
Degree Thesis, Åland University of Applied Sciences, Degree Programme in
Information Technology

Development of a Serverless
RESTful API

Thomas Hagelberg

2023:23

Date of approval: 28.5.2023
Academic Supervisor: Joakim Isaksson



DEGREE THESIS
Åland University of Applied Sciences

Degree Programme: Information Technology
Author: Thomas Hagelberg
Title: Development of a Serverless RESTful API
Academic Supervisor: Joakim Isaksson
Commissioned by: Crosskey Banking Solutions

Abstract

The purpose of this thesis is to illustrate the development process of a new serverless
RESTful API for managing document-related privileges. The API is hosted in the AWS
ecosystem, and based on the serverless compute engine Fargate.

The API is designed to determine the actions that can be taken on a document based on its
sub-category, and will be used in Crosskey’s new frontend system, which will act as a
replacement for static xml configuration.

I have used the agile methodology Scrum to break down the development process into
two-week sprints and used various technologies such as Java, Spring, JPA, Oracle, AWS and
various other related technologies.

Keywords
Java, Spring, RESTful, Serverless, AWS

Serial number: ISSN: Language: Number of pages:
2023:23 1458-1531 English 46

Handed in: Date of presentation: Approved:
3.5.2023 16.5.2023 28.5.2023

2



EXAMENSARBETE
Åland University of Applied Sciences

Utbildningsprogram: Informationsteknik

Författare: Thomas Hagelberg

Arbetets namn: Utveckling av en serverlös RESTful API

Handledare: Joakim Isaksson

Uppdragsgivare: Crosskey Banking Solutions

Abstrakt
Syftet med denna uppsats är att illustrera utvecklingsprocessen av en ny serverlös RESTful
API för att hantera dokument-relaterade privilegier. API:et är hyst i AWS-ekosystemet och
bygger på den serverlösa beräkningsenheten Fargate.

API:et är utformat för att bestämma vilka åtgärder som kan vidtas på ett dokument baserat på
dess underkategori, och kommer att användas i Crosskeys nya frontend-system, vilket
kommer att agera som ersättning för statisk XML-konfiguration.

Jag har använt den agila metodologin Scrum för att bryta ner utvecklingsprocessen i två
veckors sprintar och använt olika teknologier som Java, Spring, JPA, Oracle, AWS och andra
relaterade teknologier.

Nyckelord (sökord)
Java, Spring, RESTful, Serverless, AWS

Högskolans
serienummer:

ISSN: Språk: Sidantal:

2023:23 1458-1531 Engelska 46

Inlämningsdatum: Presentationsdatum: Datum för godkännande:
3.5.2023 16.5.2023 28.5.2023

3



INNEHÅLLSFÖRTECKNING/TABLE OF CONTENTS

1. INTRODUCTION 6
1.1 Purpose 6
1.2 Method 6
1.3 Limitations 7

2. PROGRAMMING PRINCIPLES AND PRACTICES 7
2.1 MVC 7

2.1.1 Model 7
2.1.2 View 9
2.1.3 Controller 12

2.2 REST 14
2.2.1 RESTful 15
2.2.2 Resources and URIs 15
2.2.3 HTTP Methods 15
2.2.4 Common Response Codes 15
2.2.5 RESTful Example 15

2.3 Inversion of Control 16
2.4 Serverless 17

2.4.1 AWS Fargate 17
3. FRAMEWORKS AND TOOLS 18

3.1 Spring 18
3.1.1 Spring Boot 19
3.1.2 Spring Native 20

3.2 Java Persistence API 20
3.3 Swagger 23

3.3.1 OpenAPI Specification 23
3.3.2 Swagger UI 25

3.4 Gradle 28
3.5 Jenkins 31
3.6 AWS Cloud Development Kit 31

4. DEVELOPMENT PROCESS 33
4.1 Preparation 33

4.1.1 Initial meetings 33
4.1.2 Scope definition 34

4.2 Development 34
4.2.1 Initial Startup 34
4.2.2 Spring Native Investigation 34
4.2.3 Contract-first approach 35
4.2.4 JPA integration towards the database 39

4



4.3 CI/CD to AWS Fargate 40
4.3.1 Jenkins 40
4.3.2 Sonatype Nexus Repository 40
4.3.3 AWS CDK 41

4.4 Automated Testing 41
4.4.1 Integration Testing 41
4.4.2 Unit testing 41
4.4.3 Postman and Newman 42

5. CONCLUSION 43
5.1 The result 43
5.2 Reflections 43

REFERENCES 44

5



1. INTRODUCTION

1.1 Purpose

The purpose of this thesis is to illustrate the development process of a new serverless

RESTful API for managing document related privileges. The data provided by this API

would be used to determine what can be done with a certain type of document, based on its

sub-category. This API is intended to be used in Crosskey’s new Angular backoffice system.

The API would replace an existing xml configuration that provided this functionality in the

old Vaadin backoffice system. The backoffice system is a web application providing the bank

personnel with a wide variety of functionalities, such as managing users, payments and much

more.

