

Bing Dai

THE PRODUCT AUTHENTICATION

APPLICATION DESIGN BASED ON

NFC

 Technology and Communication

2015

PREFACE

This is my graduation thesis in the school of Technology in VAMK, Vaasa

University of Applied Science. I started to implement my final project in

December, 2014 and fulfilled it on February 9
th

, 2015.

First of all, I wish to express my sincere gratitude to my supervisor, Dr. Chao

Gao. I am extremely grateful to him and appreciate his professional, valuable

guidance and kindly encouragement during my whole work. He inspired me to

begin this thesis project and gave me patient assistance to overcome the

difficulties when I conducted myself in this project. Without his support, I could

not have finished my thesis project and final presentation on time.

And then my thanks go to my parents and my special one Wenjie Li, for their

always being there for me and show me their unceasing love. During the life in

Finland, they always stood by my side and gave me confidence to continue my

study, so that I could smoothly complete my study here throughout the entire

double degree program. Thank you and I love you all.

Finally, my thanks are extended to all my dear friends and the people who

helped me a lot in my whole school life. Hope all of you can have a good future

and own a wonderful life. If there is luck, we’ll come across again.

Vaasa, Finland, 16/03/2015

Bing Dai

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Bing Dai

Title The Product Authentication Application Design

Based on NFC
Year 2015

Language English

Pages 64

Name of Supervisor Chao Gao

With the enormous development in the field of NFC (Near Field

Communication) technology and the wide use of Android phones, people

nowadays are able to accessible to NFC equipped phone. Users are able to

handle varied comprehensive tasks in daily life. For example, the images,

electronic business cards or other files on one phone can be exchanged to

another phone quite easily and fleetly via the NFC communication. Meanwhile,

unlike other wireless technologies, NFC focuses on the security control issue,

the owners can use NFC-enabled phone to pay wirelessly or transfer encrypted

files.

My objective in this thesis project was to explore the possibility of NFC

technology in product authentication. I did this by developing two NFC

applications on the Android system and process specific information through a

NFC tag. A Professional Hypertext Preprocessor program will be running on the

server to verify the data on the tag. For the sake of implementing this application,

we needed to design an authentication algorithm and test the program within

WIFI environment.

The project result indicates that NFC-enabled phone is easy to use and the

process of communication through the NFC technology is secure and reliable.

There is still space for development and broad potential market for the

NFC-enabled phone and NFC technology.

Keywords Android, NFC Communication, PHP , Authentication algorithm

4

CONTENTS

PREFACE

ABSTRACT

LIST OF FIGURES AND TABLES

LIST OF APPENDICES

1 INTRODUCTION ... 10

1.1 Motivation and Objective of the Project ... 10

1.2 Overall Architecture of the Project ... 11

1.3 Structure of the Thesis ... 13

2 BACKGROUND ... 14

2.1 NFC Technology ... 14

2.1.1 Radio Frequency Identification .. 15

2.1.2 The Differences between RFID and NFC... 16

2.1.3 NFC Operating Modes .. 17

2.1.4 Operating Principle of NFC Reader/Writer Mode 19

2.2 NFC Tag .. 20

2.2.1 NFC Tag Basics .. 20

2.2.2 NFC Tag Type .. 21

2.3 NFC Data Exchange Format ... 22

2.4 Record Type Definition ... 23

2.5 How NFC Tags Are Mapped To URI Type .. 23

2.6 Android Basics in NFC Development ... 25

2.6.1 Android Activity ... 26

2.6.2 Intent and Intent-Filter .. 28

2.6.3 How NFC Tags Are Dispatched to Application 28

3 IMPLEMENTATION .. 30

3.1 Development Environment .. 30

3.1.1 JDK Configuration .. 30

3.1.2 Configuration of Android Developing .. 33

5

3.1.3 Development Tools ... 36

3.2 Supportive Theory of Implementation .. 38

3.2.1 NFC API ... 38

3.2.2 NFC Foreground Dispatch System ... 39

3.2.3 NFC Tag Dispatch System ... 39

3.3 Development Procedure .. 41

3.3.1 Before Programming... 42

3.3.2 Requesting NFC Access in the Android Manifest 43

3.3.3 Filtering for NFC Intents .. 43

3.3.4 NFC Foreground Dispatch System Implementation 44

3.3.5 NFC Tag Write Operation Steps ... 45

3.3.6 NFC Tag Read Operation Steps.. 48

3.3.7 PHP Server Implementation ... 51

3.4 Flowchart of the Program .. 52

3.4.1 Writing Tag Module Flowchart .. 52

3.4.2 Reading Tag Module Flowchart ... 53

3.4.3 PHP Server Flowchart .. 54

4 TEST AND RESULT .. 56

4.1 Functional Test .. 56

4.1.1 Writing Tag Application Test ... 56

4.1.2 Reading Tag Application Test .. 58

4.2 Result ... 60

4.3 Summary ... 61

5 CONCLUSION ... 62

REFERENCES: .. 63

6

LIST OF FIGURES AND TABLES

Figure 1 Overall Architecture of the Project 11

Figure 2 RFID System Overview 16

Figure 3 NFC Operating Mode 18

Figure 4 Schematic Diagram of Operating Principle in Reader/Writer Mode 19

Figure 5 NDEF Structure 22

Figure 6 Structure of NDEF Message and NDEF Record 25

Figure 7 The Activity Lifecycle 27

Figure 8 NFC Tag Dispatch System 29

Figure 9 Environment Variables Setting 31

Figure 10 JDK Path Configuration 31

Figure 11 Java Class Path Setting 32

Figure 12 Version of Installed JDK 32

Figure 13 Android SDK Manager 34

Figure 14 Download the ADT Plugin 35

Figure 15 Configure the ADT Plugin 35

Figure 16 New Android Project 36

Figure 17 NFC Tag 37

Figure 18 Flowchart of the entire Project 41

7

Figure 19 NFC Function Enable 42

Figure 20 Developer Options Selection 42

Figure 21 Writing Module Flowchart 53

Figure 22 Reading Tag Module Flowchart 54

Figure 23 PHP Server Flowchart 55

Figure 24 Writing Tag Application UI 56

Figure 25 Prompt Window Of Writting Application 57

Figure 26 Writing Data Confirm 57

Figure 27 Error Prompt Message 58

Figure 28 Reading Tag Application UI 59

Figure 29 Prompt Window Of Reading Application 59

Figure 30 Quality Product Result 60

Figure 31 Fake Products Result 60

Table 1 TNF Field Value 24

Table 2 Activity State 26

Table 3 Important Activity Lifecycle Methods 27

8

LIST OF ABBREVIATIONS

ADT Android Development Tools

API Application Program Interface

ECMA European Computer Manufacturers Association

HF High Frequency

JDK Java Developer’s Kit

LF Low Frequency

MIME Multipurpose Internet Mail Extensions

NDEF NFC Data Exchange Format

NFC Near Field Communication

OS Operating System

PC Personal Computer

PHP Professional Hypertext Preprocessor

RF Radio Frequency

RFID Radio Frequency Identification Devices

RTD Record Type Definition

SDK Software Development Kit

SN Sequence Number

SR Short Record

9

UHF Ultra-high Frequency

UI User Interface

URL Uniform Resource Locator

URI Uniform Resource Identifiers

VAMK Vaasan Ammattikorkeakoulu

10

1 INTRODUCTION

The introduction chapter contains the motivation, objective and overall

architecture of this project, and also includes the structure of the entire thesis.

1.1 Motivation and Objective of the Project

As the worldwide manufacturing industries develop at a staggering rate, the

counterfeit and imitation commodities have become an increasingly

non-ignorable issue. There is a growing awareness that people’s life today is

surrounded with various fake items and piracy. The counterfeit and shoddy

products not only severely damage economy benefit of the development

companies and producers, but also violate the customer’s interest to a great

extent. More importantly, since plenty of the sham goods is of poor quality and

produced within insanitary environment, their insecure and unhealthful quality

might harm the personal safety of the users. Therefore, a convenient, easy-to-use

as well as inexpensive detection tool is in great demand for the product

authentication. Smartphones perfectly satisfies all the requirements.

