 Reporting of lifecycle artefacts 

Just having a way to link and trace design artefacts to each other is not enough, 

you also need to be able to create human-understandable presentations of the sta-

tuses and relationships of the lifecycle artefacts. The creation of these reports 

should be automated. These reports can include visual or textual representations. 
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Typically different kinds of reports are offered for different kinds of needs. E.g. 

QA manager might need list of test results for a given release. These reports can 

be printable documents but more typically they could be e.g. web pages with the 

statuses of items in current development iterations.  (Kääriäinen, 2011) 

 

 Communication 

Good ALM solution should facilitate communication in the team. For real time 

communication this could mean having integrated real time chat or video con-

ference possibilities inside the tools. Perhaps more importantly an ALM should 

facilitate the sharing of knowledge between team members in written form. One 

of the most popular medias for this is having an integrated wiki inside ALM on 

which all team members can document e.g. some difficult development task, de-

velopment process conventions, creation of release packages etc. Also having 

the possibility to add informal comments to lifecycle artefacts, for instance 

commenting why test result failed or why some feature is not implemented. This 

kind of documentation especially follows the principles of agile development as 

all the formality in it is removed and only the actual value adding part of it is 

done. (Kääriäinen, 2011) 

 

 Process support 

Tools should not dictate how a development team functions but instead should 

support the way the development team functions. This means that a good ALM 

solution should adapt to different ways or development methodologies some 

teams like to use. (Kääriäinen, 2011) 

 

 Tool integration 

Good integration of tools is essential for having an ALM solution that is easy to 

use and to minimize wasted effort by doing as much automatically behind the 

scenes as possible. In software development one of the most important elements 

is the integration of the source code version control system, requirements man-

agement system and testing and release systems. This holds especially true for 

agile software development where changes to requirements and releases are con-

stantly being done so if the integration between systems are bad it will lead to ei-

ther a lot of wasted effort on manual work or people stopping to follow the de-

velopment processes the ALM is supposed to facilitate. (Kääriäinen, 2011) 
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Different vendors have varying support for each of these features and in some cases 

some of them can be missing completely. ALM is more of a general name for the um-

brella concept rather than strict format on how these activities should be setup. In ALM 

ideology all these aspects should integrate together though. Different emphasis on the 

different aspects of solution in selection of tools should be considered depending on the 

scope and quality of the development. A big factor is also the size and locations of the 

team. Same solution cannot fit a 5 person team located in the same office versus 100 

person team distributed among different time zones. The larger the team the more em-

phasis on the quality of solution as the management of such work gets exponentially 

more difficult. (Kääriäinen, 2011) 
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4 DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE  

 

This chapter explores the restrictions and requirements imposed by different safety 

standards for the development of safety-critical software development. The viewpoint of 

this chapter is especially the development of safety-critical software for electric forklift 

trucks. 

 

4.1 Overview 

 

The term “safety-critical software” means software which controls or monitors func-

tions in which a failure can cause harm to human beings, damage to equipment/property 

or harm to environment. There are various different fields where software is considered 

to be safety-critical, for example medical or automotive applications. The way software 

is done in these fields is typically highly regulated and has to fulfil requirements of safe-

ty standards. Regular auditing by governmental bodies for the companies working in 

safety related application fields are common.  (Vuori, 2011. Wikipedia, Life-critical 

system, 2015) 

 

Safety standards vary greatly depending on the field of application and can be dramati-

cally different. For example, safety of industrial assembly machine is an order of magni-

tude of less importance than safety of nuclear plant or military weapons system. The 

key principle and starting point of development should therefore be the assessment of 

the risks in the application in question. This risk analysis should be done and document-

ed according to the standard in question. The risks are typically categorized by severity 

and probability of occurrence. The formulas and categories used are dependent on the 

field of application (the standard used for the requirements).  For each risk identified 

there then has to be some sort of mitigative measure identified.  This can be for instance 

a certain technical requirement for the application or indication or plan how training or 

some other action is enough for mitigation of the risk and no design actions are re-

quired. The severity of the measure should directly correlate with the severity of the risk 

in question. (Vuori, 2011. EN ISO 13849-1, 2008) 
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Figure 6. Overview of the required development process from EN ISO 13849-1. (EN 

ISO 13849-1, 2008) 

 

After the initial risk analysis the risks that are identified to be taken into account in the 

design process are then translated into safety requirements. These safety requirements 

are then either taken into account in specification of features of the application or in 

some cases they have to be made into features themselves with no other function in the 

application than ensuring safety. All of these safety related items in the design have to 

be tracked and regularly analysed during the development of the product. This imposes 

severe restrictions on the documentation and monitoring of the development process 

and traditionally the development processes for safety-critical applications have been 

older and tested ones. In several modern safety standards the older V-model is still the 

recommended model of development. (Vuori, 2011. EN ISO 13849-1, 2008) 
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Figure 7. Tracing tests to requirements. (Vuori, 2011) 

 

In addition to translating risks into safety requirement and taking them into account dur-

ing the design process there also needs to be formal testing of the features. This means 

having test cases that can be linked to specifications and requirements as seen in figure 

7. Usually in the definition of a test case there is a mention of the requirement or design 

specification in question. Typically the standards for safety-critical software develop-

ment also inflict restrictions on the development process itself. The V-model shown in 

figure 6 is typically required to be followed in development of software. Normally also 

following of some certified quality standard (e.g. ISO 9001) in project management and 

quality management systems is required. This causes some restrictions on how the de-

velopment, especially in the documentation processes, is done. (EN ISO 13849-1, 2008) 

 

4.2 SFS-EN ISO 13849-1 requirements for software development process 

 

Forklift truck safety is regulated under EN1175 standard which in turn is under SFS-EN 

ISO 13849-1, “Safety of industrial trucks – Electrical requirements – Part 1: General 

requirements for battery powered trucks”.  Currently applying EN1175 does not impose 

the requirements of SFS-EN ISO 13849-1 on truck software development. New version 

of EN1175 is currently in draft state. Rocla Oy is participating in its creation. In current 

draft full requirements for embedded and application software and parameter modifying 

tools from SFS-EN ISO 13849-1 are going to be in effect. Current estimation for new 

version of EN1175 to be in effect is in year 2017. This gives a reasonable transition 

period in which to make sure all the requirements are fulfilled. (EN 1175-1:1998+A1, 

2010. EN ISO 13849-1, 2008. EN 1175-1padova, 2014) 
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Figure 8. General model for software architecture in safety-related software according 

to SFS-EN ISO 13849-1. (EN ISO 13849-1, 2008) 

 