The idea of this application was initially brought to light when my colleagues were discussing

suitable projects for my thesis, and this turned out to be the best fit based on my own desires.

There was no existing microservice in place prior to this in my team, so this was a natural

step in our cloud migration journey.

1.2 Method

The initial step was to have several start-up meetings where the overview of the application

was discussed. Architectural bullet points were laid out, setting the foundation for how the

application should be designed and developed.

The development environment would be of Crosskey standard for Java developers, which

included IntelliJ Idea as IDE and Bitbucket as code repository. The programming language

was Java and a few of the major frameworks and tools such as Spring Boot and JPA were

included in this project.

The development methodology itself is based on Scrum, where the development process

relies on increments and two-week sprints, which results in new functionality at the end of

each iteration.

6



1.3 Limitations

One major limitation of this project was to follow API guidelines and security requirements

from Crosskey. This resulted in being restricted to use certain versions of frameworks and

tools in order to be compliant with other Crosskey systems.

The second limitation was that no front-end functionality was going to be developed for

managing the data of this API. This is because it was not clear how the data should be stored

and managed, simply that the new backoffice system would fetch the data. This resulted in a

gray area as to who was responsible for updating the data as we were initially only

responsible for providing the API.

2. PROGRAMMING PRINCIPLES AND PRACTICES

2.1 MVC

MVC (Model-View-Controller) is a design pattern used in software development and used for

separating the business logic, front-end and processing of data. MVC divides an application

into three main components (Tutorialspoint, n.d):

2.1.1 Model

This component represents the data and the business logic of the application. It is responsible

for managing the data and providing an interface to the controller components to access the

data. Per good programming principles, most model classes should have exclusive access to

their respective repository and only act as an interface towards the controller. Figure 1

illustrates how the model can be represented as a service class in Java, utilizing Spring and

Lombok annotations. More explanations of Spring and other used frameworks will be

provided in chapter 3.

7

https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm


Figure 1. Example of a service class working as a model in Java.

8



2.1.2 View

The View is the component that displays the data to the user and provides the user interface

for interacting with the application. This includes elements such as buttons, text boxes,

images, etc. The View is responsible for converting the Model data into a form that can be

displayed to the user.

The View is typically not aware of the Model, and communicates with the Controller to

receive updates on changes in the Model. The View updates itself in response to changes in

the Model, and informs the Controller of any user inputs. Figure 2 and figure 3 illustrate how

a view can be created, using HTML and the Angular framework.

9



Figure 2. Example of a HTML file working as a view towards the user, utilizing the Angular framework.

10



Figure 3. Example of an angular module that provides enhanced front-end functionality to the view.

Figure 4 show how the actual browser page looks after sending in two entries to the

controller, which verifies the data and then forwards the request to the model (service class)

which updates the database and returns the updated object to the view.

11



Figure 4. Browser page based on the HTML file, displaying Document Privileges based example functionality.

2.1.3 Controller

The Controller is responsible for handling user inputs and updating the Model accordingly.

This can involve processing user inputs, such as button clicks or form submissions, and

updating the Model data based on the inputs received. The Controller is also responsible for

updating the View in response to changes in the Model.

The Controller is typically aware of both the Model and the View, and communicates with

both to ensure that the Model data is updated and the View is displaying the correct

information. It acts as a bridge between the Model and View, ensuring that changes to one

component do not affect the other. Figure 5 down below shows an example of how a

controller in Java and Spring Boot could look like.

12



Figure 5. Example of a controller class in Java.

13



2.2 REST

REST (Representational State Transfer) is an architectural style that defines the way of

building web services. REST is based on these key principles provided below: (IBM, n.d.)

1. Uniform interface. “All API requests for the same resource should look the same, no

matter where the request comes from. The REST API should ensure that the same

piece of data, such as the name or email address of a user, belongs to only one

uniform resource identifier (URI). Resources shouldn’t be too large but should

contain every piece of information that the client might need.”

2. Client-server decoupling. “In REST API design, client and server applications must

be completely independent of each other. The only information the client application

should know is the URI of the requested resource; it can't interact with the server

application in any other ways. Similarly, a server application shouldn't modify the

client application other than passing it to the requested data via HTTP.”

3. Statelessness. “REST APIs are stateless, meaning that each request needs to include

all the information necessary for processing it. In other words, REST APIs do not

require any server-side sessions. Server applications aren’t allowed to store any data

related to a client request.”

4. Cacheability. “When possible, resources should be cacheable on the client or server

side. Server responses also need to contain information about whether caching is

allowed for the delivered resource. The goal is to improve performance on the client

side, while increasing scalability on the server side.”

5. Layered system architecture.” In REST APIs, the calls and responses go through

different layers. As a rule of thumb, don’t assume that the client and server

applications connect directly to each other. There may be a number of different

intermediaries in the communication loop. REST APIs need to be designed so that

14

https://www.ibm.com/topics/rest-apis


neither the client nor the server can tell whether it communicates with the end

application or an intermediary.”

2.2.1 RESTful

RESTful refers to web services and applications that implement the principles of REST. The

following are key components of RESTful APIs (Amazon, 2023).

