

MicroSCADA project documentation

database

Karolina Kolam

Bachelor’s thesis

Electrical Engineering

Vaasa 2014

BACHELOR’S THESIS

Author: Karolina Kolam

Degree Programme: Electrical Engineering

Specialization: Electrical Power Engineering

Supervisor: Susanne Österholm

Title: MicroSCADA project documentation database

Date 22.04.2014 Number of pages 54 Appendices 3

Summary

This bachelor’s thesis was commissioned by ABB Power Systems, Network

Management. The purpose of the thesis was to create a database for storing

MicroSCADA project information. Also a usable tool for writing data to the

database and creating reports was to be made. Before this thesis work, all the

information about the department’s projects was stored as single text documents.

A database would collect all information in one place and also store the

information for a long time. Also it would provide security so that no data is lost.

The theoretical section of this thesis is about database history and relational

databases. Also the programming language SQL is treated. The database was done

in Access and the user interface in Excel. The communication between the two

programs was handled by the database programming language SQL and the

programming language VBA.

The outcome was a hidden database and a user interface where the user can write

new data to the database and also edit the data in the database. The user can

search the database and as a result of the search print a report. The report has a

standard layout to standardize all the project reports.

Language: English Key words: database, SQL, relational databases, DBMS

EXAMENSARBETE
Författare: Karolina Kolam
Utbildningsprogram och ort: Elektroteknik, Vasa
Inriktningsalternativ/Fördjupning: Elkraft
Handledare: Susanne Österholm

Titel: Databas för dokumentation av MicroSCADA projekt

Datum Sidantal Bilagor 3

Abstrakt
Detta ingenjörsarbete var beställt av ABB Power Systems, Network Management.

Syftet med detta ingenjörsarbete var att skapa en databas för dokumentering av

information om MicroSCADA projekt. Ett lämpligt verktyg för att skapa rapporter

och skriva ny data till databasen skulle också ingå. Före detta ingenjörsarbete

sparades all information som skilda textdokument. Med en databas kunde man

samla all information på ett ställe för att arkiveras under en längre tid. Det

förenklade framförallt sökprocessen men bidrog också med säkerhet så att ingen

viktigt information försvann.

Teoridelen i detta arbete handlar om databas historik och relationsdatabaser.

Programspråket SQL behandlas också. Databasen gjorde i Access och ett

användargränssnitt i Excel. Kommunikationen mellan dessa program sköttes med

programspråket SQL och även programmeringsspråket vba.

Resultatet av detta arbete var ett system var användaren kan skriva ny data till

databasen men också editera data i databasen. Användaren kan också söka i

databasen och som resultat av sökningen kan användaren också välja att skriva ut

en rapport på sitt sökresultat. Rapporten har en bestämd layout med rubriker och

fonter för att skapa enhetliga rapporter.

Språk: Engelska Nyckelord: databas, SQL, relations databas, DBMS

Table of Contents

1 INTRODUCTION ..1

1.1 The Company ..1

1.2 The Purpose of the Thesis ..2

2 ASSIGNMENT ...3

2.1 Scope ...3

2.2 Choosing a Suitable User Interface...4

2.2.1 Excel-based User Interface ..5

2.3 Tools ..5

2.3.1 Access ...6

2.3.2 Excel ...6

2.3.3 Visual Basic for Applications ..7

3 DATABASES ..7

3.1 Storing Information ..7

3.1.1 Database Systems ..8

3.2 Database Environment ... 10

3.2.1 Client-Server Environment .. 11

3.2.2 Multi-Tier Environment... 12

3.3 Database Architectures ... 14

3.3.1 Flat File Database .. 14

3.3.2 Hierarchical Database .. 15

3.3.3 Network Database ... 16

4 RELATIONAL DATABASE SYSTEM .. 17

4.1 Elements of the E/R Model .. 18

4.2 Basic Elements of a Relational Database .. 19

4.2.1 Primary Key .. 20

4.2.2 Index ... 21

4.3 Relationships ... 21

5 THE DATABASE LANGUAGE SQL ... 23

5.1 Simple Queries... 25

5.2 Wildcards in SQL .. 25

5.3 Joins in SQL .. 26

6 DATA STORAGE .. 28

6.1 The Memory Hierarchy .. 28

6.1.1 The Cache ... 29

6.1.2 Main Memory.. 29

6.1.3 Virtual Memory and Secondary Storage .. 30

6.1.4 Tertiary Storage ... 30

6.1.5 Modifying Data ... 31

7 COURSE OF ACTION .. 32

7.1 Planning the System ... 32

7.2 Database Design .. 33

7.2.1 Relations and Relationships ... 33

7.2.2 Table Design ... 34

7.3 User Interface Design ... 35

7.3.1 Communication between Database and User Interface 36

7.3.2 Creating Reports and Searching the Database .. 37

8 FINAL RESULT ... 40

9 DISCUSSION ... 41

10 SOURCES ...1

11 APPENDIX ...3

1

1 Introduction

This is a thesis work done for the ABB, Power Systems, Network Management unit in

Vaasa. The purpose was to create a database that would ease the making of hardware and

software documentation for projects. A key factor was that it would be easy to search for

components used in the projects. Therefore a database was to be created for storing the

data and also an easy way to write the data to the database was needed.

1.1 The Company

ABB is the result of the merger of two companies, the Swedish ASEA and the Swiss

Brown Boveri & Cie. The two companies merged in 1988 to form ABB. The company is

now a global leader in power and automation technologies. Over 150,000 people work for

ABB and the company operates in about 100 countries. It is based in Zurich, Switzerland

and the company’s shares are traded on the stock exchanges of Zurich, Stockholm and

New York. (The ABB Group 2013)

The company is divided into five divisions that are organized by the customers and

industries that they serve. The divisions are

- Power Products

- Power Systems

- Discrete Automation and Motion

- Low Voltage Products

- Process Automation

ABB operates in about 30 places around Finland and in Vasa you can find ABB in

Stromberg Park. The name of the park comes from the company that used to operate on

this location before it was bought by ASEA in 1987 and later became a part of the ABB

Corporation. This thesis was written for ABB Power Systems, Network Management. (The

ABB Group 2013)

2

1.2 The Purpose of the Thesis

All components of a project are documented while testing a project. The most important

piece of information to be documented is the serial number of each component. Additional

information such as customer, RAID system type and voltage level is also documented.

