

Automatic GUI testing on embedded

display module

Tobias Österberg

Bachelor´s thesis

Electrical Engineering

Vaasa 2014

BACHELOR’S THESIS

Author: Tobias Österberg

Degree Program: Electrical Engineering

Specialization: Automation

Supervisor: Matts Nickull

Title: Automatic GUI testing on embedded display module

Date: 10.11.2014 Number of pages: 42 Appendices: 1

Summary

This thesis is written for Platform Software, A&C, R&D, 4-stroke, Ship Power, Wärtsilä

Finland Oy during the summer of 2014.

This thesis is about automatic GUI testing and how this can be implemented on

embedded systems. The thesis consists of an investigation in the possibility to implement

automatic GUI testing for Wärtsilä`s LDU. The LDU is a display module for Wärtsilä`s

engine control and monitoring system UNIC.

The goal is to investigate the possibility to automate the GUI testing on the LDU. This is

done by comparing different tools, testing environments and techniques to do the testing

on the LDU. Thereafter a proof of concept is made so that the possible future

development of the GUI testing has something to start from.

vTask Studio was chosen as a suitable tool to include in the proof of concept. Based on

the proof of concept vTask fulfills our expectations and is a worthy candidate for the

future development of the automatic GUI testing.

Language: English Key words: automatic testing, GUI

EXAMENSARBETE

Författare: Tobias Österberg

Utbildningsprogram och ort: Elektroteknik, Vasa

Profilering: Automation

Handledare: Matts Nickull

Titel: Automatiserad testning för grafiskt användargränssnitt på inbyggd

 bildskärmsmodul

Datum: 10.11.2014 Sidantal: 42 Bilagor: 1

Abstrakt

Examensarbetet är gjort åt Platform Software, A&C, R&D, 4-stroke, Ship Power, Wärtsilä

Finland Oy under sommaren 2014.

Detta examensarbete handlar om automatiserad testning för grafiska användargränssnitt

och hur detta kan tillämpas på inbyggda system. Examensarbetet innehåller en

undersökning kring möjligheten att implementera automatiserad testning för

Wärtsiläs LDU. LDU:n är en bildskärmsmodul för Wärtsiläs motorstyrnings- och

övervakningssystem UNIC.

Målet är att undersöka möjligheten för automatiserad testning av LDU:ns grafiska

användargränssnitt. Detta görs genom att jämföra olika verktyg, testningsmiljöer och

tekniker på hur testningen kan göras på LDU:n. Vidare ska en konceptvalidering utföras så

den möjliga framtida utvecklingen av testningen har något att utgå ifrån.

vTask Studio valdes ut som ett lämpligt verktyg att ingå i konceptvalideringen. Genom

konceptvalideringen framkom det att vTask lever upp till förväntningarna och är en värdig

kandidat för fortsatt utveckling av automatiserad testning.

Språk: Engelska Nyckelord: automatiserad testning, grafiskt användargränssnitt

Contents

1 Introduction ... 1

1.1 Wärtsilä ... 1

1.2 Purpose and goals ... 2

2 Theory of automatic GUI testing ... 2

2.1 Graphical User Interface ... 3

2.2 Testing ... 3

2.2.1 Unit testing .. 4

2.2.2 Functional testing .. 4

2.2.3 GUI testing ... 5

2.3 Benefits and risks of automatic GUI testing ... 5

2.3.1 The benefits of automatic testing ... 6

2.3.2 The risks of automatic testing ... 7

2.3.3 Limitations ... 8

2.4 Unsuitable situations for automatic testing ... 9

2.5 Test planning for GUI testing .. 10

2.5.1 Test specification and test design documentation 10

2.5.2 Advantages of a thoroughly made test documentation 11

2.6 Characteristics of well-designed automatic GUI testing 12

3 Selecting a suitable automatic GUI testing tool for the LDU 13

3.1 The LDU - The Local Display Unit .. 14

3.2 Testing technique ... 15

3.2.1 Image based testing ... 15

3.2.2 Object based testing .. 18

3.2.3 Selecting suitable technique ... 19

3.3 Testing environment ... 20

3.4 Testing tools .. 21

4 Testing with vTask Studio .. 24

4.1 Basic usage .. 24

4.2 Compatibility with Jenkins .. 26

4.3 Designing of test cases .. 27

4.3.1 Home page layout test .. 28

4.3.2 Shortcut functionality test ... 28

4.4 Explanation of scripts .. 29

4.4.1 Test initiation script ... 29

4.4.2 Home page layout script .. 30

4.4.3 Shortcut functionality script .. 31

4.4.4 Test result TAP-files ... 36

5 Results.. 37

6 Discussion .. 40

7 List of Sources .. 41

Appendix 1

Abbreviations

R&D – Research and Development

A&C – Automation and Controls

GUI – Graphical User Interface

LDU – Local Display Unit

UNIC – Wärtsilä Unified Controls

API – Application Programming Interface

IDE – Integrated Development Environment

KVM switch – Keyboard, Video and Mouse switch

VNC – Virtual Network Computing

TAP – Test Anything Protocol

XML - Extensible Markup Language

1

1 Introduction

This thesis was commissioned by Wärtsilä Corporation. My supervisor was Leif Strandberg

who is manager of the Platform Software group. The Platform Software group is a part of

the A&C group, which is a part of the R&D group for the 4-stroke group of Ship Power,

which is one of the three major units in Wärtsilä. The background of the thesis started

when I in my first year as trainee at Wärtsilä manually tested the LDU. The following year

as trainee I came in contact with automatic GUI testing with Squish for one of Wärtsilä’s

software. At that time I got interested in automatic GUI testing and got the idea of writing

a thesis about automatic GUI testing on the LDU. Automatic GUI testing on the LDU has

been considered but no resources have been put into it.

The main issue is that more testing needs to be done to increase confidence in the

system. The Testing of the LDU´s GUI has always been manual labor and to automate

some of the more basic repetitive tasks would give the testers more time to spend on

more advanced tasks.

1.1 Wärtsilä

Wärtsilä is a global company with 18 700 employees that operates in more than 200

locations in 70 countries with net sales of EUR 4.7 billion. Wärtsilä produces complete

lifecycle power solutions for the marine and energy markets. Wärtsilä is divided into

three major units, which are Ship Power, Power Plants and Services /1/

Figure 1. Wärtsilä logo. /2/

2

The Ship Power unit provides solutions for machinery, propulsion and maneuvering for

the marine industry. Wärtsilä supplies engines and generating sets, reduction gears,

propulsion equipment, control systems and sealing solutions for all types of vessels and

offshore applications /1/

The Power Plant unit provides solutions for the decentralized power generation market.

They provide power plants for base load, peaking and industrial self-generation purposes

as well as for the oil and gas industry. /1/

The Service unit provides customer support through the lifecycle of the installations. They

give solutions for service, maintenance and reconditioning for both ship machinery and

power plants. Conditioning and maintenance for other engine brands are also provided.

/1/

1.2 Purpose and goals

The purpose of this thesis is to do more regression testing with the help of automatic GUI

testing. This will increase confidence in the system by ensuring changes to the code, such

as new features or bug fixing, don´t make another part of the code corrupt. The goal of

this thesis is to make a proof of concept and evaluate a method to do automatic GUI

testing on the LDU based on theory about GUI testing. In the future the result from this

thesis will hopefully be a starting point for the development of the automatic GUI testing

for the LDU.