2.2.2 Resources and URIs

● A resource is an object or representation of something

● A URI is a unique identifier that represents a resource

2.2.3 HTTP Methods

● GET: retrieves a resource

● POST: creates a new resource

● PUT: updates an existing resource

● DELETE: deletes a resource

2.2.4 Common Response Codes

● 200 OK: request was successful

● 201 Created: new resource was successfully created

● 400 Bad Request: request was invalid or cannot be fulfilled

● 401 Unauthorized: authentication failed or user does not have permissions

● 403 Forbidden: authentication succeeded, but the authenticated user does not have

access to the resource

● 404 Not Found: resource was not found

● 500 Internal Server Error: an error occurred on the server.

2.2.5 RESTful Example

In figure 6, an example is shown of how a set of RESTful endpoints could look.

15

https://aws.amazon.com/what-is/restful-api/


Figure 6. RESTful endpoints displaying the HTTP methods and URIs for the document-privileges resource

2.3 Inversion of Control

Inversion of Control (IoC) is a design pattern that changes the way in which the control flow

of a program is determined. Instead of the program controlling the flow of execution, the

flow of execution is controlled by an external entity, such as a framework or container. This

pattern is often used to increase flexibility and testability of the code.

There are two main types of IoC:

● Dependency Injection (DI) - the objects that a component depends on are passed to it

by an external entity (often a framework) at runtime.

● Service Locator - the component looks up its dependencies from a central registry,

rather than having them passed to it.

IoC is often a key part of frameworks that are designed to be extensible and reusable

(Baeldung, 2019). It allows developers to create a more flexible and testable codebase, it is

often implemented in frameworks such as Spring, AngularJS, and many others.

Figure 7 gives an example of how a Java class is annotated with the Spring Boot “@Service”

and Lombok “@AllArgsConstructor” annotations. The Service annotation specifies that the

class is a service and a bean should be created for that class which can be used for

dependency injection. The AllArgsConstructor annotation on the other hand specifies that all

parameters for a class should, if needed, be autowired. Autowiring is a way of connecting

16

https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring


parameters with a suitable bean, and stopping the application if no suitable bean can be

found.

Figure 7. Spring and Lombok annotations

2.4 Serverless

In a serverless architecture, the cloud provider is responsible for the management of the

infrastructure, including "provisioning, scaling, and maintaining servers and infrastructure

components" (AWS, 2023b). Developers can build and deploy their applications as small,

independent functions that run in response to specific events, such as a user request or a

message in a queue. The cloud provider then runs these functions as needed, allocating and

deallocating resources dynamically to match demand. This means that developers only pay

for the resources they actually use, rather than having to provision and manage servers

continuously.

The serverless design pattern can be used to build a wide range of applications, including

"web and mobile applications, real-time data processing pipelines, and backends for IoT

devices" (AWS, 2023b). It provides a highly scalable, flexible, and cost-effective way to

build and run applications, and is becoming increasingly popular due to its simplicity and

efficiency.

2.4.1 AWS Fargate

AWS Fargate is a serverless compute engine for containers that eliminates the need to

manage infrastructure and allows developers to focus on building and deploying their

applications.

Fargate is the compute engine that was agreed to use when developing the new API, mostly

because the serverless architecture is on the road to become the industry standard. Therefore,

17

https://aws.amazon.com/serverless/
https://aws.amazon.com/serverless/


learning and experimenting with its features would be really valuable for the team. Figure 8

displays the difference between using AWS’ EC2 servers and fargate.

Figure 8. Difference between AWS EC2 and Fargate (AWS, 2023a)

3. FRAMEWORKS AND TOOLS

3.1 Spring

Spring is an open-source, Java-based framework that provides a comprehensive programming

and configuration model for modern Java-based enterprise applications. According to the

Spring documentation (Spring, 2023a), it is designed to help developers build

high-performing, easily testable, and reusable code.

One of the key features of the Spring framework is its dependency injection (DI) and

inversion of control (IoC) container. The DI container manages the components that make up

an application, and the IoC container manages the flow of control between them (Spring,

2023a). This helps to make the code more modular and easier to test and maintain.

The Spring framework also includes a wide range of modules for tasks such as data access,

transaction management, and web services (TechTarget, 2019). These modules are designed

to work together seamlessly, and they can be used in any combination to create a customized

application.

18

https://aws.amazon.com/fargate/
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://www.techtarget.com/searchapparchitecture/definition/Spring-Framework


Another important aspect of the Spring framework is its support for aspect-oriented

programming (AOP) (Spring, 2023a). AOP allows developers to modularize cross-cutting

concerns such as security, logging, and caching, which can be applied to multiple parts of the

application without affecting the core business logic. Overall, the Spring framework is a

popular choice for enterprise Java development because of its flexibility, ease of use, and

ability to integrate with other frameworks and technologies (TechTarget, 2019).

3.1.1 Spring Boot

Spring Boot is a Java-based framework for building and deploying cloud-native applications.