SFS-EN ISO 13849-1 categorises safety-related functions of software according to per-

formance levels (PL) with required performance level (PLr) meaning a safety that has to 

be reached by certain functions of the system (e.g. control of steering). For software this 

imposes a lot of restrictions including (but not limited to) using a coding standard, gen-

eral architecture model usage and usage of semi-formal (e.g. diagrams) methods to clar-

ify the workflow of the software. Code simulation and static analysis tool usage are also 

required depending on the required safety level of the function. (Vuori, 2011. EN ISO 

13849-1, 2008. Malm, Vuori, Rauhamäki, Vepsäläinen, Koskinen, Seppälä, Virtanen, 

Hietikko, Katara, 2015) 

 

Restrictions on which programming languages can be used for development can be im-

posed depending on the PLr of the application. The highest safety levels can require the 

usage of limited variability language (LVL) in which what is doable with the language 

can be limited (as opposed to using full variable language (FVL)). LVL languages are 

typically either graphical block diagram languages or written languages with very lim-

ited instruction sets. Perhaps the most typical LVLs are IEC 61131-3 conforming lan-

guages for programmable logic controllers (PLCs). FVLs mean the most common pro-

gramming languages, e.g. Assembler or C/C++. When C or C++ is used in safety-

critical applications, typically heavy code analysis or simulation is required due to very 

low restrictions on what can be done with the language. Most common languages fall 

into category of FVLs by default unless a specific, verified version of them is created 

and verified to cope with LVL requirements. (Vuori, 2011. EN ISO 13849-1, 2008. 
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Malm, Vuori, Rauhamäki, Vepsäläinen, Koskinen, Seppälä, Virtanen, Hietikko, Katara, 

2015) 

 

 

Figure 9. List of required development, verification and documentation actions in soft-

ware development process according to SFS-EN ISO 13849-1.  (EN ISO 13849-1, 

2008) 

 

Perhaps even higher impact on the software development as a whole is caused by the 

requirements for the development process. The V-model shown in figure 6 is also re-

quired by SFS-EN ISO 13849-1. This is the typical high level structuring of software 

development activities required by safety standards. Figure 9 lists the activities required 

to be done during the development process in addition to technical restrictions on the 

coding and architectural design of application itself. These are required from all safety 

levels. Other things required from all safety levels include having a functional testing of 

the software and all the necessary lifecycle actions for each of the releases. Lifecycle 

activities mean having appropriate specifications and most importantly documented test 

plans and test results with appropriate testing process. (Vuori, 2011. EN ISO 13849-1, 

2008. Malm, Vuori, Rauhamäki, Vepsäläinen, Koskinen, Seppälä, Virtanen, Hietikko, 

Katara, 2015) 
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For higher PL levels certified quality and project management systems are required. 

This is a companywide requirement which means that the standard of whole organiza-

tion has to be of certain level before being allowed to create high risk applications. Oth-

er requirements from the higher safety levels include structured documentation of risk 

analysis, requirements, safety requirements, specifications, test plans and test results 

with full traceability. Also more rigorous testing is required compared to lower safety 

levels. One of the most important requirements is also doing of impact analysis for each 

new release of applicable software. This means analysing which parts of the system the 

change affects and which parts of the system the change does not affect with attached 

reasoning for each implication. For all affect parts then changes to risk analysis, re-

quirements and specification will then have to be considered. The minimum for all af-

fect parts is to re-test them and verify functionality. (Vuori, 2011. EN ISO 13849-1, 

2008. Malm, Vuori, Rauhamäki, Vepsäläinen, Koskinen, Seppälä, Virtanen, Hietikko, 

Katara, 2015) 
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Figure 10. Iterative process for design of safety-related parts of system. Also relevant 

for designing safety-related software features. (EN ISO 13849-1, 2008) 

 

Figure 10 shows the iterative process to be used in designing safety related functions of 

the truck. This same iterative process applies also to software design. All these activities 

should also be documented appropriately with traceability and impact analysis if they 

are done for software that has already been released to the field. This incremental design 

method is very closely related to agile software development model. (Vuori, 2011. EN 

ISO 13849-1, 2008) 
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Figure 11. Activities and considerations that need to be done during design process of 

safety-critical software. The right side boxes show some things to consider during some 

phases of this process. (Malm, Vuori, Rauhamäki, Vepsäläinen, Koskinen, Seppälä, 

Virtanen, Hietikko, Katara, 2015) 

 

Designing software according to all requirements by standard with all the design efforts 

and testing done correctly alone is not enough, the designing entity also has to be able to 

prove the steps have been taken if an audit is done. Figure 11 shows the usual activities 

that need to be done when designing safety-critical software in machine application. 

Each of these steps has to be auditable afterwards meaning some form of documentation 

has to be done from each step. Traditionally this has led to either intangible mass of 

word documents with references to other documents or the usage of software tools with 

integrated tracing between documents and design artefacts. This leads to safety-critical 

software being extremely expensive to develop when compared to normal development 

but these activities cannot be skipped in order to get a permit to sell these kinds of prod-

ucts. (Vuori, 2011. EN ISO 13849-1, 2008. Malm, Vuori, Rauhamäki, Vepsäläinen, 

Koskinen, Seppälä, Virtanen, Hietikko, Katara, 2015) 

 

4.3 Requirements for software-based parameterisation of truck 

 

The controllers and embedded software used in forklift trucks are typically generic to 

the point that the same controller and embedded software can be used in several differ-
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ent truck models for several different manufactures and brands. To allow the extent of 

customization required by each manufacturer, a large part of the functionality of the 

software is defined by parameterization. When these parameters modify the safety-

critical aspects of the embedded software then naturally the requirements for safety-

critical software development also apply to the tools used for setting these parameters. 

The new draft of EN1175 lists the requirements for parameterization along the same 

lines as SFS-EN ISO 13849-1 so the assumption that the requirements from SFS-EN 

ISO 13849-1 apply also for desktop tool for parameterization. A good example of safe-

ty-critical parameter modified would be the maximum speed of the truck. In electric 

trucks this is typically controlled by setting the maximum Hz of the motor. Needless to 

say the value of this parameter has a very high impact on the safety of the truck and 

setting it without any limitations could lead to catastrophic results. (EN ISO 13849-1, 

2008. EN 1175-1padova, 2014) 

  

SFS-EN ISO 13849-1 lists specific requirements for the tool used for modifying safety 

related parameters: 

- Control the range of valid inputs. 

- Control data corruption before transmission. 

- Control the effects of errors from parameter transmission process. 

- Control the effects of incomplete parameter transmission 

- Control the effects of faults and failures of hardware and software of the tool 

used for parameterization. 