2 Theory of automatic GUI testing

In our daily life we are surrounded by computers and software. We interact with different

programs in the industry, educational institutions and other enterprises and

organizations. We are dependent on software for product development, production,

marketing, support, services and management. This puts great pressure on the software

development because it needs to be cost efficient and with high quality. To ensure high

quality, testing of the software in as many ways as possible is required. Before a program

can be released it has to go through different test cases during and after the development

3

to ensure it is working as intended. More testing can be executed by letting the computer

perform testing on the developed software by using automatic testing tools. These tools

are usually commercial programs. They generally offer a complete suite for testing and

managing testing or specifically developed testing frameworks for the tested software.

/3/

2.1 Graphical User Interface

The first programs made, where the user was able to interact with the program, were

command-line driven. The user had to remember what commands to give and when to

give them. More advanced applications could give the user available commands to enter

and prompt the user for next command. To increase usability, GUIs were introduced. /3/

The Graphical User Interface, or GUI for short, is what the user finds on the screen when

the program is started. The GUI consists of different components or objects like windows,

menus, icons, pointers, text and images. By using a mouse and keyboard or touchscreen

the user is able to control the software according to the user´s will by clicking buttons and

entering various keystrokes. Since usability is a very important factor for a good program,

lots of time is put into designing and programming the GUIs. This means that a lot of

testing is required. Additionally to usability testing, it is also needed to ensure for

example that each button executes the right functionality, as well as each object that

should be visible in the GUI is in fact visible. /3/

2.2 Testing

There are many kinds of testing and many ways to execute tests. There are also different

priorities for the different kinds of testing. All this is usually entirely up to the software

that is developed. Figure 2 shows an overview of how testing should be structured for the

software of the LDU. This is easily displayed as a pyramid to briefly show how to prioritize

and how the three different testing types tie together. All testing should have a steady

foundation of unit testing, which should be up to 80 % of the total testing done. As seen

in the pyramid GUI testing should only take up to 5 % of the total testing. In practice the

different testing types are not always clearly separable. Depending on the method of

4

testing some types of testing are combined. This applies especially to GUI and functional

testing, which can usually be and sometimes preferably be executed at the same time.

Figure 2. Pyramid showing how to prioritize and organize testing.

2.2.1 Unit testing

Unit testing is testing done on a single piece of code like a class or function. The purpose

of the testing is to check some assumptions about the behavior of the code under test.

The testing is executed by an automated piece of code, which is usually written using a

unit-testing framework. Unit testing can be done after or before the software is written.

Writing the test before the software is written is called test-driven development.

Making a unit test for a function that performs an XOR on two input values and returns

the result is quite simple. A simple validation of the function would be to enter the four

different input combinations to the function and compare the result with the expected

result. /4/

2.2.2 Functional testing

Functional testing is verifying that the program or module behaves according to the

requirements or specification by testing specific features or smaller parts of the program.

5

Functional testing only observes the output of a specific input and does not analyze the

code, what functions are used or the other internals of the program. Functional testing is

sometimes referred to as black-box testing or behavioral testing.

An example of a functional test is to test an exit warning feature in a text editor. The

specific input of the test is clicking the close button after a text has been changed. This

should lead to the desired output, which is a warning message to inform the user that

there are unsaved changes. /5/

2.2.3 GUI testing

GUI testing is testing done to verify that the objects of the GUI are correctly displayed and

when combined with functional testing also to verify that the objects activates the right

features. GUI testing verifies the visibility, location, alignment, font, color and look of the

objects. An example of a GUI test is to verify from the example of functional testing that

the warning message that appears is on top of the program, contain the correct

information and have the correct buttons. /3/

2.3 Benefits and risks of automatic GUI testing

The main reason behind the necessity for automatic software testing and automatic GUI

testing is “the need for speed” as Linda G. Hayes explains in her book The Automated

Testing Handbook.

Releasing defective software to the market may have tragic consequences. Depending on

the software released the company could be responsible for customers´ lost production

when the delivered software failed. Another case could be a defective engine control

system on a ship in the middle of the ocean, which may require an expert to fly to the

The need for speed is practically the mantra of the information age.

Because technology is now being used as a competitive weapon on the

front lines of customer interaction, delivery schedules are subject to

market pressures. Late products can lose revenue, customers, and market

share. But economic pressures also demand resource and cost reductions

as well, leading many companies to adopt automation to reduce time to

market as well as cut testing budgets. /6/

6

ship to repair the system. The compensation to the customer can cost millions and the

reputation of the company is damaged, which is usually the most serious issue. The main

reason automatic testing exists is to ensure more testing is done, not to save money

spent on testing. Furthermore, if there aren´t enough resources spent on testing to begin

with, adding automation will not help to increase confidence in the system noticeably.

/6/

2.3.1 The benefits of automatic testing

There are many reasons especially for larger software companies to spend time and

money on automated software testing and automated GUI testing.

 Run existing or regression tests on a newer version of the tested program.

Running regression tests is important because programs change during the course

of their lifetime and new features are added. A 10 % change in the code still need

100 % of the features tested to ensure that the new code doesn´t affect the old

features. Unfortunately, test engineers often have to prioritize testing the new

features rather than the old features when time is short. This is why it is a clever

move to make the automatic testing do regression tests. The test cases should not

take a long time to adjust for the updated program when they have already been

executed on an earlier version of the program. /7/ /6/

 Run more tests more often. Because of the efficiency of automatic testing, more

test cases can be run in a shorter time than corresponding manual testing. As a

result, this will increase the confidence in the system. /7/

 Run test cases that are impossible or hard to replicate manually. There are tests

for the GUI which are hard or impossible to verify manually. For example if a test

of a button is wanted on a GUI, which triggers an event not visible on the GUI, it´s

hard for the test engineer to verify the test. Depending on testing method, an

automatic testing tool doesn´t have that limitation and can check if the event has

been triggered. /7/

 Improved usage of resources. The repetitive and tedious test cases such as

entering the same input over and over are easily implemented as automated

7

testing. It will ease the workload and increase morale of the staff when they can

use the time to do more advanced testing or designing more test cases. /7/

 Consistency and repeatability of tests. Automatic tests will always be executed in

exactly the same way every time. This will increase consistency to levels

unthinkable by manual labor. /7/

 Reuse of tests. The time put on creating automatic tests can be distributed over

the many executions of that test compared to the manual tests. Manual tests are

usually reused much less. Tests that are reused all the time are worth spending

time on. /7/

 Earlier release. Once the automatic testing is running at full capacity the testing

time for a version of the program is greatly reduced. Ultimately it will make the

program ready for release faster. /7/ /6/

 Increased confidence in the software. When the personnel are aware of the great

deal of tests that the program has gone through successfully, it will increase

confidence in the program. As well as that there won’t be any horrible surprises

after the software is released. /7/

2.3.2 The risks of automatic testing

As there are benefits there are also risks for the company to pay attention to before and

after adding automatic testing.

 Unrealistic expectations. The industry has a tendency to incorporate any fresh

and new solution and think it will solve all problems. Unfortunately this also

applies to automatic testing. The human being usually wants to believe that

everything is fine when a new tool or solution is put into use. Automatic testing

will not be the solution for all testing. /7/

 Expecting automatic testing to compensate for poor testing practice. If the

testing practice is poor there is no reason to add automatic testing. Poor testing

practice means that tests are unorganized, documentation is inconsistent and

tests are not good at finding bugs. The focus should then be on improving the

effectiveness of testing, rather than improving the efficiency of poor testing

because; “Automating chaos just gives faster chaos”. /7/

8

 Expectation to find lots of new bugs. A new test is probably going to find a bug or

two the first time it´s executed. The following executions will probably not find

any new bugs unless the software is updated. The focus of automated testing is to

do regression testing. Regression testing means proving that the software still

works as intended even if something has been updated in a different part of the

software. /7/

 False sense of security. Automatic testing will increase confidence in the system.

