
	

 

 

 

Deep Reinforcement Learning 
Implementation for Vessel Stability 
Calculations 

 

 
Applying Machine Learning to Vessel Cargo Operations 

 

 

 

Mateusz Szynalewski 

 

 

 

 

Thesis for a Novia (UAS) – Master degree 

Autonomous Maritime Operations 

Warszawa, 2024 



	
	
MASTERS THESIS 

Author: Mateusz Szynalewski 

Program and Campus: Autonomous Maritime Operations, Novia 

Specialization: 

Supervisor: Katarina Sandström 

Title: Deep Reinforcement Learning Implementation for Vessel Stability Calculations 

 ____________________________________________________________________________  

Date: 28.03.2024 Number of pages: 41 Appendices: 3 

 ____________________________________________________________________________  

Abstract 

This paper focused on combining ships stability calculations with deep reinforcement 

learning methods. For the sake of this thesis the author developed a proof of concept software 

that not only enables users to solve tasks from the field of vessel stability in manual mode 

but also allows the use of Proximal Policy Optimization (PPO) algorithm, which utilizes 

Python 3.11 programming language along with the Stable Baselines 3 package.  

Deep reinforcement learning, which is an optimization problem framework for learning from 

experience that leads to refining a policy to maximize a future reward, was discussed in 

further detail. Moreover, attention was paid to a detailed explanation of the whole 

development process, neural networks architectures and hyperparameters defying PPO 

algorithm used in this project. 

In the final chapters, the author presents the utility of the software in manual mode based on 

a few example tasks as well as the results achieved by the trained neural network which 

achieved an efficiency of 42 percent. Final conclusions were presented which emphasized 

the advantages and disadvantages of utilizing machine learning in the field of stability 

calculation. Finally, the potential for further development of this kind of software and 

autonomous maritime industry in general in the future was discussed. 
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1 Introduction 

Newly built vessels are becoming increasingly technically advanced, which inevitably 

makes them more and more demanding to operate. The rising number of law regulations and 

requirements to be met by ships as well as crew members further complicates the matter. 

The complicated situation raises the question, what are the main advantages and 

disadvantages from deviating from manually writing instructions towards machine learning 

solutions? It has become almost impossible to manually perform all the necessary 

calculations related to loading and ballasting operations within a reasonable time frame in 

the context of real cargo loading and unloading scenarios. Additionally, the idea of 

automatization of those tasks is supported by the fact that many procedures related to the 

ship stability calculations are considered to be relatively difficult. Said complexity indicates 

a remarkably high risk of human error, which is the most prevalent cause for accidents in 

the maritime industry. Taking this into account, the obvious solution seems to be to narrow 

down the human role on board vessels, so that over time this role will be limited to 

supervising the work of automated solutions only. This role may even become obsolete in 

the future as fully autonomous ships gain popularity. However, it is still unclear if machine 

learning can be successfully applied to vessel stability calculations. 

In this paper the author attempts to answer the question, whether commonly available deep 

learning tools are sufficient enough to implement them for stability calculation. To answer 

this question, an attempt to further the software development for ship stability calculations 

with the use of subfield of machine learning called deep reinforcement learning will be 

presented. The aim was to develop a software which, given the basic data regarding cargo, 

will be able to perform all necessary loading calculations. The user is expected to pass 

information to the software regarding sea water density, current state of ballast tanks and 

cargo holds as well as tonnage and stowage factor of the cargo to be loaded. For this research 

project, a bulk carrier vessel stability data is used as a model. It offers a lot of versatility 

regarding loading scenarios without the necessity to model multiple vessels. The end goal of 

the software is to load bulk cargo and ballast the vessel automatically to the desired draft 

and trim.  

For the development of this application, Python 3.11 programming language along with 

Stable Baselines 3 library were chosen. These tools are broadly used by the machine learning 

community which is an undoubted advantage in terms of acquisition of the materials and 
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documentation as well as the further potential of development of the software in the future. 

For the sake of this thesis and the software assigned to it, solutions from ship stability field 

and from machine learning, including algorithms from the family of reinforcement learning 

connected with a deep neural network, were combined (for the methodology see Chapter 7). 

2 Ship stability  

Ship stability is an area of naval architecture and ship design that deals with ships’ behaviour 

at sea, both in still water and in waves, whether intact or damaged. Stability calculations 

focus on establishing exact coordinates of the centres of gravity, centres and the metacentres 

of vessels, as well as the relations between them. Calculating ship stability takes into account 

centres of mass of all objects on the vessel, which are then computed to identify the centre 

of gravity of the vessel as a whole, while the centre of buoyancy of the hull is determined by 

taking into account variables such as draft and trim. A crucial aspect of ship stability is 

understanding how various factors, such as load, hull shape and weather conditions, affect 

its stability. Shipyards strive to optimize these parameters to ensure the vessel's safety and 

efficiency while underway. Optimal ship stability is essential for the safety of the crew, cargo 

and the ship itself (Kabaciński, 1993, Chapter 2; Rawson & Tupper, 2001, Chapter 4; 

Szozda, 2016, pp. 13-15). 

While loading the cargo it is important to minimize the stresses on the ship’s hull and 

to distribute them as evenly as possible. This is especially important in case of large vessels. 

All ships are designed with limitations imposed upon their operability in order to ensure that 

the structural integrity will be maintained. Therefore, exceeding these limitations may result 

in over-stressing of the ship's structure, which can further lead to catastrophic failure. We 

can distinguish two types of stability, that combined together create overall vessel stability 

- longitudinal and transverse stability (Barras & Derret, 2006, Chapter 6; Hughes, 1917, pp. 

683-692; Szozda, 2016, Chapter 4). 

2.1 Longitudinal stability  

Longitudinal stability describes of stability describes the ability of a vessel to maintain 

balance along its longitudinal axis. The vessel should be able to counteract forces in balance 

resulting from backward and forward movement (Clark, 2002, Chapter 6). 
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2.2 Lateral stability  

Lateral stability refers to ability of the vessel to maintain balance along its transverse axis. 

The vessel should stay stable during lateral movements such as rolling the ship from one 

side to another. (Miłobędzki, 1963, Chapter 2). 

3 Origins of artificial intelligence and its evolution  

Artificial intelligence is not an achievement of a single person, but rather the result of the 

combined efforts of many mathematicians, engineers and scientists over the years. The 

beginnings of artificial intelligence can be traced back to the 1950s when Alan Turing 

formulated the “Turing Test” to judge whether a machine shows signs of intelligence or not. 

He was not the only one laying the foundations for artificial intelligence at that time; 

however, due to his significant contribution and achievements in that field he is considered 

the father of artificial intelligence (Morales, 2020, pp. 15-16). 

The first artificial intelligence projects dealt with relatively simple logical problems, puzzles 

and games, but with time, they gradually evolved and aimed to solve more sophisticated 

tasks. The breakthrough was in early 2000s, when rapid growth in development of graphic 

processing units (GPUs) resulted in increasing computing power, which allowed for more 

parallel calculations to be performed. That breakthrough turned out to be crucial for the 

further evolution of machine learning. The increased computational power opened a door to 

the effective use of neural networks – a tool already known to mathematicians, but too 

impractical to use until then. It was precisely the rapid evolution of graphics cards that 

unleashed the potential of neural networks.  

In the relatively short timeline of rapid evolution of machine learning, a few breakthrough 

projects that singlehandedly progressed the entire field can be mentioned. One of them was 

definitely the AlexNet project that took place in 2012. The model achieved never-seen-

before results in the image classification field. Since then, the development of deep learning 

based on increasingly larger neural networks with more and more parameters has gained 

momentum. Another milestone in the development path of this field was the AlphaGO 

project based on reinforcement learning technology created by the DeepMind studio in 2016. 

For a long time, the game of Go was considered to be too elusive and required the player's 

intuition rather than an algorithmic approach. The commonly accepted consensus at that time 

was, that computers were not yet able to compete with human professionals. Some experts 

doubted whether computer would ever be able to compete with professionals. Nevertheless, 
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the AlphaGO project was set to undermine this theory and did it so spectacularly that some 

strategies developed by the program are now being thought to humans. 

