

Zhejia Tapani

Study and Integrate Bootstrap 3 for OpixManager

Study and Integrate Bootstrap 3 for OpixManager

Zhejia Tapani
Bachelor’s thesis

Autumn 2014
Degree program in Business Information Technology

Oulu University of Applied Sciences

Oulu University of Applied Sciences
Degree Programme: Business Information Technology

Author(s): Zhejia Tapani
Title of thesis: Study and Integrate Bootstrap 3 for OpixManager
Supervisor: Liisa Auer
Term and year of completion: 2014 Number of pages: 45+ 8 appendices

ABSTRACT

This bachelor thesis is about how to study and integrate Bootstrap 3 into OpixManager. The
purpose is to improve user interface of OpixManager application. OpixManager is constructed
by using CodeIgniter and Model-View-Controller (MVC) framework. OpixManager application
is for project management. It includes staff augmentation, customer management, report
management and so on. It is to support both scrum and traditional software development
process.

There are two major parts included in this thesis work. The theoretical part is about studying
what is responsive web design, and what components are included in Bootstrap 3. The author
also study how OpixManager's CodeIgniter interrelates among the model, the view and the
controller in the theoretical part. The theoretical framework gives the author knowledge how to
integrate Bootstrap template to OpixManager's user interface.

The empirical part is actual implementation and testing of template page, login page and home
page as well as its link pages in OpixManager. Final results has been tested in cross-browser
through local host server such as Mozilla Firefox, in Internet Explorer and in Chrome.

I used Freelancer template's design in this thesis. Typography and color palette are balanced
and modern. Navigation bar and grid system are responsive, they are squeezed onto a tiny
mobile device or stretched onto a wide screen.

Keywords: Bootstrap, Responsive Web Design, CodeIginiter, MVC, CSS, JavaScript

3

TABLE OF CONTENTS

1 INTRODUCTION .. 5

1.1 Research Questions and Theoretical Framework .. 6

1.2 OpixManager Introduction ... 7

2 RESPONSIVE WEB DESIGN AND BOOTSTRAP 3 .. 10

2.1 Responsive Web Design ... 10

2.2 Bootstrap 3 .. 12

2.3 CSS in Bootstrap 3 .. 13

2.4 Examples of Components in Bootstrap 3 .. 15

2.5 JavaScript in Bootstrap 3 ... 17

3 OPIX MANAGER CODING SYSTEM ... 19

3.1 CodeIgniter .. 19

3.2 Model-View-Controller (MVC) .. 19

3.3 Analysis Current Coding System of OpixManager ... 21

4 DESIGN AND IMPLEMENT OPIXMANAGER .. 27

4.1 User Interface Design .. 27

4.2 Integrate Freelancer Template into OpixManager ... 30

4.3 Implementation in Login Page, Home Page .. 37

4.4 Cross-Browser Testing .. 39

5 CONCLUSION.. 42

6 DISCUSSION ... 43

REFERENCES .. 44

APPENDICES ... 46

Screenshots of linked pages in old user interface .. 47

Screenshots of linked pages in new user interface .. 50

Mobile Views in new user interface .. 53

4

1 INTRODUCTION

Modern devices have rapidly developed such as computer tablets, smart phones, notebooks.
Devices vary among screen resolutions, screen sizes, functionality, and orientations. Some experts
predict that devices’ browsing is expected to overtake desktop-based access within the next few
years. Designers are facing the challenge of variety of devices, input modes, and browsers than
ever era. Users are expecting their web experience to translate on to each of the devices they use.
Hence, from long-term trend traditional website design is unable to keep up the speed of changing.
It is almost impossible and impractical to create a web site for each resolution and new device.
(Knight 2011, cited 26.5.2014.)

Therefore, the concept of responsive web design (RWD) has been firstly introduced by Ethan
Marcotte in 2010 in his article on A list Apart. He referred the example of responsive architecture,
which explained how architecture responded to surrounding people and environment in the design
of physical spaces. Architects considered structures according to responsive environment and
various personal requirements such as automatic climate, lighting control and usage of spaces.
Based on the idea of a responsive environment, he suggested that rather than creating different
designs for different web devices, responsive design will provide more flexible and adaptive
solutions to various web devices in order to maximize user web experience.

The choice of this thesis topic was originated from development plan of OpixManager.
OpixManager is constructed by using CodeIgniter and Model-View-Controller (MVC) framework.
OpixManager application is for project management. It includes staff augmentation, customer
management, report management and so on. It is to support both scrum and traditional software
development process. (Opixproject Homepage 2014, cited 27.5.2014.) The plan is to improve
responsiveness and modernization of OpixManager's user interface. OpixManager is a web-based
open source application that is developed by students and lecturers in Oulu University of Applied
Sciences, in both Finnish and English Information Technology Degree Programme.

In this thesis Bootstrap 3 is chosen as primary responsive frond-end development framework so
as to improve OpixManager's user interface. There are two reasons to ultimately select Bootstrap
3. First of all, Bootstrap 3 is chosen as top one most popular open source responsive HTML5

5

frameworks, boilerplates and tools for front-end web development (HTML, CSS, and JavaScript).
It is well-documented and has plenty of tutorials, as well as refers example sites. Secondly,
Bootstrap 3’s functionality and usability are stood out among other open source front-end
frameworks, which has a 12-grid responsive layout, 13 custom jQuery plugins for common user
interfaces like carousels and modal windows. (Bootstrap Homepage 2014, cited 30.5.2014.)