This is done to speed up the fixing of errors since all the information about the components

is to be found in the same place. If a component breaks, the customer simply needs to

inform the serial number to the ABB project department to retrieve a new component that

suits the purpose. By knowing as much as possible about the project, preparations can be

made in Finland instead of spending several weeks on site.

The purpose of this thesis work was to create a database for storing information about

hardware and software used in projects, such as serial numbers, product description etc. No

database was used before this and all data was stored as single text documents on a hard

drive and this made searching for specific components very difficult. For example if an

intermittent fault for servers type X from manufacturer Y is discovered and all the servers

of this type need to be replaced. The first step would be to locate all servers and in which

projects they are in use. With the system that was in use before the database, searching for

all the servers would be very troublesome and would take a lot of time. It would also be

easy to miss servers since the system wasn’t well organized and the number of project

folders is very high. With a database the search for the servers would be much easier since

it is possible to create a function that searches the database.

The database should work so that a report for the project can be created with a wizard in

Excel and at the same time the data is exported to an Access database. For the user the

report is the main outcome but the most important outcome is that the data is stored and

easy to find later on. It is very easy to search a database compared to searching manually in

folders and if the thesis meets its purpose, a simple button click will search the database for

desired components.

3

2 Assignment

The database needed to be logically structured and easy to modify. The data stored in the

database had to be easy to access and the search criteria flexible. A nice layout for every

report had to be created. The flexibility of searching the database was one key aspect and

another was always to generate good reports.

2.1 Scope

The scope of the thesis is illustrated in Figure 1. The yellow part of the figure is where the

most important features of the thesis can be found and, after discussing the project and

taking time and previous knowledge into consideration, it was decided to focus on the core

features. The hardware and software specification reports were also a main focus. Other

features could of course be added later on.

Figure 1. Scope of the thesis

4

2.2 Choosing a Suitable User Interface

There are several ways to create a user interface for this database. The easiest solution

would be to continue using the text documents and then manually write the data to the

database. But this would, assuming that people are lazy, lead to an almost empty database.

A key aspect of this assignment was that the solution needed to be so good so that people

would start using it, instead of generating the reports in the old way. If someone chooses to

create a text document as the report, the data of the project will not be included in the

database and when searching the database the outcome will be incomplete.

The simplest solution would be to create the reports in Access. The reports would have a

nice layout and the report design would also be easy to edit. Also, inserting or deleting

tables would be easy. When discussing different solutions with the people that will be the

end users it turned out that Access was not a very familiar program and it was not even

installed on all computers. Another key aspect was that it would be more effective if the

users don’t have access to the database, since this might lead to unwanted changes in the

database. Therefore a program that communicates well with Access would suit well as user

interface.

Excel was the natural choice since the two programs are designed to communicate and

there are built in functions for this. Since both programs are Microsoft products, the

programming language Visual Basic for Applications (VBA) was well suited for the

assignment. Excel is also familiar to all users and the program is installed on all computers.

Assignments that are similar to the thesis assignment have been done several times and

almost all are done in Excel. This system though was the first system that had to

communicate with an Access database.

5

2.2.1 Excel-based User Interface

A booking system for FAT-area tables was in use, which was created with the

programming language VBA in an Excel sheet. This system works very well and is in use

by the whole department. It is easy to use and since the user has very few alternatives there

is no unnecessary saving of data. This system was used as inspiration for the database user

interface. In order to create a usable user interface we decided that it would be best to

create it in an Excel spreadsheet as a simple wizard, as done in the booking system. The

user will have a few alternatives in every display and will proceed by clicking “Next”. The

user is also able to edit an existing project by simply choosing the button for this purpose.

For the user the report is the result, because when working on a project the report is all the

user needs. It is later on the database could come in handy. The planning of the user

interface was done very carefully to manage and solve problems before starting to create

the user interface. While planning it was good to have a close dialog with the ones who are

going to use the database because they pointed out issues and also came up with some

solutions. The first visualisation of what the user interface should look like can be seen in

Appendix 2 “Database user interface”.

2.3 Tools

For this thesis work two programs were mainly used. The database was created in Access

and the user interface in Excel. The communication between the two programs was done

with Visual Basic. It is possible to communicate between the two program’s predefined

applications within the programs but since the operations are limited it was best to create

the communication with code. By writing the code, one could decide exactly how the

communication should work.

6

2.3.1 Access

Microsoft Access is a database management system. Access makes it very easy to create

and manage databases. The databases created with Access are relational databases which is

the most popular type of databases today. Also, creating the relationships is very handy

since it is done by drag and drop functions. The first version of the program was released

in 1992 as an evolved product of earlier programs Omega and Cirrus. When Office 95 was

released Access became a member of the Office Professional Suite. A screenshot of Access

can be seen in Figure 2. (Arvidsson 1999, pp 7-23)

Figure 2. Screenshot of Access

2.3.2 Excel

Microsoft Excel is also a member of Microsoft Office. The program is a so called

spreadsheet application that the user can do calculations with. Other features are graphing

tools, pivot tables etc. The programming language is the same as in Access, Visual Basic

for Applications, but Excel was the first application to include VBA. (Microsoft 2014)

7

2.3.3 Visual Basic for Applications

Visual Basic for Applications, VBA, is a dialect of the Microsoft programming language

Visual Basic. VBA first appeared with Excel version 5 and, starting from Excel 97 VBA

was shared by all Microsoft Office applications.

3 Databases

3.1 Storing Information

Today databases are used in the whole world and are important to every business. They are

used to store and present data, both to customers and clients. Databases are used by almost

everyone even if the user is not aware that he or she is accessing a database. The average

user can be a person shopping online, browsing through a company’s items or a scientist

storing data from an experiment.