It provides an easy way to create standalone, production-grade applications and services

efficiently. Spring Boot simplifies the process of creating Spring-powered applications and

services by eliminating much of the boilerplate code and configuration that is typically

required (Microsoft Azure, 2023).

Spring Boot provides a number of features to simplify the development and deployment of

cloud-native applications. These features include auto-configuration, embedded web servers,

command-line tools, and pre-configured templates for common use cases (Microsoft Azure,

2023).

By using Spring Boot, developers can focus on writing the business logic for their

application, while the framework takes care of the underlying infrastructure and

configurations. This makes it easier to get started with developing and deploying cloud-native

applications and services, and reduces the time and effort required to get an application up

and running. Figure 9 shows the “@SpringBootApplication” annotation that is used to enable

the Spring Boot functionality in a Java application class.

19

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://www.techtarget.com/searchapparchitecture/definition/Spring-Framework
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot/


Figure 9. The “@SpringBootApplication” annotation in a Java application class

3.1.2 Spring Native

Spring Native is a set of tools and technologies for building cloud-native applications using

the Spring framework (Spring, 2023b). It provides a way for developers to build and run

Spring-based applications in a cloud-native environment, taking advantage of the scalability,

reliability, and performance of cloud computing.

The Spring Native documentation states that it provides a number of features and tools to

simplify the development and deployment of cloud-native applications such as support for

microservices architecture, containerization, and orchestration (Spring, 2023b). This makes it

easier for developers to build and deploy cloud-native applications that are scalable, reliable,

and performant.

Ahead of Time (AOT) processing is a key feature of the Spring Native framework. It is

designed to generate machine code that can be executed by the operating system, without the

need for a separate runtime environment (Spring, 2021). This allows for faster startup times

and reduced memory usage, as the application does not have to load the runtime environment

into memory before it can start processing requests.

3.2 Java Persistence API

The Java Persistence API (JPA) is a Java application programming interface (API)

specification that provides a standard way to access relational databases in Java applications.

JPA is an API specification that provides a way to access relational databases in a standard

way for Java applications (JavaTPoint, n.d.). JPA is part of the Java Enterprise Edition (Java

EE) platform and is designed to simplify the storage and retrieval of Java objects from

relational databases.

JPA provides a set of APIs for defining the structure of a database, as well as for querying

and updating the data in that database (IBM, 2023). JPA can be used with a variety of

20

https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html#native-image
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html#native-image
https://spring.io/blog/2021/12/09/new-aot-engine-brings-spring-native-to-the-next-level
https://www.javatpoint.com/jpa-introduction
https://www.ibm.com/docs/en/was-liberty/nd?topic=overview-java-persistence-api-jpa


relational databases, including relational databases such as Oracle, MySQL, and Microsoft

SQL Server.

JPA is implemented through Object Relational Mapping (ORM), which is a technique for

mapping data from a relational database to objects in a Java program, and vice versa. ORM

allows developers to write Java code to interact with the database, rather than writing SQL

statements, which can simplify the development process (IBM, 2023). In figure 10, a few

examples are shown of what functionality is available per default in JPA without creating any

custom SQL functions and queries.

Figure 10. Displaying a few functions for handling queries using a Repository that extends JpaRepository

The repository itself is created by a Java class utilizing the “@Entity” annotation, that is

shown in Figure 11. The “@Data” annotation provides basic getter and setter methods,

toString and hash functions, while the “@NoArgsConstructor” and “@AllArgsConstructor”

creates class constructor functions. The “@Data”, “@NoArgsConstructor” and

“@AllArgsConstructor” annotations are part of the Lombok artifact, and are not included

with JPA.

21

https://www.ibm.com/docs/en/was-liberty/nd?topic=overview-java-persistence-api-jpa


Figure 11. Example of an Entity class

When using a repository that should use JPA we extend the ‘JpaRepository’ class and specify

what entity should be used, and what class should be used as a primary key.

A few included functions were already shown in figure 10, but it is also possible to create

custom queries. They can simply be structured using text, but that is not “best practices” from

a security perspective, due to the risk of potential SQL injection attacks. Therefore we can

also create custom queries with “prepared statements”, which is much safer. Figure 12 shows

an example of this.

22



Figure 12. Example of a Repository class that is extending the JpaRepository, with two custom queries.

3.3 Swagger

Swagger is a set of open-source tools built around the OpenAPI Specification that can help

the user design, build, document and consume REST APIs (Swagger, n.d.-d). Swagger

provides a user-friendly interface for creating and testing APIs, as well as generating API

documentation automatically. This makes it easier for developers to collaborate and

communicate about the APIs they are building, and for API consumers to understand how to

use the APIs.

Swagger is a machine-readable representation of a RESTful Web API that enables a client to

understand the capabilities of a service without requiring access to source code, additional

documentation, or inspection of network traffic (TechTarget, n.d.).

3.3.1 OpenAPI Specification

The OpenAPI Specification (OAS) provides a uniform way of describing RESTful APIs,

regardless of the programming technology or framework utilized to build the API. This

makes it more convenient for developers to work with APIs and for API consumers to

comprehend how to use the API (Swagger, n.d.-a).