In this thesis, the author studies and integrates Bootstrap 3 framework for OpixManager in both
theoretical and empirical aspects. This thesis research is divided into following chapters. First of
all, chapter 2 and 3 comprise with theoretical part through four parts. The first part aims at
constituting a theoretical framework of responsive web design. The second section gives general
introduction to Bootstrap 3. After that, the third part describes terms of Model–View–Controller
(MVC) and CodeIgniter. Ultimately the final part analyzes current coding system of OpixManager
and figure out how to immigrate current code into Bootstrap 3 framework that based on HTML5,
CSS3, and JavaScript, jQuery in order to design and implement partial new user interfaces of
OpixManager

Chapter 4 is the empirical part of this thesis. The partial pages of OpixManager are integrated using
Bootstrap 3 framework. There are three prime sections in order to gain objectives. The first section
aims at choosing proper user interface for OpixManager. In the second section, the primary
purpose is to integrate Bootstrap 3 template into OpixManager's CodeIgniter framework by editing
and modifying code in both Bootstrap 3 and OpixManager. In the ultimate section, final results are
capable of testing and implementing. The last two chapters 5 and 6 conclude and discuss some
implications of the research.

1.1 Research Questions and Theoretical Framework

The main research problem of this thesis is to study and integrate Bootstrap 3 into OpixManager.
The question is answered through integrating theories with empirical results.

Design and implementation of OpixManager's user interfaces are based on requirement
specification, architecture&design, implementation, testing and installation. Flow chat (Figure 1)
demonstrates preliminary work flow in this thesis project. HTML5, CSS5, jQuery, JavaScript, PHP,
MySQL are required technologies skills in this thesis.

6

FIGURE 1. Work flow in project

Study Bootstrap 3: Understand Bootstrap 3 including elements and documentations, how to start
and how to code base on it.
Specification: Specify what kind of functions and specific requirements of user interface design
commissioner wants
UI Design Options: Define visual UI design according to specification, which need to be approved
by commissioner
Coding in Boostrap: On this stage the actual programming begins. The output will be ready for
testing and evaluation.
Testing: Start the testing and evaluating the final OpixManager application. If there are some faults
on coding or design, it will go back to coding stage and revise.
Installation: Depend on commissioner, they can decide if they want to officially install the results
or not.

1.2 OpixManager Introduction

OpixManager is a web-based open source application that is developed by students and lecturers
in Oulu University of Applied Sciences, in both Finnish and English Information Technology Degree
Programme. OpixManager has been created in 2011 and was developed in educational purposes
and needs. OpixManager is available in opixproject that provides an open source environment for
designing and implementing OpixManager. (Opixproject Homepage 2014, cited 27.5.2014.)

7

The user interface of OpixManager is implemented using HTML5, CSS3 and jQuery language, the
database is MySQL and the programming language is PHP. MySQL database stores all the data
used in the application. CodeIgniter is using as OpixManager framework, which almost all
development work is based on. CodeIgniter includes PHP ready functions that are used in the
application, which reduces the programming considerably. (Opixproject Homepage 2014, cited
27.5.2014.) The author would choose NetBeans software as main editor in empirical part. The
reason to choose NetBeans is because the author is familiar with, and it has been widely used in
school.

OpixManager application is for project management. It includes staff augmentation, customer
management, report management and so on. Project management in OpixManager is applicable
to two different project types that are Scrum and traditional. It is to support both Scrum and
traditional software development process. The application has been implemented in all the
translations in English and Finnish.

Traditional project management is identified as step-to-step approach. It assess the project through
five stages: initiation, planning and design, execution and construction, monitoring and controlling
system, completion. Each step begins when preceding stage has been completed. It is not easy to
anticipate significant changes and respond in time. (Wikipedia 2014 b, cited 24.9.2014.) See details
in figure 2:

FIGURE 2. Traditional project management

Scrum is a commonly used agile process for product development, especially for software
development. Scrum is an effective project management framework that is applicable to any project

8

with complex processes, aggressive deadlines, and demanding requirements. Unlike traditional
project management, Scrum projects move forward via a series of iterations called sprints. Each
sprint lasts typically two to four weeks long. Within each sprint period, daily Scrum meeting is
required for monitoring progress. (Scrum Overview for Agile Software Development, cited
28.5.2014.) See details in figure 3:

FIGURE 3. Scrum visual introduction (Scrum Overview for Agile Software Development, cited

28.5.2014)

9

2 RESPONSIVE WEB DESIGN AND BOOTSTRAP 3

2.1 Responsive Web Design

Responsive Web design (RWD) is a web design approach that aims at providing users optimal
viewing experience. As the user switches cross a wide range of devices, the website should
automatically switch to accommodate for variety of resolution, image size and scripting abilities. In
other words, the website should automatically respond to different web devices in order to meet
the user’s preferences. Responsive Web Design would eliminate the need for a different design
and development phase for each new gadget on the market. (Knight 2011, cited 26.5.2014; Adrian,
cited 26.5.2014.) Below is an RWD example (see figure 4).

FIGURE 4. Examples of RWD (Adrian, cited 26.5.2014)

A site designed with RWD adapts the layout to the viewing environment by using fluid, proportion-
based grids, flexible images, and CSS3 media queries.

Fluid Grids

Responsive design is the usage of fluid grid. Compare to traditional liquid layout that is a fixed
number of pixels across and centred on the page, the fluid grid is more carefully designed in terms

10

of proportions. In other words, when a layout is squeezed onto a tiny mobile device or stretched
across a wide screen, all elements in the layout will resize their widths in relation to one another as
figure 5 shows.