Nowadays, machine learning has developed sufficiently enough to be used in fields such as 

medicine, engineering, design, finances and many other areas. At the time of writing this 

thesis, the technology is already well rooted in pop culture and easily accessible so anybody 

with internet access can benefit from projects such as Stable Diffusion for graphic generation 

or chatbots such as ChatGPT. In the era of the computer’s hardware evolution, the existing 

computer technology self-accelerated it’s further development. Similarly, we observe 

present artificial solutions being involved in creating new ones.  This phenomenon seems to 

be only accelerating, considering the number of new projects being released nowadays. 

 

Figure 1. Subfields of artificial intelligence according to (Morales, M., 2020, Chapter 1) 

4 Reinforcement learning 

Reinforcement learning is one of the branches of machine learning, where the component 

responsible for making decisions and achieving the goal in a potentially complex 

environment is called an agent. The agent’s role is to solve the task defined in program 

environment. Initially, a trial-and-error approach is used to search for the solution that later 

becomes increasingly refined. The end-goal of this task is defined through the reward signal 

which can be either dense or sparse. To make the software learn, the agent gets either rewards 

or penalties (rewards with a negative sign) for actions it takes. The software developer 

creates reward rules while not providing any suggestions on how to solve the given task. It 
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is the agent’s goal to find an optimal strategy leading to the highest reward. The denser the 

reward signal, the more supervision the agent will have and the faster it will learn. Sparse 

signal however, allows for more flexibility in the process of solving the task, therefore 

increasing the likelihood of new unexpected behaviours of the agent that may lead to 

newbetter solutions. In practice the balance between the two must always be found. After 

the signal is set, it is up to the model to figure out how to perform the task to maximize the 

reward, starting with purely random behaviors, and finishing with efficient strategy, which 

is often beyond human intellect abilities (Mousavi et al., 2018; Nandy & Biswas, 2018, 

Chapter 1; Suttoon & Barto, 2018, Chapter 1; Trask, 2019, Chapter 1). 

4.1 Agent 

An agent is a component hat learns and makes decisions based on previous experiences. It 

takes actions by interacting with the environment and receives rewards based on the effects 

of its actions (Trask, 2019, pp. 6-7). We can distinguish two types of agents: single and 

multiple agent. As the names suggest, there are multiple agents in a multi-agent environment 

and only one in a single-agent environment. More than one agent approach is used 

particularly for complex tasks in stochastic environments, where the level of uncertainty is 

higher (Nandy & Biswas, 2018, pp. 16-18). 

4.2 Environment 

Environment is the outside world from the perspective of the agent. It is everything that 

agent interacts with. The following is a brief description of different types of environments. 

4.2.1 Deterministic environment 

A deterministic environment refers to the probability of of a successful execution of an 

action that is going to be taken by the agent is equal to 1 and the result of such an action is 

fully predictable as well. This means that the agent will always, and without fail, perform 

desired actions. For example, if agent decides to go forward, it will go forward. (Nandy & 

Biswas, 2018, p. 14; Hurbans, 2020, p. 9) 

4.2.2 Stochastic environment 

Stochastic environment refers to the probability of a successful execution of an action that 

is going to be taken by the agent is less than 1. This means that the agent may not successfully 
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perform desired action. Let us assume that the agent is walking on a frozen lake and would 

like to go forward, but because of a slippery surface the probability of going forward is not 

100%; there might be 70% chance of going forward and 30% chance of going in any other 

direction. The agent has to keep in mind that not all of its actions will succeed. Hence, it has 

to deal with a greater level of uncertainty than in a deterministic environment (Hurbans, 

2020, p. 9). 

4.2.3 Fully observable environment 

A fully observable environment occurs when an agent knows everything about the given 

environment. All data related with the agent’s task is available to it. For example, in a chess 

game, the position of all the figures on the board are available for the player (Nandy & 

Biswas, 2018, p. 15). 

4.2.4 Partially observable environment 

In a partially observable environment, the agent has only constrained knowledge about the 

environment. For example, in a poker game, it has no access to the information regarding 

opponent’s cards (Nandy & Biswas, 2018, p. 15). 

4.2.5 Discrete environment 

In a discrete environment, there is a finite number of actions for moving from one state to 

another. For example, in a chess game, there is only a finite set of moves available to a player 

as per (Nandy & Biswas, 2018, p. 16). 

4.2.6 Continuous environment 

In a continuous environment, there is an infinite number of actions available for moving 

from one state to another. For example, there are infinite routes available for traveling from 

one place to another, although any pair may vary from radically different (turning left vs 

right) to almost undistinguishably different (turning at an angle of 89.99° vs 90.00°) (Nandy 

& Biswas, 2018, p. 16). 

4.3 States and observations 

State of the environment is a full set of data describing the environment. Observation, on the 

other hand, is only a particular part of a state that the agent can observe. Quite often the agent 
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does not have access to the full knowledge about the environment and is forced to rely only 

on its observations while making decisions. Depending on the task, observations may 

include more or less information. Often, particularly in neural networks aimed at mimicking 

a person interacting with a computer (for example, playing a video-game or distinguishing 

an object in a picture), observation is identical to the general view of the screen that would 

be available for the user (see Figures 2 and 3; Morales, 202, pp. 8-9). 

 

Figure 2. State 
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Figure 3. Observation 

4.4 Reward  

Reward is a temporary information available for the agent after every move. It changes as 

the agent proceeds with solving the task.  Reward systems may be dense or sparse. Although, 

a sparse rewards approach is sample inefficient (agent has to run many examples to learn), 

an advantage of this approach is a high level of flexibility provided to the agent. The sparsest 

scenario would be one with a single reward granted at the very end of the task if the final 

goal has been achieved. This approach may lead to unexpected, “creative” solutions, that are 

often unimaginable for the programmer. Dense reward system means that there are many 

intermediate rewards on the way to the final reward at the end of the task. This approach 

allows for a quicker, more sample efficient results, but will never produce a surprisingly 

efficient outcome in the end.  

Reward system tunes whether our machine learning approach falls more into supervised or 

unsupervised category. Reinforcement learning in general lays somewhere in between. The 

denser reward system is provided for the agent, the more supervision it has, and the closer 

to pure supervised machine learning it gets.  

Although rewards are typically reset after every task, the long-term total reward made of the 

sum of rewards gained on the learning path is stored as a value called return (Morales, 2020, 

Chapter 1). 
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4.5 Markov decision processes 

The theory of Markov Decision Processes is a mathematical framework for modelling 

decision making in situations where outcomes are partially random and partially under 

control of the decision maker. This framework allows for modelling sequential decision-

making problem under uncertainty, in such a way that the agent can learn through 

experience. In reinforcement learning we assume that all environments have MDP working 

under the hood. Current states depend on decisions taken in the past according to (Morales, 

2020, pp.45-53). 

 

Figure 4. Reinforcement learning cycle 

5 Deep reinforcement learning 

Deep reinforcement learning combines artificial neural networks, which are multi-layered 

non-linear function approximations, with reinforcement learning. This combination allows 

for developing a sequence of decisions leading to a desired solution. Although it is possible 

to use “pure” reinforcement learning algorithms when dealing with small tasks in simple 

environments, the higher complexity of a problem and environment require the use of 

function approximators. That combination is exactly where reinforcement learning meets 

artificial neural networks (Mousavi et al., 2018). 

Still, it should be emphasized, that deep reinforcement learning is far from being perfect. 

There are two main issues with this approach today. The first one is the amount of an input 

data machine learning algorithms require. In most problems, agents need millions of samples 

to learn well-performing policies. Humans, on the other hand, can successfully learn from 

only a few interactions. For example, to train a model to distinguish cat from a dog in 

pictures, we would have to provide hundreds of thousands of pictures of these animals to 
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properly feed the model. On the other hand, the average person would only need a few 

pictures in order to understand the differences between cats and dogs and to be able to 

classify them properly in the future unseen photos. Many teams around the world aim to 

resolve this issue by creating data-efficient deep learning algorithms which require less input 

data to train the model, as sample inefficiency is still probably one of the weakest parts of 

deep reinforcement learning nowadays. 

The second main problem is computational power. Machine learning algorithms require 

immense computational power which in most cases is extremely expensive and impractical. 