23

https://swagger.io/docs/specification/2-0/what-is-swagger/
https://www.techtarget.com/searchapparchitecture/definition/Swagger
https://swagger.io/docs/specification/about/


The OAS comprises various elements that can be used to describe the API, such as endpoints,

request and response bodies, parameters, and security definitions. The specification is

adaptable, allowing developers to include various levels of detail in describing their API.

This feature allows for customization and tailored description of the API based on specific

needs and requirements. Figure 13 shows an example of an openAPI specification, or

contract, as some may call it.

24



Figure 13. Example of an openAPI specification (Swagger, n.d.-b)

In addition to its fundamental features, the OAS provides a structure for testing APIs and

generating API documentation. This simplifies the process for developers to create and

25

https://editor.swagger.io/


maintain dependable, well-documented APIs that are user-friendly and easy to comprehend

for others.

3.3.2 Swagger UI

Swagger UI is a collection of HTML, JavaScript, and CSS assets that dynamically generate

documentation from a Swagger-compliant API. This documentation provides a

comprehensive overview of the API's resources, operations, and parameters, making it easier

for developers to understand how to use the API (Swagger, n.d.-c).

Swagger UI provides an intuitive, interactive way to explore the API and its capabilities,

making it an essential tool for any developer working with Swagger-based APIs. With

Swagger UI, developers can quickly test and debug the API, reducing the time and effort

required to implement the API in their own applications.

Figure 14 shows how the Swagger UI overview looks for the Document Privileges example

RESTful API endpoints, and the respective schema (object) that is available. Figure 15

illustrates how the user can interact and try out the specific endpoints.

26

https://swagger.io/tools/swagger-ui/


Figure 14. Swagger UI overview for the endpoints of Document Privileges example functionality.

27



Figure 15. Swagger UI interaction with the /document-privileges endpoint.

28



3.4 Gradle

Gradle is an open-source build automation tool for Java projects that is designed to be

flexible, efficient, and easy to use. It builds upon the concepts of Apache Ant and Apache

Maven and introduces a Groovy-based domain-specific language (DSL) instead of the XML

form used by Apache Maven for declaring the project configuration (Gradle, n.d.).

Gradle helps automate the process of building, testing, and deploying Java applications by

providing a flexible and scalable build system that can be easily integrated with other tools.

The tool is particularly well suited to large, complex projects with many dependencies, as it

can handle the complexity of managing these dependencies and building the project

efficiently.

Gradle is designed to be highly configurable and extensible, allowing developers to

customize its behavior to fit their specific needs. This is achieved through the use of plugins,

which can be used to add new features or extend the capabilities of Gradle. Gradle plugins

are the preferred way to add new functionality to Gradle. With plugins, it is possible to

extend the core build logic and add new features, tasks and configurations to Gradle (Gradle,

n.d.).

Overall, Gradle is a powerful and versatile tool that can help streamline the build process for

Java projects and make it easier for developers to focus on coding, rather than worrying about

the build process. Figure 16 and 17 displays how the Document Privileges example project is

structured. Figure 16 shows the basic configuration including plugins, repositories, Java

version and more, while figure 17 shows how Gradle can be used to load external artifacts

into the application using dependencies.

29

https://docs.gradle.org/current/userguide/what_is_gradle.html
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://docs.gradle.org/current/userguide/what_is_gradle.html


Figure 16. Basic Gradle configuration for the Document Privileges example application.

30



Figure 17. Gradle dependencies towards external artifacts.

31



3.5 Jenkins

Jenkins is an open-source automation server designed to support continuous integration and

continuous delivery (CI/CD) of software projects. Jenkins provides hundreds of plugins to

support building, deploying, and automating any project (Jenkins, n.d.).

Jenkins provides a web interface for configuring, managing and viewing the logs of builds

and allows developers to automate various stages of the software development lifecycle,

including building, testing, and deployment. This helps to ensure that software is delivered

quickly and efficiently, while also reducing the risk of errors and bugs. The use of Jenkins

also allows developers to focus on writing code, as opposed to manual and repetitive tasks

such as building and testing. Jenkins provides a web interface for configuring, managing and

viewing the logs of builds.

Jenkins supports a wide range of programming languages and technologies, making it a

flexible tool that can be used in a variety of environments. The platform can be easily

integrated with other tools, such as Git, JIRA, and Selenium, which allows for a seamless and

streamlined software development process.

3.6 AWS Cloud Development Kit

The AWS Cloud Development Kit (AWS CDK) is a software development framework for

defining cloud infrastructure as code and provisioning it through AWS CloudFormation. It

uses familiar programming languages, including JavaScript, TypeScript, Python, Java, and

C#, and deploys everything as a cloud formation stack (AWS, n.d.).

The AWS CDK allows developers to define and manage cloud resources using familiar

programming constructs, making it easier for developers to define, provision, and update

cloud infrastructure. The AWS CDK also provides a high level of abstraction, allowing

developers to define cloud infrastructure in terms of cloud components and relationships,

rather than low-level infrastructure as code.