FIGURE 5: Fluid Grid (Profoundgrid, cited 06.11.2014)

Flexible images

Flexible images (or Fluid images) are sized in relative units rather than absolute pixel dimensions,
so as to prevent images display outside of contained elements. Although there are number of
techniques to resize, the most popular relative solution is to set max-width as 100% that noted in
Ethan Marcotte’s article on fluid images but first experimented with by Richard Rutter.

img { max-width: 100%; }

Images with maximum width 100% will display their original size unless browser window width
becomes narrower than images’ original width. Images will automatically scale to fit browser
container, as you can see in the illustration following figure 6. However, this solution also comes
with few limitations, for instance scaled image would be relative too large to text if original image
size is over 420 pixels, the layout could “pop” when the user visits the page for the first time because
not setting the image’s height and width explicitly in the css. (Knight 2011, cited 26.5.2014.)

11

FIGURE 6. Comparison of max-width scaled image with narrowed browser window (Storey 2014,

cited 30.7.2014)

Media queries

Media queries are to use different css style rules based on various characteristics of web devices.
The min-width sets a minimum browser or screen width that a certain set of styles can apply for.
And the max-width set a maximum browser or screen width. Anything above maximum or below
minimum would not apply for the responsive media queries, below is an example. (Knight 2011,
cited 26.5.2014.)

@media screen and (min-width: 800px) and (max-width:
1200px) {
 .classForaMediumScreen {
 background: #cc0000;
 width: 30%;
 float: right;
 }
}

2.2 Bootstrap 3

Bootstrap 3 is an open-source front-end framework for creating websites and web applications. It
has a 12-grid responsive layout, and 13 custom jQuery plugins. It contains HTML and CSS-based
design templates for typography, forms, buttons, navigation and other interface components, as
well as optional JavaScript extensions. Recently, community members have translated Bootstrap

12

3's documentation into various languages, including Chinese, Spanish and Russian. (Bootstrap 3
Homepage 2014, cited 30.5.2014; David 2013, cited 30.5.2014.)

Bootstrap 3 is compatible with the latest versions of all major browsers Internet Explorer, Firefox,
Chrome, and so on. Version 2.0 it also supports responsive web design, the layout of web pages
adjusts dynamically by switching cross variety of resolution, image size and scripting abilities in
devices (desktop, tablet, mobile phone). Starting with version 3.0, it also adopts a mobile first design
with emphasizing responsive design by default.

When Bootstrap 3 package is downloaded, the compiled structure of Bootstrap 3 folder (see in
figure 7) contains compiled CSS and JavaScript (Bootstrap 3.*), as well as compiled and minified
CSS and JavaScript (Bootstrap 3.min.*), fonts from glyphicons as the optional Bootstrap 3 theme.

FIGURE 7. Complied Bootstrap 3 files (Bootstrap Homepage 2014, cited 30.5.2014.)

2.3 CSS in Bootstrap 3

CSS settings in Bootstrap 3 theme are used to set up HTML elements styles such as layout, colour
and user interface. CSS settings are applied in custom styles by adding and overwriting extensible
classes. (Bootstrap Homepage 2014, cited 30.5.2014.)

13

HTML5 doctype: Due to usage of HTML elements and CSS, Bootstrap 3 requires the use of the
HTML5 doctype.

<!DOCTYPE html>
<html lang="en">
 ...
</html>

Typography and links: Bootstrap 3 sets definition of background colour, typography, and link
styles.

Containers: .container class sets page contents in centre and adjusts width at various media query
breakpoints to match grid system.

<div class="container">
 ...
</div>

@media (min-width: 568px) {
 .container {
 width: 550px;
 }
}

Grid system

Bootstrap 3 includes a responsive, mobile first 12 columns grid layout while the device or viewport
size changes. It includes predefined classes for simplifying layout options, as well as contains
powerful mixins that are used in conjunction with the grid variables to generate semantic css. Grid
systems are used for creating page layouts through a series of rows and columns that constructs
page contents. Figure 8 shows how the Bootstrap 3 grid system works across multiple devices.
(Bootstrap Homepage 2014, cited 30.5.2014.)

14

FIGURE 8. Grid options (Bootstrap Homepage 2014, cited 30.5.2014)

2.4 Examples of Components in Bootstrap 3

Bootstrap 3 contains commonly used interface components. Components include buttons with
advanced features (e.g. grouping of buttons or buttons with drop-down option, horizontal and
vertical tabs, etc.), labels, and glyphicons, advanced typographic, thumbnails, capabilities, warning
messages and a progress bar. The author will take glyphicons and navigation bar as demonstrated
ones in below paragraphs. (Bootstrap Homepage 2014, cited 30.5.2014.)

Glyphicons: Bootstrap template includes 200 glyphs in font format from the glyphicon halflings set.
Glyphicons available for Bootstrap 3 are free of charge. Below figure 9 presents some examples of
Glyphicons.

FIGURE 9. Examples of glyphicons in Bootstrap 3 (Bootstrap Homepage 2014, cited 30.5.2014)

15

Navigation bar in Bootstrap is a responsive component that serves as navigation headers for
application or site. It begins collapsed in mobile view and automatically adjusts to scale while
available viewports increase. Below is an example of inverted navigation bar by simply

adding .navbar-inverse.

<div class="navbar navbar-inverse navbar-static-top">
<div class="collapse navbar-collapse navHeaderCollapse">

<ul class="nav navbar-nav navbar-right">

<li class="active">Home
Project Work
Contact Me

Article

</div>
</div>

FIGURE 10. Inverted navigation bar

Dropdown menu within navigation bar is to add .dropdown class under .navbar class

and use to act as an indicator.

<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-
toggle="dropdown">Project Works<span
class="caret">
<ul class="dropdown-menu" aria-labelledby="dropdownmenu1">
Input
<li class="divider">
Edit

FIGURE 11. Dropdown within navigation bar

16

Forms are placed content within .form-group and collapsed behavior in narrow viewports.

 <div class="form-group">
 <label for="contact-name" class="col-lg-2 control-
label">Name: </label>
 <div class="col-lg-10">
<input type="text" class="form-control" id="contact-name"
placeholder="fullname">
</div>
</div>

FIGURE 12. Form

Buttons are defined to add .btn class in <button> tag. Button types can be defined by

adding.btn-primary or .btn-info.