SFS-EN ISO 13849-1 also states that either all the same requirements as for SRP/CS 

shall apply for parameterization tool or a special procedure must be used. This proce-

dure must either retransmit the modified parameters back to tool for verification or use 

“other suitable means of confirming the integrity of the parameters”. Using this alter-

nate method for confirming the parameters is highly preferred to implementing the safe-

ty requirements of SFS-EN ISO 13849-1. (EN ISO 13849-1, 2008) 

 

Basically this means that for the parameterization the requirements boil down to having 

specifications and tests for implementation of the features listed above. In the scope of 

this work this would mean having formal requirements, specifications and test results 

for the features with traceability. This leads to implementing a lightweight version of 

system that would be required from SRP/CS. 
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5 IMPLEMENTATION 

 

This chapter introduces the software development that is done at Rocla Oy. Also the 

current status of software development processes and methods in Rocla Oy is studied 

and analysed and a possible solution to fulfil standard requirements and improve the 

effectiveness of development work is represented. A look is taken into different possible 

application lifecycle management tool sets and a selection of an ALM solution for pilot 

use is made. 

 

5.1 Overview 

 

Currently there are 2 categories of trucks produced at Rocla Oy: manual and automatic. 

Manual trucks mean the traditional human operated trucks and automatic mean trucks 

that are completely controlled by computer logic with no human guidance. Automatic 

truck development is left out of the scope of this thesis. 

 

 

Picture 2. Example of different controllers on a reach truck. Label represents a proces-

sor in a controller. There are 1 or 2 processors per controller (master and slave where 

applicable). 
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A typical truck consists of several different controller units that each controls a different 

aspect of the truck. Some of these controllers have dual processors for safety reasons: 

same functions are done by 2 different processors and the results are evaluated. If the 

results do not match the truck is set to error mode and normal function is stopped. These 

controllers are usually motor controllers (e.g. pump or traction), input units (e.g. finger-

tip switch unit), output units (e.g. display) or vehicle controller master unit which con-

trols the operation of the whole truck. The controller hardware is bought from outside 

suppliers and custom software for Rocla is created.  

 

The development of the customized software is typically outsourced to the manufacturer 

of the controller unit. Software requirements specification, some levels of design speci-

fications and all integration testing of the different controllers is done at Rocla.  

 

Service tool for programming these controllers and setting different parameters on them 

is called TruckTool. Development of TruckTool is done in-house at Rocla Oy with full 

control on development and testing at our own hands.  

 

 

Picture 3. Truck model selection at TruckTool start up. 
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Picture 4. TruckTool info-view with a visual representation of a truck and its status. 

 

TruckTool supports a wide variety of the current trucks in production in Finland with 

some exceptions on the older models. Support for more models is currently under de-

velopment and TruckTool aims to unify service of all trucks under one tool. TruckTool 

is a desktop application and it connects to trucks with USB adapters via service con-

nectors on truck. Access to TruckTool is controlled by login with individual user cre-

dentials. For this purpose TruckTool also has an associated website with password crea-

tion, installer and instruction distribution. 

 

5.2 Current status 

 

Current status of development can be categorized to 2 different categories: software 

projects which include desktop and server development and truck embedded software 

projects. This chapter will take a look at the status of both of them with emphasis on the 

software projects and specifically the development of service tool. 

 

5.2.1 Software projects 

 

Software projects currently follow most principles of agile software development. Doc-

umentation and initial planning is reduced to minimum. Trac is used for project man-

agement and issue tracking. Trac is a web-based open source tool for software project 

management and it has an integrated wiki and a basic task tracking and management 

system. Trac also shows commits from underlying source control system and supports 
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setting links to tasks form in commit messages. Most of the documentation is done to 

wiki integrated inside Trac or Tracs issue management system. Teams working in these 

projects are typically distributed to several locations. This causes a heavy emphasis on 

effective communication. This communication is facilitated by having daily meetings 

every morning, having open chat channels to everyone. Source control is done with Git 

which supports this kind of distributed development well due to its decentralized sys-

tem. 

 

 

Picture 5. An example of a ticket inside Trac system (Trac, 2015) 

 

Daily work is separated into tasks. Inside Trac these items are called “tickets”. These 

tasks then in turn are distributed into sprints that typically last 2 weeks. There is some 

variance in the length of sprint depending on the current resourcing in the project. Dur-

ing the execution of each task the developers are required to add information about the 

solution they are creating for the task to project management task tracking system. Be-

fore a developer can deem a work finished, he also has to create a test plan for the new 

feature he has implemented and execute those tests. These tests also include writing 
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automated unit tests alongside code and executing them before finishing the task. Be-

fore finishing all the steps required for each task the developer is not allowed to commit 

his changes into common source control repository. In every commit message there also 

has to be a link to a task in question in order to check the specifications and tests associ-

ated to the changes in code. In the spirit of agile, these tickets are very informal in na-

ture with free communication allowed in form of comments and constant evolution of 

the specification inside the ticket. Editing all the fields of the ticket is open for all de-

velopers in the spirit of wiki editing. 

 

 

Picture 6. Trac task listing board. Tasks are group by sprints or milestones. Inside a 

group the tasks are then grouped by status and priority. Generally tasks waiting to be 

done are at top, tasks under execution or testing in the middle and tasks done and tested 

at the bottom. Colours are also used for showing status of task. This example is taken 

from public Trac website. ((Trac, 2015) 

 

The execution of these tasks by developers is monitored via task list report inside Trac 

as seen in picture 6. This board is a variation of Kanban and Scrum boards. Perhaps the 

biggest visual difference that in typical agile boards the tasks are presented sideways 

where tasks waiting to be done are on the left and tasks already done on the right. 
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Picture 7. Tarantula, a web based test case, set and execution management tool. 

 

Currently there is no unified tool for manual testing used for software projects but in 

TruckTool project we are using Tarantula. Tarantula is a web-based tool for creating 

test cases and sets of cases. These cases or sets can then be formulated for test execution 

plans linked to specific software objects (e.g. releases). These test executions are also 

done inside Tarantula with an intuitive UI where the tester sets the result of the test and 

optionally some comments about the execution. Results of these sets automatic date and 

time information are stored inside Tarantula but can also be exported as PDFs or Excel 

spread sheets. 

 

5.2.2 Truck embedded software projects 

 

Truck embedded software is typically done by the manufacturers of the embedded con-

trollers or some other vendor with ties to the controller manufacturer. The methods and 

processes used in different embedded projects vary greatly but what most of them have 

in common are the creation of initial monolithic specification document and defect and 

some part of task tracking inside Trac. Also the integration testing in actual truck is 

done by Rocla.  