However, just because the tests are successful doesn´t mean that the software is

without defects. The test cases may be incomplete or there might be problems

with the design of the test cases. Always keep an eye open for problems because

no software is perfect. /7/

 Updating of automated tests takes too much effort. Usually when the GUI is

updated there are probably some of the automated tests that need updating. The

effort to update the automated tests should be low. When the effort of

continuously updating the automated tests takes longer than doing them

manually, it will usually be the end of the automated test initiative. /7/

 Technical problems. As with all software there is no such thing as complete

immunity against bugs and automatic testing tools are no exception. The tool

might not work properly with other applications and software used. The

commercial tools are unfortunately usually large complex products, which require

great technical knowledge. In addition to all this, there is still the tested program

which might not be designed or built with testability in mind. /7/

2.3.3 Limitations

As the previous chapters explain, automatic testing could be a viable solution to some of

the testing difficulties and that is not without risks. Additionally, automatic testing has

noticeable limitations.

The main limitation is that it can´t replace manual testing. It is impossible to automate

everything for technical or economical reasons. It is usually not feasible to automate tests

that are run very rarely or where the GUI changes drastically with every version of the

program. In the same way it is not possible to automate tests that concern for example

9

usability or esthetic appeal. Another thing to have in mind is that manual testing is the

main source of finding new bugs, not automatic testing, which just re-runs previous tests

and will probably not find new bugs. /7/ There is one exception and that is if the test tool

does so called monkey testing, which is best described as randomly generated keyboard

inputs and random mouse clicking all over the GUI. /3/

The added complexity of automatic testing will also limit the effectiveness of testing.

However, in the long run automatic testing will pay off regarding efficiency only if it´s

developed correctly so it´s not crippled every time the tested program is updated. If it

requires a high effort to make new tests or changing the old tests, it may restrict the

development of the tested program. Especially when considering making minor changes

to the tested program. /7/

Finally, tools have no imagination. Because automation tools are just software that does

exactly as instructed and nothing else, some important things can be missed. Manual

testers can see that something is wrong with a feature that’s not supposed to be tested in

that case. The manual tester can then edit the test case to also test that feature next time

the test case is executed. Another limitation because of lack of imagination is also the

issue of handling unexpected events. For example network connection issues will most

likely fail a test controlled remotely, while the human tester can easily overcome such

problems by using the computer where the tests are performed. /7/

2.4 Unsuitable situations for automatic testing

Usually if one has taken into consideration the benefits, risks and limitation with

automatic testing it would be acceptable to try it out. However, there are some situations

when it is not worth the investment.

Certain programs are unstable by design. This isn´t referring to a program´s tendency to

crash. It is rather referring to the program´s high configurability or difficulty to control the

inputs of the program. This makes it difficult to have an appropriate estimate of output. If

this is the case it will be impossible to automate because of the varying output. Usually

the testing tool wants full control of the program. This means that an appropriate testing

environment must be created where the tool has full access to all required data. /6/

10

The main reason not to automate is if the testers are inexperienced, temporary or have

insufficient resources to do what it takes to develop automatic testing. If the testers are

inexperienced with the tested program and the testing tool, the value of the results of the

automatic tests is doubtful. The automatic tests are only as good as the person who

created then. Automatic testing should preferably be done by experts to ensure

efficiency. On the other hand, experts are more expensive, which makes it tempting to

hire them temporarily as consults. However, automatic testing should not be performed

when using temporary testers. The initial investment in learning the tools and test cases is

quite high and therefore automatic testers should be involved in the long term and not

temporarily. It´s more efficient to let the experts provide support to develop test cases

and let the permanent staff handle the automation. If there are no resources for manual

testing or a permanent staff dedicated to testing there is absolutely no reason to

automate any testing. /6/

2.5 Test planning for GUI testing

The foundation for a successful manual and automatic testing effort is the same as the

foundation of a successful software development project, which is sufficient planning. It

can be tempting to do brief planning for automatic GUI testing, because testing is

supposed to be easy and the test code will not be available to the customer. This is why it

seems like a clever idea to save time by reducing the time spent on planning. However, in

reality test planning and design are hard to do well and usually the test tool is more

complicated than it may look. Writing and debugging test code may be difficult. Therefore

it´s not recommended to do the planning as the automation project goes along.

Otherwise the automation solution imagined in the beginning of the project may turn out

to become something completely different because of the lack of planning. /7/ /3/

2.5.1 Test specification and test design documentation

Usually the documentation for testing is split up into two major parts, which are test

specification and test design. This thesis will not include these documents since this thesis

is intended as a proof of concept and not a final product. /7/

11

The test specification for testing is similar to the functional specification for the

application. This document addresses the high level aspects like organization, testing

scopes and schedules. The template for this document is usually designed by the

companies according to their policies. A good template is given in the IEEE Standard 829.

/7/

The test design is a blueprint for the developers. This documentation describes exactly

what will be tested and how it will be executed. The basic version of a test design should

at least include a: /7/

 Test name or ID. To allow easy identifying of what category of test it is, a unique

identifier is needed.

 Test purpose, which describes briefly what the test is supposed to achieve

 Test method, which is a description of what steps to take to perform the test. The

description should be clear enough so that it is possible to perform the test

manually with the provided information.

 Pass/fail criteria, which describes the expected result of a successful or failed test

2.5.2 Advantages of a thoroughly made test documentation

Making the test documentation thoroughly according to the previously mentioned system

has several advantages.

 Easier review of the test plan. There is usually not enough time to do all tests and

compromises have to be made regarding quantity and complexity of the tests.

Good documentation is therefore needed for intelligent review of the test plan

where the test team can easily make the compromises. /7/ If the test design is

poorly written it´s hard to understand what the test cases are expected to do. This

ironically tends to make it more difficult to remove a test case because it could be

important. /6/

The easily reviewed documentation also helps speed up the process of deciding

what test cases to automate. From the test designs it´s easy to see how many test

cases that are suitable for automatic testing. /7/

12

 Easier test maintenance. Good test documentation gives a good overview of the

test cases, which should be included in the test code to increase maintainability.

High maintainability saves time, which makes testing more cost efficient. /7/

 Bug finding. The thoroughly made test design process usually finds more bugs

than the actual testing. This is because the test cases are run for the first time. /7/

2.6 Characteristics of well-designed automatic GUI testing

After the review of the test documentation and test cases to automate have been chosen

it´s time to start building the automatic tests. There are some basic attributes for

successful and effective execution of automatic test cases. These are maintainability,

modularity, robustness, optimization and thoroughly done documentation.

Test cases should be maintainable. To be able to accumulate tests, automatic test cases

should be easy to maintain since on average 25 % of an application is modified each year.

If the required time to adjust the test scripts accordingly isn´t reasonable, the test case

will become obsolete. This means that rather than increasing test coverage over time it

will decrease, especially if new features are introduced. To increase maintainability the

test framework or testing tool should be easy to adjust when source code changes and

the testing team should be aware of upcoming source code changes and new features.

/7/ /6/

The test suite should be optimized. More test cases are not always better. More test

cases require more time to develop, maintain and execute. Investigating the test cases is

recommended for achieving balance of confidence in the system and the number of tests

to maintain. /6/

Test cases should be independent. All test cases should on their own go from a base state

to the state where they can perform their task and then go back to the base state without

being dependent of another test case´s result. Otherwise it will be harder to track down

the actual reason that makes the tests fail. Therefore, when possible, the test cases

should be able to be executed independently without the need to perform them in a

specific order. /7/ For example, if one test case tests the deletion of data it should not be

dependent on another test case that tests the creation of data. The test case should

13

instead delete data that already exist in the base state or create own data and then do

the test. /6/

Test cases should be robust. If there is something failing in the application that´s not a

part of the test, such as a crash, error message or entering a state that was not expected,

the test case should log that the test failed and abort the rest of the test and try its best

to reset the application to the base state so the next test can be executed. /7/

Test cases should be well documented. Documentation is explained in chapter 2.5.