In the contemporary age, smartphones are widely used in all around the world.

Also, there is a large amount of applications on the Internet for people to

download and use. In other words, the product authentication application on cell

phone owns a tremendously huge market demand in our daily life. Considering

the issue of safety performance, utilization rate and maturity of the technology,

as well as budgeting control problem, the NFC technology was selected to

implement this authentication application.

Here the motivation of this thesis project is specified. First of all, the project

focuses on the NFC product authentication problem, and in this case we suggest

using NFC technology to solve it. Furthermore, applying the NFC technology to

read/write a NFC tag and transfer encrypted information with it. Finally, we can

11

gain a better understanding of the NFC technology and Android programming.

As for objective of implementing the project, the aim was to accomplish two

Android applications, one to act as a tag writer, writing specified information

into a NFC tag, the other one act as a tag reader, and the reader application can

scan the tag and read its content. With the use of the reader application the

obtained product information will be sent to the server side automatically to

authenticate. The product’s ID and its correspondent SN (sequence number)

comprise the information. The server-side solution is minimized as a PHP

program to merely demonstrate the idea. In real situations, the server side should

be accomplished with a database for ID and SN generation and authentication.

In this case, we selected to use a predefined authentication algorithm to verify

the unique SN of product ID.

The project was coded in Java and our code was dedicated to the Android

system, also a NFC-enabled phone and a NFC tag were required.

1.2 Overall Architecture of the Project

Figure 1 Overall Architecture of the Project

12

Figure 1 is the overall architecture of this project. As we can see, the whole

project is divided into three parts, NFC tag writer application, NFC tag reader

application and PHP server. Both of the writer and reader applications were built

in Eclipse, while the PHP server was implemented using a text editor (such as

Notepad++) and launched on www.cc.puv.fi, which hosts students’ homepage.

Eclipse was used to program and test the writer and reader applications on

account of its powerful executive function and excellent platform porting feature.

Moreover, after installing the Android SDK (Software Development Kit) and

ADT (Android Development Tools), Eclipse is able to develop Android

application. Besides, Notepad++ is a lightweight development tool which is

quite suitable for the small server program.

After the program was finished, the APK (Application Packages) of the Android

application was downloaded to an Android smartphone. In this case, we

assumed that each product had a random identification number and only one

sequence number, while SN was generated by the writer via specific

authentication algorithm. Based on the two numbers the authenticity of the

product could be verified.

Here comes the explanation of the overall architecture. By executing the writer

APK on the Android phone, an ID and its unique SN will be given and inserted

into a PHP server link, and the whole link is being saved as NFC message. In

order to verify the product ID and SN, a physical NFC tag is required to act as a

data storage container, where the message will be written. After completing the

writing data function, the reader application is opened and the message is read,

and then the link will be gained by the reader. Next, the product ID and SN are

transmitted to the PHP server, which is used for authenticating the accepted data.

The server side calculates the SN of the received ID based on the previously

selected algorithm. If the result is equal to the received SN, it indicates that the

http://www.cc.puv.fi/

13

receiving SN is correct and the product is genuine, then the correct

authentication message will be returned to the reader application. Otherwise, the

error message will be returned to warn the user that the product is counterfeit.

1.3 Structure of the Thesis

This thesis proceeds as follows: Chapter 1 describes the motivation, objective

and overall architecture of the project. Chapter 2 introduces the related

background knowledge about developing this project. Next, Chapter 3 focuses

on the implementation of the project in details, while the Chapter 4 illustrates

the test procedure and result. Chapter 5 draws a conclusion in the end.

14

2 BACKGROUND

This chapter introduces the background knowledge of the technologies used in

the project, including NFC, RFID (Radio Frequency Identification Devices),

NFC tags, NDEF (NFC Data Exchange Format) protocol, and RTD (Record

Type Definition) protocol, how NFC tags are mapped to related data types and

Android OS.

2.1 NFC Technology

NFC (Near Field Communication) is a set of short-range wireless RFID

technology that enables simple and safe two-way interactions between electronic

devices. It allows the customer to perform contactless transactions, access digital

content, and connect electronic devices with a single touch. Users can share

business cards, make transactions, access information from a smart poster or

provide credentials for access control systems with a simple touch. /1/ The data

interaction in NFC usually proceeds between a NFC tag and a smartphone, or

between two smartphones.

Early in the development stage of the NFC technique, it was approved as an

ISO/IEC international standard on December 8, 2003, and later as an ECMA

(European Computer Manufacturers Association) standard. Typically, NFC

operates at 13.56MHz on ISO/IEC 18000-3 air interface at rate ranging from

106kbps to 424kbps. The transmission distance of it approaches 10cm or less.

NFC can be compatible with existing contactless smart card infrastructure and

run on various operating systems. Nowadays NFC the technology is being

widely supported by an increasingly number of manufacturers. /1/;/2/

The reason why we choose NFC to implement this project is depends on three

major factors: security, convenience and budget control. To briefly explained it,

for the security issue, nowadays the NFC technology is widely used in the

15

mobile payment system, as well as various bus card or ticketing, while other

wireless technology cannot achieve and support. Besides, since NFC is an

extremely short range wireless technology (up to 10cm), it ensure the data’s

secure transmission to a considerable extent. As for the convenience issue, there

are a growing number of phones in the current mobile phone market which can

support NFC communication effectively. We can easily implement the project

by using NFC-enabled phone. Finally, in terms of budget control issue, except

NFC-enabled phone we could also easily obtain affordable NFC tag from the

electronic shop or shopping website, the details of the price will be given in

Section 2.2.1.

As to the derivation of this technology, NFC is based on the existing RFID

standards. On account of NFC traces its root back to RFID, the following

section will briefly introduce RFID at first, and then describe the difference

between RFID and NFC, further information about the NFC technique details

will be explained at the end.

2.1.1 Radio Frequency Identification

RFID (Radio Frequency Identification) is a kind of wireless technology that

combines the use of electrostatic coupling or electromagnetic in the RF (Radio

Frequency) part of the electromagnetic spectrum to a particularly identified

object, animal, or human being. RFID allows a reader to send radio waves to a

passive electronic tag for identification, authentication and tracking. /2/;/3/

As Figure 2 shows, a complete RFID system consists of three major components

in general: a transponder (RF tag or label) with data memory, a reader with

antenna and a host with appropriate application which is applied to process data.

The operation principle of RFID is shown in Figure 2 and illustrated as follows:

(1) data are stored in tiny electronic microchips of transponders, which are

16

embedded in or labeled on the desired objects; (2) communication between the

transponder and a reader is by radio or electromagnetic waves; (3) when the

transponders pass through an electromagnetic zone, the reader transmits radio

wave energy with center frequency to the transponders, which is called a reader

activation signal; (4) the signal actives the transponders to send data to the

reader; (5) the reader receives the decodes data; (6) decode data are then

transmitted to the computer system for processing.

There are four typical frequency ranges that RFID systems run: LF (low

frequency) ranging from 125 kHz to 134.2 kHz, HF (high frequency) operating

at 13.56 MHz, UHF (ultra-high frequency) ranging from 860MHz to 960 MHz,

and microwave frequency starting from 3.1 GHz and up to around 10 GHz. /4/

Figure 2. RFID System Overview /4/

2.1.2 The Differences between RFID and NFC

According to the RFID frequency bands, the data transfer distance from the RF

tag to the reader is ranges from 10cm to 200m. NFC, which is based on the

RFID theory, is a new version of RFID. Typically, it is used in an extreme short

distance to transfer data. NFC has something in common with RFID, while there

are also differences. The comparison is indicated as follows. /5/

Similarity

 Both of NFC and RFID traverse inductive electromagnetic coupling in

17

the radio frequency of frequency spectrum to deliver information. /6/

 Both of NFC and RFID operate at the 13.56MHz frequency.

Differences /7/

 Since NFC only operates at 13.56MHz frequency and RFID operates

distance range from 125 kHz to 10GHz, NFC is a short range (up to 4

inches/10cm) communication technology, while RFID tags can be

scanned from a greater distance of up to 300 feet (100 meters).