 

Typically these projects start with the creation of a design documentation which en-

compasses all the functions required form the embedded software. This document is 

typically very detailed with a lot of charts etc. to give detailed specifications of the func-
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tions. This document is then presented to the software vendor after which they go to 

work. At this point the visibility of the development status becomes obscured until after 

some time the first version of the software is delivered to Rocla for testing. After the 

initial delivery all the defects and feature wishes are recorded as tasks in Trac and a sim-

ilar monitoring of their statuses is then done as in software projects. In this phase a lot 

of communication with the vendor is required and several new releases with bug fixes 

are typically delivered in short time window. Most of the communication in this phase 

is done by email with occasional visits either to Rocla by the subcontractors or Rocla 

personnel going to subcontractor premises. During this development testing phase also 

automatic testing of the new software is done with a hardware-in-the-loop automated 

tester. 

 

After the development work is done to the point that the truck itself is beginning to be 

ready for delivery, a formal manual testing phase for the software starts. This testing is 

done according to current standards (EN1175) and as usually is the case with safety-

critical applications tends to take a long time. Currently there are no specific software 

testing tools used for this but planning and reporting is done mostly in word documents 

and Excel spread sheets. All the resulting documentation is stored and version con-

trolled in Aton PDM. 

 

 

5.3 Problems 

 

This chapter analyses the perceived problems in current processes and the challenges 

that we are facing with the coming of new version of safety standard with considerably 

more strict requirements for software development. This chapter deals only with service 

tool development from software project side leaving other pure software projects out of 

scope as they are not affected by EN1175 changes. Embedded software projects are 

considered in general. 

 

5.3.1 New version of EN1175 and the adoption of EN ISO 13849-1 development 

standards for software development 

 

In current version of EN1175 the requirements specifically for software are limited to 

having certain features with no limitations on processes, methods or documentation 
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done in development of software and focuses on the features of truck functioning in a 

certain way and testing the truck as whole system with no notion of testing the software 

specifically. There is one particular requirement for software which is that the operator 

of the truck cannot be able to modify any safety-related parameters on truck in such way 

that it can cause danger to the operator or environment. (EN 1175-1:1998+A1, 2010) 

 

The current draft of the new version of EN1175 implies using EN ISO 13849-1 re-

quirements for all software development activities with forklift trucks. This is brings a 

very large change to software development processes and methodologies compared to 

the current situation. Software has to now be done in a way that it can be proven to fulfil 

the standards. (EN ISO 13849-1, 2008. EN 1175-1padova, 2014) 

 

5.3.2 Service tool development 

 

Based on requirements for software based parameterization for truck service tools from 

SFS-EN ISO 13849-1 the requirements for desktop software are to have a verification 

process for the parameters written to device (See chapter 4.3). On top of this there 

should also be a formal documentation for auditability.  

 

The minimum documents should include: 

- Requirements 

- Design specifications 

- Test case specification 

- Test results 

- Release notes 

 

Doing this kind of documentation also tends to cause improvements in the quality of the 

software when done correctly and at correct time in development project.  

The biggest problems in the current process when viewed from the point of fulfilling 

EN ISO 13849-1 requirements are not having any formal requirements, limited design 

specifications only in the form of tasks in Trac and very informal release notes. Big 

problem is also the traceability of all the documentation to each other. Trac and Taran-

tula do not integrate to each thus leading to having no direct link between specifications 

and formal testing done before each release.  
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5.3.3 Truck embedded software development 

 

 

Figure 12. Separation of development activities illustrated in software development V-

model between Rocla and subcontractors. (EN ISO 13849-1) 

 

Problems in embedded projects can be separated to two levels from which the higher 

level is handled by Rocla and lower by subcontractor. Figure 12 illustrates this in rela-

tion to the V-model used for determining different levels of activities in context of 

whole project. 

 

The current specification document used in truck embedded software development is a 

mix of requirements and design specifications with some test cases added alongside. In 

the V-model this document roughly fits somewhere in between system design and safe-

ty-related software specification. There is no clear separation which part are require-

ment specifications and which is design documentation. Parts of the “System design” 

box are also done as Trac tickets.  

 

Current formal testing before releases is done not specifically for the software but the 

truck as whole and is not linked to the software specifications. In the V-model this can 

be seen as fulfilling “Validation”-box on the right side. Integration testing is currently 

done very informally against the Trac tasks to verify the finished status of each task. 

 

Perhaps the biggest problem on Rocla side of the development is having traceability 

between each of these tasks. For each specification there should a corresponding test 
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that clearly verifies that the requirements are met. In documentation this would mean 

having a way to determine from the result. Also the traceability of test result to software 

versions could be improved. This problem is also magnified by not having enough co-

operation in between testing and design departments until very late stages of the project 

which causes the test specifications to be done in haste when the product is already 

functional. 

 

For the subcontractor part there currently is no visibility to the development processes 

for Rocla and we cannot verify if the subcontractors are fulfilling the requirements im-

posed by standards. The biggest problem for Rocla in this respect is the need to get the 

documentation and test reports about the software development done by subcontractor 

for filing and auditability. The processes and methods for handling this are currently 

either missing, not implemented on day to day basis or are very cumbersome to imple-

ment. One example of this is the current design document. Due to its large size there is a 

perceivable threshold in updating it on every minor design change leading on it to be 

outdated or lacking details compared to current actual design. Also on the occasions it is 

updated it tends to not be used as a method of communication due to it being easier to 

communicate the changed specifications by some other means e.g. Trac tasks or by 

email messages. This leads to writing so called “dead documentation” which fails to 

fulfil its duty to as a means to communicate the design requirements to the subcontrac-

tors. 

 

5.4 Improvements 

 

In this chapter several different ways for improving the processes and methods used in 

service tool and truck embedded software development are analysed. The biggest points 

of improvement are identified and the way to proceed is selected. 
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5.4.1 Service tool development 

 

 

Figure 13. Part of the V-model currently found lacking in service tool development. 

(EN ISO 13849-1) 

 

The biggest improvements to be made in service tool development are the documenta-

tion of requirements and formal designs. Currently neither of these activities is done in a 

way that would fulfil the requirements for safety-critical software development process-

es. Formal system design is currently on the level of having a rough UML diagram of 

the architecture.  

 

To improve this there should be documented requirements filtered from the standards to 

apply specifically for this application. Designs to fulfil those requirements should then 

be created and linked to these requirements. This documentation would also include 

having a way to link the current tasks and test specifications and results to these re-

quirements. Currently the systems used for development (Trac and Tarantula) have no 

way to trace tasks and tasks to each other so a new way to do this has to be found.  

 

5.4.2 Truck embedded software development 

 

The current design documentation for trucks should be broken down to 2 different doc-

uments with 1 holding the requirements and 1 holding the system level designs to fulfil 

these requirements. This would improve the ability to understand what the standards 
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require form truck and how these requirements are specifically going be met. Also hav-

ing clearly separated requirements and design specifications would improve the ability 

to create tests more neutral to the technical solutions and focusing on proving the re-

quirements to be fulfilled. 