3 Selecting a suitable automatic GUI testing tool for the

LDU

There are a couple of things to take into consideration when choosing the most suitable

way to implement automatic GUI testing for the LDU. In automatic GUI testing there are

two main techniques available that are interesting in this case. These are image based

testing and object based testing. There are two possibilities regarding the test

environment, testing on standalone version of the GUI in Windows or testing on

hardware module. Depending on chosen environment and technique there are different

tools available to use.

14

3.1 The LDU - The Local Display Unit

The Local Display Unit or LDU for short is an embedded display module in the UNIC

system running embedded Linux and the GUI uses QML as programming platform. UNIC is

an engine control and monitoring system developed and used by Wärtsilä. The UNIC

system consists of different types of hardware modules that control and monitor the

engine and PC software to update software in the modules and monitor the engine.

The purpose of the LDU is to offer a local user interface for the engine limited by user

rights. It´s usually placed close to the engine where the user is able to start or stop

engines and increase or decrease engine speed. Other actions include checking software

versions and configuring Ethernet settings. The LDU also offers several options for

monitoring the engine. For monitoring numerical values such as temperatures and

pressures there are alternatives such as bars, gauges, trend charts and plain numbers.

Monitoring events and actions such as engine start, communication failures or values

Figure 3. An example of a UNIC system.

Ethernet switch

LDU - Local monitoring and
control

Engines with UNIC

PC - Monitoring and control

UNI UNI

UNIC system

Start

Stop

UNI UNI

15

outside their limits can be done in the log. The LDU is highly configurable and therefore

requires a great deal of testing. /8/

3.2 Testing technique

The majority of modern GUI applications are built on a programming platform, such as

Java or Qt, to allow developers to build complex GUIs with the help of libraries. The

platform paints the GUI according to the application and sends it to the OS screen image

buffer, which then sends the whole frame to the display. To control the GUI the

application registers the keyboard and pointer events delivered by the OS from the

mouse and keyboard. /9/

Figure 4. Architecture of an application focused on the GUI aspect.

Automatic testing tools can roughly be classified into two techniques concerning the

method to approach the GUI of the tested program. Both methods have their advantages

and disadvantages depending on the software developed.

3.2.1 Image based testing

Image based testing automates on OS level or through another layer to allow access to

the tested program with virtualization or remote desktop software. The image based tool

Operating system

Pointer event queue
Display image

buffer

Application

Programming Platform

Keyboard event queue

Display output

GUI painting Pointer and
keyboard events

Keyboard input

Pointer input

16

makes keyboard and pointer input events to control the tested program, which is in the

same way as a user would control the tested program. The GUI of the tested program is

accessed with screenshots through the display image buffer. Verification is usually done

with the screenshot through image comparison, object recognition or text recognition.

/9/

The main advantages and disadvantages of image based testing are /9/:

+ End user approach. The tool will see what the end user will see and controls the

tested program the same way as an end user. This method will be the most accurate

way of testing real life use of the application.

+ Application technology independence. The image based tool will test the tested

program, no matter which programming platform or platforms that are used in the

program. As all inputs and outputs are handled on OS level, the programming

platform becomes irrelevant for GUI testing.

Figure 5. Image based testing approach.

In
p

u
t even

ts

Operating system

Pointer event queue
Display image

buffer

Application

Programming Platform

Keyboard event queue

Image based tool

Sc
re

en
sh

o
t

17

+ Clean test environment. Image based tools use only the features included in the OS

and do not need any third party libraries or programs.

+ Simple automation. Usually the image based tools are easy to learn and require no

experience of the application´s programming platform.

- No access to object properties and data or functions. Image based testing will not

have access to reading the objects or functions connected to the object. This is not

necessary a limitation if the objects´ functionality can be verified through the GUI.

- Sensitive to test environment changes. Image based testing usually requires a stable

test environment to function optimally. If there is a change in resolution or colors or

there are windows popping up there can be failed tests.

- Migration risks. There may be problems if the test environment changes, for example

from a PC to a mobile phone, which may require changes in all test scripts especially

images that are compared to screenshots.

- Sensitivity to graphical effects. Because the image based tool is based on image

recognition it´s sensitive to graphical effects such as anti-aliasing.

18

3.2.2 Object based testing

Object based testing relies on a tight integration with the programming platform. These

kinds of tools have access to libraries of the programming platform and can identify the

objects and read their properties and in that way check that the GUI is correctly

configured. Interaction of the GUI is done either through the platforms APIs, with

simulated clicks and other interactions, or through pointer and keyboard events on OS

level. Verification is done by checking the existence, state or properties of the tested

object. Object based testing makes it possible to do more inclusive functional testing into

the GUI testing. /9/

The main advantages and disadvantages for an object based approach are /9/:

+ Platform integration. Thanks to the tight integration with the programming

platform the tool is able to exploit features in it for performing a deeper level of

testing that image based testing is not able to do.

Figure 6. Object based testing approach.

GUI actions on
object level

In
p

u
t even

ts

Operating system

Pointer event queue
Display image

buffer

Application

Programming Platform

Keyboard event queue

Object based tool

GUI access on
object level

19

+ Robustness. Test scripts are very robust thanks to the ability to identify properties

and perform actions of individual GUI objects.

+ Good verification. Verification is more precise and robust than image based

testing thanks to the ability to read the properties of the object directly.

+ Easy to understand. If the test engineer is familiar with the programming platform

it´s easy to understand and perform efficient testing.

- Bound to a specific programming platform. If there are GUI objects in the tested

program using a programming platform the object based tool is not supporting, it

will not be able to test these objects. This could happen when using third party

applications in the GUI. Nevertheless, most of the more expensive tools usually

support a lot of programming platforms to avoid this issue.

- Not able to test all features. Usually the object based tools are not able to test all

features that are supported by the programming platform or if there are custom

made GUI features.

- Inability to detect GUI layout errors. The object based tool can´t detect problems

with the layout, for example objects overlapping each other. It can only check if it

exists but not that it is actually visible on the GUI.

- Upgrade risks. Updates to the programming platform might give compatibility

issues until the tool is updated to support the new version, which may delay

testing and may further delay release dates of the application.

- Higher qualification requirements on test engineers. The added complexity of

object based testing requires higher experience in both testing and programming,

which may or may not increase automation cost. Object based testing have a

higher learning curve than image based.

3.2.3 Selecting suitable technique

Selecting the most suitable technique for GUI testing of the developed application is the

key for successful and efficient testing. When selecting the technique for automatic GUI

testing there are four main factors to consider before making a decision. /9/

20

 Required test depth. Is there a requirement for the testing tool to be able to do

some functional testing? In other words, does the tool need to be able to access

GUI components? Is a more end user focused testing preferred?

 Technology scope. Are there or will there be two or more different technologies

included in the developed application? Are all technologies supported by the tool?

 Migration and upgrade plans. Will the test environment be stable such as a

dedicated PC or server or are there requirements for the tool to be able to migrate

to another test environment or programming platform?

 QA resources at hand. Are the testing engineers experienced with the application

and the programming platform of the application? Is there time to train the

resources at hand to master the programming platform?