32

https://www.jenkins.io/
https://docs.aws.amazon.com/cdk/v2/guide/home.html


The AWS CDK supports a range of AWS services, including AWS RDS, AWS EC2, AWS

ECS and AWS Fargate, as well as custom resources and AWS CloudFormation macros.

Figure 18 shows an example of how an AWS ECS service with AWS Fargate launch type can

be defined using Java code, which is utilizing the AWS CDK framework (AWS, n.d.).

Figure 18. Example of how a stack can be defined in Java using AWS CDK framework (AWS, n.d.).

Overall, the AWS CDK is a powerful and flexible tool for defining and provisioning cloud

infrastructure, and it makes it easier for developers to manage and automate the deployment

of their cloud infrastructure (AWS, n.d.).

33

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html


4. DEVELOPMENT PROCESS

4.1 Preparation

4.1.1 Initial meetings

This project began as a discussion meeting in late September 2022, where the product owner,

application managers, and system architect were present. The objective of the meeting was to

identify a suitable project for me. The most relevant work identified was to develop a new

microservice - a RESTful API that would be based on a serverless architecture.

Although the exact description of what the API should do was not defined, document-related

privileges were the general idea. This resulted in a follow-up meeting with the application

managers, where we discussed the other architectural aspects of the application. The primary

objectives were to discuss:

● The purpose of the API

● Who will use it

● The technologies that should be used

As a result of the meeting, the API was designed to provide Crosskey’s new Backoffice

system with different types of privileges for documents based on their sub-category. In other

words, it defined what users were allowed to do with different types of documents, such as

deleting them, reinstating them, or identifying the document’s creator.

The technology stack was thoroughly discussed, and the output was:

● Spring Boot

● RESTful API

● Oracle Database

● Serverless (AWS Fargate)

● AWS Secrets Manager

34



4.1.2 Scope definition

The project’s vision was now clear, and I had a better understanding of what we were aiming

for. The next step was to break down the project into smaller tasks in an agile environment

where Scrum was the methodology, and Jira was the technology used for managing and

tracking the development process. The entire project was defined as an “epic” in Jira

terminology, which contained the project description and all tasks, or “stories” that needed to

be done in order to be ready for release. The epic is used as an overview to see the result of a

project and simplifies the administration.

4.2 Development

4.2.1 Initial Startup

The initial story was to set up the project, create a repository, generate a code skeleton, and

create some basic endpoint. Although initially considered easy, it was challenging because

the thought was to copy the structure from an existing project into this one. However,

different projects have different setups and configurations, and all these configurations were

unclear to me at the time. I had never developed an entire enterprise application from scratch

before, so this was a considerable challenge.

Numerous discussions were held with colleagues who had expertise in the difficulties I was

facing. For each problem, I searched for a detailed explanation to understand the root cause

behind it.

4.2.2 Spring Native Investigation

In the process of setting up the new microservice project, I came across the concept of Spring

Native and decided to investigate it. I read up on the advantages of Spring Native, but was

unsure of how to configure it. After much effort, I successfully configured Gradle with the

native plugins and dependencies, only to be faced with error messages related to downloading

necessary dependencies. These errors were due to Crosskey’s firewall blocking untrusted

traffic, as it should.

35



After discussing the issue with the platform managers, I discovered that I needed to point all

necessary dependencies towards our own internal repository. However, I was unable to find a

suitable solution online in our use-case and ended up posting a detailed question on Stack

Overflow. A member of the Spring team at VMware replied with a solution involving the use

of a proxy, but I ultimately decided against using Spring Native due to my concerns about its

enterprise readiness (Stack Overflow, 2022).

4.2.3 Contract-first approach

The software development methodology known as the contract-first approach prioritizes the

creation of the openAPI contract, which includes endpoints, schemas, responses and security

specific to the API, among other options. Although I initially wanted to explore the

possibility of not using a contract, I discovered that doing so came with challenges.

Figure 19 shows that it is possible to create RESTful endpoints without a contract, relying

solely on annotations like “@GetMapping”, “@PostMapping”, and so on. However, it is not

ideal to develop an API with manually defined API annotations in the controller, as it can end

up with significant functionality and descriptions missing.

Figure 19. Example of RESTful endpoints in Spring boot using only annotations.

Not using the contract-first approach can thus result in a significant increase in time and

effort, particularly when developing an enterprise product. The implementation could become

36

https://stackoverflow.com/questions/74399883/how-to-set-dependency-mapping-binding-in-gradle-bootbuildimage-spring-boot-2-7


more complicated, there could be increased lack of documentation and higher development

costs. Those are just a few possible drawbacks of not using the contract-first approach.

As a result, I began creating the necessary contract after realizing the drawbacks of not using

one. The required changes are illustrated in figures 20-23. The schema is generated as a

separate class, while the contract is created as its own API interface. The generated interface

is then implemented in the controller class, and its functions are overridden, as illustrated in

figure 24.

37



Figure 20. Example of an openAPI contract.

38



Figure 21. OpenAPI component schema for the contract.

Figure 22. Generated API interface from the openAPI contract.