To understand databases one has to understand data first. Data is a gathering of

information, one piece or more. Common examples of data are names, values and

numbers. Sometimes information differs from data, so if one says that it is 23 degrees

outside today, then the number 23 is the data and the whole sentence is information.

(Stephens & Plew 2003, p 6; Databasteknik 2013)

Databases have been used since the late 1960s and have developed into a powerful tool.

For creating and managing large amounts of data a software called database management

system, DBMS, or shorter, a database system is used. The software is the link between the

user and the database and provides the user with persistent storage. The DBMS is the

program that stores and handles databases. An example of a DBMS is Microsoft Access

that was used in this thesis work. As the DBMS is the link between the user and the

database it also makes it possible for the user to modify data, and this is done with a query

language. DBMS also supports many users to access the data at the same time, called

transaction management. Transactions are executed one-at-a-time, either completely or not

8

at all to avoid unwanted changes if two users modify the data at the same time. (Garcia-

Molina, Ullman & Widom 2002, pp. 1-2; Databasteknik 2013)

3.1.1 Database Systems

Basically a database is just an organized collection of stored data. An example of a simple

database is a phone book. It is a collection of names, numbers and addresses that are

related to each other in an organized way. The database is managed by a DBMS. One task

for the DBMS is to enable the users to create new databases and organize the data as the

users sees fit. This can be done with a specialized language called data-definition language

that is a part of SQL. (Stephens & Plew 2003, p. 10; Garcia-Molina et al. 2002, pp 4-5)

Figure 3. Database system

The DBMS also allows the user to ask questions about the data, which is called to query

the data. One could write a query that asks the database how many records are stored in the

database and it will answer. A query can also modify the data, if a suitable query language

is used. More about queries in chapter 5. (Stephens & Plew 2003, p. 10; Garcia-Molina et

al. 2002, pp 4-5)

9

Since a database often contains very large amounts of data it is important that the DBMS

supports the storage in a secure way so no data is lost. No unauthorized users should access

the database and no information should be lost while modifying the database. In addition

the modifications that one user makes should not affect other users. DBMS should support

many users to access the database at once without unwanted consequences. (Stephens &

Plew 2003, p. 10; Garcia-Molina et al. 2002, pp 4-5)

Figure 3 demonstrates the DBMS that comprise modules that can both access and control

data. The DBMS in the figure also includes a database that contains data.

Figure 4 DBMS components (Stephens & Plew 2003, p 10)

Early database management systems evolved from file systems. The file systems are good

for storing large amounts of data, just as DBMS, but are much more primitive. A file

system is not suitable for many users simultaneously, which is a necessary function today.

If two, or more, users modify the same data at the same time there is no way to be certain

that both users’ changes will be made. Also a file system doesn’t support a query language.

(Garcia-Molina et al. 2002, pp 4-5)

An example of an early application of a DBMS was corporate records. Information about

the sales and the employees were stored. For the employees their names, addresses and

salary were important information when a paycheck was to be made. Queries to retrieve

this information were needed. Also printing of reports for sales, bills, receipt was done

with queries. Changes in the database were made all the time by simple queries. (Garcia-

Molina et al. 2002, pp 4-5)

10

These early systems did not support high-level query languages and the DBMS was very

large and expensive. At that time a large computer was needed to store a gigabyte of data

compared to today when we can store several terabytes on one disk. When the DBMS

became smaller it also got cheaper. And, as a result of that, people started to store more

and larger amounts of data. Today we can easily store many terabytes of data and, in more

advanced systems, petabytes of data. (Garcia-Molina et al. 2002, pp. 5-6)

3.2 Database Environment

The database environment is the environment that the database exists in. It is a

combination of hardware, software and networking. All the query processes and

applications used to access and modify the data are also included in the database

environment. Some applications don’t let the user access the data from within the database

environment, the user accesses the data from outside the database environment. The web-

based application is an example of an application that lets the user access data form outside

the database environment. When deciding what kind of database one should use and how

it should be working, the database environment is important to acknowledge. (Stephens &

Plew 2003, pp. 15-17)

Figure 5. Basic database environment (Stephens & Plew 2003, p. 17)

11

3.2.1 Client-Server Environment

It has become very common to divide the work of a DBMS into client-server architecture.

The database architecture refers to the way the data is organized. It might be important to

note that there can be more than one client or server. The client sends a request to the

server and then the server executes the request. A database would exist on the server and

the user could access the database through the client. The client and the server

communicate and pass information over a network. (Garcia-Molina et al. 2002, p. 7;

Stephens & Plew 2003, pp. 18-20)

Figure 6. Basic client-server environment (Stephens & Plew 2003, p 19)

Advantages of the client-server architecture are that it is easy to increase the number of

users. It is also easy to add both clients and servers to the architecture. If a new server is

added to a system the tasks of the servers can be divided so that the more demanding tasks

can be performed by the servers with faster processors. The servers with slower processors

can perform tasks that demand less processing resources. Figure 6 illustrates a complex

client-server environment with several servers and clients. This could be a realistic

example of the client-server architecture for a small company. (Garcia-Molina et al. 2002,

p. 7; Stephens & Plew 2003, pp. 18-20)

12

Figure 7. Client-server environment (Stephens & Plew 2003, p. 21)

3.2.2 Multi-Tier Environment

The connection to the server can be done in two ways in a client-server environment. In a

two-tier architecture the client is directly connected to the server. This works well for a

small system. In a bigger system with several servers and clients, a computer can be placed

between the client and the server. Then the architecture is called three-tier architecture. It is

possible to have several computers between the server and the client. However, the most

common architecture is the three-tier architecture. The idea of having a computer placed

between the client and the server is to avoid overpowering the server if the amount of users

is very high. (Stephens & Plew 2003, pp. 21-23)

13

Figure 8. Multiple tier database architecture (Stephens & Plew 2003, p 22)

The computer that works between the client and the server can balance the workload for

the server by controlling the number of users that is connecting to the server. It can also

control the number of requests that is sent simultaneously to the server. (Stephens & Plew

2003, pp. 21-23)

14

3.3 Database Architectures

The database architecture is the way that the data is organized to work properly for an

organization. The architecture’s systems differ from each other and many different systems

exist today.