 

Test specification work should also start at the same time as truck specifications are 

made so that the test should be ready for execution once the development is finished. 

This would balance out the workload of testing throughout the whole project and lessen 

the bottleneck effect it currently creates at a critical phase of the project. Also having a 

larger crowd participating in the initial phases of project can lead to finding design de-

fects before they have been implemented. Better documentation for the integration 

phase of testing is also required. Test specifications have to be documented clearly 

enough so that the test can be easily recreated for future test rounds and the exact soft-

ware versions the test have been executed with have to be recorded alongside test re-

sults.  

 

Separating the requirements and design specifications form each other would also lead 

to lighter and less monolithic design documents. This would improve the ability to use 

these formal design documents in addition to fulfilling the documentation needs im-

posed by standards but also as a vessel of communication between Rocla and the sub-

contractors. This would to more efficiency in day to day work by eliminating duplicate 

work.  

 

Currently major part of the documentation in truck embedded software projects is done 

by using word documents and excels spread sheets. As the complexity of documentation 

increases the less effective this becomes. Especially traceability between design arte-

facts becomes exponentially more problematic when the amount of documentation rises. 

Also the revision control and change tracking is difficult and relies on manually docu-

menting the changes in between revisions when compared to systems specifically creat-

ed for this kind of work. 

 

A process to integrate formal design and testing documents from subcontractor to Rocla 

system has to be implemented. This process needs to be continuous so that up-to-date 

versions of these documents are always delivered alongside new software binaries so 

that these documents can be filed whenever a release to field is made. 
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5.4.3 Conclusion 

 

When looking at areas needing improvement for service tool and truck embedded soft-

ware development it can be seen they have a lot of common problems. Perhaps the big-

gest area of improvement in both them is the need to improve documentation. Especial-

ly the traceability of data in different documents needs improvement. A clear solution 

for addressing most of these problems is the introduction of comprehensive application 

lifecycle management toolset for management of all the activities described in the V-

model for software development.  

 

Toolset alone is not enough but also the processes and methods on how to use this kind 

of toolset in the most effective and lean possible way have to be studied and defined. 

This evaluation work should be done as cooperation between different departments in-

volving personnel form all aspects of projects for the best possible outcome and selec-

tion of most usable and acceptable solution. These processes and methods also should 

not be fixed but instead should be in constant state of evolution with adaptations made 

according to each projects special features and the working habits and even the prefer-

ences of the involved personnel. For the scope of this thesis the tool selection should be 

made. The work on defining processes should also be started and visualizing the future 

steps outside the scope of this thesis should be done.  

 

 

5.5 Options for application lifecycle management solution 

 

There are multiple tool vendors providing either complete suites of tools for application 

lifecycle management or tools concentrating on certain aspect of the lifecycle. Especial-

ly for test case, result and execution plan management there are several different kinds 

of tools available. There are also solutions available that are specifically tailored for 

safety-critical product development. 

 

Some of the biggest selection criteria were easy adaptability to our heterogeneous pro-

ject needs and the ease of deployment and usage as this would not be done as separate 

project but as part of two on-going projects, on-the-fly as one could say. One big selec-

tion criteria was also the cost of the solution for approximately 10 concurrent users. To 

ease the initial threshold of adaptation also the preference for cloud-based with a sub-
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scription based payment model was preferred over having to install the system on prem-

ises. 

 

One requirement also is that some way to function with Aton PDM has to be realized. 

Currently all the product data in Rocla Oy is stored inside Aton PDM and this should be 

the case also for software projects. Aton has an inbuilt change management system with 

some issue tracking features but they are not on par with modern tools associated with 

software development and so they are not considered as an option for ALM solution. 

(Aton, 2015) 

 

5.5.1 Modifying Trac and Tarantula to fulfil new requirements. 

 

First and most logical option for process was to explore the possibility of using or im-

proving current Trac and Tarantula systems for fulfilling the new requirements. There is 

also a Trac plugin called “Test Manager” for creating test cases, execution plans and 

tests reports. Tarantula has in addition to its test management features also requirements 

management with good report exporting features. 

 

Analysis of how requirement management and traceability could be done with Trac led 

to the conclusion that there is no good inbuilt or plugin-provided way to document re-

quirements or design documents. Also the Test Manager plugin was found to be diffi-

cult and cumbersome to use. Traceability between artefacts was also missing and would 

have required developing custom made plugin. This was seen as too expensive and time 

consuming solution.  
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5.5.2 IBM Rational Doors 

 

Figure 13. Links between documents and design artefacts in Rational Doors. (IBM, 

2015) 

 

One of the most famous and commonly used application lifecycle management solu-

tions for development of safety-critical products is IBM Rational DOORS. It has many 

features including full linking and traceability of design documents as illustrated in fig-

ure 13. IBM Rational DOORS also have a cloud based solution available called “Next 

Generation”. (IBM Rational DOORS Next Generation datasheet, 2015) 

 

The DOORS products seem to emphasize the requirements engineering and standard 

compliance aspects of the project and are no tailored for software development specifi-

cally. They also do not provide task tracking and test management at the same levels as 

some other solutions. If DOORS were chosen it probably could not alone fulfil all the 

needs of application lifecycle management and would need additional solutions to be 

taken into use alongside. 

 

One big factor to take in account with DOORS is also the price which is for the “Next 

Generation”-cloud in the ballpark of tens of thousands of euros per year. This combined 

with the fact that DOORS alone is not enough speaks against choosing DOORS. 
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5.5.3 Polarion 

 

Figure 14. Polarion features overview. (Polarion ALM, 2015) 

 

Polarion ALM is product that integrates all the aspects of safety-critical software devel-

opment under one solution. Its features include requirements management, test man-

agement, source control integration, task and issue management and reporting tools. It is 

also recognized by TÜV NORD as ISO 26262 and IEC61508 compliant out of the box. 

Polarion ALM is available either as on premise installable version or as SaaS-solution 

in web. (Polarion ALM, 2015) 

 

From feature point of view Polarion ALM looks promising and looks like it would fulfil 

all the requirements for ALM we have. Polarion ALM also has plethora of plugins 

available and would integrate well with our existing systems. Again as a main problem 

rises the price. For both on premise and SaaS-versions the initial or per year price tags 

rise to the ballpark of tens of thousands 
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5.5.4 Redmine 

 

While not an actual ALM solution a look was taken into Redmine due to one of our 

biggest subcontractor being considering its adaptation for their development work and 

having unified systems would have some benefits. Redmine provides the same basic 

features as Trac including issue management, integrated wiki and issue reporting views. 