<button type="button" class="btn btn-primary btn-lg">Read
more</button>
<button type="button" class="btn btn-info btn-lg">Contact
Us</button>

FIGURE 13. Buttons

2.5 JavaScript in Bootstrap 3

There are over a dozen of custom jQuery plugins available in Bootstrap 3 JavaScript. They are
either included in Bootstrap *.js or Bootstrap.min.js file. Main JavaScript components are modal,
dropdown, scrollspy, tab, tooltip, and popover and so on. Hence, when coding in index.html, the

user do not need to write the whole JavaScript but linking JavaScript files in <script> tag.

Below figure 14 shows an example of modal form. First of all, Bootstrap.js and jquery-1.9.0.js are

required to link in <script> tag. After that, modal is defined in .modal, .fade class in

<div> tag. (Bootstrap Homepage 2014, cited 30.5.2014.)

17

<div class="modal fade" id="contact" role="dialog">
<script src="http://code.jquery.com/jquery-
1.9.0.js"></script>
<script src="js/Bootstrap.js"></script>
</div>

FIGURE 14. Modal

18

3 OPIX MANAGER CODING SYSTEM

3.1 CodeIgniter

"CodeIgniter (CI) is a powerful PHP-based MVC framework that has a very small footprint,
especially for PHP coders who need a simple and easy-to-use toolkit to create full-featured web
applications or sites" (Ellislab 2014 a, cited 15.8.2014). CodeIgniter is a PHP framework based on
MVC (Model–View–Controller). It is widely used in many sites or applications because of user
interface, logical structure and well-documented tutorials available in website. Using CodeIgniter,
programmers and designers can simultaneously work on the same project, without having to wait
for each other to complete their parts. It is the main difference between Codelgniter and other PHP
framework. (Wikipedia 2014 a, cited 24.9.2014.)

There are several advantages of using CodeIgniter. Migration from one server to another is just to
change the URL address. Actual installation that just need to download files from
www.codeIgniter .com, extract it and put it into the server. Based on MVC framework, it has
flexibility. The collection of libraries that users are capable of processing. Clear and concise manual
guide convenient any coder to follow and reach in the whole framework. (Macronimous, cited
24.8.2014.)

3.2 Model-View-Controller (MVC)

Model–View–Controller (MVC) is a software architectural pattern for implementing user interfaces.
Its architectural pattern divides a given software application into three components: the model, the
view, and the controller. The MVC separation also increases team work efficiency in web
application development. Developers can reuse the application's logic when implementing a
different view. Different developers in the team can work on the view, the controller logic, and the
model logic simultaneously without affecting each other. (Wikibook 2014, cited 24.9.2014.)

The core component, the model is to store and update data in database. The second component,
the view is a visual representation of the model. The third part, the controller handles input and

19

converts commands for the model or view. Figure 15 illustrates interconnection of three main
components. (Wikibook, cited 24.9.2014.)

FIGURE 15. MVC process (Wikipedia 2014 c, cited 24.09.2014)

Model: The model is the architecture of data structures in the application. Briefly the model stores
data that is to be accessed by the view and written to by the controller. For instance, if there has
been a change in state, the model will notify associated views and controllers. So the views will
produce updated output, and the controllers will change set of commands. (Ellislab 2014 b, cited
15.8.2014)

View: The view is to display the application's user interface (UI). Data in user interface is typically
generated to the user by querying the model to get its data created from the model data. (Ellislab
2014 b, cited 15.8.2014)

Controller: The controller takes the user input and send commands to the model for updating the
model's state. The controller is an interconnected bridge between the user and the model, and any
other resources needed to process the HTTP request and generate a web page. (Ellislab 2014 b,
cited 15.8.2014)

20

3.3 Analysis Current Coding System of OpixManager

Current OpixManager is designed and architected using CodeIgniter. In this thesis, OpixManager
will run in localhost server, and the author will mainly apply NetBeans and Xampp to edit and test
new user interface in localhost server.

OpixManager application flow chat as below:

FIGURE 16. OpixManager application work chat

− The index.php serves as the front controller, initializing the base resources needed to run
CodeIgniter.

− The Router examines the HTTP request to determine what should be done with it.

− The OpixManager controllers load the model, core libraries, plugins, helpers, and any other
resources needed to process the specific request.

− The finalized view is rendered then sent to the web browser to be seen.

There are mainly four parts in directory structure of OpixManager's CodeIgniter framework (see
details in figure 17):

− index.php receives all requests and routes to the right controllers classes and actions,
parameters are included in the URL

− /system contains all CodeIgniter classes and libraries provided by the framework

− /application this is where application code is located, including the model, view and
controller classes

− JavaScript files are in js folder in OpixManager application

21

FIGURE 17. Screenshot of OpixManager's directory structure

In regard to this thesis, primary modification and integration will be done in views and language
files in order to apply new user interface for OpixManager. Views contains files that construct user
interface structure of OpixManager as figure 17 highlights. Language files contain all the string in
the user interface and are loaded to views files. The author will integrate Bootstrap 3 into template
page, login page, and home page as well as their relevant link pages. General analysis of current
code of template.php, login_view.php and home_view.php will be given in below paragraphs as
well as connections with relevant models, and controllers. It will provide readers an overall view of
how OpixManager constructs user interfaces, functions and where the author should edit code so
as to execute new user interfaces properly.

The template.php constructs user interface template that is applied for all OpixManager's pages. It

is also where Bootstrap template is mainly integrated into. There are <head>, <nav>, <section>

and <footer> elements in template.php. Elements are also where the author will mainly modify
codes in implementation. Figure 18 demonstrates the user interface of template page's navigation,
log in and footer in OpixManager.