 NFC is capable of two way communication, whereas RFID is a one way

communication technology.

 NFC can act as both a tag reader and tag writer, this important character

allows it to proceeds peer-to-peer (P2P) communication.

 Multiple RFID tags can be scanned by one reader device at once, but

only one NFC tag at a time.

2.1.3 NFC Operating Modes

NFC-enabled devices can support three operating modes as Figure 3 shows:

reader/writer mode, peer-to-peer mode and card emulation mode. The NFC

Forum technical specifications unlock the full capabilities of NFC technology

for the different operating modes and are based on the ISO/IEC 18092 NFC IP-1,

JIS X 6319-4 and ISO/IEC 14443 contactless smart card standards (referred to

as NFC-A, NFC-B and NFC-F in NFC Forum specifications). /1/ In this case we

selected reader/writer mode to implement the project.

18

Figure 3 NFC Operating Mode /1/

 Reader/Writer Mode

Reader/Writer mode enable NFC-enabled device is able to exchange data

with NFC Forum-mandated tags, such as a tag embedded in a NFC smart

poster. It means that in the reader/writer mode, when a NFC tag is put close

enough to a NFC device, the device can read data from the tag as well as

store data into the tag. The reader/writer mode on the RF interface conforms

to the ISO 1443 and FeliCa schemes. /1/

 Peer-to-Peer Mode

In the Peer-to-peer mode, two NFC devices are able to communicate with

each other to exchange data and share files, so that users of NFC devices

can exchange information promptly. For example, users can realize music

download, share Bluetooth or WiFi set up parameters or exchange data such

as digital photos, videos or phone address book. The Peer-to-Peer mode is

standardized on the ISO/IEC 18092 standard. /1/

 Card Emulation Mode

The card emulation mode treats NFC devices as smart cards, allowing users

to perform transactions such as credit card or bus card. With just a single

19

touch the function of purchases, ticketing, and transit access control can be

fully achieved. An external reader is required when the NFC device acts like

a traditional contactless smart card. /1/

The card emulation mode enables ticketing and contactless payments by the

NFC-enabled devices without changing existing infrastructure. /1/

2.1.4 Operating Principle of NFC Reader/Writer Mode

Since we selected the reader/writer mode to implement this project, so in this

section, the details of how the reader/writer mode works are explained. When a

NFC application starts to work, the reader phone generates a RF sine wave to

release energy to the tag and retrieve data from the tag. The sine wave is

transmitted at 13.56MHz frequency and it will form an area of magnetic flux. If

there is any tag close to the magnetic flux area, the tag will get energy from it

and then generate a counter frequency, which can modify the frequency

properties of the original sine wave created by phone. After the phone detects

the modification it confirms that there is a tag nearby. With the target tag lock-in,

data will be transferred between the phone and the tag respectively by the radio

wave. Figure 4 shows the general idea of the operating principle of the

reader/writer mode.

Figure 4 Schematic Diagram of Operating Principle in Reader/Writer Mode /8/

20

2.2 NFC Tag

This section gives basic ideas of NFC tag at first, and then introduces the NFC

tag type.

2.2.1 NFC Tag Basics

NFC tags, sometimes referred to as smart tags, are embedded chips with little

aerials that can go in just about anything and transfer the data or instructions on

them via NFC. /9/ It is known as a small memory device, like a USB sticker or

wristband, and has its own storage structure and tag type. There are no batteries

in the NFC tags, they draw power from a nearby active NFC device or other

smartphone.

NFC Forum defined 4 types, from type 1 to type 4. We can store different data

types on a NFC tag, such as a URL (Uniform Resource Locator) which goes to a

webpage or to an application, contact info, phone number, or even commands

and settings that the reading device could execute upon contact. The capacities

of a tags depend on the tag type and its configuration, different tag type have

different memory capacities. The minimum capacity of one NFC tag is 48bytes,

and the maximum of current day is about 8 kB. Besides, NFC tags are affordable

and achievable in daily life since it can be bought in Ebay or Amazon. /1/;/10/

In order to set up communication with the active NFC reader/writer, the passive

NFC tag was defined. The NFC forum introduced their first standardized

technology architecture and standards for NFC compliant devices in June 2006.

This included the NDEF (NFC Data Exchange Format), and RTD (Record Type

Definitions). /11/ The following section in Chapter 2 introduces NDEF and RTD

in details.

21

2.2.2 NFC Tag Type

According to the NFC forum, there are four basic tag types that have been

defined. The different NFC tag type definitions are as follows: /11/

 Type 1

Type 1 Tag is based on ISO/IEC 14443A. Tags are read and re-write capable;

users can configure the tag to become read-only. Memory availability is 96

bytes and expandable to 2 Kbyte.

 Type 2

Type 2 Tag is based on ISO/IEC 14443A. Tags are read and re-write capable;

users can configure the tag to become read-only. Memory availability is 48

bytes and expandable to 2 Kbyte.

 Type 3

Type 3 Tag is based on the Japanese Industrial Standard (JIS) X 6319-4,

also known as FeliCa. Tags are pre-configured at manufacture to be either

read and re-writable, or read-only. Memory availability is variable,

theoretical memory limit is 1MByte per service.

 Type 4

Type 4 Tag is fully compatible with the ISO/IEC 14443 standard series.

Tags are pre-configured at manufacture to be either read and re-writable, or

read-only. The memory availability is variable, up to 32 Kbytes per service;

the communication interface is either Type A or Type B compliant.

ISO/IEC 14443 Type A based on the ISO/IEC 14443 standards. NFC devices

implement native support for ISO14443-A tags. The NFC Forum refers to theses

22

tag as Type 1, Type 2 and Type 4. /11/

2.3 NFC Data Exchange Format

NDEF is a lightweight, binary message format that can be used to encapsulate

one or more application-defined payloads of arbitrary type and size into a single

message construct. The NDEF specification defines a message encapsulation

format to exchange information. Since Android has the most support for the

NDEF format, which is defined by the NFC forum, and it is the most universal

exchange data format when transferring data via NFC technology, besides it is

highly recommend by the Android developer office website, so we utilized the

NDEF format to implement data exchange between NFC tags and an Android

device in this project. /1/; /12/

As shown in Figure 5, an NDEF message is composed of numerous records. The

record amount in an NDEF message depends on the tag type and calling

application. As for this project, only one NDEF record was used to store the

verify link. Each NDEF record contains a header and a payload, the payload is

described by type, length and an optional identifier encoded in an NDEF record

header structure. The payload can be of one of a variety of different types: text,

URL, MIME (Multipurpose Internet Mail Extensions) media, or NFC-specific

data type. For NFC-specific data types the payload contents must be defined in a

NFC Record Type Definition file, RTD.

Figure 5 NDEF Structure /1/

23

2.4 Record Type Definition

As described in Section 2.2.3, the data type used in the payload of NDEF record

is defined by the NFC forum on the Record Type Definitions (RTDs) technical

specification in advance.

The format and rules built for standard record types are specified by the RTD

specification in the NFC Forum. This specification provides a way to efficiently

define record format for a new application and allows users to create their own

applications based on the NFC Forum specification. Five specific RTDs (text,

URI (Uniform Resource Identifiers), smart poster, generic control and signature)

are used to build standard record types. RTDs have their own mapping object in

the Android intent filter, which explained in the later section. /13/

Since we needed to transfer a specified link to the NFC tag, in this project we

applied the URI format to define the data type. The URI RTD technical

specification defined in the NFC forum provides an efficient way to store URI

by using the RTD mechanism and NDEF format.

2.5 How NFC Tags Are Mapped To URI Type

In this section we combine NDEF and RTD together to describe how NFC tags

are mapped to the URI type. As we explained in the previous section, data is

stored in the NFC tag via the NDEF format, and the data type is defined by the

RTD. More specifically, NDEF record is encapsulated inside a message that

contains one or more records. Each NDEF record must be well-formed

according to the specification of the type of record that we want to create. The

structure of NDEF message and NDEF record is shown as Figure 6.