3.3.1 Flat File Database

In the 1950s computer programs stored their data as flat files. These files are organized in

the same way as a filing system. It is an assemblage of documents that are organized in a

specific way, such as alphabetically. It is troublesome to search in a large flat file database

since you have to search in a consequent order to find the row you are looking for. For this

reason it is also very inefficient to search a flat file database and large amounts of data

should be stored in a DBMS. But for smaller amounts of data that are not expected to grow

the flat file database is acceptable. Other problems with storing data in a flat file database

is that only one user at a time can access a file. (Stephens & Plew 2003, pp. 66-67)

Figure 9. Flat-file database architecture (Stephens & Plew 2003, p. 67)

As an example of the problems with the flat file database we could imagine that a company

documents and saves information about the sales every day. The database will grow

quickly since if one customer buys more than one item, the information about the customer

will be stored separately for every item. Table 1 illustrates the data redundancy problem

that the flat file database causes. (Stephens & Plew 2003, pp. 66-67)

15

Table 1. Flat file with sales data

NAME NUMBER ADDRESS ITEM
Sheldon Cooper 1234 Pasadena Chair
Sheldon Cooper 1234 Pasadena Table
Sheldon Cooper 1234 Pasadena Plant
Penny Howard 2345 Pasadena Chair
Leonard Raj 4567 Pasadena Table

To make the database more efficient the information about customer 1234 could be stored

only once and the information about his purchases stored in a separate relation. (Stephens

& Plew 2003, pp. 66-67)

3.3.2 Hierarchical Database

In the late 1960s the file storage systems evolved into the hierarchical database. The name

comes from the way the database stores data. The architecture looks like a family tree with

the first record called the root. The root has one or more child records and the child records

have child records of their own. It differs from a human family tree in a key aspect, since

all records have only one parent. (Stephens & Plew 2003, pp. 68-70)

Figure 10. Hierarchical database structure (Stephens & Plew 2003, p 69)

The hierarchical database was the first to have relationships between the records. This

solved the redundancy problem from the flat file database. The customers would be listed

16

in a separate record and therefore they only appeared once. Figure 10 illustrates the

advantage of the relationship system. (Stephens & Plew 2003, pp. 68-70)

Table 2. Decreasing redundancy with relationships

NAME NUMBER ADDRESS
Sheldon Cooper 1234 Pasadena
Penny Howard 2345 Pasadena
Leonard Raj 4567 Pasadena

ITEM
Chair
Table
Plant

One of the problems with the hierarchical database is that there can only be one tree per

database. As seen in Figure 10. Hierarchical database structure (Stephens & Plew 2003, p

69) the record named “Course” needs to appear twice since there can only be one parent

per record. The two records need to be identical for the system to work properly so, if one

of the records is modified, the other record needs to be modified in the same way. Data

redundancy is not completely gone in the hierarchical database system. (Stephens & Plew

2003, pp. 68-70)

To access any record, the user has to start at the root and then go through every parent

record to access the right record. The user also has to know how the records were

structured to find the right record. (Stephens & Plew 2003, pp. 68-70)

3.3.3 Network Database

Most of the problems with the hierarchical database were solved with the network database

system. The network database can have several trees and it also made many-to-many

relationships possible as seen in Figure 11 Network database model (Stephens & Plew

2003, p. 71)which illustrates the same system as in Figure 10. Hierarchical database

structure (Stephens & Plew 2003, p 69). Now the “Course” record only appears once.

(Stephens & Plew 2003, pp. 70-71)

17

Figure 11 Network database model (Stephens & Plew 2003, p. 71)

The user doesn’t have to go via the root to access one of the child records, which was also

an improvement. However the user still needed to know how the records were structured to

find the right record. The problem with the network database was maintenance and

implementation. Also, a person who wasn’t familiar with the database structure needed to

be able to use the database and therefore a new architecture was needed. (Stephens & Plew

2003, pp. 70-71)

4 Relational Database System

The relational database is the most common database model today. Database systems

changed following a paper written by mathematician Edward Frank Codd from the IBM

Research Laboratory in 1970. Dr. Codd suggested that the data would be stored as relations

to encourage data independency. This made the physical location of the rows unimportant.

This was more user-friendly since the earlier database models required the user to be

familiar with the database structure to be able to search the database. The relational

database system also eliminated the data redundancy and data could then be modified

without making changes in the application program. (Garcia-Molina et al. 2002, p. 4)

As can be seen in Figure 12 all relations are stored only once since they have relationships

that connect them. There is no hierarchy between the relations and a new user doesn’t have

to be familiar with the database to find the right relation.

18

Figure 12. Relational database model (Stephens & Plew 2003, p. 72)

4.1 Elements of the E/R Model

When designing a database it is essential to first consider what the database is going to be

used for. Then the developer can decide what information the database should contain and

what relationships should be established. When designing a schema for a relational

database, it is common to start with an entity-relationship model and then convert it to the

relational model. (Garcia-Molina et al. 2002, pp. 23-25)

Figure 13. Database modeling (Garcia-Molina et al. 2002 p 24)

Figure 13. Database modeling (Garcia-Molina et al. 2002 p 24) shows how the E/R model

could be used when designing a database. The model is later modified to a concrete

relational design, which is called relational database schema. (Garcia-Molina et al. 2002,

pp. 23-25)

The objects which are used in the E/R model consist of three main elements. The first one

is the entity set, which is a collection of several entities that are similar to each other. An

entity is an abstract object and in Table 3, every row is an entity and the set of all rows

forms an entity set. The second element is attributes that describe the entities in the set. In

19

Table 3 the given attributes are Name, Type, Breed and Color. The last main element is the

relationships, which is the connections between the entity sets. If we have two entity sets

like Animal and Owner, we could have the relationship “owner of” that connects owner

with the right animal. The idea is that an Animal entity is related to an Owner entity.

(Garcia-Molina et al. 2002, pp. 23-25)

Animal Owner

Name
Type

Breed
Color First

Name
Last

Name

Figure 14. E/R design

4.2 Basic Elements of a Relational Database

In the relational model data can be represented as a two-dimensional table and is called

relation. The relational model builds on the E/R model and has therefore the same basis.