22

FIGURE 18. User interface of template page's navigation, log in and footer in OpixManager

Figure 19 illustrates codes in <head>, <nav>, <section> and <footer> elements in

template.php. CSS (opixstyle.css) and JavaScript are linked in <head> element. The <nav>
element defines a set of navigation links (see figure 18), navigation texts are loaded from

application/language/navigation_lang.php file: $this->lang>line ('filename'),

navigation links are through anchor (base_url (). 'index.php/home') command.

Projects, backup, sprint work and task work are displayed when the user successfully logs in by if

($this->session->userdata ('logged_in')) command. In <section> element,

$this->load->view ('$main_content') loads current view and user interface from

views/login_view.php. In <footer>, footer content is loaded from
application/language/navigation_lang.php file.

23

FIGURE 19. Codes of template page's navigation, log in and footer in OpixManager

In figure 20, the login_view.php displays visual interface of login page. The login view is loaded by
both login.php and verify_login.php controllers. Login labels are loaded from

application/language/login_lang.php file: $this->lang->line ('label_user_id'). Input
data is defined in $data array ().

FIGURE 20. Screenshot of login_view

24

Below figure 21 shows the part of login controller's code. It includes function index () method to

load page title from application/language/login_lang.php file: $this->lang->line

('title_login') and to call template in $this->load->view ('template', $data).

FIGURE 21. Screenshot of login controller method to show login_view

Verify_login controller loads person_model from application/models/person_model.php file. It
contains function check database () method to send commands to database for checking whether
username and password are correct ones to log in or not. If not, invalid username or password is
displayed in login page (as figure 22).

FIGURE 22. Screenshot of validation in verify_login controller

25

Projects, backup, sprint work, and task work are displayed in navigation bar when the user
successfully logs in as figure 23 shows. Home_view.php constructs home page's user interface in

<table> element and is loaded from home.php controller. Home page includes edit project,
project staff, product backlog, edit your profile and change password linked pages (see more in
appendix 1).

FIGURE 23. Screenshot of home page and its linked pages

Home controller loads language package from application/language/home_lang.php and session
library. It includes method to open home page and logout user (see figure 24).

FIGURE 24. Screenshot of method to open home page and logout users

26

4 DESIGN AND IMPLEMENT OPIXMANAGER

4.1 User Interface Design

Through analysis of current OpixManager's web design, there are few improvements needed to be
considered in the design of new user interface. Colour and typography are out of modern. Layout
is not so appearing to the user. And the website can not automatically respond to different web
devices e.g. in mobile phone, in tablet. Base on above improvements, the author decides to choose
Freelancer template that is partially integrated into OpixManager framework (see figure 25). Below
there are reasons to select this template rather than others.

FIGURE 25. Screenshot of Freelancer template (StartBootstrap 2014, cited 28.9.2014)

Usability: Good web design should satisfy specific needs for targeted website users. In regard to
OpixManager's website, common users are students and teachers in OAMK, both Finnish and
English Information Technology Degree Programme. The purpose of OpixManager application is
project management that includes both traditional and scrum projects. Hence, the choice of
Freelancer template is to keep features of simplicity and directness in old user interface but present

27

in more modern design. Freelancer template exactly fulfil those factors with simple design in
navigation, footer and page content.

Typography: Font-family choice should fit the style of design. Font sizes should be consistent,
large enough to be read, and proportioned so that headings and sub-headings stand out
appropriately. In Freelancer template, Arial sans Serif fonts is easier to read online. Font size in
body is 15px that suitable size for content, h1 size is 2em. Different point size keeps design
streamlined. However, font-size 19px is rather too large for navigation bar that will be adjusted in
actual implementation stage.

Colour: Balanced colour palette enhances visual experience. Normally a well-designed colour
palette includes contrasted colour for the text and background, harmony background colours
among navigation bar, page content and footer. In Freelancer template, navigation bar and footer

background colour is hex #2c3e50 (very dark desaturated blue). Active/hover colour is hex

#18bc9c (strong cyan.). Page content background colour is hex #ffffff (White). Body font-colour

is #2c3e50 (very dark desaturated blue).

Navigation: Navigation function is to guide users finding information they are looking for in an
easy, effective way. A logical page hierarchy, bread crumbs, designing clickable buttons are
commonly used. In Freelancer's navigation bar, navigation titles appear as uppercase in horizontal
hierarchy, and active show different colour from inactive ones. It is simple and users can easily
navigate themselves to right information within few clicks. Furthermore, navigation bar collapses
into its vertical mobile view when the viewport is narrower than defined min-width. Figure 26 shows
an example of switching to mobile view.

28

FIGURE 26. Screenshot of Freelancer's collapsed navigation bar

Responsive Grid layout: Grid system is responsively squeezed onto a tiny mobile device or
stretched across a wide screen, all elements in the layout should resize their widths in relation to
one another. Figure 27 shows an example of switching to mobile view.

FIGURE 27. Screenshot of responsive grid layout

The next important question is whether Freelancer can be legally used in OpixManager or not, and
how the author can legally apply in this thesis work. Freelancer template copyrights is owned by

29

Start Bootstrap and licence version is Apache 2.0. Apache licence states each Contributor is
granted to "a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright
license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense,
and distribute the Work and such Derivative Works in Source or Object form."(Apache, cited
02.10.2014). In order to legally apply the Apache License to this thesis work, the author needs to
attach a notice in OpixManager's integrated pages (show in figure 28).