Redmine is free and open-source. Redmine does not seem to offer anything over our 

current Trac solution. There are possibilities to include files and wiki pages as there is 

in Trac but no easy solution for requirements management or traceability is provided. 

(Redmine, 2015) 

 

5.5.5 Microsoft Team Foundation Server 

 

Microsoft Team Foundation Server has established itself as one of the leading ALM 

solutions. It offers requirements management, task tracking, source repository integra-

tion and test management features for manual and automated testing. It also integrates 

well with Visual Studio and is provided along MSDN subscriptions that developers us-

ing Microsoft technologies regularly have. Source control integration is provided either 

via Team foundation Version Control or Git. Team foundation server can be used with 

different development environments but provides most support when using either Visu-

al Studio or Eclipse. TFS also provides Release Management tools for automated de-

ployment of releases to dev, test and production environments. (Team foundation serv-

er, Wikipedia, 2015)  

 

If development was done only using Microsoft technologies with developers already 

having MSDN subscriptions then TFS would be a natural choice due to its maturity and 

completeness of features. In our case roughly half of our development is done using 

Microsoft technologies with a lot of variance on the other half. In several projects also 

the source code itself is not visible to us so some of the features in TFS are not useful. 

We currently also do not have any active MSDN subscriptions. TFS Express edition is 

free for 5 or less users, otherwise the minimum costs would be about 500$ for the server 

and then 500$ per user. (Rehnstrom, 2015) 

 

5.5.6 JIRA, Confluence and other products in Atlassian ALM tool family 
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JIRA is a tool made by Atlassian. JIRA is a project management and issue tracking 

software with a web UI as is usual for this kind applications. Although JIRA alone does 

not provide all the features of an ALM solution it is commonly used as a name for the 

product family that includes other Atlassian tools including Confluence, Stash, FishEye 

and a plethora of commercial or free plugins sold in Atlassian marketplace. JIRA has an 

advanced issue tracking system with customizable workflow, agile development work-

flow features, task tracking boards and multi-tiered issue types.  (JIRA, Wikipedia, 

2015) 

 

Confluence is a sister product of JIRA. Confluence provides a wiki solution with easy to 

use editing capabilities in contrast to traditional way of editing Wikipedia through spe-

cial “wiki-formatting” style which incorporates programming languages features in text 

editing. Editing capabilities are close to those of Microsoft Word with capability to cre-

ate tables and include pictures in the documents. Features also include version control 

of documents. Due to good document editing features, good search features and high 

user count, Confluence is sometimes valued as the best commercially available wiki 

solution. Confluence integrates seamlessly with JIRA allowing creation and linking to 

JIRA issues directly from the wiki pages. (Confluence, Wikipedia 2015.  

 

To get full features of ALM with source code and test management capabilities, one has 

to select several different modules form Atlassians product family. For our case these 

modules are: 

 JIRA for project management and issue tracking. 

 Confluence for requirements and design document management. 

 Stash for source code integration. 

 Zephyr or some other JIRA plugin for test management integration. 

Atlassian and its plugin vendors typically start the pricing for each module from 10€ for 

10 concurrent users. If user amount is increased to maximum 25 users the prices typical-

ly rise to around 1000€ per module. These prices mean that we could start with around 

50€ investment and if our pilot adaptation is successful the next step would cost less 

than 10000€. (JIRA licensing and pricing, 2015) 
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5.5.7 Tool selection 

 

Table 1. ALM solution feature and price comparison table. 

 

During the evaluation of different options for ALM solution it quickly became evident 

that there are several different options and it would be impossible to evaluate all of them 

so evaluation was limited to some of the most popular or otherwise relevant to us. It 

quickly became evident that open source solutions (Trac & Tarantula) would not be able 

to provide a comprehensive package.  

 

When evaluating commercial solutions the price tag started to play a big role. Due to us 

being a small company with limited resources the most expensive options were quickly 

ALM Solution Notes Cost (for 10 users) 

Modified Trac and Tarantula On premises. 

Features developed by 

ourselves. 

Several man-months’ worth of 

development. Extensive hidden 

costs. 

IBM Rational Doors Next Genera-

tion 

SaaS. 

Full features. 

20 000 €/year.  

Minimum contract 3 years / 

60 000€. 

(Ballpark figures estimated in 

initial quote from IBM.) 

Polarion ALM SaaS or on premises. 

Full features. 

SaaS: $17880/year 

On premises: $24900 

Redmine On premises. 

Lacking features or devel-

oped by ourselves. 

Several man-months’ worth of 

development. Extensive hidden 

costs. 

Microsoft Team Foundation Server On premises 

Full features but only for 

software projects. 

Estimated $5500.  

Around $500 per user + $500 

for server license. 

JIRA SaaS or on premises. 

Full features if several 

modules bought. 

SaaS: 10€/module/year. Max 

100€/year in our use. 

On premises: Max 100€ depend-

ing on bought modules. 
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eliminated simply on the basis of their price tags without much effort going into their 

actual evaluation. See table 1 for comparison of pricing and features. With price playing 

a big role JIRA was quickly selected for further evaluation. The fact that Atlassian is 

considered one of the three leading ALM providers alongside Microsoft and IBM 

(Gartner, 2015) also fortified the decision to select it for detailed analysis. 

 

 

Picture 8. Sketch made during JIRA evaluation workshop on how V-model could be 

implemented in our project environment using JIRA, Confluence and Zephyr (test man-

agement plugin for JIRA). 

 

Demo installations of JIRA and Confluence were made and evaluation of them was 

conducted. This testing was done by first letting personnel from both software projects 

and truck embedded software projects to familiarize themselves with the UI and work-

flow. After this an evaluation of how using JIRA and its sister products was conducted 

in a form workshop. During this workshop the features of JIRA, Confluence and Zephyr 

were tested and an idea of how to use them for our development work was created. A 

rough sketch shown in picture 15 was created of how our current development activities 

and project relationships could be realized using Atlassian ALM product family. Gen-

eral consensus was that this toolsets would perceivably suite us well. Decision was 

made to start piloting JIRA usage in two projects. One project being a pure software 

project done in-house and another truck embedded software project with low level de-

sign done by subcontractor. Having the ALM solution piloted by both types of software 

related projects we are currently conducting shall give quick feedback on the suitability 
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of JIRA for being our ALM solution choice. Direct integration to Aton is not available 

but using either inbuilt export features or specific exporting plugins all the data in JIRA 

can be exported to a form which can be brought into Aton for archiving. As this would 

be required to be done only on a release of the software the workload is not extensive 

even if done manually. 