Next comes to how Android handles NDEF formatted tags. When an Android

device scans a NFC tag containing NDEF formatted data, it parses the message

24

and tries to figure out the data’s Multipurpose Internet Mail Extensions (MIME)

type or identifying URI. To do this, the system reads the first NdefRcord inside

the NdefMessage to determine how to interpret the entire NDEF message (an

NDEF message can have multiple NDEF records). In a well-formed NDEF

message, the first NDEF record contains the following fields: /12/

 3-bit TNF (Type Name Format)

The 3-bit TNF describes the type of the record. The field value of TNF is

show in Table 1. To implement the project, TNF_WELL_KOWN, the NFC

Forum well-known type was selected to define RTD_URI, so that the

transfer data can be stored as a link in NDEF format.

Table 1 TNF Field Value /12/

 TYPE_LENGTH

The TYPE_LENGTH field is an unsigned 8-bit integer that specifies the

length in octets of the TYPE field. The TYPE_LENGTH field is always

zero for certain values of the TNF field

 ID_LENGTH

The ID_LENGTH field is an unsigned 8-bit integer that specifies the length

25

in octets of the ID field. This field is present only if the IL flag is set to 1 in

the record header. An ID_LENGTH of zero octets is allowed and, in such

cases, the ID field is omitted from the NDEF record.

 PAYLOAD_LENGTH

The PAYLOAD_LENGTH field is an unsigned integer that specifies the

length in octets of the payload field. The size of the PAYLOAD_LENGTH

field is determined by the value of the SR (Short Record) flag. If the SR flag

is set, the PAYLOAD_LENGTH field is a single octet representing an 8-bit

unsigned integer. If the SR flag is clear, the PAYLOAD_LENGTH field is

four octets representing a 32-bit unsigned integer.

Figure 6 Structure of NDEF Message and NDEF Record /1/

2.6 Android Basics in NFC Development

This project was implemented through the Android OS (Operating System) on

account of its widely used, powerful portability and operation flexibility.

Moreover, since 2010 the first Android NFC phone Samsung Nexus S has been

published, nowadays the majority of Android-based devices support the NFC

functionality, therefore, we exploited Android OS as a development platform.

/14/

26

Here we introduce some vital concepts of Android basics in NFC development

before we start programming.

2.6.1 Android Activity

An activity is an application component in the Android OS, it can provide a

screen with which users can interact in order to do something, such as dial the

phone, take a photo, send an email, or view a map. It is one of the most

important components in the Android system. Each activity is given a window in

which to draw its user interface. The window typically fills the screen, but may

be smaller than the screen and float on top of other windows. /15/

There are four states on an activity when it is interacting with the user. Table 2

describes these states.

Table 2 Activity State /16/

From created to destroy, an Android Activity has a lifecylce during which it

performs a few things.

An activity contains seven callback methods during its lifecycle, which are

onCreate(), onStart(), onResume(), onPause(), onRestart(), onStop(), onPause(),

and onDestroy().

Figure 7 shows the important stat paths of an Activity. The square rectanges

represent callback methods that can be implemented to perform operations when

the Activity moves between the states. The colored ovals are the major state the

http://developer.android.com/reference/android/app/Activity.html

27

Activity can be in. /15/

Figure 7 The Activity Lifecycle /15/

Among these predefined lifecycle methods, the most important methods are

illustrated in Table 3. /16/

Table 3 Important Activity Lifecycle Methods

28

2.6.2 Intent and Intent-Filter

Intents are asynchronous messages which allow application components to

request functionality from other Android components. Intents allow user to

interact with components from the same applications as well as with

components contributed by other applications. For example, an activity can start

an external activity for taking a picture. /17/

An intent filter declares the capabilities of its parent component – what an

activity or service can do and what types of broadcasts a receiver can handle. It

opens the component to receiving intents of the advertised type, while filtering

out those that are not meaningful for the component. /18/

Intents are divided into two types, explicit type and implicit type. With an

explicit intent to start service or an activity, the application components

specified in the Intent object will be immediately started by the system. While

with an implicit intent, the Android system finds the appropriate component to

start by comparing the contents of the intent to the intent filters declared in the

manifest file of other applications on the device. If there is any intent that

matches an intent filter, the system starts that component and delivers the intent

object to it. If multiple intent filters are compatible, the system displays a dialog

so the user can pick which app to use. More generally, for the convenience of

testing the application, an explicit intent will be chosen to implement the

development. /19/

2.6.3 How NFC Tags Are Dispatched to Application

After data has already been stored in the NFC tag, there will be a tag dispatch

system (will be described in Chapter 3) to create an intent to encapsulates the tag

and its carry data. Then the system sends the encapsulated intent to an interested

application that filters for the intent. The tag dispatch system defines three

29

intents, which are stored in priority. The structure can be seen in Figure 8. /20/

1. ACTION_NDEF_DISCOVERED: This intent is used to start an Activity

when a tag that contains an NDEF payload is scanned and is of a recognized

type. This is the highest priority intent, and the tag dispatch system tries to

start an Activity with this intent before any other intent, whenever possible.

2. ACTION_TECH_DISCOVERED: If no activities registered to handle the

ACTION_NDEF_DISCOVERED intent, the tag dispatch system tries to

start an application with this intent. This intent is also directly started

(without starting ACTION_NDEF_DISCOVERED first) if the NDEF data

contains in the tag cannot be mapped to MIME type or URI or if the tag does

not contain NDEF data but is of a known tag technology.

Actually this kind of intent can define a more accurate data type by setting

up an XML file to filter the suitable data, so in this case the

ACTION_TECH_DISCOVERED was used to encapsulate NFC tag.

3. ACTION_TAG_DISCOVERED: This intent is started if no activities

handle the ACTION_NDEF_DISCOVERED or

ACTION_TECH_DISCOVERED intents.

Figure 8 NFC Tag Dispatch System /20/

30

3 IMPLEMENTATION

Chapter 3 comprehensively introduces the implementation of the entire project,

which includes the development environment, supportive theory, implement

procedure and flowchart of each module.

3.1 Development Environment

To implement this application, specified hardware and software were required.

In this section, the configuration of the development environment, all the

implementation tools and the languages are described.

3.1.1 JDK Configuration

The Android application program is coded in JAVA and hence a JDK (Java

Developer’s Kit) needs to be installed, also related environment variables needs

to be configured. How to configure JDK in computer is demonstrated step by

step as follows.

1. JDK Set Up

The JDK package was downloaded from ORACLE’s official website

http://www.oracle.com/technetwork/articles/Javase/index-jsp-138363.html

and installed on the computer. The path of JDK installation directory needed

to be remembered, in this case the path was

C:\ProgramFiels\Java\jdk1.7.0_45\

2. Setting Path and Class path for Java

 The “Control Panel\System and Security\System” was opened and the

“Advanced system settings” was found, “Environment Variables” was

clicked in the System Properties window to set the path. Figure 9 is the

http://www.oracle.com/technetwork/articles/javase/index-jsp-138363.html

31

screenshot of the procedure.

Figure 9 Environment Variables Setting

 A new variable “PATH” was created in the “System Variables” window if

there does not exist one. Here we needed to fill the JDK’s bin directory path,

which was under its installation directory. The setting of new system

variable is shown in Figure 10.

Figure 10 JDK Path Configuration

32

 A new variable “CLASS” was created in the “User variables” window and

filled the JDK’s lib directory as Java’s class path like Figure 11 shows.

Figure 11 Java Class Path Setting

3. Verifying Configuration

After all the variable settings were accomplished, we opened the cmd.exe to

verify JDK configuration status. With the command “Java” and “Javac” we

could specify whether the configuration was complete or not. Here we used

“Java –version” to check the installed JDK’s version. The result is shown in

Figure 12.

Figure 12 Version of Installed JDK

33

3.1.2 Configuration of Android Developing

After Java configuration, we downloaded and installed the Android Software

Development Kit (SDK), then set up Android Development Tools (ADT) on

Eclipse, and then installed the corresponding smartphone driver.

Before we started to configure SDK or ADT, we needed to ensure that Eclipse

was installed.

 Android SDK Configuration

1. Download the SDK Starter Package

Firstly we downloaded the SDK starter package from its website:

https://developer.android.com/sdk/index.html, then with the extract package

we could install the release directory into our designated location. After that

we ran the SDK setup.exe, and through the instructions of its prompt

window we could successfully install it.