The relation Animals is the same as the entity set Animals. The attributes are the names of

the columns and usually describe the entries in the columns under them. It is a common

step to turn an entity set into a relation and have the same sets of attributes. (Garcia-Molina

et al. 2002, pp. 61-63)

Table 3. The relation Animals

Name Type Breed Color
Fluffy Dog Poodle Black
Stella Dog Pug Beige
Minnie Cat Ragdoll White

20

The name of the relation and the set of attributes is the schema for the relation. The schema

for the relation in Table 3 is Animals (Name, Type, Breed, Color). The order of the

attributes is also the standard order for the relation Animals.

Tuples are the names of the rows in a relation. One tuple has one constituent of all the

attributes of the relation. In Table 3 the first tuple looks like Fluffy, Dog, Poodle and Black

for attributes Name, Type, Breed and Color. It is important to use the same order as in the

attributes in the relation schema. (Garcia-Molina et al. 2002, pp. 61-63)

To be able to search for one or several tuples in the database, a unique value for every row

is needed. This is done by having attributes where the entered value is different than all

other values in the table. This value will be the primary key and, by using a primary key,

the user can search for a specific tuple. (Garcia-Molina et al. 2002, pp. 61-63)

4.2.1 Primary Key

The primary key often consists of numbers since numbers go to infinity. Everyday

examples of so-called primary keys are license plates and phone numbers. One primary

key that is used in many systems is the social security number since it is a unique

combination of numbers and letters. Since the social security number is an ideal primary

key one person can also be identified in many different databases. This means that a

person’s medical records, police records, bank records and so on can easily be combined. It

is noteworthy that by the Finnish law only some have the rights to store this kind of data.

(Stephen and Plew 2003, pp. 89-94)

In a relation, the primary key can never be a null value. In a database where no unique

values are to be stored an ID column can be introduced so that a tuple can be uniquely

identified. The key might be referred to in other relations and therefore it is also important

that the key is never changed or duplicated. Customer numbers are perfect examples of

primary keys since several persons can have the same name, and addresses and phone

numbers can change. By creating an extra column for each customer and giving it a unique

number a primary key is created. See Table 4. (Stephen and Plew 2003, pp. 89-94)

21

Table 4. Relation with primary key

ID Primary Key NAME CITY COMPANY
123 Sheldon Texas ABB
124 Sheldon Pasadena UOP
125 Howard Vasa ABB

4.2.2 Index

To make accessing the database more efficient a database object called index is used. The

index is a pointer to specific table data. By giving the primary key column an index, the

computer can search the database.

The index system works like the index list that can be found at the back of a book. To help

the reader find certain information fast, all the keywords and page numbers are listed

alphabetically. The reader can then sort through the list to find the right keyword, turn to

the right page and then retrieve the information. If there wasn’t an index, the reader would

have to read through the whole book to find the information. In a database the index works

the same way and the servers are the books. (Stephen and Plew 2003, pp. 94-96)

4.3 Relationships

When establishing a relationship between two tables it might be good to know that there

are different kinds of relationships. To establish a relationship, an attribute called foreign

key is used. The foreign key is a normal attribute in one table that is a primary key in

another table. An example of this could be a table with schools and one table with students.

All students could go to one school but the school could have several students. (Stephen

and Plew 2003, pp. 109-110)

22

Figure 15. One-to-many relationship diagram

The primary key in the school table could be the name of the school since it should be

unique. In the students table an attribute named school should be included since it can

serve as the foreign key between the tables. With this information a relationship can be

established since the same information appears in both tables. (Stephen and Plew 2003,

pp. 109-110)

If the students could only have one school and the schools could only have one student the

relationship would be called a one-to-one relationship. For example in a database with one

relation for persons and one for DNA the relationship between the two relations would be

one-to-one since one person can only have one DNA and the DNA can only belong to one

person. (Stephen and Plew 2003, pp. 109-110)

Figure 16. One-to-one relationship

The third kind of relationship is the many-to-many relationship. In the same database as in

the example about one-to-many relationships, many-to-many relationships could exist. One

could be the relationship between the students and the teachers. One student could have

several teachers and one teacher could have several students. (Stephen and Plew 2003, pp.

110-111)

23

Figure 17. Many-to-many relationship diagram

Many-to-many relationships use an associative table between the two main tables. By

doing this, two one-to-many relationships are created instead. The associative table will

include foreign keys for both tables and the combined set of them will work as the primary

key for the associative table. (Stephen and Plew 2003, pp. 110-111)

Teachers TeachersAssocitative
table

Figure 18. Associative table to resolve many-to-many relationship

5 The Database Language SQL

To form a relationship, communication must occur. To communicate with a relational

database you can use a language called Structured Query Language (SQL). SQL standards

are provided by the ANSI and ISO standards and the commands are very clear. If you want

to select something from the database, the SQL command is simply SELECT. It is

noteworthy that although SQL commands are often written in capitals, SQL is case

insensitive. Both SELECT and select are equally right. SQL commands can be grouped

into four main categories. (Stephen and Plew 2003, pp. 98-99,247-249)

Data Definition Language (DDL) is the part of SQL that is used to create, alter or drop

something in the database. DDL communicates with the database design and the DBMS.

24

CREATE is the most common word to start a DDL command. Other popular commands are

ALTER and DROP. ALTER modifies the structure of database objects and DROP deletes

database objects. (Stephen and Plew 2003, pp. 98-99,247-249)

For example:

CREATE TABLE Animals (Animal_ID NUMBER PRIMARY KEY,…)

Data Manipulation Language, DML, is the part of SQL that manipulates the data in the

database table. Common DML commands include the words UPDATE, INSERT, DELETE.