 

5.6 Development process with Atlassian ALM solution 

 

In this chapter the features of different modules in Atlassian ALM solution are explored 

and an idea of how to use each of them as building block for a solution to realise V-

model process is formed. This process can be broken down to 3 major parts: require-

ment and design document management, task, issue and bug tracking and test manage-

ment. These tasks are realised with different modules and plugins. One important aspect 

to explore is also how these different modules link to each other. When comparing 

ALM solutions to doing documentation on standalone documents this is perhaps the 

biggest advantage. 

 

5.6.1 Using Confluence for requirements and design documents 

 

 

Figure 15. Space and page organization as a tree inside Confluence. (Confluence User’s 

Guide, 2015) 

 

Confluence organises its data in modules called “spaces”. Each space can contain sever-

al pages in a tree-like organization presented in in figure 15. Each page can contain one 
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or more attachments, e.g. pdf documents and excel spread sheets. These spaces can be 

public or private. One could use a private space to store personal notes. Each site has an 

admin which is typically the person who created the space. This admin then controls 

access and modifying rights for that space or page. (Confluence User’s Guide, 2015) 

 

 

 

Picture 9. Illustration of how JIRA issues can be created by highlighting text inside 

Confluence. (Confluence User’s Guide, 2015) 

 

Confluence supports creating JIRA issues by highlighting text inside a page. A popup as 

seen in picture 9 with issue creation controls is then shown to user for filing in all the 

relevant data. After issue has been created and popup closed, Confluence creates a link 

next to text used for issue creation providing easy and direct access to that issue inside 

JIRA instance that has been linked to Confluence. 
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Picture 10. Example of a page created from “Product Requirements Blueprint”. (Con-

fluence User’s Guide, 2015) 

 

There are several special page templates or blueprints available for using.  Good exam-

ple of blueprint is “Product Requirements Blueprint” which provides readymade func-

tionality to link requirement documentation residing inside Confluence to issues inside 

JIRA. This page then shows the status of the realisation of those issues directly inside 

the Confluence page. (Confluence User’s Guide, 2015) 

 

 

 

Picture 11. The Confluence Editor used in editing pages inside Confluence. (Conflu-

ence User’s Guide, 2015) 

 

The editing method for pages used Confluence is very similar to that of editing word 

documents with Microsoft Office. This can be seen as major advantage as most people 

working on our projects are very familiar and proficient Microsoft Office tools but not 

so much when it comes to traditional wiki-formatting. Having this kind of editor also 

provides quick way to migrate existing design documentation done as word documents 
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chapter by chapter as separate pages inside Confluence by means of simple copy past-

ing. With wiki-formatting this would not be possible and all the used formatting would 

be lost and would have to recreated.  (Confluence User’s Guide, 2015) 

 

5.6.2 JIRA for issue tracking 

 

JIRA and JIRA Agile, a module of JIRA specifically tailored for agile development 

with integrated Kanban and Scrum boards, are tools for tracking tasks and issues. JIRA 

agile provides special tools associated with agile software development including scrum 

and Kanban boards and special workflows tailored to be used with agile development 

processes. (JIRA User’s Guide, 2015. JIRA Agile documentation, 2015) 

 

 

Picture 12. Example of JIRA project with issues grouped under components. (JIRA 

User’s Guide, 2015) 

 

The main concepts in JIRA are project, issue and workflow. Project is a collection of 

issues for a specific purpose. A typical example of a project would be software applica-

tion. Each issue belongs to a project.  Issues belonging to a project can be grouped un-

der components as can be seen in picture 12. Inside projects there is also the concept of 

version. Issues can be linked against a specific version. This allows visibility and track-

ing of which issue is done in which version of the project. Inside a JIRA instance there 

can be several projects. Also user access can be differentiated between projects allowing 

customization of who can see which project. (JIRA User’s Guide, 2015) 

 



58 

 

 

 

Figure 16.  JIRA default workflow for issues. (JIRA User’s Guide, 2015) 

 

Issues are the basic artefacts handled inside JIRA. Typically an issue is a logical piece 

of work that is done by developer. Users can link files, comments, versions and project 

components and much more to issues. The data included in an issue can be highly cus-

tomized inside JIRA. There can be several different kinds of issues with different data 

and workflow. The concept of workflow means that each issue always has a status it 

currently is in. These statuses can be for example “open” or “in progress” and this status 

should reflect on what is currently happening with the issue. These statuses normally 

have certain rules on how the users can transition from one status to another. For exam-

ple from “closed” status user could only change the status to “reopened” if the JIRA 

default shown in figure 16 were used. These workflows can be customized to specifical-

ly suite the individual project needs. For this purpose a visual workflow editor is pro-

vided. There can be different workflows also depending on different types of issues. 

The contents of issues and projects can also be heavily customized. There are also sev-

eral plugins available that can extend or modify the basic functionality of JIRA. (JIRA 

User’s Guide, 2015) 
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5.6.3 Test management with Zephyr plugin 

 

 

Figure 17. Different test process types usable with Zephyr test management plugin. 

(Zephyr for JIRA documentation home, 2015) 

 

Zephyr is a plugin (or add-on) for JIRA which is sold separately. With Zephyr user gets 

special issue types that represents tests. In these issues the user can define different test 

steps with actions the tester has to take in order to execute the test and then set the result 

of the test. These tests can be grouped in execution plans and these execution plans can 

then be grouped under a version of a project. This provides the basic functionality of 

testing a software release and having test results for it. Some options for different types 

of processes that can be used in testing with Zephyr are illustrated in figure 17. (Zephyr 

for JIRA documentation home, 2015) 
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Picture 13. Zephyr UI for visualization of test plans and execution status. (Zephyr for 

JIRA documentation home, 2015) 

 

Zephyr also has views and easy-to-use UI components for creating test plans and view-

ing test statuses. These UIs allow for pre-planned test cycles (tests plans) to be created 

and executed against a certain version of the project. Executing tests “ad hoc” is also 

facilitated allowing users to run single test cases without associating them to particular 

test cycles. Example of test cycle execution status view can be seen in picture 13. With 

Zephyr installation user also gets a top bar menu for quick access Zephyr features. What 

is missing in Zephyr that could have an impact on its selection as a test management 

tool is an easy ability to create and export test reports for each test run. Also linking of 

Confluence documents to test cycles is missing. For truck embedded software projects 

there is a special requirement of storing the setup information about the truck itself and 

its settings used while conducting tests is required. (Zephyr for JIRA documentation 

home, 2015) 

 

5.6.4 Links between design artefacts and the big picture 

 

Having tools for requirement and design management, issue and project progress track-

ing and test management is not enough. All these activities have to be linked to each 

other and with these links the lifecycle of each requirement from idea to design to im-

plementation to test case and result has to be traceable. With Confluence, JIRA and JI-

RA plugins for test management these links are possible to create with a certain level of 
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automation as all these products belong to same family and are linked to each other. 