FIGURE 28. Copyrights of Freelancer template

4.2 Integrate Freelancer Template into OpixManager

In order to successfully integrate Freelancer template into OpixManager, the first thing is to ensure
NetBeans IDE and Xampp are appropriately installed in own computer. OpxiManager is unzipped
and copied into the folder C:\Xampp\htdocs\ and rename it as OpixManager-master for this project
work implementation. The result is C:\Xampp\htdocs\OpixManager-master. A new database called
opixmanager is required to create and import into Xampp MySQL server.

The next step is to download Freelancer's archive file and unzip. There are three main directories
(CSS, Font, and JavaScript) that the author will integrate into OpixManager. The css folder contains
three css files: Bootstrap.css, Bootstrap.min.css, and freelancer.css. Bootstrap.min.css is the
minified version of Bootstrap.css, it is the core css file and must include in HTML pages.
Freelancer.css is the additional css file that allowed editor to customize css by adding and
overwriting extensible classes. It is also where the author will mainly edit custom css for
OpixManager.

30

The font folder includes font icons called glyphicons, they are used in buttons, button groups for a

toolbar, navigation, or form inputs within tag. In js folder, the author will only use
Bootstrap.js, Bootstrap.min.js, cbpAnimatedHeader.js, cbpAnimatedHeader.min.js, classie.js,
Freelancer.js, jquery-1.11.0.js among nine .js files (see in figure 29). The Bootstrap.js and
Bootstrap.min.js are core JavaScript. CbpAnimatedHeader.js, cbpAnimatedHeader.min.js, and
classie.js are plugin JavaScript. Freelancer.js is allowed the author customizing JavaScript for
OpixManager.

FIGURE 29. Screenshot of Freelancer folder

Furthermore, css files and font files(see in figure 30) in font-awesome-4.1.0 folder are also required
to copy into both css and font folder in order to use font awesome's scalable icons in footer section.

FIGURE 30. Screenshot of font-awesome-4.1.0 folder

After all necessary files in right folder, css, fonts and js folders should be copied into a new
destination where OpixManager project locates: c:\Xampp\htdocs\OpixManager-master (as figure

31

31 shows). Until this stage, Freelancer template is successfully integrated into OpixManager-
master and ready for modification.

FIGURE 31. Screenshot of css, fonts and js folder in OpixManager-master

When all folders are available in OpixManager-master project, the author must start to load css and

fonts into the <head> section of template page. As earlier paragraph describes, Bootstrap.min.css
as core css, freelancer.css as custom css and font-awesome.min.css as custom fonts are linked

to <head> section by <link <?php echo 'href="'.base_url().'css/**.css"' ?>

type="text/css" rel="stylesheet" /> command. The reason to load min.css instead
of .css is because it is for actual application deployment online. Moreover, the author has
commented original opixstyle.css just in case of overlapping commands (details in figure 31).

Fonts are loaded from href links in <link> tag, for instance: <link

href="http://fonts.googleapis.com/css?family=Montserrat:

400,700" rel="stylesheet" type="text/css">. Details is in figure 32.

32

FIGURE 32. Screenshot of linked CSS

The template.php should include .js files by adding the below code (see in figure 33) just before

the </body> tag inside <script> tag. And it is very necessary to ensure that the jQuery library
is added before "Bootstrap.min.js".

FIGURE 33. Screenshot of linked JavaScript

In addition, navigation bar is a prominent component of OpixManager application. Hence, the first
modification in template.php is to write code so as to adopt old navigation items into new

Bootstrap style. First of all, it is to add classes .navbar, .navbar-default, navbar-

fixed-top and role="navigation" to the <nav> tag. The next step is to add a header

class .navbar-header, .page-scroll to the <div> element. OpixManager text is

included in an <div> element with class. navbar-brand, which give the text larger, outstanding
appearance.

33

<nav class="navbar navbar-default navbar-fixed-top" role="navigation">

 <div class="container-fluid">

 <div class="navbar-brand">OpixManager</div>

 <div class="navbar-header page-scroll">

The following step is to add responsive features to this navigation bar, navigation titles and subtitles

will be wrapped in a <div> with classes: .collapse, .navbar-collapse,

.navbar-right defining align position, .id being consistent with .data-target. In

<button> tag, classes.navbar-toggle, .data-toggle, .data-target are required to

add into. Class.data-toggle is used to send commands to js files for button function, and

.data-target indicates which element to toggle by #.id. Three classes of .icon-bar will toggle

the elements that are in the .nav-collapse <div>. Because OpixManager contains 11
navigation items, font-size should be modified to 0.87em in Freelancer.css for better fitting. Below
demonstrates partial code in OpixManager navigation as an example as well as changes in
Freelancer.css.

<button type="button" class="navbar-toggle collapsed" data-

toggle="collapse" data-target="#bs-example-navbar-collapse-1">

 Toggle navigation

<div class="navbar-collapse collapse navbar-right” id="bs-example-

navbar-collapse-1">

<ul class="nav navbar-nav navbar-right">

 <li class="active"><?php echo anchor(base_url() . 'index.php/home’,

$this->lang->line('nav_home'));

?>

.navbar-collapse

{

 font-size: 0.87em;

}

When navigation coding is completed, below figure 34 illustrates vertical mobile view and
horizontal non-mobile view of new OpixManager's navigation bar.

34

FIGURE 34. Screenshot of navigation bar in both mobile and non-mobile view

During implementation, the author finds out that Freelancer template lacks of .dropdown-

submenu component, which requires in report menu item. Figure 35 shows the screenshot of
new dropdown and dropdown submenu.

FIGURE 35. Screenshot of dropdown and dropdown-submenu

Dropdown items are wrapped in a with classes: .menu-item, .dropdown. In <a>

tag, classes.dropdown-toggle, .data-toggle="dropdown” are required to add for

toggling a dropdown. The next step is to add a submenu class .menu

item,.dropdown,.dropdown-submenu to the element.