39



Figure 23. Image displaying the generated interface and classes using “org.openapi.generator” plugin

Figure 24. Example of a controller class implementing the generated interface

4.2.4 JPA integration towards the database

As mentioned in chapter 3.2, the JPA framework/specification is used for providing enhanced

functionality when managing entities directly towards a database. This makes the overall

code quality better, and results in non-redundant coding when we can use already existing

functions for managing and persisting data.

40



JPA has built in functionality for creating schema tables, based on the existing entities. This is

possible because JPA uses the ORM (Object Relational Mapping) tool Hibernate, which

handles all the conversions from the POJO (Plain Old Java Object) entities to SQL compliant

queries. This table generation option is called: “jpa.hibernate.ddl-auto” in the application.yml

or application.properties file. I tried it out in the development environment, but I did not find

it suitable for the actual test, stage and production environment.

The reason for this was caused by the lack of overview when making updates to the POJO

entities. All the SQL queries being performed can be seen and accessed, but I still believed

that using a migration tool with specific script files was more clear, easy to understand and

added traceability of what changes had been made.

4.3 CI/CD to AWS Fargate

CI/CD to AWS Fargate included many third-party tools for building, storing, deploying and

running the application. Initially the whole process felt complex, but after a few tries all the

steps became clear and very manageable.

4.3.1 Jenkins

The initial tool to set up was the CI/CD Jenkins pipeline. This pipeline was responsible for

building the application jar and dockerfile, and publishing them both to the Sonatype Nexus

Repository, which will be explained more in chapter 4.3.2. This process was relatively

straightforward. Gradle was configured with the name of the jar, and where it should be

published to. The same goes for the dockerfile but with one addition, a dockerfile

specification with required arguments, that copied in the built jar and specified the path to

start the application.

4.3.2 Sonatype Nexus Repository

Sonatype Nexus Repository was used for storing artifacts (jar files) and dockerfiles that

would be available to be fetched from different deployment tools, which in my case was the

AWS CodeBuild. CodeBuild fetches and stores a mirrored dockerfile in the AWS ECR

(Elastic Container Registry). The mirrored version in ECR would then be used when

deploying the Fargate service.

41



4.3.3 AWS CDK

AWS CDK (Cloud Development Kit) is the tool for defining AWS IaC (Infrastructure as

Code) using a supported programming language. In the CDK we define everything that is

needed in order to deploy the actual fargate service, which includes the new fargate stack,

network configuration, environment variables, path to the docker image and more.

The implementation of all shared infrastructure was already done by another team, and my

task at hand was to configure the new fargate stack, choose which network configuration I

wanted to use, specify the path to my docker image in nexus, set up which environment

variables should be used in the different environments, and lastly after the deployment was

successful, configure OP5 monitoring for the new fargate service.

4.4 Automated Testing

Alongside the development of the application itself, the testing of the application is just as

important in order to make sure that any changes, internally and externally are compatible

with the latest deployed version.

The core testing of an application is based on Unit and Integration tests. In my Spring Boot

application I decided to use JUnit and Mockito as testing frameworks, alongside Spring

Boot’s own testing framework. The core testing was split into two parts: integration testing

and unit testing.

4.4.1 Integration Testing

Integration testing is a technique used to verify that all layers of the application are

functioning correctly in concert with each other. This is accomplished by executing the full

Spring Boot application with specific test configurations and performing a series of requests

to the RESTful endpoints, while expecting a predetermined response. (Baeldung, 2023)

4.4.2 Unit testing

Unit testing is a technique used to test individual classes in isolation from other components.

This is achieved by creating mock return values from the functions of other classes. This

ensures that the encapsulated class independently does what it is supposed to. The advantage

42

https://www.baeldung.com/spring-boot-testing


of having extensive unit test coverage is that it eases the troubleshooting by pinpointing the

root cause of the problem in the application. (Baeldung, 2023)

4.4.3 Postman and Newman

Conducting core testing within the application is a good practice. However, it is advisable to

also incorporate automated testing in a real test and/or staging environment to eliminate all

forms of mocking. This ensures that, if the automated tests are successful, there is a high

probability that the application will work in production environments. However, it is

important to note that this cannot be taken for granted.

To achieve this, I utilized Postman and Newman for the automated testing of the application

in the test and stage environments. Postman, which is an API testing tool, was used together

with Newman, a command-line collection runner for Postman, to run the tests from within

Jenkins pipelines.

Initially, I created a development collection in Postman to test the application locally on

localhost. This enabled me to manually test the application during the development phase,

thereby ensuring higher durability at the deployment phase. Thereafter, I duplicated the

development collection into a test and stage collection, and updated the endpoint URLs for

the new collections. Finally, I exported the collections and environment configuration to a

Bitbucket repository that contained the Newman and Jenkins configuration files needed to

run the pipeline.

By investing enough time to develop thorough test cases for the application, the need for

manual testing throughout the application’s lifecycle is significantly reduced. This often

proves to be a valuable investment for all parties involved.