2. Available Package

By running the setup.exe, an Android SDK Manage window showed up as

Figure 13. “Available Package” was clicked and the packages were

download and its related document or other packages that we intended to use.

As for this project, we downloaded all the available packages.

https://developer.android.com/sdk/index.html

34

Figure 13 Android SDK Manager

 ADT Configuration

1. Download the ADT Plugin

As Figure 14 shows, we launched Eclipse at first, and then selected “Install

New Software” in the Help menu, clicked “Add” button, an “Add

Repository” dialog would appear on the screen, “ADT Plugin” was entered

for the Name and https://dl-ssl.google.com/android/eclipse/ for the

“Location”. “OK” was clicked and then related developer tools were

selected in the Available Software dialog.

https://dl-ssl.google.com/android/eclipse/

35

Figure 14 Download the ADT Plugin

2. Configure the ADT Plugin

To restart Eclipse, there was a “Welcome to Android Development” window,

we selected the “Using existing SDK” button and specified the location of

the Android SDK directory that we had already downloaded beforehand. The

screenshot is shown in Figure 15.

Figure 15 Configure the ADT Plugin

36

As Figure 16 shows, with the complete configuration of Android SDK and ADT,

now Eclipse was able to handle Android application, we could create a new

Android project to start our application.

Figure 16 New Android Project

3.1.3 Development Tools

In this section a list of the development tools used in this project is given.

 Hardware

1. PC(Laptop)

 Product Model: Dell Ins14VR-368

 Operating System: Win 7

2. NFC-enabled phone

 Product Model: Samsung Galaxy S4 GT-19502

 Android Version: 4.4.2

37

3. NFC tag

 Type A(ISO/IEC 14443 Type A)

 Tag Type: NFC Forum Type 2 Tag

 Capacity: 142 Byte

 Is tag writeable: yes

 Bought from eBay /21/, the tag using in this project is shown as

Figure 17.

Figure 17 NFC Tag

4. Micro USB cable

 Connecting development phone and laptop

 Software:

1. Eclipse 4.3

 Execution environment: JDK, Android SDK, ADT 23.0.4

 Development purpose: implement NFC reader application and

writer application

2. Notepad++ V6.6.7

 Development purpose: implement verify.php

38

 Development Language:

1. Java

2. PHP

3.2 Supportive Theory of Implementation

Before we started to develop the project, it was necessary to be familiar with

some technical theories which support the implementation process. Here NFC

API, NFC foreground dispatch system and NFC dispatch system are described.

The detailed usage of these theories will be explained in the following section.

3.2.1 NFC API

The Android system introduces NFC API after API 9. Currently, there are two

packages managing the NFC development in Android system, namely

Android.nfc and Android.nfc.tech.

The Android.nfc.tech package provides access to a tag technology’s features,

which vary by the type of the tag. The technology’s features of NFC tags include

its independently developed technologies specification (for example ISO

14443-3A or ISO 14443-3B) and its related capabilities (for example Ndef,

NdefFormatable). /22/

While the Android.nfc package is mainly used to provide access to NFC

functionality, allowing applications to read NDEF message in NFC tags. /23/

Here two main classes we used in this project are introduced: /23/

 NdefMessage

Represents an NDEF data message, which is the standard format in

which “records” carrying data are transmitted between devices and tags.

39

The application can receive these messages from an

ACTION_TAG_DISCOVEREND intent.

 NdefRecord

Represents a record, which is delivered in a NdefMessage and describes

the type of data being shared and carries the data itself.

3.2.2 NFC Foreground Dispatch System

The NFC foreground dispatch system is a technology used in the active program

(foreground running activity) to handle tag. It allows an activity to intercept

intent and claim priority over other activities that handle the same intent. It is

quite easy and convenient to obtain an NFC message in the foreground activity

by using this system. The foreground dispatch system involves constructing a

few data structures for the Android system so that it can send the appropriate

intents to the dedicated application. /24/

3.2.3 NFC Tag Dispatch System

The NFC dispatch system is a sort of mechanism that launches application

program through a pre-defined tag or NDEF message. An application that wants

to handle the scanned NFC tag can declare an intent filter and request to handle

the data. That is, when scanning a NFC tag, if the related application has already

been registered in the Intent-Filter, then the application would be automatically

called to handle the discovered tag. To summarize, the tag dispatch system is

able to analyze scanned tags, parses them, and tries to locate applications that

are interested in the scanned data. It does this by /20/:

 Parsing the target NFC tag and figuring out the MIME type or a URI that

identifies the data payload in the tag.

40

 Encapsulating the MIME type or URI and the payload into an intent.

 Starting an appreciate activity based on the intent.

To explain it, when an Android-powered device scans an NFC tag containing

NDEF formatted data, it parses the message and tries to figure out the data’s

MIME type or identifying URI. To do this, the system reads the first NdefRecord

inside the NdefMessage to determine how to interpret the entire NDEF message

(an NDEF message can have multiple NDEF records). In a well-formed NDEF

message, the first NdefRecord contains TNF, type, ID and payload. /20/

The tag dispatch system uses the TNF and type fields to try to map a MIME type

or URI to the NDEF message. If successful, it encapsulates that information

inside of ACTION_NDEF_DISCOVERED intent along with the actual payload.

However, there are cases when the tag dispatch system cannot determine the

type of data based on the first NDEF record. This happens when the NDEF data

cannot be mapped to a MIME type or URI, or when the NFC tag does not

contain NDEF data to begin with. In such cases, a Tag object that has

information about the tag’s technologies and the payload are encapsulated inside

of ACTION_TECH_DISCOVERED intent instead. /20/

The basic way the tag dispatch system works is as follows: /20/

1. Try to start an Activity with the intent that was created by the tag dispatch

system when parsing the NFC tag (either ACTION_NDEF_DISCOVERED

or ACTION_TECH_DISCOVERED)

2. If no activity filters is set for that intent, try to start an Activity with the next

lowest priority intent (either ACTION_TECH_DISCOVERED or

ACTION_TAG_DISCOVERRED) until an application filter for the intent or

until the tag dispatch system tries all possible intents.

41

3. If no applications filter for any of the intent, do nothing.

3.3 Development Procedure

The project is divided into three modules: writing the NFC tag module, scanning

the NFC tag module, and the PHP service module. Figure 18 demonstrates the

flow diagram of the entire project. For this project, the tag writer and reader

application can be installed in the same phone. To achieve the write tag data or

read tag data function, we started the correspondent application at first, and then

put the NFC tag close to the Android-based phone to transfer data, lastly

checked the received feedback from the application. During the read/write data

process, a decision process was found to decide whether the data transmission

process was successful or not. If the transfer procedure failed, the application

returned a notice message to remind the user. Otherwise the received data would

be taken up by the PHP server. If writing data successfully, a successful prompt

message would be turned back to the user.

Figure 18 Flowchart of the entire Project

42

The procedure about how to implement this project will be introduced step by

step in the following section.

3.3.1 Before Programming

Before we started to program, several steps needed to be done in advance to

ensure the development process work well.

1. Enable the NFC function available in the develop phone. We could

check it in the setting system as shown in Figure 19.

Figure 19 NFC Function Enable

2. Open the NFC function and developer options in the setting system

as Figure 20 shows, then click “USB debugging” and “Allow mock

locations”.

Figure 20 Developer Options Selection

43

3.3.2 Requesting NFC Access in the Android Manifest

In order to get access to phone’s NFC hardware and cope with NFC intents

properly, we needed to declare the permission of NFC function in the Android

project’s AndroidManifest.xml file at first:

 Declared the permission of NFC hardware in the <user-permission>

element.

 Defined the minimum SDK version that support the develop application.

Generally, API level 9 and upwards level support NFC function, among

them API level 10 contains comprehensive reader/writer support as well as

foreground NDEF pushing. In this project, the minimum SDK version was

10, while the target SDK version is the newest version 21. /20/

 Enabled the APK only available for the NFC-enabled phone by defining the

uses-feature element.