35

FIGURE 36. Screenshot of dropdown and dropdown-submenu

After that, the author also has to insert relevant code in Freelancer.css to construct .dropdown-

submenu user interface. Details are in figure 37.

FIGURE 37. Inserted css code of .dropdown-submenu

Furthermore, the author has added function method in Freelancer.js to enable submenu links by
clicking (details in figure 38).

36

FIGURE 38. Inserted js code of .dropdown-submenu

Footer contents are contained in <footer> element. There are three parts in footer (see in

figure 39), each part is located by .col-md-4 in <div> element. In second part, font-awesome

icons are used for link buttons by class="fa fa-fw" in <i> element. For example:

<div class="footer-col col-md-4">

<a href="https://www.facebook.com/oamk.liike" class="btn-social

btn-outline" target="_blank"><i class="fa fa-fw fa-facebook"></i>

FIGURE 39. Screenshot of footer section

4.3 Implementation in Login Page, Home Page

In login page implementation, the first step is define .form-control max-width to 25em in
Freelancer.css. It is calculated in 16px=1em, 400/16=25em formula. 25em is to define maximum
width of form control, and page content is to appear in vertical proper alignment while screen
switches to mobile view size. Figure 40 demonstrates screenshot of new login page.

37

FIGURE 40. Screenshot of login page

After that in login_view.php, class 'class' => "form-control" is added in $data array () for

applying new defined input-form. 'class="btn btn-primary"' is inserted in echo

form_submit in order to create a primary style button replacing the old one(see in figure 41).

FIGURE 41. Screenshot of login page's modified code

In home page implementation, glyphicon size is modified by add span.glyphicon {font-size:

1.3em ;} to Freelancer.css. Figure 42 demonstrates screenshot of new home page. Other
relevant linked pages in home page are applied in similar implementation, appendix 2 shows
screenshots of linked pages in the new user interface.

38

FIGURE 42. Screenshot of home page

Responsive Bootstrap table form is integrated by adding .table-responsive in <div>

element, and classes: .table-stripped, .table-condensed are inserted into <table> tag.

The first row is emphasized in success coloring by adding class="success". It is also to apply

edit glyphicon in and delete

glyphicon in . Details
are in figure 43.

FIGURE 43. Screenshot of home page's modified code

4.4 Cross-Browser Testing

When new user interface has completely applied for template page, login page and home page,
the author will run cross-browser testing in order to make sure new applied user interface running
in different browser. Google Chrome, Mozilla Firefox and Internet Explorer are the main web
browser used in 2014. The author can choose above three browsers in the NetBeans to run in

39

localhost. Below are screenshot of in Chrome (figure 44), Internet Explorer (figure 45), and in
Mozilla Firefox (figure 46).

FIGURE 44. Screenshot of Chrome

FIGURE 45. Screenshot of Internet Explorer

40

FIGURE 46. Screenshot of Mozilla Firefox

As above figures show that new user interfaces of template page, login page and home page are
running properly in Google Chrome, Mozilla Firefox and Internet Explorer browsers.

41

5 Conclusion

As mentioned in earlier introduction chapter, the main research problem of this thesis is to study
and integrate Bootstrap 3 into OpixManager. The question has been answered through applying
theoretical framework for actual implementation in empirical part.

In chapter 2 and 3, the theoretical framework of this thesis has built up by studying what is
responsive web design, what components are included using Bootstrap 3 and how OpixManager
CodeIgniter that based on MVC framework interrelates among the model, the view and the
controller. Through theoretical framework, the author has knowledge how to integrate Bootstrap
template to OpixManager's user interface and where to edit code.

In chapter 4, Freelancer template has been chosen as integrated template in OpixManager
because of balanced colour palette, simple layout and satisfied usability. Due to limitation of work
time, template has been integrated only in template page, login page and home page as well its
linked pages. CSS, Font and JS files should be properly imported in template.php. Editing and
modifying code has been done in template.php, login_view.php, and home_view.php. Final results
has been tested in cross browser through localhost server. For instance: Mozilla Firefox, Internet
Explorer and Chrome.

However, two major obstacles which have affected the result of implementation. First of all,
compatibility problem has occurred during integration Freelancer template base on HTML, CSS
into OpixManager's CodeIgniter based on PHP. More explanation will be in discussion chapter.
Secondly there are really limited open resources available about integration Bootstrap into
CodeIgniter, hence the author has spent quite lots of time to solve problems without useful tutorials.

All in all, the final implementation is quite satisfactory. Actual execution proves Freelancer is
suitable Bootstrap template for integrating in OpixManager. User interface is simple and modern, it
is compatible with all major browsers, for example Internet Explorer, Firefox, and Chrome, and
adopted a mobile first design with emphasizing responsive design by default.

42

6 Discussion

The thesis work has started at the middle of May. Due to summer break, the progress of thesis has
slowed down for two months. The whole project took around 4 months for both theoretical and
empirical parts.

This work gave me the opportunity to learn Bootstrap and CodeIgniter, and how to integrate
Bootstrap template into OpixManager application. The author does not have any experience on
open-source front-end framework before that. Especially Bootstrap 3 is very popular responsive
HTML5 frameworks nowadays, the author is interested in front-end coding and very glad to have
this opportunity to learn and familiarize Bootstrap framework.

The biggest challenge that the author faced in this thesis work is compatibility problem occurring
during integration Freelancer template base HTML, CSS into OpixManager's CodeIgniter based on
PHP. Due to limited available resources about integration Bootstrap into CodeIgniter in the Internet,
the author has spent quite lots of time on solving unexpected problem. For instance, login in method
could not be appropriately called because of linking wrong external JavaScript file in template.php.