(Confluence user’s guide, 2015. JIRA user’s guide, 2015) 

 

 

Figure 18. Big picture of how Atlassian products can be used in Rocla software devel-

opment for compliance with EN ISO 13849-1 V-model process requirement. (EN ISO 

13849-1, 2008) 

 

Figure 18 shows the idea of how to use each part of Atlassian ALM solution for differ-

ent parts of the V-model. Confluence is heavily featured on the specification and design 

phases and would replace current word and excel documents. JIRA would take the cur-

rent position of Trac as an issue and project management tool. Zephyr or some other test 

plugin would handle part of test management currently done either with Tarantula or 

Excel spread sheets. At the end of the V-model process all the documentation involved 

for the software to be released then should be exported and archived into Aton PDM for 

official storage and possible change management processes required by e.g. controller 

manufacturer. Detailed descriptions of the processes to use should be created during and 

after the piloting projects where the best ways to use these tools to support our current 

ways of doing things are found. Current processes are also very informal with little de-
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tailed requirements so it is possible that some completely new process features and con-

ventions shall be created during the piloting.  

 

A typical lifecycle for a design artefact would go as follows: 

1. A requirement is created on a Confluence page 

2. A design fulfilling the requirement is created on a Confluence page and linked to 

the requirement. 

3. Test case is created to confirm the requirement and design and is linked to both 

of them, either directly or through one or other. 

4. Issue is opened against the design. A link to the issue is in place on Confluence 

page. 

5. Issue is given to developer for implementation 

6. Issue is finished. 

7. Test case confirming the implementation against the design and requirement is 

executed. 

8. Test result is recorded. 

 

Some open questions on which kind of Confluence pages and templates or blueprints 

should be used for requirements and design documents. Also the question if design doc-

uments should be in Confluence or should they be done as Epics (high level issues with 

several levels of sub-issues linked in them). Overall though it looks like the V-model is 

implementable and taking JIRA in use instead of current multitude of systems would 

allow us to implement features not possible earlier and would reduce the overall work-

load required to realise all the required activities as opposed to doing all the documenta-

tion as separate documents with manual traceability matrixes. 
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6 CONCLUSIONS AND FUTURE WORK 

 

This chapter contains information about the final status of the project at the time of writ-

ing this thesis. Also notions on what is still missing and needs more work are made. 

Finally the results of this work and its impact on the future of software development at 

Rocla Oy are analysed and reflected on. 

 

During the writing of this thesis the acquisition of JIRA and Confluence instances for 

pilot projects has been done and the migration issues for current milestone of service 

tool development to JIRA is about to start. Some plugin selections for JIRA are still 

open and a real example of having whole project documentation in Confluence has not 

yet been evaluated. Although JIRA is currently perceived to be a good choice for us its 

real usefulness is yet to be seen once it is taken into full use and experiences for using it 

with collaboration with different subcontractors have been evaluated. 

 

6.1 Finalization of the selection of test management plugin 

 

Perhaps the biggest issue still open is the selection of test case management plugin for 

JIRA. So far only Zephyr has been evaluated in depth and it was found lacking some 

features considered very important for truck embedded software projects such as revi-

sioning of test cases and the possibility to easily link the data of truck hardware and 

configuration used in testing. Work on evaluating other possible plugins and selecting 

one that best suits our needs is a first priority in the JIRA adaptation project as piloting 

it for truck embedded software projects cannot really start before the plugin is chosen. 

Also the possibility to modify could be explored but it should consider after all other 

possibilities have already been deemed unusable. 

  

6.2 Automated report generation and storage in Aton 

 

The process of exporting all the documents related to certain software release needs 

further study. Manually finding each document that has to be stored in Aton and export-

ing them from Confluence and JIRA could lead major amount of work to be done in 

each release. Possible plugins handling this kind of activities have to be explored and 

selection has to be made on which one of them to use, if any, has to be made. One pos-

sible course of action is also creating own plugin or some other automated way of pro-
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grammatically getting all the documents linked to a software release version out of JI-

RA. Also a possibility to link JIRA with Aton PDM should be explored.  

 

6.3 Using JIRA as general documentation tool and communication platform 

 

Using ordered wiki like documentation with possibility to link at pages and modify on 

the fly could be useful outside of software development scope. Currently some software 

projects use Tracs integrated wiki for all unofficial documentation. This has shown to 

be a very agile way of doing documentation. Also the availability of documentation and 

the reliability of not losing any documentation has been noted to be a large improve-

ment over the current method of sharing project documentation via networked hard 

drives. The possibility to use Confluence as a de facto documentation and information 

sharing platform should be explored. 

 

Atlassian products also include HipChat which is an online private and group chatting 

application with features like video conferences and real time file sharing. Team Calen-

dars is an application which features personnel and project tracking. These also inte-

grate well with other Atlassien products. Usability of these in Rocla software develop-

ment could also be explored. Especially HipChat looks promising if used for communi-

cation with the multitude of subcontractors. 

 

6.4 Process and ALM re-evaluation after final version of EN1175 is published 

 

The process for creating a new version of EN1175 is not nearly finished. Currently the 

new version of the standard is in non-public drafting stage and the first official draft of 

the new standard is expected to be released later this year. Being in such early develop-

ment means that final version of the standard can be dramatically different compared to 

current draft that has been used as an assumption of what the future process require-

ments. As newer versions of the standard drafts are being released also the process im-

plementation has to be re-evaluated and adjustments to processes and ways of doing 

things have to be done. 
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6.5 Final word 

 

The overall success of this project and the impact it will have on software development 

in Rocla Oy is difficult to estimate as piloting projects are just starting during the writ-

ing of this thesis. If everything goes well and the Atlassian ALM solution is adapted it 

will have a major impact on the quality and agility of the development process. If it is 

considered only for doing the current activities and not only as “extra work” to fulfil 

new EN1175 requirements it will have a positive effect on lessening the workload of 

doing specifications and test management activities manually with Office tools.  

 

Even if piloting of JIRA shows that it is not suitable for us and the search for some oth-

er solution is started this project has given a good view for the people involved in it to 

the possibilities of doing these kind of process activities inside dedicated tools. This has 

perhaps been the most important outcome of this project so far as equipping people with 

the knowledge that things can be done differently in equal or in some cases lesser 

amount of work while providing more value will enable them to seek more information 

in the future. This can have major effect in the future development of software devel-

opment processes and the ideas will possibly spread also to other departments of design 

and while probably not usable as such could spring some new ideas for further improv-

ing and consolidating our position as the most innovative truck development unit in the 

world. 
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