3.3.3 Filtering for NFC Intents

As Section 3.2.3 describes, in order to start application when a target NFC tag is

scanned, we can filter one, two, or all three of the NFC intents in the

AndroidManifest.xml file. Here we defined ACTION_TECH_DISCOVERED intent

in the AndroidManifest.xml to locate the scanned tag. This intent is able to

achieve the NFC intent more accurately and expediently, as well as to ensure our

application can be called by the system successfully. Meanwhile, an

nfc_tech_filter.xml file needed to be created in the res/xml folder to specify the

technologies that the activity supports within a tech-list set. If the tech-list set is

a subset of the scanned tag’s supportive technologies, the activity is able to

match and handle the discovered tag. To summarize, we needed to complete the

following steps:

44

 Declare ACTION_TECH_DISCOVERED intent

 Define activity supportive technologies

In this case only tech.MifareClassic technology was being defined, and if this

technology is a subset of the scanned tag’s supportive technologies, then the

activity is considered as a match of the tag, and the technologies can be called

through getTechList().

3.3.4 NFC Foreground Dispatch System Implementation

With the foreground dispatch system we can easily obtain and push NDEF

message in the foreground running activity. Here we need to implement

foreground dispatch system in both reader and writer application to help us

handle the target tag and the NFC message. To enable the foreground dispatch

system we needed to go through with the following steps. /23/

 Create a PendingIntent object in the onCreate() method to encapsulate data

so that the Android system can populate it with the details of the data when

it is scanned.

 Declare intent filters to intercept ACTION_TECH_DISCOVERED intent

 Set up an array of tag technologies mTechList to obtain scanned tag’s

technology features, in this case NfcA class in Android.nfc.tech package was

used to provide access to NFC-A (ISO 14443-3A) properties and I/O

operations on the detected tag. Here we called the Object.class.getName()

method to obtain the class of desire technology.

 Overwrite the onPause(), onResume(), onNewIntent() method to enable the

foreground dispatch system can be properly called and suspended in the

activity.

45

protected void onResume() {

super.onResume();

mNfcAdapter.enableForegroundDispatch(this,

pendingIntent,mWriteTagFilters, mTechLists);

 }

protected void onPause() {

super.onPause();

 disableForegroundDispatch();

 }

protected void onNewIntent(Intent intent) {

 // do something with tag from the intent

 }

When an activity regained, we enabled the foreground dispatch system in the

onResume() method. enableForgroundDispatch() must be called from the main

thread and only when the activity is in the foreground (calling

enableForgroundDispath() in onResume() will guarantees this). When an

activity lost, we disabled the system in the onPause() method. The

onNewIntent() method was used to handle the writing data into detected tag

function or reading data from the scanned tag function.

As for the details of how we implemented the writing data and reading data

function, Section 3.3.5 and Section 3.3.6 will introduce the operation steps

specifically.

3.3.5 NFC Tag Write Operation Steps

When the NFC application program detected a NFC tag, it would start the

activity which was defined in the AndroidManifest.xml. User can do what he/she

wants to do in the activity. If we want to write specific data into a NFC tag, there

are three operation steps we should follow:

1. Define Tag object to obtain scanned tag’s intent

46

2. Prepare NDEF data , transfer the specific data into NDEF format

3. Write NDEF data into the detected tag

For the first step, we can obtain a tag object by getting it from the Intent, while

Intent involves the related information about the target tag. The tag object is

encapsulated in the target tag. As for the other two steps, the communication

data used in the NFC technology should be transferred into the NDEF format

data in a uniform way in step 2. Step 3 fulfills the process of writing NDEF data

into the NFC tag. The two later steps will be explained as follows in details.

 Acquire transitive data

To authenticate a product, we can verify its product ID and unique SN, while SN

is based on ID and generated via specific algorithm. With a custom algorithm or

an encryption and related decryption algorithm only one SN can be determined.

Since the algorithm is mastered by the developer so that nobody can obtain the

correct decipherment algorithm, this ensures the security of the authentication

procedure. Only by using the correct algorithm can we get the correct and

matched SN. Therefore, we implemented the related decipherment algorithm on

the verify.php to validate the product’s ID and SN.

Here we selected Base64 encoding schemes to encode the ID and then get its

sole SN. Actually if we want to ensure the security of the authentication issue

another encrypt algorithm should be applied in here. The formula is shown in

this way: SN = f(x), while x = ID and f =selected encrypt algorithm. ID can be

created through a random function. The source code of this procedure is shown

as below:

Random random = new Random();

 Long ID = random.nextLong();// get a random value as ID

ID = Math.abs(id); //get id’s absolute value

47

String idString = String.valueOf(id);

String SN = encodeStr(idString); // get ID’s related SN

//encodeStr() is a method that implement encryption algorithm

In this project the validation file verify.php was configured in the VAMK’s

official website http://www.cc.puv.fi to verify received ID and SN. The entire

link can be shown in this way:

http://www.cc.puv.fi/~e1001920/verify.php?id=xxx&sn=xxx.

 Acquire NDEF Message

Before we wrote data into an NFC tag, we needed to convert the data into the

NDEF record on the basic of NFC Forum definition. As Section 2.5 describes, in

here TNF_WELL_KNOWN was used to define specific RTD to transfer data.

Since the data here is a link (URI), so according to the official recommendation

we selected RTD_URI record type to create NDEF record. The following code

specified the way of using RTD_URI way to obtain efficient NdefRecord object.

/20/

String url = "http://www.cc.puv.fi/~e1001920/verify.php?id="+idString+"&sn="+sn;

NdefRecord rtdRecord = NdefRecord.createUri(url);

Then the rtdRecord should be encapsulated into an NDEF message object and

return to the original function.

return new NdefMessage(new NdefRecord[] { rtdRecord });

So far, NDEF message object NdefMessage has been generated.

 Writing NDEF Message into NFC tag

After the link had been transfer into NdefMessage, we could continue to write it

into NFC tag. By encapsulating a utility method writeTag() to focus on the

http://www.cc.puv.fi/
http://www.cc.puv.fi/~e1001920/verify.php?id=xxx&sn=xxx

48

writing procedure, we could easily fulfill the writing data operation. The

writeTag() method requires two parameters, one is a complete NdefMessage and

the other one is an Tag object. The main code of this method is as follows:

boolean writeTag(NdefMessage message, Tag tag){

int size = message.toByteArray().length;//get the NFC tag’s memory size

 Ndef ndef = Ndef.get(tag); // Detected NFC tag and get its //object

 if (ndef != null) {

 ndef.connect(); //connection establishment

 if (!ndef.isWritable()) {

 toast("Error:Tag can not be write");

 return false;

 } //decide whether the scanned tag is writable or not

 if (ndef.getMaxSize() < size) {

 toast("Error:Data payload is overflow. ");

 return false;

 }

// data cannot be write into the tag if its size is over the tag memory size

 ndef.writeNdefMessage(message);

 toast("write successful!");

 ndef.close(); //connection close

 return true;

else{…}

} }

3.3.6 NFC Tag Read Operation Steps

In general, reading tag operation includes three main steps as below:

1. Define Tag object to obtain scanned tag’s intent

2. Receive NDEF message

49

3. Parse NDEF message to get the raw data

After the three steps we can utilize the raw data to conduct further operation.

Step 1 is about how to get the tag object from the intent, while step 2 receives

the NDEF message from the intent and parses it in step 3. Here we briefly

explain the latter two steps.

 Receive NDEF Message

We can get the NDEF message (NdefMessage) from the scanned tag’s intent,

which is written by the Tag writer application. To implement the procedure we

defined a resolveIntent() method to deal with the received intent. The main code

of the method is as follows:

private void resolveIntent(Intent intent) {

 String action = intent.getAction();

 if (mNfcAdapter.ACTION_TECH_DISCOVERED.equals(action)) {

 NdefMessage[] messages = null; //defined NdefMessage Object

 Parcelable[] rawMsgs =

intent.getParcelableArrayExtra(mNfcAdapter.EXTRA_NDEF_MESSAGES);

// Received Tag’s information and put it in a Parcelable[] arrary

 if (rawMsgs != null) {

 messages = new NdefMessage[rawMsgs.length];

 for (int i = 0; i < rawMsgs.length; i++) {

 messages[i] = (NdefMessage) rawMsgs[i];

// Received NDEF message from Parcelable arrary and cast it into a NdefMessage

object

}

}else {…….}

 processNDEFMessage(messages); }}

50

 Parse NDEF Message

In this step we parse the received NDEF message to get the original data. As

described in the background chapter, the NDEF message is composed of a

sequence of records, and each record contains a payload and a header. The

header is composed of TNF, ID and payload length. Before parsing the NDEF

message we should know the payload type of the record, the TNF, in this case

the payload type is URI and there is only one record within the NdefMessage.