The next step to take is to take into consideration these general factors. Based on these

factors a tool will be chosen and compared to the situation with the LDU. The main

reason to try image based testing is because of the desired end user approach. Functional

testing is not usually required because of the fact that the majority of the functionality of

the LDU is handled on another module in the UNIC system. This module is thoroughly

tested with automatic functional testing. The simplicity of the image based approach is

appealing because of the possibility to put anyone on the test scripting without the need

to educate the testers in the programming platform. Factors speaking for an object based

approach are possible test environment change if there is time and requirements for it

but otherwise the testing will be done on a dedicated PC or server. The use of only one

programming platform also supports the use of an object based approach. According to

these factors and discussions with people responsible for the LDU development, the most

suitable technique to try out was decided to be the image based approach.

3.3 Testing environment

When it comes to testing environments there are two possible solutions. The options are

to execute testing on a standalone version of the GUI on PC or testing on LDU hardware.

Testing on hardware module would be the preferred environment as it would bring the

testing tool as close as possible to the end user`s way of controlling the GUI. Running the

21

tests on real hardware will notice possible bugs in the GUI caused by display drivers and

notice if there are long processing times for an action. Unfortunately, testing in this

environment is difficult because of the limited connectivity of the LDU, which is limited to

a USB and Ethernet port, which excludes a KVM switch solution. Running a VNC server on

the LDU may be the improper solution because of the added software, which is

undesirable in testing of embedded systems. Executing testing on the LDU hardware may

make it unavailable or not easily accessible for other testing such as hardware or manual

testing.

The other test environment alternative is a standalone version of the GUI on a dedicated

PC or server. This will ensure a very stable environment and decrease complexity of

testing as a desktop application is much easier to control than an embedded application.

Because the programming platform is QML, the application will look identical and

perform identically in both the desktop and the embedded environment, which makes

the desktop version of the GUI an acceptable solution. As no LDU hardware is needed, the

application is always accessible. The main drawback with testing on a PC is that the

application is driven by more powerful hardware, which makes it hard or impossible to

test responsiveness. This will require some manual testing on the LDU, which is not

necessarily undesired as the responsiveness and look of the LDU is best done manually.

By taking these facts and discussions with people responsible for the LDU development

into consideration, it was decided that the standalone version of the GUI on a PC was the

preferred solution. The ability to do testing without access to the LDU hardware and

having the comfort of executing the tests on a PC were considered desirable.

3.4 Testing tools

Since the testing technique and testing environment have been decided, the next step to

take is to compare and choose a testing tool according to requirements. The basic

requirement for the tool is compatibility with Jenkins, which means there must be a way

for Jenkins to manage testing such as starting the test execution by command line and a

way for the tool to send test reports to Jenkins. Jenkins is an application for monitoring

executions of repeated jobs, such as building software and automatic tests. This is

22

described in more detail in chapter 4.2. Features not required but beneficial are VNC

support, text recognition, ease of use and pricing. Short facts of the testing tools taken

into consideration in this thesis can be found in appendix 1.

The higher the price the more features and other benefits are included in the tool. The

cheaper tools lack more advanced features such as text recognition, which is a good

feature to have if the graphics is in the development stage. Using VNC is not desired yet

because of the need to install software on the LDU. However, this might change later,

which makes VNC support an extra feature that is nice to have. The main advantage of

the higher cost solutions is the support that may be lacking in the cheaper tools. Price

may matter, but the main factor is easy and infrequent need of maintenance. If

maintenance requires little or no effort when using a more expensive tool it will probably

be cheaper in the long run than a cheaper tool that needs more effort in maintenance.

After discussion with people responsible for the LDU about the facts concerning the tools

mentioned in appendix 1, we decided to try out vTask Studio. This tool caught attention

because of its lack of scripting language. Instead of scripting using a programming

language it is done by drag-dropping pre-made function blocks that are highly

configurable and easy to learn. Another distinctive feature is the ability to compile every

test script into a compact executable file, which will enable testing without the need of

libraries and a license of the tool installed on a dedicated PC. With a price of only 40 € the

tool is essentially free. However, there may be problems to get efficient support as the

support is handled by user forums.

Compared to the other tools vTask is easier to use than the freeware tool Sikuli that

would need some complementing libraries to get the same functionality as vTask. Sikuli´s

main feature is the ability to adjust the tool to the project´s desire as it is open source.

This makes Sikuli´s libraries easy to include in a custom framework.

RoutineBot would be a good alternative to vTask thanks to its cheap license and text

recognition. However, there seems to be some compatibility issues with Jenkins and

would require some work.

Ranorex is an interesting alternative that combines both GUI testing technologies, image

recognition and object recognition. This tool is widely used but the lack of VNC support or

23

other remote technology is a drawback in this price category. The price is to some extent

acceptable as Ranorex has a good support if there are problems.

eggPlant and T-plan are the two enterprise solutions for image based GUI testing with the

most functionality and personal support. However, these tools are really interesting only

if there will be GUI testing on the LDU hardware with VNC, which is undesired at this

time. The rather simple GUI of the LDU may make these tools somewhat overqualified for

the task. Therefore it would be interesting to know if a cheap, simple and easy to learn

tool is enough to do satisfactory testing.

24

4 Testing with vTask Studio

vTask Studio or just vTask for short, is an image based testing tool developed by Vista

Software for over a decade. The development of vTask is based on feedback from users

who are giving suggestions for new features. The main feature of vTask is the lack of

scripting language and the built in compiler that allows creation of standalone executable

files of the rest scripts that do not require external libraries or even vTask itself to run.

vTask is not limited to testing alone as many users use vTask to create for example a

username and password managers, setup scripts for larger systems of computers or

training sessions of new system users. /10/

4.1 Basic usage

Making scripts in vTask is a simple task. All available actions are situated and categorized

in the action tab on the left side of the window. Scripting is done by clicking and dragging

the desired actions from the action tab to the main list. The actions are executed from the

top down until the script reaches the last action or an end run action.

Figure 7. Hellos world example in vTask using actions.

25

To make a simple “Hello World!” script all that is needed is to click and drag the display

message action to the main list. When the action is clicked in the main list, the properties

window should now show the properties of the display message action. Depending on

which action that is used this window will show different properties to configure. Writing

“Hello World!” in the message text property will make an info window that salutes the

world.

Figure 8. Hello world example.

vTask saves these scripts in an XML format. This makes it easier to share the solution to

other vTask users by just copying the XML text. The “Hello World!” script will have the

following XML code.

More advanced text that changes depending on a condition can be written with Excel

functions. For example, to make a window that shows AM or PM depending on the time

can be done by writing with Excel´s IF-function “=IF({hour24}<11, "AM", "PM")” in the

message text property. The “{hour24}” is a vTask variable that returns the hour part of

the system time.

<vTask>
<step>
 <action>Display Message</action>
 <text>Hello World!</text>
</step>
</vTask>

Figure 9. XML code for "Hello World!" example.

26

All Excel functions that are supported, available variables and descriptions of the vTask

actions can be found in the well written vTask help documentation.

4.2 Compatibility with Jenkins

The most important requirement of the testing tool is compatibility with Jenkins. /11/

Figure 10 represents how Jenkins will be used for the whole GUI testing chain in the

future. Jenkins can be scheduled to initiate the testing after a workday, for example at

midnight. It all starts with Jenkins checking TestLink for what test cases that need to be

run (1.) and then downloading the code that concerns the test cases (2.) ,which is the LDU

software in our case. Jenkins then compiles the code to an executable file that simulates

the LDU and saves it on the Jenkins server. Jenkins then activates the test scripts (3.)

connected to the test cases, which then download the newly compiled LDU software to

the test environment and run the tests. After the test cases are finished the test scripts

create test results that Jenkins reads (4.) and then make a test report to TestLink (5.).

Figure 10. Representation of the testing chain.