This issue is also being researched with some promising results by Google.  

These two problems, however, are intertwined. Resolving one should help resolving the 

other: if the input data is smaller the computational power to process it drops down as well. 

This mechanism also works the other way, as increasing the computational efficiency of our 

computers will allow for more input data. Considering that work on both these issues is 

carried out independently and in parallel, we can expect synergy in this field. 

5.1 Artificial neural network 

Neural network consists of three types of layers – input, hidden and output layers. That does 

necessarily mean that such a network consists of three layers only, as the hidden layer may 

consist of many individual layers that share the common trait of being inaccessible from the 

outside. The first layer receives raw input data, then hidden layers receive data as a result of 

data processing in the previous layer and the last layer produces an output. The 

distinguishing feature of this method is the possibility of solving practical problems without 

knowing their prior mathematical formalization. A further advantage is that there is no need 

to refer to any theoretical assumptions about the problem being solved when using the neural 

networks. The most significant feature of the neural network is its ability to learn from 

examples and the ability to automatically generalize the acquired knowledge. This makes 

artificial neural networks excellent function approximators (Hurbans, Chapter 9). 
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Figure 5. General architecture of artificial neural network 

 

There are different architectures of artificial neural networks, each with their own strengths 

and weaknesses. The most commonly used types at the time of writing the thesis are as 

follow: 

Feedforward Neural Network – This is the simplest type of neural network. The information 

flows only in one direction from input to output. Layers are fully connected, which means 

each neuron in a layer is connected to all neurons in the next layer (Theodoridis, 2015, 

Chapter 18.3). 

Recurrent Neural Networks – These types of neural networks have a component acting as a 

“memory” which allows information to flow in cycles through the neurons. This approach 

gives the network ability to process sequences of data which is extremely useful in time 

series or speech (Aggarwal, 2018, Chapter 1.6.4). 

Convolutional Neural Networks – These networks are most commonly used to process data 

stored in form of images. Layers have convolutional layers which are responsible for 

detecting specific features in the data and pooling layers, which reduce spatial dimensions 

of data according to (Aggarwal, 2018, Chapter 1.6.5; Hurbans, 2020, Chapter 9). 

Autoencoders – These networks have built-in encoder that reduces input data to lower-

dimensional representation and decoder that brings it back to normal state (Aggarwal, 2018, 

Chapter 2.5.1). 
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Generative Adversarial Networks – These types of neural networks are used for generative 

modelling. They have two major components that define them: a generator which is 

responsible for generating new data samples and a discriminator that distinguishes between 

generated and real data (Aggarwal, 2018, Chapter 1.6.5; Hurbans, 2020, Chapter 9). 

5.2 Proximal Policy Optimization 

Proximal Policy Optimization (PPO) belongs, together with DQN, A2C and TRPO, to the 

most commonly used reinforcement learning algorithms that can handle action space of 

discrete type. The main idea behind this algorithm is to provide a high level of stability 

during the whole learning process by assuring balance between not deviating too far from 

the old policy yet allowing for substantial policy updates. According to Morales (2020, p. 

398), the algorithm iteratively updates the policy based on experiences gained from 

interactions with the environment. 

The following bullet points provide a general overview of the PPO algorithm workflow: 

 
• The agent gathers data by interacting with the environment that incorporates 

information regarding states, activates and rewards.   

• The agent approximates the benefits of selecting specific actions in particular states 

over other actions by utilizing the gathered data. These benefits reflect whether an 

action performs better or worse than the average action typically taken in that state. 

This process is called policy evaluation. 

• The policy is updated with surrogate objective function.  

The aim of each cycle is finding an updated policy that provides better performance with 

stochastic gradient descent. The steps are repeated during the whole learning process, 

gradually leading to policy improvement (Morales, 2020, Chapter 12). 

5.3 Actor–critic algorithms 

Proximal Policy Optimization (PPO) falls into an actor–critic category of deep reinforcement 

learning algorithms, which means it utilizes two artificial neural networks, one for the policy 

(actor) and one for the value function (critic) (Zai & Brown, 2020, Chapter 5). 
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5.3.1 Policy network - actor 

The agent’s behaviour in the environment is determined by the policy. The policy network 

is responsible for correlating observations from the environment with the probability 

distribution of success for each of the available actions (Figure 6). It describes the likelihood, 

that taking any given action in a particular state will eventually result in solving the task 

correctly. Therefore, it reflects agent’s strategy for selecting actions depending on the current 

state. During the learning process this network is being updated leading to a better policy 

that over time leads to the highest expected cumulative reward. Optimal policy is the one 

that has the optimal value function (Morales, 2020, Chapters 11-12; Zai & Brown, 2020, 

Chapter 5). 

 

 

Figure 6. Policy network 

5.3.2 Value network - critic 

Value function network takes into account a certain state and calculates estimated 

cumulative reward at the end of the task (Figure 7). Its role is to score how good any given 

particular state is for the agent in terms of expected future rewards following the agent's 

policy thereafter. Assessment depends on what actions might be taken in the moment as well 

as in future states. Therefore, value functions are always based on policies making policies 

and value functions are inevitably intertwined (Morales, 2020, Chapters 11-12; Zai & 

Brown, 2020, Chapter 5). 
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Figure 7. Value network 

 
The idea behind combining these two components is to leverage the advantages of both 

policy-based and value-based methods. The actor’s role involves exploration of the 

environment and acquiring the optimal policy, while the critic provides feedback guiding the 

learning process. Nature of actor-critic approach empowers balance between policy tuning 

and value estimation leading to more efficient and stable learning path according to 

(Morales, 2020, Chapters 11-12). 

5.4 Hyperparameters 

There are two types of components determining learning process in the field of machine 

learning, hyperparameters and parameters. Hyperparameters (external parameters) include 

for example but not limited to: topology of artificial neural network, values of learning rate 

or gamma. They are set by the software developer before initializing learning process and 

are not being further updated by the model during training. Nevertheless, they have a 

significant impact on the parameters which on the other hand are internal to the model and 

are subject to updates during learning process. The parameters include, among others, 

weights and biases of artificial neural network. At the beginning of training a model, 

parameters are initialized as random values and as training progresses these values are being 

updated (Auffarth, 2020, p. 33; Burkov, 2019, p. 12). The following are hyperparameters 

used in the project. 
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5.4.1 Artificial neural network 

Two basic hyperparameters included in every artificial neural network are: the type of 

artificial neural network and its topology, meaning the number of layers and nodes per layer. 

They have been extensively described earlier in this paper (see chapter 5.1). 

5.4.2 Learning rate 

Learning rate a determinates the balance between the agent exploring the environment and 

using the knowledge it has already acquired. In other words, it is setting up a trade-off 

between exploration vs exploitation. How much effort will be applied into exploiting a 

strategy that the agent already has and how much into exploring new methods that may not 

work at all but may also bring better, more efficient solutions, hence higher rewards. 

Learning rate takes values between 0 and 1, where zero means that the agent does not explore 

at all and there is only exploitation process occurring, while learning rate equal to one would 

result with the agent only exploring the environment and trying new things but never taking 

advantage of the experience it has already gained. Common solution in machine learning 

community is defining learning rate as zero at the beginning of the learning process and 

successively increasing it while iterating the task so it converges to one. With this approach 

the agent extensively explores environment at the beginning of a given task, while changing 

the ratio of exploration to exploitation as the task progresses to the point where great majority 

of its actions are based on the knowledge it has gained according to (Hurbans, 2020, p. 318) 

 

Figure 8. Exploration vs exploitation trade off 

5.4.3 Number of steps 

It determines number of interactions an agent has with an environment during its training 

process. It can be given as the total number of actions that the agent is able to undertake 

while solving a solving task or it can be measured by time units available. 
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5.4.4 Mini-batches 

To improve stability of the learning process, common practice in machine learning field is 

using data in batches instead of single data point to update an artificial neural network. 

Minibatch size specifies number of data samples (steps or episodes) in a single update of 

artificial neural network. Most commonly this hyperparameter takes values which are power 

of 2, for example: 16, 64 or 256. Higher values of this hyperparameter may lead to more 

effective training but they significantly increase computing power consumption of the whole 

training process. 