And PHP method could not run properly inside <div> tag or glyphicons could not be loaded in

 tag. Therefore, hopefully there are more references and tutorials available for future editor
and potential sections in those implemented pages can be improved.

I have learnt a lot about how to solve frequent problems of Bootstrap integration, and how to fully
use limited resources for instance, stack overflow is very useful forum where users can freely
upload code problems and people are willing to provide suggested answers. Stack overflow helps
the author a lot during actual implementation. This project has given me an opportunity to test my
skills. The final execution is rather satisfactory because of thesis tutor and teachers help.

43

REFERENCES

Adrian. Responsive Web Design: 50 Examples and Best Practices.Cited 25.5.2014,
http://designmodo.com/responsive-design-examples/

Apache 2004. Apache License, Version 2.0. Cited 02.10.2014, http://www.apache.org/licenses/

Beresford, Toby. 2008. Benefits of the CodeIgniter Framework. Cited 30.5.2014,
http://www.slideshare.net/tobyberesford/benefits-of-the-code-igniterframework

Bootstrap 3 Homepage 2014. Cited 30.5.2014, http://getBootstrap 3.com/getting-started/

Butler, Tom. 2010. Model-View-Controller. Cited 24.9.2014, https://r.je/mvc-in-php.html

David, Natalia. 2013. 11 Reasons to Use Twitter Bootstrap 3. Cited
30.5.2014, http://www.sitepoint.com/11-reasons-to-use-twitter-bootstrap/

Ellislab 2014 a. Cited 15.8.2014, https://ellislab.com/CodeIgniter

Ellislab 2014 b. Model-View-Controller. Cited 15.8.2014,
https://ellislab.com/CodeIgniter/userguide/overview/mvc.html

Gube, Jacob. 2013. 10 Best Responsive HTML5 Frameworks and Tools. Cited
26.5.2014, http://designinstruct.com/roundups/html5-frameworks/

Knight, Kayla. 2011. Responsive Web Design: What It Is and How To Use It. Cited
26.5.2014, http://www.smashingmagazine.com/2011/01/12/guidelines-for-responsive-web-design/

Macronimous 2014. Cited
30.5.2014, http://www.macronimous.com/resources/using_CodeIgniter_for_PHP_application_de
velopment.asp

44

Marcotte, Ethan. 2009 a. Fluid Grids. Cited 29.5.2014, http://alistapart.com/article/fluidgrids

Marcotte, Ethan. 2009 b. Fluid Images. Cited 29.7.2014, http://alistapart.com/article/fluid-images

OpixProject Homepage 2014. Cited 27.5.2014,
http://opixproject.opiskelijaprojektit.net/index.php/opixproject/general

Pettit,Nick. 2012. Beginner’s Guide to Responsive Web Design. Cited 28.5.2014,
http://blog.teamtreehouse.com/beginners-guide-to-responsive-web-design

Profound grid 2014. A responsive grid system. Cited 06.11.2014, http://www.profoundgrid.com/

Scrum Overview for Agile Software Development. Cited 28.5.2014,
http://www.mountaingoatsoftware.com/agile/scrum/overview/

StartBootstrap 2014. Freelancer Template. Cited 28.9.2014,
http://startBootstrap.com/templates/freelancer/

Storey, Dudley. 2014. CSS Fluid Image Techniques for Responsive Site Design. Cited
30.07.2014, http://demosthenes.info/blog/586/CSS-Fluid-Image-Techniques-for-Responsive-Site
Design

Wikepedia 2014 a. CodeIgniter. Cited 30.5.2014, http://en.wikipedia.org/wiki/CodeIgniter

Wikepedia 2014 b. Project managementr. Cited 24.9.2014,
http://en.wikipedia.org/wiki/Project_management

Wikipedia 2014 c. Model–view–controller. Cited 24.9.2014,
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Wikibook 2014. Model–view-controller. Cited 24.9.2014,
http://en.wikibooks.org/wiki/Computer_Science_Design_Patterns/Model%E2%80%93
ew%E280%93controller

45

APPENDICES

Appendix 1. Screenshots of linked pages in old user interface

Appendix 2. Screenshots of linked pages in new user interface

Appendix 3. Mobile Views in new user interface

46

APPENDIX 1
Screenshots of linked pages in old user interface

Navigation bar

Home page

Edit project page

47

Project staff page

Product backlog page

Edit your profile page

48

Change password page

49

APPENDIX 2
Screenshots of linked pages in new user interface

Navigation bar

Home page

Edit project page

50

Project staffs page

Project backlog page

Edit your profile page

51

Change password page

52

APPENDIX 3
Mobile Views in new user interface

Navigation bar

Home page

53

Edit project page

Project staffs page

54

Product backlog page

Edit your profile page

Change password page

55

	Zhejia Tapani
	1 INTRODUCTION
	1.1 Research Questions and Theoretical Framework
	1.2 OpixManager Introduction

	2 RESPONSIVE WEB DESIGN AND BOOTSTRAP 3
	2.1 Responsive Web Design
	2.2 Bootstrap 3
	2.3 CSS in Bootstrap 3
	2.4 Examples of Components in Bootstrap 3
	2.5 JavaScript in Bootstrap 3

	3 OPIX MANAGER CODING SYSTEM
	3.1 CodeIgniter
	3.2 Model-View-Controller (MVC)
	3.3 Analysis Current Coding System of OpixManager

	4 DESIGN AND IMPLEMENT OPIXMANAGER
	4.1 User Interface Design
	4.2 Integrate Freelancer Template into OpixManager
	4.3 Implementation in Login Page, Home Page
	4.4 Cross-Browser Testing

	5 Conclusion
	6 Discussion
	REFERENCES
	APPENDICES
	Screenshots of linked pages in old user interface
	Screenshots of linked pages in new user interface
	Mobile Views in new user interface