To make this system work, Jenkins needs a way to start the test scripts and then receive

test results from the executed test cases. The first requirement is met thanks to the

possibility to create standalone executable files of the test scripts. Jenkins is able through

Jenkins server

1.

2.

3. 4.

5.

File server

Dedicated
test PC

27

the command line to start the test scripts. The second requirement is met through a

plugin in Jenkins that accepts TAP-files. TAP-files are a way to communicate test results

and other information. They can be written in notepad and then saved with the TAP-file

extension. vTask is able to write test results in a TAP file through simple scripting.

TAP-files are written on the following form:

The first line in a TAP-file will declare how many lines of information there are

additionally. If there are three steps in a test case the first line must declare “1..3”. The

other three lines will then declare if a step was successful or not by declaring “ok” or “not

ok” and the step number and then an optional description such as “All buttons found”. An

example of a test result is found in chapter 4.4.4.

The practical implementation of the whole testing chain will not be included in this thesis

because of lack of time to configure Jenkins and TestLink.

4.3 Designing of test cases

To make a proof of concept, two examples of test cases were designed. The first test

cases will check the layout of the home page. The home page is the main page of the LDU.

The other test case will test the shortcut functionality. Additionally, there will be a

functional script that initiates testing. The initiate testing script will start the LDU

simulation if it´s not already running and go to the home page, which is the base state.

Later, this script can also include downloading newest build of the LDU simulation.

1..N

ok 1 – Description

ok 2 – Description

....

ok N - Description

Figure 11. TAP-file format.

28

4.3.1 Home page layout test

This test case will check vTask ability to do a simple layout test. This test case will check

that all buttons and gauges that are supposed to be on the screen are visible.

The home screen consists of 14 different page buttons. The page buttons will bring the

user to different pages of the GUI. On these pages there are different functionality and

monitoring alternatives. For example the exhaust button will bring the user to a page that

shows exhaust gas temperatures. Another button, such as the Log button, will bring the

user to a page where system events are registered. On the home screen there are also

gauges that show the value of the most important values such as engine speed.

The test script will run the initiate testing script. Then it will one at a time search for the

buttons and report if there are errors. Afterwards the script will search for the gauges.

The test result will be written to a TAP file.

4.3.2 Shortcut functionality test

This test case will check vTask ability to do some functional testing. The test case will

check the GUI behavior when using the shortcut functionality.

The shortcut functionality is a feature that makes it possible to change for example from

the exhaust page to the cooling system page without the need to use the home page. The

user is able to add five shortcuts to a page. The user should not be able to add the page

that is displayed as a shortcut. When a shortcut is selected it should appear at the bottom

of the screen and the selected button should be darkened in the shortcut window. When

one of the shortcuts is clicked the page should change according to the shortcut.

The test script will run the initiate testing script. Then it will add five shortcuts and check

if they are in the shortcut bar and that the buttons in the shortcut window are darkened.

The script will try to add a sixth shortcut, which should not appear in the shortcut bar.

The script will remove one shortcut and try adding the opened page, which should not be

possible. To check if shortcuts are working, a shortcut is clicked, which should open the

correct window. The script will then remove all shortcuts and return to home page. The

test result will then be written to a TAP file.

29

4.4 Explanation of scripts

To implement the two test cases, three scripts were created. There are one script each

for the test cases and one script to initiate testing.

4.4.1 Test initiation script

The point of this script is to use and test the “Call script” action in vTask. The first

segment in this script is to make the LDU simulation window visible. This is done by the

action “IF Window Exists” that is configured to run the LDU simulation´s EXE file if it´s not

running and wait for it to start before it declares the window as used or in other words

selected. When using other actions such as “Wait for Window” or “Click on Image” the

selection makes it possible to limit the searching to the last used window, which speeds

up image searching. If the simulation is started the script will just declare the window as

used, which also brings it to the front and restores the window if minimized. If any of the

actions in this script fails, they will increase the error counter, initiated in the beginning,

by one.

Figure 12. Actions to make LDU simulation visible.

The second segment of the script is to make sure the home page is displayed, which is the

base state. The “IF Image Visible” action will here declare which state the simulation is in.

If the simulation is on another page than the home page, the home page button will be

visible. By clicking the home button, which is done by using the “Click on Image” action,

the simulation is brought to the base state. Otherwise, if the shortcut window is open it

will find the clicked shortcut button, which is darkened when the shortcut window is

open. The script will then click the shortcut button to close the shortcut window and then

the home button to bring the simulation to the base state. The script will then write the

30

result of the initiation to a text variable that is used in the test case results to make

tracking for problems easier.

Figure 13. Actions to go to the homes page.

4.4.2 Home page layout script

The first segment of the script for the home page layout test will first delete all variables

to make sure there are no conflicting values for some unexpected reason. The script will

then call the initiate testing script explained in the previous chapter. The script will then

reset errors if there were any in the initiation script. The script will then loop through all

buttons available on the home page. The search is limited to the LDU screen. The “Wait

for Image” action, which waits for an image to appear, is the simplest way to check if the

buttons are visible. If a button isn´t found within the time set in the timeout property, the

check will fail and increment the error variable. The script will then write the results of

the second step to a variable.

31

Figure 14. Actions for test initiation and button check.

The second segment of the script will in the same way as the buttons search for the

gauges that should be on the home page. This should be more taxing than the images of

the buttons as the gauges are larger, which means more pixels to compare. Then the

script will write results of the third step to a variable and create the TAP-file of the results

for the test case.

Figure 15. Actions for gauge check and TAP-file creation.

4.4.3 Shortcut functionality script

The first segment of the script for the shortcut functionality test case will delete all

variables and initiate testing. The error counter is reset and coordinates for the shortcut

bar are added. These are used when checking for the added shortcuts that should or

should not be visible in the shortcut bar. By using the vTask built in values “{window_x}”

and “{window_y}” that return the window position and the values “{window_width}” and

32

“{window_height}” that return the width and height of the used window, it´s possible to

make the testing more robust as the window position doesn’t matter.

Figure 16. Actions for test initiation and setting up variables.

Figure 17 represents steps two to four. The second step will go to the info page and open

the shortcut window and add five shortcuts by clicking page buttons and write results to a

variable. Before the shortcuts are added a check is run to reset all shortcuts, which is

done in the ResetShortcuts function described later. After vTask has tried to add the five

shortcuts an error check is done in a function described later. The functions are called by

the “GOSUB Label” action that jumps to the specified label situated at the end of the

script. If there are any errors when adding the shortcuts, which in this case means that

vTask can´t find the buttons, the error check will try to restart the test script. If no errors

are found the script continues to write test results to a variable and reset error variable.

The third step will check that the clicked page buttons in the shortcut window are

darkened, which means the page has been added as a shortcut. The script will then write

the results to a variable and reset the error counter.

The fourth step will check that the clicked page buttons in the shortcut window are added

to the shortcut bar. This is done by exiting the shortcut window and limiting the search

for each page button to the shortcut window. The script will then write the results to a

variable and reset the error counter.

33

Figure 17. Actions for adding shortcuts and checking of shortcuts.

The fifth step will check that it is not possible to add a sixth shortcut. This is done by

opening the shortcut window and trying to click a sixth page button. Because there is no

default action that fails if an image is visible, a manual if-statement is needed that checks

if the image is visible and increments the error variable if it´s found. The if-statement tries

to find the darkened page button, which should fail and continue to close the shortcut

window. In the same way the sixth page button is searched for in the shortcut bar, which

should fail. The script will then write the results to a variable and reset the error counter.

Figure 18. Actions for trying to add sixth shortcut that should not be possible.