5.4.5 Number of epochs 

Number of epochs defines how many times each mini-batch is used for policy and value 

updates during the training process. The number of epochs exerts crucial impact on how 

thoroughly the value and policy networks are tuned. A higher number of epochs tends to 

lead to more refined estimations; however, it also increases the demand for computing power 

extensively.  

5.4.6 Gamma 

Discount factor g establishes hierarchy of the rewards. In other words, it determinates 

weather the rewards obtained in the short term or in the long term are more valuable for the 

agent. When gamma factor is equal to 0, the agent considers only current rewards, while 

discount factor equal to 1 makes the agent focus only on the long-term rewards. In practice, 

rewards that may be obtained in the short-term are typically more valuable, since future 

rewards contribution to total cumulative reward is never fully certain (Morales, 2020, 

Chapter 2; Nandy & Biswas, 2018, p. 10). 

5.4.7 Generalized Advantage Estimation Lambda 

It controls the trade-off between bias and variance in estimating advantages during the 

training process. It improves the accuracy of advantage estimation of taking specific actions 

in certain states, which is essential for policy updates. The advantage represents how much 

better was the most recently taken action, compared to an average action taken in that 

particular state. Tuning this parameter to its optimal value for a given task leads to more 

stable learning process (Nandy & Biswas, 2018, p. 10). 
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5.4.8 Clipping range  

There are two types of clipping ranges in PPO algorithm, one dedicated for policy function 

another for value function. This hyperparameter limits the size of updates during learning 

process. The main idea behind clipping range is to prevent extreme updates of policy as well 

as of value function, which in most cases lead to training instability. In other words, it 

specifies the maximum allowable change in the policy and value by constraining their 

updates. It prevents too drastic changes in a single training step. The biggest advantages of 

appropriately set clipping range are promoting stable learning, which helps avoiding erratic 

behaviour of the agent, as well as maintaining a balance between exploration and 

exploitation. 

5.4.9 Entropy coefficient for the loss calculation  

It determines how deterministic or random the agent’s actions are. High entropy encourages 

the agent to explore more, while low entropy favours more deterministic actions. 

5.5 PPO Learning cycle 

As the agent starts interacting with the environment, at the beginning its actions are purely 

random and exploration/exploitation trade-off is set up in such a way that the agent is focused 

solely on the exploration of the environment. With each interaction the agent gains more 

experience and its understanding of the quality of any given state as well as strategy for 

choosing the best possible action to take improves. Exploration to exploitation ratio changes 

as well, resulting with agent being less and less focused on exploring the environment with 

every iteration, while paying more attention to knowledge it has already acquired (Figure 9). 

This strategy should lead the agent to developing a well refined policy according to (Morales, 

2020, Chapters 11-12). 
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Figure 9. PPO Learning cycle 

6 Stability software development 

The aim of this project was to develop a program using Python programming language 3.11 

which, given the vessel model along with a basic data regarding cargo, would be able to 

perform all necessary calculations to effectively load the vessel. A massive advantage of this 

approach would be the eventual departure from developing separate stability software for 

each vessel toward strategy where a single software is created for all possible vessels. This 

task, although quite futuristic, might be facilitated not so far in the future with software for 

specific type of vessels being developed. The vast differences between vessels and cargo 

specifications make this approach reasonable. Those could include: bulk carriers, tankers 

and container ships.  

6.1 Python 

Python is a high-level object-oriented programming language, that is commonly used in 

many fields by both beginners and advance programmers, due to its simplicity and 

versatility. It became one of the most popular programming languages thanks to its 

modularity as well as intuitive, easy to understand syntax. Those qualities allow developers 

to create libraries and packages that can be reused in different projects, making it one of the 

most user-friendly programming languages at the time of writing this thesis. Furthermore, 

Python is an open source programming language which means, it’s free of charge and users 
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can freely modify it depending on their needs. Moreover, there is an active community that 

constantly develops and improves packages, extensions, libraries as well as provides 

documentation along with learning materials. Not only does Python versatility allow for 

creating websites, games or desktop applications but also for data science and machine 

learning implementation.  

As Python is a commonly chosen language for reinforcement learning and machine learning 

in general, with growing popularity of those fields many third-party libraries have been 

developed. That in turn significantly increased the effectiveness of research and 

development process in the field of deep reinforcement learning. Program developed for this 

thesis, like many similar projects focused on machine- and reinforcement learning, utilizes 

many of those libraries. Among them, a few are worth of an in-depth introduction. 

 

Figure 10. Programming languages classification – levels of abstraction 

 

6.2 NumPy 

NumPy is a package created for numerical calculations in Python, with a particular focus on 

effective operations on matrices which play crucial role in the world of machine learning. 

One of the biggest advantages of this package is high-level optimization, which is 

responsible for ensuring that mathematical calculations performed using this NumPy 

consume as little time as possible and require the least amount of computer processing 

power. 

Object-oriented Language

Procedural Language

Assembly Language

Machine Language

Hardware



20	
	
6.3 Pandas 

Pandas is one of the largest, if not the largest, libraries for analyzing and processing data in 

Python. It is designed to work with data in tabular representation and to enable users to 

manipulate and process data stored in the form of tables in an optimal way. Data processing 

is efficient and effective thanks to data structures provided in the library, like DataFrame or 

Series. Furthermore, it enables working not only with numbers but also with strings, dates 

and other more unusual data types. Pandas offers many features for easy data manipulation, 

such as filtering, sorting, grouping and combining DataFrames. This library integrates very 

well with other popular Python libraries used in data science and machine learning, such as 

NumPy, Scikit-leran or Matplotlib, many of which the author of this thesis found extremely 

useful. 

 

Figure 11. Table with B354 vessel hydrostatic data in DataFrame structure form 

6.4 Scikit-learn  

Scikit-learn is an extensive machine learning package in Python that provides solutions for 

data analysis, model building, feature selection and algorithm evaluation as well as 

optimization. The package offers a wide range of built-in machine learning algorithms 

including clustering, regression, classification, and more. The available algorithms include, 

among others, Support Vector Machines, K-Nearest Neighbours and Random Forests. 

Scikit-Learn offers very good integration with other most popular mathematics and machine 

learning packages, including aforementioned NumPy, which makes it a very versatile and 
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scalable tool. Watmore, similarly to other mentioned packages, Scikit-learn also has a large 

user-community which constantly improves it and updates its documentation. That makes it 

an excellent choice for people involved in machine learning and data science. 

6.5 OpenAI Gym 

OpenAI Gym is an open source library developed to provide unified structure of 

environments for testing and training machine learning algorithms, especially those from the 

branch of reinforcement learning. Not only does it offer tools for evaluating and monitoring 

performance but also an array of built-in premade environment-templates. Those features 

allow researchers to either test their algorithms directly, using the readily available 

templates, or build and then test in new, self-made environments based on those templates. 

The main idea behind developing this library was to provide a unified and easy-to-use tool 

enabling efficient testing and comparison of various algorithms from the reinforcement 

learning field. All OpenAI Gym environments are defined by a set of properties such as 

observation space, action space and rewards, which enables efficient algorithms testing in 

various reinforcement learning environments without the need to modify the tested algorithm 

each time. If the researched project was developed to accept and return values expected by 

one environment in OpenAI gym, it can be also tested on any other environment in the 

package.  

This approach has more far-reaching consequences than it may seem. By ensuring all 

environments in this package are set on the same foundation, researchers can easily create 

new environments tailor made for their needs, thus expanding the already extensive set of 

environments provided by the OpenAI Gym library. This has greatly benefited the author of 

this work, who created a model of the B354 bulk carrier in such a way that it met the 

requirements of the OpenAI Gym environment, which significantly improved work on the 

project in its further stages of development. 
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Figure 12. Examples of OpenAI Gym environments in classic control category 

6.6 Stable Baselines 3 

This library is designed purely for handling reinforcement learning tasks in OpenAI Gym 

environments, that, at the time of writing this thesis, does not seem to have any viable 

competition in a category of developing technologies in the field of deep reinforcement 

learning considering how versatile and user-friendly this tool is. Not only does the SB3 

provide set of algorithms such as DQN, A3C, PPO and others, but also allows for easy 

customization and fine-tuning of the learning process, that may be easily adapted to suit 

specific environments and tasks. The library is designed in a modular way, which allows to 

modify its individual components by changing their parameters or even completely deleting 

or replacing them if needed. It supports various neural network architectures, which are all 

by default managed by the PyTorch package. Significant advantage of this library are the 

built-in tools that enable tracking the agent's progress during the model training process. 