We implemented a parseNdefMessage() and called it in the resolveIntent()

method when the NdefMessage had been dispatch from the intent. Here is the

main code in the parseNdefMessage():

private void processNDEFMessage(NdefMessage[] messages) {

if (messages == null||messages.length == 0) {

toast("NdefMessage is null.");

// check whether NdefMessage is null string or not

 }

 for (int i = 0; i < messages.length; i++) {

 int length = messages[i].getRecords().length;

 NdefRecord[] records = messages[i].getRecords();

 byte[] payload = records[0].getPayload();

//there is only one record in the NdefMessage in this case

 for (int j = 0; j < length; j++) {

 for (NdefRecord record : records) {

 if (isUri(record)) {

 byte[] payload = record.getPayload();

String prefix =URI_PREFIX_MAP.get(payload[0]);

 byte[] fullUri =

Bytes.concat(prefix.getBytes(Charset.forName("US-ASCII")),

 Arrays.copyOfRange(payload,1, payload.length));

// get the well-formed Uri byte

51

Uri uri = Uri.parse(new

String(fullUri,Charset.forName("US-ASCII")));

// parse the byte of uri into Uri object, then the data encapsulated in

tag //can be obtained

 //doing something here…. }}}}}

 The authentication of the product

Now we achieved the encapsulated data from the tag, which is a well-formed

link from the NFC tag, just like

http://www.cc.puv.fi/~e1001920/verify.php?id=xxx&sn=xxx. Next we went to

the PHP server side through this URI for further information. With the received

URI the phone’s browser would automatically go into the verfy.php page and

display the verified result. We implemented this procedure by start a new

activity.

Intent intent = new Intent(Intent.ACTION_VIEW,uri);

startActivity(intent);

After the new activity started the application redirected to the PHP server side,

the product’s ID and SN would be handed over by verify.php.

3.3.7 PHP Server Implementation

Finally we come to the PHP server implementation. Here we used the

decipherment algorithm to check whether the SN match the ID or not, which

means if ID = decodeBase64(sn) was correct. Then it proves that the ID and SN

belong to quality goods, otherwise the wrong SN indicates that it is a counterfeit.

The verification result will be given back to the user on the browser. The main

body of the verify.php is shown below:

function match($id, $sn){

// define a function to decode Base64

$idStr=base64_encode($id);

http://www.cc.puv.fi/~e1001920/verify.php?id=xxx&sn=xxx

52

$snStr=base64_decode($sn);

if(($idStr==$sn)&&($snStr==$id)){

return true;

 }

else return false;

} // end of function

3.4 Flowchart of the Program

Owing to the situation that this project is divided into three parts, or in other

words three modules, writing tag module, read tag module and PHP verify

module, so we implemented the three modes respectively. The writing tag

project and reading tag project were implemented by using the complete

Android activity lifecycle method. This section illustrates the workflow of the

three modules with them separate flowchart.

3.4.1 Writing Tag Module Flowchart

As we can see from Figure 21, when the application begins, onCreate() method

initialize the UI and defined variables, after the UI initialization if the user wants

to write data into an NFC tag, the application will try to detect if the NFC tag

exists nearby or not. If the tag is being scanned successfully, the application will

call the method to gain NdefMessage and then write it into tag, otherwise it will

turn back to detect the tag again. As long as the data is written into the tag

successfully, the writer application will feed back a prompt message to the user,

and then the application is finished. Or if there is something wrong during the

writing data procedure, the user will receive an error message, and then the

application will try to write NdefMessage into the tag again. The details about

how to implement the writing tag procedure can be checked in the

implementation procedure in Section 3.3.5.

53

Figure 21 Writing Module Flowchart

3.4.2 Reading Tag Module Flowchart

As Figure 22 shows, in the reading tag module, firstly we need to start the

application, build up the UI and detected the NFC tag, which are almost the

same as writing module’s initial work. However, as for the reader tag application,

we intercept the detected tag’s intent, get its internal NdefMessage and then try

to parse it. If NdefMessage in the NFC tag is being parsed correctly then it will

be processed by PHP server. A verify.php file running on the server side will

handle the receive data and give related feedback to the users, finally the reader

application is end. Or it will return an error message to the user and the

application ends as well.

54

Figure 22 Reading Tag Module Flowchart

3.4.3 PHP Server Flowchart

As for the PHP server side shown in Figure 23, it receives ID and SN from the

reader application, and decodes the SN according to the specific algorithm. If

the verified SN can match the received ID as well as ID can deduce unique SN,

then both the ID and SN are correct, which means the carry-in data of the

product is valid, and it is a quality product. While if ID and SN cannot match

each other, then the product is counterfeit.

55

Figure 23 PHP Server Flowchart

56

4 TEST AND RESULT

With supportive technical principles, methods and implementation, the project

was successfully accomplished. In this chapter the way of testing the application

and its result will be demonstrated in details.

4.1 Functional Test

In this section, a sequence of measurement was applied to test performance of

the two applications.

4.1.1 Writing Tag Application Test

 We started the writing tag application at first. The UI of the application is

shown in Figure 24.

Figure 24 Writing Tag Application UI

 There is only one button in the UI. We clicked the Tag Generate button to

write data into an NFC tag. A window appeared in the middle of the

application to remind us putting the NFC tag close to the phone. The prompt

window can be checked in Figure 25. Usually the tag should be put on the

57

back of the phone, in its inductor position. The distance of it should keep

within 1cm or less, otherwise the phone cannot detect the nearby NFC tag.

Although the ideal transmit distance of NFC transmission is up to 10 cm,

however, due to the fact that the small tag and phone generally have far less

range, so in order to achieve a better contact from the phone to the tag, in

this case we try to connect the phone and the NFC tag as near as possible.

Figure 25 Prompt Window Of Writting Application

 If the writing data operation is successful, a prompt message will be given

to the user to express as Figure 26 shows.

Figure 26 Writing Data Confirm

58

 If there something wrong happened with the writing process, such as no tag

is detected or the connect distance is not short enough, the application will

also give an error message to the user and allow them to try to detect tag

again until the writing process is successful. The error prompt message is

shown in Figure 27.

Figure 27 Error Prompt Message

4.1.2 Reading Tag Application Test

 Firstly, we started the reading tag application as Figure 28 shows. It is much

like the write application UI, which also includes a scan button under the

welcome message.

59

Figure 28 Reading Tag Application UI

 The scan button has to be clicked when we want to read the tag. A window

like Figure 29 will show up in the screen to remind us to put the tag close to

the phone.

Figure 29 Prompt Window Of Reading Application

 If the reading tag operation works successfully, the link stored in the tag

will be received by the phone and then applied to the browser automatically.

60

Otherwise, an error message will be returned to the user. The further

information about the verify result will be manipulated by the verify.php

and show on the browser finally.

4.2 Result

Finally the verify result of the product displays on the browser in the phone.

On one hand, a quality product with valid product ID and SN can pass the

authentication of the PHP verify server, and the correspondent product

information will be displayed on the browser as Figure 30 shows.

Figure 30 Quality Product Result

On the other hand, if the product is a counterfeit, which do not have correct SN,

then it cannot get through the validation of the PHP Server, and the related

notice will be given to users as shown in Figure 31.

Figure 31 Fake Products Result

61

4.3 Summary

Since each product has its ID and correspondent SN, the unique SN can be

treated as a symbol to decide the authenticity of product. In this case correct ID

and SN are given by the specific algorithm. Only by using this algorithm can we

obtain the correct ID and SN, so the same algorithm is going to be used on the

PHP server side to verifying the authentication of product. In other words,

verifying the SN is the same as verifying the counterfeit product and quality

product.