The sixth step will try to add the info page, which is the opened page, to the shortcut bar,

which should not be possible. This is done by again opening the shortcut window and

34

removing one shortcut by clicking a darkened page button. The script will then click the

info page button and search for the darkened info page button, which should not be

found. The info button should also not be found in the shortcut bar. The script will then

write the results to a variable and reset the error counter.

Figure 19. Actions for adding the opened page as shortcut, which should not be possible.

The seventh step will check if clicking a shortcut in the shortcut bar will change to the

selected page. This is done, in this case, by clicking the cooling page shortcut. To check if

the correct page is showing the title of the page is searched. This should only be visible on

the cooling page. The script will then write the results to a variable and reset the error

counter.

Figure 20. Actions to check if shortcuts are working.

The eighth step is a reset step that goes back to the info page and opens the shortcut

window and uses the ResetShortcuts function to remove all shortcuts. The script will then

close the shortcut window and return to the base state, the home page. The script will

then write the results to a variable. The TAP-file is created and the test ends with the “Exit

Run” action.

35

Figure 21. Actions for resetting the shortcuts, returning to base state and test result writing.

Figure 22 represents the two functions used in this script. These are called by the “GOTO

Label” or “GOSUB Label” actions. There is no direct function call but instead labels or flags

are used. The first function is the error check. This function will check if there are errors. If

there are no errors the script will jump back to the step it came from by using the “Return

from GOSUB”. If there are errors and no restarts have been done, the function will

increment the restart variable and go to the restart label in the beginning of the script by

using the “GOTO Label”. If there are errors and a restart had been done, the script will

automatically fail all steps because of an unexpected error and create a TAP-file before

exiting the run. This is an example to make the test scripts more robust if there are

unexpected errors. This is not good as a versatile solution for all situations, but with a

little bit more development the test scripts can be very robust.

The last function is the ResetShortcuts function. This function will search for darkened

buttons in the shortcut window. To avoid search each darkened page button individually,

the script will loop a search for the borders of the buttons and click it until there are no

darkened borders to be found. This is done by masking the image. vTask is instructed to

ignore all pixels with the magenta color, which has the color code of 0xFF00FF. By using

an image editor, the middle portion of the buttons that contain the name of the button

can be ignored and thereby makes the resetting of shortcuts easier and faster. The most

important thing when making the masked images is to not use any anti-aliasing when

painting over the ignored areas. The anti-aliasing will try to smooth out the magenta and

dark color at the border, which will make some pixels that should be magenta to be

somewhat darker and will be added to pixels to match for the search logic. When no

more darkened buttons can be found, the function will return to the script.

36

Figure 22. Actions for the two functions used in the script.

4.4.4 Test result TAP-files

The following figure represents the resulting TAP-file that is created by the home page

layout script. This is just an example as the final testing chain may just want one step in

each TAP-file. For example the shortcut functionality script would make eight TAP-files

instead of having 8 steps in a single TAP-file.

1..3

ok 1 - Simulation started

 successfully

ok 2 - All buttons visible

ok 3 - All gauges visible

1..3

not ok 1 - FAILED: Failed to initiate

 testing

not ok 2 - FAILED: 14 button(s) not

 visible

not ok 3 - FAILED: 5 gauges(s) not

 visible

Figure 23. Example of successful test (left) and a failed test (right).

37

5 Results

Overall, vTask was a pleasant tool to use for this test environment and purpose. The test

scripts behaved as planned and were able to find or click anything that it was instructed

to do. The scripts were compiled into executable files and were run from the command

line, which functioned correctly as when executed from vTask. The TAP-files where

correctly created with the correct content and saved with the correct file extension. The

test scripts were reasonably quick in their test execution. The shortcut functionality test

case took only 38 seconds to complete for the test script. This is quite fast compared to a

user familiar to the LDU that took 95 seconds to complete the test and an unfamiliar user

took 276 seconds to complete the test.

The positive sides of vTask are:

+ Ease of use. The tool is in its basics very simple to use. The action based

programming is simple, smooth and customizable. The scripts are quite easy to get

an overview of and to understand. Needed math and logical calculations and data

editing is done with excel-functions, which most engineers are used to.

+ Little time needed to make test scripts. Making scripts in vTask was surprisingly

efficient. As soon as some basic assisting scripts have been made to make testing

more robust, such as restarting the simulation if it crashes, the test case scripting

should be fairly quick.

+ Good help documentation. The documentation is easy to understand and usually

includes examples on how to use the different actions and variables. The online

vTask forum is also a good place to see different solutions to problems that can

occur.

+ Good maintainability. Maintainability is fairly good in vTask because of the image

based testing method, which makes the position of the object irrelevant. If there

are changes for example in button design the images of the buttons used by vTask

will unfortunately need to be updated. However, taking new screenshots of the

buttons will not take a long time. Nothing has to be done to the script itself as it

will automatically start using the updated screenshots.

38

+ Can be robust. The test scripts can be very robust. However it will require time to

make all the custom scripts that will increase robustness. Nevertheless, as the

example function, used in the shortcut functionality test case, vTask proves that it

is capable of making robust test scripts.

+ All variables global. All created variables are on a global level, which is good when

the developer don´t have to worry about the functions or external scripts ability to

read the values of the variables. If a variable is set to value in an external script the

main script can use it directly without the need to make the external script return

a value to the main script.

+ Test reporting fairly easy. The ability to create files with any file extension makes

the TAP-file creation very easy. To declare a test case failed or successful is easy,

but more specific descriptions of what failed in addition to the amount of errors,

will require more time to develop automatic custom scripts.

+ Compiled scripts works well. vTask is able to compile the scripts to an executable

file that works completely independent by adding all the pictures used in the

script to the executable file. This will only require the external scripts to be on the

same computer. There is also the ability to encrypt the scripts if needed.

+ Limiting search area. The ability to cut down the search area decreases the time

needed to execute the tests. The ability to only search last used window is a good

start. If there is a requirement to limit the search area to a specific part of the

screen it´s possible as seen in the shortcut functional test case.

There are unfortunately some negative sides working with vTask, which are:

- “Wait for Image” action slow. There seems to be some inertia in this action. The

“Click on Image” and “If Image is Visible” seems to find the image faster. The

explanation to the inertia may be that it is on purpose slower to make sure the

wait is long enough for next action, which depends on the wait action, to be able

to do its job.

- Variables needed to be made to limit search area on a window. The start and

end coordinates property to limit search area doesn´t support calculations. The

coordinates must be calculated in variables before adding it to the action

39

properties. This is a minor incontinence as it may actually be preferable to

calculate in the variables first as they can be initiated in the beginning and be used

for many actions. If the search area must change, all that is needed is to update

the coordinates in the beginning, which is good for maintainability.

- Occasionally too fast “Click on Image” action. This action will occasionally find

and click buttons before they are clickable. Apparently there is a short time in the

animation when the page changes where vTask manage to find the searched

image.

- Can´t queue several “On Failure”. There is a feature that can be activated in

properties for most actions that makes it possible to do something when the

action fails. In the test scripts the “Increment Variable” alternative is used to keep

track on the number of errors. There are other interesting alternatives to choose

from, such as “Retry Step x Times” and “Jump to Label”. However, only one can be

added to each action. On the other hand, this is a feature that can be requested as

the developers of vTask are basing their development from user feedback. The

workaround at the moment is to make special functions to take care of the script

robustness.

- All variables global. To have all variables global also have some inconveniences.

The naming of variables is more important so that values are not overwritten

unintentionally. For example if the main script has a variable named “Errors” and

calls an external vTask script, which has an error variable with the same name.

This variable is probably reset in the beginning of the external script to keep track

on the errors, which will then overwrite the variable used in the main script. It is

important to keep track of the names of the used variables.

All in all the proof of concept was a success. vTask fulfills our expectations and is a worthy

candidate for the future development of the automatic GUI testing.