This is remarkably useful for assessing agent’s effectiveness and tuning its settings during 

the development process.  

6.7 PyTorch 

PyTorch is a library used for machine learning projects, which has gained great popularity 

not only due to the simplicity of its syntax, which is very similar to pure Python, but also 

because of the flexibility and efficiency it offers in terms of designing and testing deep 

learning models. Said efficiency is related with the fact that it uses a dynamic computation 

graphs, instead of static ones, which means that the graph is created live, during code 

execution. Thanks to this approach, users can dynamically create and modify models during 
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training. Moreover, PyTorch allows for optimization of calculations performance with the 

use of graphics cards. This allows the users to significantly speed up the model training 

process. Just like most popular Python libraries, this one also has a substantial support from 

the machine learning and data science community that constantly creates new educational 

materials and code repositories. 

7 Model development 

For this project the highly supervised reinforcement learning type of machine learning has 

been chosen, as this approach seems to be a better fit from the perspective of maritime 

industry and everyday use. The loading operations require compliance with strictly defined 

rules in order to ensure safety not only during the passage of the loaded ship, but also in the 

harbour, during those operations. Theoretically, for the research purposes, unsupervised 

deep reinforcement learning could also be implemented to see what kind of creative and 

unusual solutions we could be obtained from such a model. Those solutions however, 

although interesting, may not be implemented in real-life scenarios without thorough testing, 

as they could potentially endanger safety of the vessel, cargo and workers.  

7.1 General overview of the model 

Digital model of B354 bulk carrier used in this project is based on paper version of stability 

booklet assigned to that ship. At the beginning of the software development presented in this 

thesis, the author migrated all relevant data regarding tanks, holds and stability from stability 

booklet into excel files. Next, the whole data has been pre-processed to match requirements 

of Pandas package for further handling data stored in the form of tables in Python. Once the 

whole necessary information regarding vessel has been transferred into Python, the author 

developed digital model of B354 vessel along with logic that enables execution of all 

necessary calculations from the field of ship’s stability, including loading and unloading 

both cargo and ballast to desired spaces. Once this stage was completed, author created 

environment based on the B354 model that matches requirements of OpenAI Gym package 

where component responsible for making decisions (agent) can be trained. At that point 

certain restrictions were introduced so that the actions available for the agent are limited as 

compared to the normal user. That change was deemed necessary due to limited computing 

power available for training the model. Last stage was utilizing Stable Baselines 3 package 

to handle reinforcement learning algorithms along with neural networks architectures. The 
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path of searching for the best neural network architecture, hyperparameters and finetuning 

reward policy is described on the following pages of this thesis. 

The foundation of this project is B354 vessel (Figure 13, Table 1 in Appendix 1), a bulk 

carrier vessel that can take containers on top its of hold hatches. Considering substantial 

differences between the two cargo types as well as the primary function of the vessel, in this 

project only the bulk cargo operations are being undertaken.  

 

 

Figure 13. B354 overview 

 

There are total of 5 holds in B354 vessel, one of them is designed for transportation 

refrigerated cargo and it is not taken under consideration in this project. The remaining four 

cargo holds are designated for storing bulk/general cargo, with the combined capacity of 

8001.7m3, available for loading cargo on B354 vessel (Table 2 in Appendix 1). Four of them 

are located forward from the midship and one is located aft from the midship (Figure 14). 

Therefore, most loading operations result in changing the trim to the bow. Of all five holds, 

only the two the smallest ones are not located on the longitudinal axis, what effectively 

eliminates the problem of unwanted listing during cargo operations. 

 

Figure 14. Holds arrangement – aerial view 
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Figure 15. Holds arrangement – side view 

 

The B354 vessel has 18 ballast tanks, with the combined capacity of 2597,2m3 (Table 3 in 

Appendix 1). The majority of the tanks are located below the holds and machinery spaces, 

in the double bottom tanks, with an exception of 6 side-tanks being located laterally from 

the holds as well as 2 tanks – afterpeak and forepeak, located on the aftmost and foremost 

sides of the vessel respectively. Unlike cargo holds, almost all ballast tanks of this vessel are 

not located on the longitudinal axis, with the exemption of the afterpeak and the forepeak 

(Figures 16, 17). 

 

 

Figure 16. Double bottom tanks 

 

 

Figure 17. Tween-deck tanks 

 

For the purpose of the program hydrostatic information regarding B354 vessel has been 

divided into 4 separate classes:  

• Mass_table 

• Ship 
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• Cargo_hold 

• Ballast_tank  

 

Each class contains functions and data structures responsible for handling all necessary 

stability calculations related to the given class. That approach facilitates handling 

calculations, especially regarding repetitive spaces such as holds and tanks, more effectively. 

Few simplifications have been applied to the model to facilitate training of the agent, given 

computational power available for the project. Firstly, as possible listing resulting solely 

from cargo loading operations was deemed irrelevant, in the B354 vessel model all the paired 

spaces located on both sides of the vessel were merged, so that their centre of gravity would 

always be located on the ships longitudinal axis. Furthermore, the model developed for the 

purpose of this project does not consider other spaces, such as fuel tanks, sludges or 

machinery spaces in detail. They are all summarized together with the lightship as one.  

Vessel is always stocked with 100% provisions, including fuel and lubricating oils, while 

the sea water density is pre-set to 1.025, so that the task involves solely loading the cargo 

and ballasting the vessel. To further unify all tasks, after launching the software and at the 

beginning of each task all holds and ballast tanks are empty. Effectively the initial state of 

the model can be summarized with the fixed set of values (Table 4 in Appendix 2). 

 
The model allows the user to manually solve desirable tasks from the vessel stability field in 

terms of loading, unloading and ballasting vessel B354. It is also capable of generating tasks 

for the agent, with each task consisting of two variables: 

• Cargo mass (ctl) – takes values from 2000t to 8000t 

• Stowage factor (sf) – takes values from 1.0 to 1.5 

Variables that make up the task are randomly generated from the pre-set range to ensure, 

that every task will be solvable.  

7.2 Model application for stability calculations 

The model has been manually tested before introducing deep neural network. A few tasks 

are presented here as an example and detailed data regarding final results can be found in 

Appendix II. 
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7.2.1 Scenario 1 

The task was to load 5570t of bulk cargo with stowage factor equal to 1. To mitigate the 

initial trim towards the aft, cargo was loaded primarily to the holds located forward from the 

midship (holds 2 and 3), yet to avoid creating to extensive trim towards bow, remaining 

cargo has been loaded into hold 4. At this point the vessel’s trim was towards the bow. It 

was mitigated by fully filling up ballast tanks 5A PS/STB as well as afterpeak up to 23%.  

7.2.2 Scenario 2  

The task was to load 4550t of cargo with stowage factor equal to 1.35. Moreover, holds I 

PS/STB must stay empty due to ongoing maintenance and trim at the end of loading 

operations has to be equal to -0.5m. To meet these requirements holds 2 and 3 were fully 

loaded while hold 4 was loaded in approximately 32%. To obtain desired trim, ballast tanks 

6 PS/STB were fully filled up while forepeak has been filled up to 45% which resulted with 

the desired value of trim.  

7.2.3 Scenario 3 

The task was to load 4420t of cargo with stowage factor of 1.35. At the end of loading 

operation vessel was expected to maintain small trim towards stern as well as small list to 

starboard side. Meeting these requirements was achieved by loading holds I PS/STB, hold 

II fully and hold III to 94% as well as filling up ballast tank 7STB to 37% and forepeak to 

13% which resulted with trim equal to -0.03m and list of 2° to starboard side. 