(Stephen and Plew 2003, pp. 98-99,247-249)

For example:

INSERT INTO Animals (Animal_ID, Name, Type, Breed, Color) VALUES

(1, ‘Fluffy’, ‘Dog’, ‘Poodle’, ‘Black’)

Database Query Language, DQL, is the part of SQL that asks questions of the database and

receives an answer. If the user wants to know how many poodles the database contains, a

command that selects all the poodles can be formed. (Stephen and Plew 2003, pp. 98-

99,247-249)

For example:

SELECT * FROM Animals WHERE Breed=’Poodle’

The SQL is now going to return all the tuples of the Animals table where the breed is

poodle. (Stephen and Plew 2003, pp. 98-99,247-249)

For controlling access to the database the Data Control Language, DCL, is used. Some

users can be privileged with more rights than others and some users might have no access

25

at all. Some control commands are ALTER to grant access and REVOKE to remove granted

access. (Stephen and Plew 2003, p. 250)

5.1 Simple Queries

SQL queries are well structured and easy to create and an example of how to use the select

command can be seen below. The SELECT query is, as already mentioned, a way to ask for

data. By also using FROM and WHERE the answer is the tuples that satisfy the given

conditions. The command looks like:

SELECT column_name FROM table WHERE condition

After the SELECT no specific column name has to be defined. The column name can be

replaced by a * for retrieving all columns in a table. It is also possible to write many

column names after SELECT. The condition is the requirement that the column needs to

fulfill, such as a value that the column contains. To avoid duplicates SELECT DISTINCT

can be used. (Garcia-Molina et al. 2002, pp. 239-243)

5.2 Wildcards in SQL

By putting the % sign both in front of and after the letter s, the query asks for all the

entities that contains s. If an entity can be spelled in several different ways, like a name, the

_ sign can be used instead of a letter. So by writing ‘_elma’ the query would return both

Selma and Celma since both names fulfill the requirements. (Refsnes Data 2014)

If we want to search for several entities but they can start with different letters, the query

can be written like:

SELECT customer

FROM customer_table

26

WHERE customer_name LIKE '[bsp]%'

The customer names can start with b, s and p in the example above. To search for names in

alphabetical order it is not necessary to write all the letters separately in the query. Instead

it can be written like '[a-c]%'. Now all names that start with a, b and c fulfill the

requirements. Also if the search should not include names that start with a, b and c the !

can be added '[!a-c]%'. Now the query will return all names that don’t start with a, b and c.

(Refsnes Data 2014)

5.3 Joins in SQL

In a relational database, relationships between the tables have been established. This is

done by having the same information in a foreign key as in a primary key. SQL can use

this information to understand the relationship between the tables. The clause INNER

JOIN is used to combine two or more tables by using the common field between them.

(Refsnes Data 2014)

Customers

Customer_Number Customer_Name City
1 Selma Vasa
2 Elsa Helsinki
3 Maja Stockholm

Orders

Customer_Number Order_number Date
1 1111 24.09.2013
2 2222 30.01.2013
3 3333 04.09.2013

To combine the two tables Customer and Orders, a query that joins the two tables can be

written. The combining column is the customer number since it contains the same data

SELECT Customers.Customer_Number, Customers.Customer_Name,

Orders.Order_Number

FROM Customers

27

INNER JOIN Orders

ON Customers.Customer_Number= Orders.Customer_Number

The outcome of the query above would be a combination of the two tables and look like

the table below.

Customer_Number Customer_Name Order_Number
1 Selma 1111
2 Elsa 2222
3 Maja 3333

To retrieve all tuples when there is a match in one of the tables FULL JOIN can be used. If

we want to retrieve all the tuples from the left table, and the matched tuples from the right

table LEFT JOIN can be used. Vice versa RIGHT JOIN can be used. (Lahtonen 2002, pp.

100-103; Refsnes Data 6.2.2014)

28

6 Data Storage

When creating a database it is important to consider how the data will be stored. If the

database becomes very large, managing all the data also becomes more difficult. If the

database is relatively small, a single disk can be enough for storing the database. If it is a

larger database, for example a bank, a tertiary storage might be needed. (Garcia-Molina et

al. 2002, p. 507)

6.1 The Memory Hierarchy

A computer system often has several different components for storing data. A schematic of

the memory hierarchy can be found in Figure 19.

Figure 19 The Memory Hierarchy (Garcia-Molina et al. 2002, p. 507)

29

6.1.1 The Cache

On the lowest level, the cache is found. The cache is a place for temporary storage. The

system places a copy of often used information to have fast access to it. It is faster to

retrieve information from the cache, than from the place where the information is

originally stored, like the main memory. The only difference to the user is that it goes

faster to retrieve the information with a cache than without.

The size of the cache is limited because it is built with more efficient and more expensive

hardware. And it is faster to search a small amount of data than a large amount. If a

machine executes an operation, it will first look in the cache for the necessary information.

If it can’t find it in the cache, it moves to the main memory. After the machine finds the

information it copies it to the cache. Since the size of the cache is limited, the system often

needs to remove something, before it can place the new copies in the cache. If the data that

is removed from the cache has been modified, the system first needs to copy the new

values to the main memory. (Datatermgruppen 2013)

Reading data from a cache only takes a few nanoseconds, which is very efficient for the

user. Moving data between the main memory and the cache takes about 100 nanoseconds.

(Garcia-Molina et al. 2002, p. 508)

6.1.2 Main Memory

The next level, after the cache, is the main memory. The main memory is the center of

everything that happens in a computer. From data modification to various executions, all

the data is resident in the main memory. Random access is implicated in the main

memories, which means that any byte is moved in the same amount of time. Accessing

data from the main memory is slow, compared to the cache, and takes from 10 to 100

nanoseconds. (Garcia-Molina et al. 2002, p. 508)

30

6.1.3 Virtual Memory and Secondary Storage

The virtual memory is an advanced form of memory that is built in the operating system.

By using an external memory, an internal memory is simulated that is bigger than the

physical internal memory. The files of the program occupy a virtual memory address space

and most of the content of a fully occupied virtual memory is stored on the disk.

(Datatermgruppen 2013)

Computers today use some sort of disk for secondary storage. The secondary storage is

much slower and also more capacious than the main memory. As seen in Figure 19 the

disk is supposed to support both the file system and the secondary storage. The files that

are stored on the secondary storage are moved between the disk and the main memory,

controlled by the operating system. Moving from the disk to the main memory is called

disk read, while moving files from the main memory to the disk is called disk write.