43

https://www.baeldung.com/spring-boot-testing


5. CONCLUSION

5.1 The result

Looking at the end result of this API, it can be concluded that it was a great success. It has all

the functionality that was planned from the start, it is compliant with Crosskey API standards

and security requirements. Turning an empty repository into a fully scaled serverless API

hosted in AWS Fargate for multiple environments, I can say I am very proud of the work that

has been done.

5.2 Reflections

The whole process of planning, developing, testing and deploying has more or less been a big

collaboration. In other words, a project at this scale, with my beforehand knowledge would

not have been possible without the help from all my colleagues, providing support in new

areas that I had no prior experience in. And that is what I believe is the most valuable thing

that I can carry on in the future. Broadening your network and collaborating with different

teams and people is what makes a great product.

44



REFERENCES

Amazon. (2023). RESTful API. https://aws.amazon.com/what-is/restful-api/

AWS. (2023a). Serverless Compute Engine-AWS Fargate. https://aws.amazon.com/fargate/

AWS. (2023b). Serverless Computing. https://aws.amazon.com/serverless/

AWS. (n.d.). What is the AWS CDK? https://docs.aws.amazon.com/cdk/v2/guide/home.html

Baeldung. (2019). Inversion of Control And Dependency Injection with Spring.

https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring

Baeldung. (2023). Testing in Spring Boot. https://www.baeldung.com/spring-boot-testing

Gradle. (n.d.). What is Gradle? https://docs.gradle.org/current/userguide/what_is_gradle.html

IBM. (2023). Java Persistence API.

https://www.ibm.com/docs/en/was-liberty/nd?topic=overview-java-persistence-api-jpa

IBM. (n.d.). What is a REST API? https://www.ibm.com/topics/rest-apis

JavaTPoint. (n.d.). JPA Introduction. https://www.javatpoint.com/jpa-introduction

Jenkins. (n.d). https://www.jenkins.io/

Microsoft Azure. (2023). What is Java Spring Boot?

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-

boot/

Spring. (2023a). Core Technologies.

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html

Spring. (2023b). GraalVM Native Image Support.

https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html#native-imag

e

Spring. (2021). AOT Engine.

https://spring.io/blog/2021/12/09/new-aot-engine-brings-spring-native-to-the-next-level

Stack Overflow. (2022). Native question.

https://stackoverflow.com/questions/74399883/how-to-set-dependency-mapping-binding-in-g

radle-bootbuildimage-spring-boot-2-7

Swagger. (n.d.-a). About Swagger Specification | Documentation.

https://swagger.io/docs/specification/about/

Swagger. (n.d.-b). Swagger Editor. https://editor.swagger.io/

45

https://aws.amazon.com/what-is/restful-api/
https://aws.amazon.com/fargate/
https://aws.amazon.com/serverless/
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring
https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring
https://www.baeldung.com/spring-boot-testing
https://docs.gradle.org/current/userguide/what_is_gradle.html
https://www.ibm.com/docs/en/was-liberty/nd?topic=overview-java-persistence-api-jpa
https://www.ibm.com/docs/en/was-liberty/nd?topic=overview-java-persistence-api-jpa
https://www.ibm.com/topics/rest-apis
https://www.javatpoint.com/jpa-introduction
https://www.jenkins.io/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-java-spring-boot/
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html#native-image
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html#native-image
https://docs.spring.io/spring-boot/docs/current/reference/html/native-image.html#native-image
https://spring.io/blog/2021/12/09/new-aot-engine-brings-spring-native-to-the-next-level
https://spring.io/blog/2021/12/09/new-aot-engine-brings-spring-native-to-the-next-level
https://stackoverflow.com/questions/74399883/how-to-set-dependency-mapping-binding-in-gradle-bootbuildimage-spring-boot-2-7
https://stackoverflow.com/questions/74399883/how-to-set-dependency-mapping-binding-in-gradle-bootbuildimage-spring-boot-2-7
https://stackoverflow.com/questions/74399883/how-to-set-dependency-mapping-binding-in-gradle-bootbuildimage-spring-boot-2-7
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://editor.swagger.io/


Swagger. (n.d.-c). Swagger UI. https://swagger.io/tools/swagger-ui/

Swagger. (n.d.-d). What is Swagger?

https://swagger.io/docs/specification/2-0/what-is-swagger/

TechTarget. (2019). What is Spring Framework?

https://www.techtarget.com/searchapparchitecture/definition/Spring-Framework

TechTarget (n.d.). What is Swagger?

https://www.techtarget.com/searchapparchitecture/definition/Swagger/

Tutorialspoint. (n.d.). MVC-Framework.

https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm

46

https://swagger.io/tools/swagger-ui/
https://swagger.io/docs/specification/2-0/what-is-swagger/
https://swagger.io/docs/specification/2-0/what-is-swagger/
https://www.techtarget.com/searchapparchitecture/definition/Spring-Framework
https://www.techtarget.com/searchapparchitecture/definition/Spring-Framework
https://www.techtarget.com/searchapparchitecture/definition/Swagger/
https://www.techtarget.com/searchapparchitecture/definition/Swagger/
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm
https://www.tutorialspoint.com/mvc_framework/mvc_framework_introduction.htm