7.3 Combining vessel stability calculations with deep reinforcement 
learning 

It is worth considering what type of the environment is the agent dealing with wile solving 

tasks concerning the B354 vessel model. The rules of the solving stability tasks are designed 

without any randomness and the agent can load and ballast the vessel with absolute certainty 

of the effectiveness of its decisions. The vessel’s behaviour is easily predictable as well, 

since the all stability calculations are based on well-defined equations. Therefore, we can 

classify this environment as a deterministic. Moreover, the design environment is of fully 

observable type, as all data related with the agent’s task is available to it, which means each 

agent’s observation is equal to the actual state of the world. There is no hidden data regarding 

the task from the perspective of the agent. It has complete awareness of the environment at 
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all times. This environment is also discrete due to finite number of states and actions for 

moving from one state to another. 

7.3.1 Constrains and limitations 

Unlike the user, the agent has constraints in terms of loading, unloading and ballasting B354 

which are mostly related to saving as much computing power as possible, hence solving 

vessel stability equations with artificial neural networks is already vastly computationally 

demanding at a very basic stage. The following is a list of optimization and simplification 

of the stability calculations for the sake of development a proof of concept software that 

involves deep reinforcement learning in vessel stability calculations: 

 

• The agent is allowed only to load cargo, unloading is unavailable 

• The agent can only add ballast water to the ballast tanks. Discharging is unavailable 

• While loading the agent must always use the full capacity of the hold or all remaining 

cargo, depending on which of the two values is lower.  

• The agent adds ballast in batches of 2.5 tones. If the remaining available ballast tank 

volume does not allow for it, the agent fills the remaining tank volume. 

• The agent has a limit of 100 steps to solve a given task. 

• The agent cannot load cargo or ballast spaces, which centre of gravity is not located 

on the longitudinal axis of the ship – those spaces have been paired up to avoid 

creating list 

To properly train the agent a function that generates tasks to be solved during the whole 

training process was developed. The agent’s goal is to load cargo provided by the user and 

then ballast the vessel so that there is no list or trim (even keel, upright). In terms of stability 

calculations, it has to be noted whether the set of tasks provided to the agent is actually 

solvable. For instance, a task where the agent is asked to load 7000 tons of bulk cargo of 

stowage factor of 1.5 to B354 is impossible, because it will exceed available volume in cargo 

holds. On the other hand, a task of loading less than 2000 tons of goods is unacceptable as 

well, as there is insufficient amount of ballast tanks to provide desired trim of 0 with such a 

little amount of cargo. Hence, an excercise_generator() function has been developed in 

order to generate solvable tasks for the agent, where the stowage factor is in the range 
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between 1.0 and 1.5 and the mass of cargo between 2000 and 8000 tons. Moreover, there is 

a limit of 100 steps given to an agent to solve each task, hence tasks are designed to be 

solvable within fifty steps. If the agent has not finished a given task in 100 steps, the task is 

considered to be failed, the whole training environment is being reset and a new task begins. 

Considering limitations listed above, agent has very little error margin and, in some cases, it 

may even not have it at all.  

7.3.2 Reward policy  

Reward policy takes crucial role in terms of agent’s performance. In the presented project 

the reward system is unquestionably of the dense type, which means that the agent is 

evaluated after each step and intermediate rewards and punishments (rewards with negative 

sign) are granted on its way to the final evaluation at the end of each task. The agent is 

rewarded according to the following policy: 

• The agent gets a reward of +2 each time the trim of the vessel is reduced 

• The agent gets a reward of +5 each time it loads cargo successfully 

• The agent gets a reward of +2 once there is no remaining cargo, granted after each 

step since the cargo is fully loaded 

• The agent gets a reward of +1000 for solved task, all cargo is loaded and trim is in 

range of -0.05m and 0.00m. 

• The agent gets a reward of -10 (punishment) with each taken step 

• The agent gets a reward of -10 (punishment) each time it decides to make a move 

that is impossible to execute, for example: 

o loading cargo to a fully loaded cargo hold 

o adding ballast to a ballast tank that has no available space 

o loading cargo when there is no cargo left to be loaded  

The whole idea behind shaping the reward policy that way is to point the agent into a set 

direction. The component responsible for making decisions is expected to develop strategy 

where cargo is being loaded first and then the vessel trim is taken care of, not the other way 

around, while maintaining the lowest possible number of steps. 
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7.3.3 Environment, state, observation and actions 

In real life the data regarding vessel characteristics is developed during the build process of 

the vessel in the form of ship’s stability booklet. This publication is compulsory for all 

commercial vessels and must be provided by the shipyard. Information regarding ballast 

tanks and cargo holds states is provided by sensors that are commonly used onboard vessels. 

Here the environment is the B354 vessel itself. Information regarding cargo is provided on 

the basis of a cargo manifest. This data is going to act as an input for the model and due to 

the nature of its source it can be firmly stated that it is of high quality, reliable and without 

any noise before any pre-processing being applied to it, which is not common phenomena in 

the world of data science and machine learning. 

In this project state and observations are the same, as the agent has full knowledge regarding 

B354 credentials at all times and those terms can be used interchangeably in regard to the 

model. Data regarding vessel’s state is stored in an array of 16 elements, each state data point 

is in the range between 0 and 1 and the whole set is normalized. A complete list with 

description of each element in the array is available in Appendix III, (Table 14). 

There are 14 different actions of discrete type that the agent can execute, the author created 

an action_selection() function that takes one parameter which is an integer number from 

0 to 15. Each number has an assigned separate function that triggers desired activity. 

Available actions with a description can be found in Appendix III, (Table 15). 

8 Results 

In this chapter author presents the process of training the agent. As a measurement of 

progress, the mean reward (the higher the better), the mean length of episode (the lower the 

better), the highest reward, and solved tasks per 1000 tasks were chosen. The agent has been 

trained utilizing default hyperparameters settings from Stable Baselines 3 package, except 

neural network architecture which was set to 5 fully connected layers with 32 neurons each. 
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Figure 18. Neural network architecture 

 
The entire training process was stable, consisting of increasing the average reward value and 

reducing the average number of steps per task. The author decided to end the training upon 

noticing that the agent stopped making noticeable progress which occurred at the stage of 

40M*2048 steps in total, which means the component responsible for making decisions and 

learning, solved over 819200000 tasks in total. The following is a chart of mean reward 

evaluated every 20.000 steps, excluding few outliners marked on the chart with red circles, 

the whole process was stable which is confirmed by low value of mean square error equal to 

1.513745e+02. Linear regression applied to that chart clearly proves improvement of agent’s 

performance through the whole learning process with the mean reward steadily rising. 
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Figure 19. Distribution of average reward during the learning process 

 

We can observe that mean number of steps required to finish given task was steadily 

descending as well, with mean square error of 5.922784e+00. General trend of decreasing 

number of steps necessary to solve task is well presented by linear regression on the chart 

below. 

 

Figure 20. Distribution of average numbers of steps during the learning process 
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At the end of the training process author tested the agent’s performance at various stages of 

its development starting with agent trained to 1milion steps (*2048) and finishing with agent 

trained to 40 million steps with intervals of one million steps in-between. The agent at each 

level of development was given 1000 task to solve. The agent achieved final efficiency of 

42%. 

 

Figure 21. Agent's efficiency during the learning process 

 

The final efficiency of 42% has been reached by implementing default PPO Stable Baselines 

3 settings with neural network consisting of 5 fully connected layers with 32 neurons each. 

Although the final parameters were chosen through trial and error approach, by 

experimentation with various neural networks architectures and settings as well as reward 

policies, the in-depth analysis of more models has been unobtainable due to the limit of 

available computation power. Therefore, given more time and computational power, it might 

be possible to reach higher efficiency. Further development of the program and 

implementation of more variables (such as listing, or whether conditions) in each task may 

even serve as a stepping stone into development of a stability software applicable on board 

of vessels.  
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9 Potential further development of the deep reinforcement 

learning stability software 

In this paper the author managed to create model of B354 bulk carrier vessel in such a way 

that it meets requirements of OpenAi Gym environment which allowed to use the Stable 

Baselines 3 package to handle deep reinforcement learning algorithms. There were many 

simplifications along the way to accommodate for restrictions regarding computation power 

available. Nevertheless, the process of developing deep reinforcement learning vessel 

stability calculations software presented in the paper, aimed to be a proof of concept rather 

than a ready-to-use program, was successful. The Autor hopes that this project can be used 

as a starting point and solid foundation for future development of this kind of tools. It seems 

to be almost certain that for the right research team with proper resources, combining deep 

reinforcement learning with other, computational demanding mathematical tools like for 

example Monte Carlo tree search or Bayesian statistics will lead to higher effectiveness of 

this kind of software. 