(Datatermgruppen 2013; Garcia-Molina et al. 2002, pp. 510-511)

6.1.4 Tertiary Storage

Databases can be very large, several terabytes. To serve that need, tertiary storage has been

developed. The tertiary storage offers much larger capacities and smaller costs than

secondary storage. Also, tertiary storage has higher read/write times. There are several

kinds of tertiary storage devices. (Garcia-Molina et al. 2002, p. 512)

Ad-hoc Tape Storage is the simplest form of tertiary storage. The data is put on tape reels

and stored in racks. When data is wanted, a human operator locates the tape and mounts it

to a reader. Then the information is copied to the secondary storage or to the main

memory. Writing to the tape works in the same way: a suitable tape is localized and then

the data is copied from the disk to the tape. Several terabytes, up to several petabytes can

be stored in a tape library. (Garcia-Molina et al. 2002, p. 512) (HP 9.2.2014)

31

Another principle is the Optical-Disk Juke Box. The so-called juke box can load and

unload optical discs and up to several petabytes can be stored. A robotic arm extracts a

disk and moves it to the reader. Then the data in the disk can be read to the secondary

storage. (Garcia-Molina et al. 2002, p. 512)

6.1.5 Modifying Data

No computation takes place on the disk. The blocks are moved from the disk to the main

memory or the cache. The disk only needs to move the data main memory. Writing data to

the disk works in the same way as reading data from the disk. The right sector needs to be

positioned under the disk head and the head writes the data. (Garcia-Molina et al. 2002, p.

523)

To modify data on the disk it first needs to be modified in the main memory. The first step

is to read the original data from the disk to the main memory. Then the changes can be

made in the main memory copy of the data. Finally, the modified data need to be written to

the disk. (Garcia-Molina et al. 2002, p. 523)

32

7 Course of Action

7.1 Planning the System

When planning the system it was important to consider everything that the database needed

to contain to make the design right from the beginning. By discussing the matter with

project engineers, looking at old hardware and software documentation and taking the old

model into consideration, the planning of the database could begin.

The next question to be answered was how the data should be written to the database. The

project engineers need a simple way to modify the data in the database. This particular part

didn’t take long to figure out since, as already mentioned, other systems similar to this

were already in use. Also, the program needed to be accessed by multiple users and needed

to be installed on the users’ computers.

The database needed to be stored somewhere and after discussing the matter with my

supervisor, it was decided that the database should be stored on the same network drive as

the project folders since all the project engineers already had access to the hard drive. It is

also logical since it was familiar to the user to access the hard drive for information about

the projects. The network drive itself is located in a central ABB server and the system was

created as a client-server environment.

The relations in the database needed to be linked to one another to avoid redundancy in

data. By not storing the same data several times, the database is smaller and the

communication to the database is faster. All the data that was to be stored contained some

form of unique information, which made it suitable for primary key and for dividing the

data into groups.

33

7.2 Database Design

When examining the old hardware and software documentation files I recognized a pattern.

In every project the data that was stored could be divided into three groups, hardware,

hardware components and software. Also information about the project itself, like project

number and customer was stored. By using these four groups as guidelines I created four

relations to store data.

7.2.1 Relations and Relationships

The database was designed as a relational database and Figure 20 illustrates the relations

and their relationships. The main relation is the Projects relation and in this table all basic

information about the project is stored. The projects have a unique project number and this

number is a suitable primary key. All projects consist of different hardware like computers,

servers etc. The hardware is only used once and the serial number is unique. The hardware

can have different components and software can also be installed on the hardware.

Figure 20. Database design

All the relationships are one-to-many relationships and since every component is only used

once and only used in one project, no other kind of relationships was needed. As

mentioned earlier in the chapter about one-to-many relationships, some form of data

34

redundancy is needed to establish the relationship. An example of this in this system is the

project number that is stored both in the Project table and in the Hardware table. In the

Hardware table, all hardware for all projects will be stored and, to specify which hardware

belongs to which project, the project number functions as both primary and foreign key.

The system is illustrated in Figure 21. The primary keys are unique in their respective table

but the project number can occur several times as the foreign key in the second table.

Figure 21. Relationships

7.2.2 Table Design

The different relations consist of rows and columns and the design looks like tables. A

screenshot from the empty database can be seen in Figure 22. The figure is from the

relation Projects. The data for a project will be listed in a row and organized according to

the columns.

Figure 22. Screenshot of empty database

All tables, except the Projects table, have both a primary and a foreign key. This is

illustrated in Appendix 1, HW & SW database SPEC.

35

7.3 User Interface Design

The main part of this thesis was creating the user interface. New data needed to be written

to the database and old data modified. In addition, a tool for writing reports was needed.

As mentioned, it was decided that the user interface would function as a wizard. A wizard

is a setup assistant that guides the user through defined dialogs. Not many options should

be given to the user. The basic idea of this can be seen in Appendix 2, Database user

interface. The wizard is built up as a system where one user form leads to the next user

form based on the options chosen in the previous user form. When using the system, the

user can choose between a couple of buttons depending on what he/she would like to do. If

either “Create new” or “Edit existing” is chosen, a user form will open. By clicking

“Create New” the user from seen in Figure 23 will open.

Figure 23. User form Create New Project

After all the required information has been filled in, the user proceeds by clicking next and

the following user form will open. In which order the user forms appear can be seen in

Appendix 3, User forms in Excel. To help the user understand how the system works,

instructions were also written.

36

7.3.1 Communication between Database and User Interface

The communication had to work so not only new data could be written to the database, but

also so that old data could be modified and fetched from the database. The code for this

was basically the same for all operations, only the SQL statement was different. Figure 24

is a screenshot from the code that writes data to the database. The SQL statement writes

the text from “Textbox1” and the value from “DTPicker1” to the columns ProjectNumber

and ProjectDate in the table Projects. The code for retrieving data is a bit more complicated

but still quite similar. As mentioned in chapter 5.1 the INSERT would be replaced by

SELECT.