40

6 Discussion

All in all using vTask to develop GUI testing for the LDU was a good experience. With all

the information, all pros and cons, in this thesis I think it is enough to attempt a more full

scale development. If the requirements stay as it was at the time this thesis was written,

vTask will be up to the challenge to take care of the GUI testing for the LDU. However,

this thesis describes just one part of the whole testing system. The LDU simulation will

need some work before it really can match the complete LDU functionality. This version

of the LDU simulation has no updating of values and pages are pictures except one

concept page. The next step in the automatic GUI testing development would be to get

the simulation working properly as it is a showstopper at the moment. Jenkins will also

need configuring to start the real testing. Last but not least, a great deal of test cases

must be designed according to the features and requirements of the LDU.

If there had been more time it would have been interesting to make a proof of concept of

all the tools listed in this thesis and try out the whole process for the testing with Jenkins

and TestLink. This would make the conclusion more bulletproof. The choice of tool to use

for the proof of concept was based on how they compared on paper. This is quite a

limitation. Just because vTask on paper was the most attractive alternative doesn’t

automatically mean it is the best. There are still some factors like usability and efficiency,

which are very important and unfortunately difficult to represent by words and numbers.

As for me, this thesis was very interesting to write. I have learned a lot about testing, such

as why it is done, how to structure testing and how to make good automatic testing. I

have also learned to be open to changes. vTask that was finally chosen, was just one of

many tools that I had already in advance concluded in my mind to be the tool to use. This

also challenged me to be more unbiased and objective, which can be hard when there is

already a solution to something.

41

7 List of Sources

/1/ Wärtsilä overview (n.d.).

http://www.wartsila.com/en/about/company-management/overview (retrieved:

28.8.2014).

/2/ Wärtsilä logo (n.d.).

http://www.wartsila.com/en/about/company-management/strategy/brand (retrieved:

28.8.2014)

/3/ Li, K. & Wu, M. (2008). Effective GUI Test Automation: Developing an Automated GUI

Testing Tool. Alameda: SYBEX.

/4/ Osherove, R. (2009). The Art of Unit Testing with Examples in .NET. Greenwich:

Manning

/5/ Agarwal, B.B., Tayal, S.P. & Gupta, M. (2010). Software engineering and testing.

Sudbury: Jones and Bartlett Publishers.

/6/ Hayes, L.G. (2004). The Automated Testing Handbook. (2. edt.) Richardson: Software

Testing Institute.

/7/ Fewster, M. & Graham, D. (1999). Software Test Automation: Effective use of test

execution tools. Harlow: Addison-Wesley.

/8/ LDU Development Group. (2014). LDU concept. Internal document.

/9/ Pes, R. (2009). Image Based Versus Object Oriented Testing.

http://www.t-plan.com/robot/docs/articles/img_based_testing.html (retrieved:

9.7.2014).

/10/ vTask User´s Guide. (n.d.).

http://www.vtaskstudio.com/help/ (retrieved 14.7.2014).

/11/ Meet Jenkins. (2014).

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins (retrieved 13.8.2014).

/12/ Sikuli homepage. (n.d.). http://www.sikuli.org/ (retrieved 1.7.2014).

42

/13/ vTask studio homepage. (n.d.). http://www.vtaskstudio.com/ (retrieved 1.7.2014).

/14/ RoutineBot homepage. (n.d.). http://www.routinebot.com/ (retrieved 1.7.2014).

/15/ Ranorex homepage. (n.d.). http://www.ranorex.com/ (retrieved 1.7.2014).

/16/ eggPlant homepage. (n.d.).

 http://www.testplant.com/eggplant/ (retrieved 1.7.2014).

/17/T-Plan homepage. (n.d.). http://www.t-plan.com/ (retrieved 1.7.2014).

43

Appendix 1

 To
o

l
Sc

ri
p

ti
n

g
la

n
gu

ag
e

Te
st

re

p
o

rt
in

g
to

 J
en

ki
n

s

C
o

m
m

an
d

lin

e
su

p
p

o
rt

In
te

gr
at

e
d

 V
N

C

su
p

p
o

rt

Te
xt

re

co
gn

it
io

n

C
u

rr
en

t
ve

rs
io

n

U
p

gr
ad

es
 a

n
d

 u
p

d
at

e
s1

P
ri

ce

Si
ku

li
P

yt
h

o
n

Ye

s,

sc
ri

p
ti

n
g

n
ee

d
ed

Ye

s
N

o

N
o

1

.0
.1

Fr

ee

Fr
ee

vT
as

k
St

u
d

io

Fu
n

ct
io

n

b
lo

ck

sc
ri

p
ti

n
g

Ye
s,

sc

ri
p

ti
n

g
n

ee
d

ed

Ye
s

N
o

N

o

7
.8

7

N
ew

 li
ce

n
ce

 n
ee

d
ed

 f
o

r
u

p
gr

ad
e.

 F
re

e
u

p
d

at
e

s.

P
er

p
et

u
al

4

0
€

R
o

u
ti

n
eB

o
t

P
as

ca
l,

Js
cr

ip
t,

B

as
ic

Ye
s,

sc

ri
p

ti
n

g
n

ee
d

ed

Ye
s

N
o

Ye

s
3

.8

Fr
ee

 u
p

gr
ad

es
 f

o
r

1
 y

ea
r,

fu

tu
re

 u
p

gr
ad

es
 h

av
e

d
is

co
u

n
te

d
 p

ri
ce

. F
re

e
u

p
d

at
e

s.

P
er

p
et

u
al

5

0
0

€

R
an

o
re

x
C

#,
 V

B
.N

ET

Ye
s,

 p
lu

gi
n

Ye

s
N

o

Ye
s

5
.1

.1

Fr
ee

 f
o

r
1

 y
ea

r,
 t

h
en

su

b
sc

ri
p

ti
o

n
 b

as
ed

P

er
p

et
u

al

2
0

0
0

€

eg
gP

la
n

t
Se

n
se

Ta
lk

Ye

s,
 p

lu
gi

n

Ye
s

Ye
s

Ye
s

1
4

.1
2

Fr

ee

Su
b

sc
ri

p
ti

o
n

6

0
0

0
€

T-
P

la
n

Js

cr
ip

t
Ye

s,
 p

lu
gi

n

Ye
s

Ye
s

Ye
s

3
.5

.2

Fr
ee

P

er
p

et
u

al
 li

ce
n

ce

re
q

u
ir

es
 a

 u
p

d
at

e
su

b
sc

ri
p

ti
o

n
 1

3
0

0
€

/y
ea

r

Su
b

sc
ri

p
ti

o
n

3

8
0

0
€

P

er
p

et
u

al

6
3

0
0

€

1 U
p

d
a

te
s

a
re

 m
in

o
r

ch
a

n
g

es
 e

.g
. v

3
.1

 t
o

 v
3

.2
. U

p
g

ra
d

es
 a

re
 m

a
jo

r
ch

a
n

g
es

 e
.g

. v
3

 t
o

 v
4

.

Th
is

 t
a

b
le

 is
 a

 s
h

o
rt

 c
o

m
p

a
ri

so
n

 b
et

w
ee

n
 t

h
e

te
st

in
g

 t
o

o
ls

 t
a

ke
n

 in
to

 c
o

n
si

d
er

a
ti

o
n

 in
 t

h
is

 t
h

es
is

. /
1

2
//

1
3

//
1

4
//

1
5

//
1

6
//

1
7

/

Ta
b

le
 1

. A
u

to
m

a
ti

c
G

U
I t

es
ti

n
g

 t
o

o
ls

 c
o

m
p

a
ri

so
n

.