9.1 Monte Carlo method and Monte Carlo tree search 

The Monte Carlo method is a computational method that is based on random sampling to 

obtain numerical results for problems that are essentially deterministic. It is particularly 

useful for solving complex problems with many variables. The core idea behind Monte Carlo 

method is utilizing random sampling to estimate results. In practice a large number of 

random samples are generated by running simulation to obtain approximate solution which 

becomes more accurate the more simulations are executed. (Graham & Talay, 2013, Chapter 

1). Monte Carlo Tree Search is a particular application of the Monte Carlo method 

commonly used in decision-making processes, especially in the field of artificial intelligence 

and game algorithms. It involves creating tree structure which represents various possible 

sequences of actions, which is then being explored by the algorithm by choosing actions 

leading to desirable outcomes. Monte Carlo Tree Search demonstrates its effectiveness in 

scenarios where exploring all possible actions is nearly impossible. This method gained 

popularity thanks to DeepMind, an artificial intelligence research company, that utilized it 

in their AlphaGo and AlphaZero projects (Mnih et al., 2015; Silver et al., 2016; Silver et al., 

2017). 
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Figure 22. Applying MCTS for Tic-Tac-Toe game 

9.2 Bayesian statistic 

Bayesian statistics is a subfield of statistics that is based on Bayes' theorem. Unlike classical 

statistics (frequentist statistics), where probabilities are treated as constants, and the 

probability of hypothesis is not calculated, Bayesian statistics considers hypothesis as 

variables, which are subjects to updates in the light of new information (Gelman et al., 2014, 

p. 6; Koski & Noble, 2009, pp. 12-13). Paraphrasing, in Bayesian statistics, probability is 

being updated every time a new piece of data is collected, leading to updated probability that 

takes into account new information. Therefore, Bayesian statistics is extremely useful 

mathematics tool in a field of data analysis that utilizes prior beliefs as well as current 

evidence (Bolstad, 2007, Chapter 6.; Downey, 2013, Chapter 1; Gemerman & Lopes, 2006, 

Chapter 2). Thanks to this approach it is possible to draw conclusions from approximations, 

missing data or even inadequate information, as long as we keep updating our beliefs based 

on the inflow of new data. With this in mind, it can be noted that this method fits quite well 

into core of reinforcement learning, where the agent makes decisions based on feedback 

from the environment by interacting with it.  
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Figure 23. Bayesian Interference 

10 Final conclusions 

Machine learning is being developed rapidly all over the world and there is a lot of research 

going on in this field, yet there is still considerable room for improvement as well as further 

potential to be revealed. It is already widely accepted that deep reinforcement learning can 

be used to tackle complex problems that cannot be solved with conventional methods. 

Furthermore, deep reinforcement learning can provide entirely new solutions both in areas 

well known to humans, as well as in fields where humankind has not reached a high level of 

understanding yet. For the sake of this paper an attempt of utilizing deep reinforcement 

learning to perform stability calculations has been made. The results, although imperfect, 

suggest that further development of that technology may bring implementable automated 

solutions on board real-life vessels.  

Looking even further into the future, development of an efficient solution in the field of 

stability branch for one type of cargo could be the first step in the development of tools of 

this kind which would then naturally lead to a universal solution that works on different ships 

with different cargo types in the future. For the best results we should focus on improving 

all the small pieces that together create maritime industry by providing remote and 

autonomous solutions. Once autonomous vessels are fully developed and the entire maritime 

industry takes advantage of artificial intelligence as well as remote solutions, the savings 

associated with those new tools will be significant. The human factor working at sea will be 

reduced to a minimum, maybe even to zero, and the efficiency of the whole industry will 

probably increase by several orders of magnitude. To sum up, it is hard to anticipate how 

long it will take for our civilization to reach such a level development. However, shipping 

will inevitably become fully autonomous in the next 1000 years, if not in the next 10 years. 
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As promising as they may seem, development and implementation of autonomous solutions 

come with an array of difficulties that all have to be tackled in order to ensure safety of the 

vessels. The first challenge is common for all new branches of science and industry, and it 

is the lack of specialized staff. We can create research teams made of engineers and seafarers, 

but the best solution would be having people with experience from sea, who are highly 

educated in engineering and computer science fields as well. Autonomous maritime industry 

combines highly digitalized solutions and applies them to a quite conservative maritime 

industry. Providing procedures and contingency plans for new potential risks, threats and 

emergencies is another challenge that has to be faced. New risks related to autonomous 

vessels will inevitably arise, and they have to be noticed beforehand, so adequate prevention 

plans must be implemented to avoid potential financial losses, ecological disaster or loss of 

life. Another important matter will be providing a high level of reliability through 

redundancy of implemented systems as well as standard operation procedures and 

contingency plans in case of emergency. Adapting port facilities to fully utilize autonomous 

ships will also undoubtedly present many challenges. 

Other aspects that have to be taken under consideration are the security and safety of the 

entire autonomous solutions. When speaking of security in terms of automation in maritime 

industry, we have to divide security into cybersecurity and physical security of the ship and 

the facilities it cooperates with. At first the focus should be paid to providing high level of 

physical safety and security aspects, assuring that vessels and port facilities meet 

requirements of ISPS Code. Taking care of physical safety and security of the ship is a major, 

yet easily overlooked component. Cybersecurity matter is far more complicated, as there are 

already more digital solutions, software and wireless communication devices on board 

vessels than ever before and this trend is only accelerating. Those developments strongly 

rely on connectivity via Bluetooth and Internet which increases potential vulnerabilities and 

risks. International Maritime Organization (IMO) created Guidelines on Maritime Cyber 

Management, focused on cybersecurity. These guidelines aim to improve safety and security 

of people working at sea, as well as personnel being involved in shipping industry from the 

shoreside perspective (Boyes, 2021). Nevertheless, cybersecurity is a highly sophisticated, 

developed and demanding field, mostly due to the nature of computer science and IT 

technologies that it belongs to. Therefore, it grows exponentially both in size and 

advancement. Solutions that provide a safe working environment in the digital world today 

most likely will be outdated in the near future. Hence, once created and implemented, 
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cybersecurity measures have to be maintained and updated frequently. Maintaining 

cybersecurity at a high standard requires a lot of effort and know-how. 
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Appendix I 

Vessel B354 basic information: 

Table 1. B354 – basic data 

Length overall  149m 
Length between perpendiculars  140m 
Breath  20m 
Displacement(max)  20767t 
Deadweight(max)  13593t 
Gross Tonnage  11573 
Net Tonnage  6179 

 

 

Table 2. B354 Cargo holds for bulk/general cargo 

  Name Volume 
[m3] 

1 Hold I PS 303.7 
2 Hold I STB 303.7 
3 Hold II 2363.3 
4 Hold III 3196.4 
5 Hold IV 1834.6 

 

Table 3. Ballast Tanks 

  Name Volume 
[m3] 

1 BALLAST TANK 3 PS 194.2 
2 BALLAST TANK 3 STB 194.2 
3 BALLAST TANK 3A PS 135.9 
4 BALLAST TANK 3A STB 135.9 
5 BALLAST TANK 4 PS 141.2 
6 BALLAST TANK 4 STB 141.2 
7 BALLAST TANK 4A PS 105.9 
8 BALLAST TANK 4A STB 105.9 
9 BALLAST TANK 5A PS 57.1 

10 BALLAST TANK 5A STB 57.1 
11 BALLAST TANK 6 PS 116.9 
12 BALLAST TANK 6 STB 116.9 
13 BALLAST TANK 7 PS 188.0 
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14 BALLAST TANK 7 STB 188.0 
15 BALLAST TANK 8 PS 166.2 
16 BALLAST TANK 8 STB 166.2 
17 BALLAST TANK AFTERPEAK 43.2 
18 BALLAST TANK FOREPEAK 343.2 
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Appendix II  

Vessel state at the beginning of each task 

Table 4. Set of values at the beginning of each task 

D =  8990 
X =  57.05 
Y =  0.0 
Z =  9.09 
fsm =  1809.0 
GMp =  1.37 
T =  4.36 
t =  -7.0 
T aft =  7.81 
T fwd =  0.82 
ZGp =  9.29 
Sea_water_density: 1.025 

 

Solutions to examples 

The following are solutions to examples from chapter 6. 