For purpose of implementing this project, two Android applications were built to

transfer data to and from NFC tag, meanwhile the NFC tag is regarded as

transfer medium. Finally we constructed the PHP server to verify the received

ID and SN. By defining the specific algorithm and using the NFC technology

for transmission the security and reliability of the product authentication issue

was ensured.

62

5 CONCLUSION

The conclusion that can be drawn from this project is that the way of

transferring data between NFC tag and Android application is feasible, efficient

and convenient. Simultaneously, building an Android application to handle NFC

operation and using NFC tag is easily developable and accessible.

In this case we achieve the function by storing data as URI format. However,

there are still has other alternative types of data that can be stored in an NFC tag.

It means that one NFC tag is able to carry various types of data, for example text,

video, related system setting or other custom data type. We can simply transfer

specific information into an NFC tag and package it with related product, and

then the user can use their phone to scan the tag and get the product information.

During this project, I have learned how to develop Android application and also

got an insight into the NFC technology. The NFC technology is a general trend

in many fields nowadays, such as health care, gaming, access control and

transport. With the high performance of security assurance and excellent user

experiences, building related Android application program to handle NFC

operation will receive a larger market in future.

63

REFERENCES:

/1/ NFC Forum. Accessed 16.03.2015 http://nfc-forum.org/

/2/ NFC Technical Details. Accessed 16.03.2015

http://en.wikipedia.org/wiki/Near_field_communication

/3/ RFID Definition. Access 16.03.2015

http://searchmanufacturingerp.techtarget.com/definition/RFID

/4/ Jung H.Han, H. “Packaging for Nonthermal Processing of Food”. 1
st
 ed.

2007.Wiley-Blackwell. pp.121.

/5/ Sen, Dipankar&Sen,Prosenjit& Das, Anand M. “RFID For Energy and

Utility Industries”.2009. PennWell, ISBN 978-1-59370-105-5. pp.1-48

/6/ Vedat Coskun&Kerem Ok&Busra Ozdenizci. “Near Field Communication

(NFC): From Theory to Practice”. 1
st
 ed. 2012.Wiley. Chapter 2.4.7 Operating

Principles of RFID Technology

/7/ What are the differences between NFC and RFID. Accessed 20.03.2015

http://trendblog.net/whats-the-difference-between-nfc-and-rfid/

/8/ Learn NFC. Accessed 20.03.2015

http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/wireless_mcus/rf430/le

arn_nfc.page?DCMP=frl152h&HQS=ep-mcu-sec-frl152h-conw-20141210-lp3-

en

/9/ What are NFC tags and how do you use them. Accessed 20.03.2015

http://Android.appstorm.net/how-to/hardware/what-are-nfc-tags-and-how-do-yo

u-use-them/

/10/ Capacity of NFC Tag. Accessed 20.03.2015

http://www.nfcinteractor.com/question/how-much-data-can-i-store-on-a-tag/

/11/ NFC Forum. NFC Forum Tag Type Technical Specifications.

http://nfc-forum.org/our-work/specifications-and-application-documents/specific

ations/tag-type-technical-specifications/

/12/ NFC Forum. NFC Data Exchange Format (NDEF) Technical

Specification.2006

http://nfc-forum.org/
http://en.wikipedia.org/wiki/Near_field_communication
http://searchmanufacturingerp.techtarget.com/definition/RFID
http://trendblog.net/whats-the-difference-between-nfc-and-rfid/
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/wireless_mcus/rf430/learn_nfc.page?DCMP=frl152h&HQS=ep-mcu-sec-frl152h-conw-20141210-lp3-en
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/wireless_mcus/rf430/learn_nfc.page?DCMP=frl152h&HQS=ep-mcu-sec-frl152h-conw-20141210-lp3-en
http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/wireless_mcus/rf430/learn_nfc.page?DCMP=frl152h&HQS=ep-mcu-sec-frl152h-conw-20141210-lp3-en
http://android.appstorm.net/how-to/hardware/what-are-nfc-tags-and-how-do-you-use-them/
http://android.appstorm.net/how-to/hardware/what-are-nfc-tags-and-how-do-you-use-them/
http://www.nfcinteractor.com/question/how-much-data-can-i-store-on-a-tag/
http://nfc-forum.org/our-work/specifications-and-application-documents/specifications/tag-type-technical-specifications/
http://nfc-forum.org/our-work/specifications-and-application-documents/specifications/tag-type-technical-specifications/

64

/13/ NFC Forum. NFC Record Type Definition Technical Specifications.2006

/14/ Google unveils first Android NFC phone. Accessed 20.03.2015

http://www.nfcworld.com/2010/12/07/35385/google-unveils-first-Android-nfc-p

hone-but-nexus-s-is-limited-to-tag-reading-only-for-now/

/15/ Android Activities. Accessed 20.03.2015

http://developer.Android.com/guide/components/activities.html

/16/ Main Android Activities Statement. Accessed 20.03.2015

http://www.vogella.com/tutorials/AndroidLifeCycle/article.html

/17/ Lars Vogel. “Android Intents – Tutorial”. Version 3.5. 2014.Chapter 1

Intents and Intent-Filter.

/18/ Specifies the types of intents. Accessed 20.03.2015

http://developer.Android.com/guide/topics/manifest/intent-filter-element.html

/19/ Intents and Intent-Filters. Accessed 20.03.2015

http://developer.Android.com/guide/components/intents-filters.html

/20/ The Tag Dispatch System. Accessed 20.03.2015

https://developer.Android.com/guide/topics/connectivity/nfc/nfc.html#tag-dispat

ch

/21/ Bought NFC tag from eBay. Accessed 20.03.2015

http://www.ebay.com/itm/10pcs-RFID-IC-NFC-TAG-Key-Tags-Keyfobs-Token-

Keychain-Mifare-Arduino-13-56MHz-/131287096159?pt=LH_DefaultDomai

n_0&hash=item1e91521b5f

/22/ Package Android.nfc.tech. Accessed 20.03.2015

http://developer.android.com/reference/android/nfc/tech/package-summary.html

/23/ Package Android.nfc. Accessed 20.03.2015

http://developer.Android.com/reference/Android/nfc/package-summary.html

/24/ Advanced NFC. Accessed 20.03.2015

http://developer.Android.com/guide/topics/connectivity/nfc/advanced-nfc.html

http://www.nfcworld.com/2010/12/07/35385/google-unveils-first-android-nfc-phone-but-nexus-s-is-limited-to-tag-reading-only-for-now/
http://www.nfcworld.com/2010/12/07/35385/google-unveils-first-android-nfc-phone-but-nexus-s-is-limited-to-tag-reading-only-for-now/
http://developer.android.com/guide/components/activities.html
http://www.vogella.com/tutorials/AndroidLifeCycle/article.html
http://developer.android.com/guide/topics/manifest/intent-filter-element.html
http://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/topics/connectivity/nfc/nfc.html#tag-dispatch
https://developer.android.com/guide/topics/connectivity/nfc/nfc.html#tag-dispatch
http://www.ebay.com/itm/10pcs-RFID-IC-NFC-TAG-Key-Tags-Keyfobs-Token-Keychain-Mifare-Arduino-13-56MHz-/131287096159?pt=LH_DefaultDomain_0&hash=item1e91521b5f
http://www.ebay.com/itm/10pcs-RFID-IC-NFC-TAG-Key-Tags-Keyfobs-Token-Keychain-Mifare-Arduino-13-56MHz-/131287096159?pt=LH_DefaultDomain_0&hash=item1e91521b5f
http://www.ebay.com/itm/10pcs-RFID-IC-NFC-TAG-Key-Tags-Keyfobs-Token-Keychain-Mifare-Arduino-13-56MHz-/131287096159?pt=LH_DefaultDomain_0&hash=item1e91521b5f
http://developer.android.com/reference/android/nfc/tech/package-summary.html
http://developer.android.com/reference/android/nfc/package-summary.html
http://developer.android.com/guide/topics/connectivity/nfc/advanced-nfc.html