Figure 24. Insert code

37

7.3.2 Creating Reports and Searching the Database

The report is created by retrieving the information from the database and then printing it to

a sheet in the excel file. In the beginning of the project, as can be seen in Appendix 2, the

idea was to preview the report while creating a new project. This was not very functional if

modifications to a project were made later on and a new report was needed. The system

now works so that all the data is first written to the database by creating a new project.

After filling in all information the user clicks the “Create Report” button and a user form

will show. The user writes the project number in the textbox and the report will be printed.

Figure 25. Create report

The layout of the report was the most challenging part of this function. The report will

have all the project information in the report header and then list all hardware. Under every

piece of hardware, the software and the hardware components belonging to this particular

hardware should be listed.

The solution to get the report to list all the right components under the right hardware was

to store the hardware primary as a variable. Then the variable can be used to retrieve the

right hardware components and software since the hardware primary key was stored as a

foreign key in both the software and hardware components relations. The system will first

loop through all hardware and retrieve all rows with the right project number. Then the

system will loop through the other tables and retrieve all rows with the right foreign key.

Also, the code needed to print the right heading and print the information belonging to that

38

heading below. In Figure 26 the code for printing the headings with the right information is

displayed. The first column only prints the heading with a bold font and the second column

prints the information stored in the record set fields “rst2”.

Figure 26. Headings

To search the database is similar to printing the report. The result of the search will also be

printed in a separate worksheet and the code is very close to the report code. The SQL

differs, though, since the user form for the search function makes the user choose from

which table he/she wants to search. The tables are not obvious to the user since the user

form presents the options seen in Figure 27.

39

Figure 27. Search options

When deciding what the user would like to search for, several or only one requirement can

be made. The search form for software can be seen in Figure 28. The drop down list under

“Type” retrieves its information straight from the database. This means that only software

types that are already saved in the database can be searched for. When writing data to the

database, a number of types are predefined to prevent the users from spelling the same

thing in many different ways. It is noteworthy that Operating System and operating system

are different words to the database.

Figure 28. Search form

40

8 Final Result

The result was a database that stores the information in four different relations and can be

seen in Appendix 1. The database is hidden to the user and the only thing the user can see

is the user forms that appear in the Excel form. The user can choose if he, or she, wants to

create a report, search the database, modify data in the database or add data to the database.

The system works so that, when collecting data from new projects, the user directly fills in

the project information in the database. First the user has to create a new project and then

the user can choose if he wants to add hardware, software or hardware components. The

user will also be asked, when filling in software or hardware components, to fill in the

serial number for the hardware that the component is included in to connect them in the

database. After filling in all the components of the project the user can choose to click the

“Create Report” button to print a report of the project. There all the information about the

project is included. An upgrade from the system that was in use before the database is that

the report doesn’t need to be stored as a text document. Anyone with access to the Excel

file and that knows the project number can print a project report. This can of course be

done several years after the project was completed.

Another requirement set on the thesis was that a tool for searching for specific components

needed to be made. This can also be done be simply clicking the “Search” button. The user

can now choose if he wants to search for projects, hardware, software or hardware

components.

41

9 Discussion

The database will ease the storing of project data in the future. The functionality and

flexibility of the relational database can be read in chapter 4. The database was an

improvement for the department. The design is simple and the data is logically ordered in

the database. When I understood the basic elements of the relational database, chapter 4.2,

it was easy to structure the column and tuples. I am satisfied with the database and I think

it works well. It is well planned and therefore unnecessary columns were avoided and it

doesn’t grow quickly since only important information is to be stored.

The communication between the database and the user interface was in the beginning a bit

challenging. After understanding SQL, chapter 5, writing the code became easier. All

communication is based on simple SQL queries, and this makes it easy for others to

understand the code. The user interface became a problem since the more I learned about

programming, the more flaws I saw in my code. This made it hard for me to know when

the system was finished. The result is well functioning and corresponds with the scope, but

I have several ideas of how to develop the system.

One function that could be improved is the search function. It could be more flexible and

also provide more options for the user. Also, the layout would be nicer if the search button

opened only one user form and, from there, the user could search the whole database or

limit the search, for example only search for software.

This has been a very challenging and demanding task. Especially since I am studying

electrical engineering and had no previous experience of databases and very little of

programming. It was also very difficult to estimate how much time the system would

demand and it took much longer that I estimated in the beginning. That being said I have

learned a lot about databases and programming. Most importantly I have learned even

more about being an engineer and being able to solve the problem presented to me. When

entering working life I know more about solving problems that I have no previous

experience of.

42

I think this thesis work is valuable for me when applying for jobs. I have the education of

an electrical engineer but I have also managed a task that is suitable for IT engineers. Often

electrical engineers don’t know how to or want to do any kind of programming and IT

engineers don’t know electricity the same way as an electrical engineer. This makes my

knowledge valuable since I have a wider perspective.

10 Sources

Arvidsson Stefan (1999) Access 2000

Sundbyberg: Pagina

Databasteknik (2013)

http://www.databasteknik.se/ (read 30.4.2014)

Garcia-Molina, H., Ullman, J. & Widom J. (2002). Database Systems: The

complete book.

New Jersey: Prentice Hall

Hansson Roger (2000) Cache – teknisk förklaring

http://www.datatermgruppen.se (read 8.2.2014)

HP (2013)

http://www.hp.com/us/en/products/tape-automation/product-

detail.html?oid=3936307#!tab=models (read 9.2.2014)

Lahtonen Tommi (2002) SQL

Jyväskylä: Docendo Finland OY

Microsoft (2014) Excel

http://office.microsoft.com/en-us/excel/ (read 7.2.2014)

Refsnes Data (1999-2014) SQL Tutorial

http://www.w3schools.com/sql/default.asp (read 6.2.2014)

Stephens Ryan & Plew Ron (2003). Sams Teach Yourself Beginning Databases in

24 hours. Indiana: Perpetual Technologies, Inc

The ABB Group (2014)

http://www.abb.com (read 13.12.2014)

11 Appendix

Appendix 1 – HW & SW database Spec

Appendix 2 – Database user interface

Appendix 3 – User forms in Excel