Solution to Scenario I: 

Table 5. Scenario I - stability data at the end of the task 

D =  14685 
X =  69.59 
Y =  0.0 
Z =  7.38 
fsm =  1946.7 
GMp =  1.67 
T =  6.78 
t =  0.00 
T aft =  6.78 
T fwd =  6.78 
ZGp =  7.51 
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Table 6. Scenario I – holds utilization 

  Hold  Available volume 
[m3] 

Cargo [t] 

1 Hold I PS 303.7 0 
2 Hold I STB 303.7 0 
3 Hold II 0 2363.3 
4 Hold III 0 3196.4 
5 Hold IV 1823.3 10.3 

 

Table 7. Scenario I – ballast tanks utilization 

  Ballast tank Available volume 
[m3] 

Ballast water 
[t] 

1 BALLAST TANK 3 PS 194.2 0 
2 BALLAST TANK 3 STB 194.2 0 
3 BALLAST TANK 3A PS 135.9 0 
4 BALLAST TANK 3A STB 135.9 0 
5 BALLAST TANK 4 PS 141.2 0 
6 BALLAST TANK 4 STB 141.2 0 
7 BALLAST TANK 4A PS 105.9 0 
8 BALLAST TANK 4A STB 105.9 0 
9 BALLAST TANK 5A PS 1 57.1 

10 BALLAST TANK 5A STB 1 57.1 
11 BALLAST TANK 6 PS 116.9 0 
12 BALLAST TANK 6 STB 116.9 0 
13 BALLAST TANK 7 PS 188.0 0 
14 BALLAST TANK 7 STB 188.0 0 
15 BALLAST TANK 8 PS 166.2 0 
16 BALLAST TANK 8 STB 166.2 0 
17 BALLAST TANK AFTERPEAK 33.4 10 
18 BALLAST TANK FOREPEAK 343.2 0 

 

Solution to scenario II 

Table 8. Scenario II - stability data at the end of the task 

D =  13932.5 
X =  68.90 
Y =  0.0 
Z =  7.46 
fsm =  1894.1 
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GMp =  1.63 
T =  6.47 
t =  -0.5 
T aft =  6.72 
T fwd =  6.22 
ZGp =  7.60 

 

Table 9. Scenario II – holds utilization 

  Hold  Available volume 
[m3] 

Cargo [t] 

1 Hold I PS 303.7 0 
2 Hold I STB 303.7 0 
3 Hold II 0 1750.6 
4 Hold III 0 2367.7 
5 Hold IV 1251.8 431.7 

 

Table 10. Scenario II – ballast tanks utilization 

  Ballast tank Available volume 
[m3] 

Ballast water 
[t] 

1 BALLAST TANK 3 PS 194.2 0 
2 BALLAST TANK 3 STB 194.2 0 
3 BALLAST TANK 3A PS 135.9 0 
4 BALLAST TANK 3A STB 135.9 0 
5 BALLAST TANK 4 PS 141.2 0 
6 BALLAST TANK 4 STB 141.2 0 
7 BALLAST TANK 4A PS 105.9 0 
8 BALLAST TANK 4A STB 105.9 0 
9 BALLAST TANK 5A PS 57.1 0 

10 BALLAST TANK 5A STB 57.1 0 
11 BALLAST TANK 6 PS 2.66 177.1 
12 BALLAST TANK 6 STB 2.66 177.1 
13 BALLAST TANK 7 PS 188.0 0 
14 BALLAST TANK 7 STB 188.0 0 
15 BALLAST TANK 8 PS 166.2 0 
16 BALLAST TANK 8 STB 166.2 0 
17 BALLAST TANK AFTERPEAK 43.2 0 
18 BALLAST TANK FOREPEAK 189.5 157.5 
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Solution to scenario III 

Table 11. Scenario III - stability data at the end of the task 

D =  13527.500000000002 
X =  69.4783349007851 
Y =  0.0546128257253742 
Z =  7.617024059357824 
fsm =  1833.879825 
GMp =  1.52 
T =  6.3 
t =  -0.03 
T aft =  6.32 
T fwd =  6.28 
ZGp =  7.76 
Sea_water_density: 1.025 
Cargo_to_load:  0 
sf_cargo:  1.35 

 

Table 12. Scenario III – holds utilization 

  Hold  Available volume 
[m3] 

Cargo [t] 

1 Hold I PS 0 225 
2 Hold I STB 0 225 
3 Hold II 0 1750.5 
4 Hold III 200 2219.5 
5 Hold IV 1834.6 0 

 

Table 13. Scenario III – ballast tanks utilization 

  Ballast tank Available volume 
[m3] 

Ballast water 
[t] 

1 BALLAST TANK 3 PS 194.2 0 
2 BALLAST TANK 3 STB 194.2 0 
3 BALLAST TANK 3A PS 135.9 0 
4 BALLAST TANK 3A STB 135.9 0 
5 BALLAST TANK 4 PS 141.2 0 
6 BALLAST TANK 4 STB 141.2 0 
7 BALLAST TANK 4A PS 105.9 0 
8 BALLAST TANK 4A STB 105.9 0 
9 BALLAST TANK 5A PS 57.1 0 
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10 BALLAST TANK 5A STB 57.1 0 
11 BALLAST TANK 6 PS 116.9 0 
12 BALLAST TANK 6 STB 116.9 0 
13 BALLAST TANK 7 PS 188.0 0 
14 BALLAST TANK 7 STB 117.2 72.5 
15 BALLAST TANK 8 PS 166.2 0 
16 BALLAST TANK 8 STB 166.2 0 
17 BALLAST TANK AFTERPEAK 43.2 0 
18 BALLAST TANK FOREPEAK 299.2 45.1 
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Appendix III 

State, observation and action space 

Table 14. State Array 

[0]   represents available volume in hold_I_Ps+Stb  
[1]   represents available volume in hold_II          
[2]   represents available volume in hold_III  
[3]   represents available volume in hold_IV  
[4]   represents available volume in ballast_tk3_Ps+Stb  
[5]   represents available volume in ballast_tk3_A_Ps+Stb  
[6]   represents available volume in ballast_tk4_Ps+Stb  
[7]   represents available volume in ballast_tk4_A_Ps+Stb  
[8]   represents available volume in ballast_tk5_A_Ps+Stb  
[9]   represents available volume in ballast_tk6_Ps+Stb  
[10]   represents available volume in ballast_tk7_Ps+Stb  
[11]   represents available volume in ballast_tk8_Ps+Stb    
[12]   represents available volume in ballast_tk_afterpeak      
[13]   represents available volume in ballast_tk_forepeak   
[14]   trim       
[15]   cargo volume 

 

Table 15. Action space 

0  Load cargo to  hold no.1 PS+STB 
1  Load cargo to  hold no.2 
2  Load cargo to  hold no.3 
3  Load cargo to  hold no.4 
4  Ballast 3 PS+STB 
5  Ballast 3A PS+STB 
6  Ballast 4 PS+STB 
7  Ballast 4a PS+STB 
8  Ballast 5A PS+STB 
9  Ballast 6 PS+STB 
10  Ballast 7 PS+STB 
11  Ballast 8 PS+STB 
12  Ballast afterpeak 
13  Ballast forepeak 
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Table 16. Agent hyperparameters 

Hyperparameters type Description 
Artificial neural network  5 Layers, 32 neurons each, 

MlpPolicy 
Learning rate  0.0003 
Number of steps  40M x 2048 
Mini-batches  64  
Number of epochs  10 
Gamma  0.99 
Generalized Advantage Estimation 
Lambda 

 0.95 

Clipping range   0.2 
  


