

Hong Huynh

VAASA STUDENT GUIDE

MOBILE APPLICATION IN FLUTTER

School of Technology
2023

1

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLICATIONLIED SCIENCES
Information Technology

ABSTRACT

Author Hong Huynh

Title Vaasa student guide mobile application in Flutter
Year 2023
Language English
Pages 37 + 0
Name of Supervisor Anna-Kaisa Saari

The aim of the thesis was to develop a mobile application built in the Flutter framework created
by Google. Flutter is known as a cross-platform framework to support developers to create
applications that can run on Android, IOS, Web, and Desktops depending on only one codebase.

The tools and methods used in the thesis project include Flutter, Google Maps API, Agile
methodology for project management and the implementation of the BLoC (Business Logic
Component) pattern for state management within the mobile application.

The application helps new students adapt to the new school as well as to the new city more
conveniently and rapidly. Furthermore, the application provides recommendations for some
places for the students to play sports, to enjoy meals, and to purchase food at affordable prices.
In addition, the students will be able to find more information how they can get part-time jobs,
and sell or trade goods.

Keywords Flutter, Firebase, Google Maps

2

Contents

1. INTRODUCTION ... 4

1.1 Objectives ... 4

1.2 Contributions .. 4

2. APPLICATION DESIGN .. 5

2.1 Application Features .. 5

2.2 Overview of UI .. 7

3. RELEVANT TECHNOLOGIES ... 8

3.1 Flutter Framework ... 8

3.2 BLoC Design Pattern .. 9

3.3 Google Firebase... 13

3.4 Google Maps and OpenRouteServices API ... 15

4. METHODOLOGY .. 18

4.1 Project Methodology ... 18

4.2 Overview of the Development Process and Tools .. 19

5. IMPLEMENTATION... 23

6. TESTING .. 31

7. CONCLUSION... 35

REFERENCES .. 36

3

List of Figures
Figure 1. Vaasa Student Guide application use cases ... 5

Figure 2. Flowchart of the project's application ... 6

Figure 3. Figma Sketch... 7

Figure 4. Illustration of how BLoC and Cubit work.. 9

Figure 5. File Structure when using Bloc and Cubit... 10

Figure 6. MultiBlocProvider in the main.dart file .. 11

Figure 7. Functions of theme cubit ... 11

Figure 8. BlocBuilder using AuthBloc .. 12

Figure 9. AuthBloc class ... 12

Figure 10. Firebase Authentication implementation .. 14

Figure 11. Cloud Firestore implementation .. 15

Figure 12. Enable APIs and Services .. 16

Figure 13. Open Route Services API implementation ... 17

Figure 14. Agile lifecycle methodology ... 18

Figure 15. Azure DevOps ... 19

Figure 16. Running "flutter doctor -v .. 21

Figure 17. Flutter dependencies for the project ... 22

Figure 18. Overall view of the project's file structure ... 23

Figure 19. Customized Bloc Observer ... 25

Figure 20. Customized Bloc observer log .. 25

Figure 21. Custom folder ... 25

Figure 22. Optional and required parameters of the customized text form field widget 26

Figure 23. Text form field customization .. 27

Figure 24. Customized widgets implementation .. 28

Figure 25. Add new article screen ... 29

Figure 26. BLoC Consumer .. 30

Figure 27. Tests for Theme Cubit .. 31

Figure 28. Test cases for AuthBloc .. 33

Figure 29. Test results ... 34

file:///D:/OneDrive/Desktop/Hong%20Huynh%20-%201900318%20thesis.docx%23_Toc135919314

4

1. INTRODUCTION

1.1 Objectives

The main objective of the thesis was to practice developing a Flutter application along with the

Google ecosystem. The app was developed in the BLoC design pattern in order to manage the state

of the application, ameliorate the file structure organizing mindset, and maintainability of the

codebase. Another objective was to use Firebase Authentication and Cloud Firestore of Google for

administrators to sign in and manipulate data. Also, Google Maps and Openrouteservice API are

utilized for the users to navigate from where they are to the locations of the recommended places

in the app. The application will be released on Google Play Store and App Store in the near future

when the app has been tested on multiple platforms so that new students of VAMK specifically and

students in Vaasa, in general, will be able to approach to make their life in Vaasa easier and more

convenient.

Not only did the project contribute to the author strengthening programming skills, but it also

helped the author to gain a deeper understanding of the fundamentals of BLoC architecture, which

is one of the most used patterns when developing with Flutter. Additionally, the author was able

to keep track of the list of tasks to finish the product within the given timeframe. Hence, the project

brought opportunities to apply project management skills that the author had learnt from school

and internships into practice.

1.2 Contributions

New students might feel uncomfortable when arriving in a new city, or new environment. This has

happened to many students especially international students so this is the reason why this project

has been started. Students might not have any acquaintances living in Finland and there may be a

lot of questions unsolved or it might take time to get used to a peaceful but freezing country.

With this app, newcomers are able to reach the latest and various information, such as how they

can rent an apartment, show directions to the school they are about to study at or a restaurant

from their current location, or free courses they can attend. As a result, they will adapt to live in

Vaasa as fast as possible and people who already lived in Vaasa might not be asked the same

questions repetitively.

5

2. APPLICATION DESIGN

2.1 Application Features

Purpose of the application is to make living in Vaasa more convenient and comfortable for new

students. The application needs to show information about places or social media in community

section that can help the users to know more about Vaasa and meet new people. Application

should reveal the address, website, or contact information of the mentioned places or social media.

Also, the users can contact article places, such as by sending an email directly to the mentioned

place in the article, visiting its website, or calling with only one tap on the screen. Also, map can be

zoomed in and out, and help in navigating the users to the place mentioned in the article.

Figure 1. Vaasa Student Guide application use cases

6

Figure 1 shows the application use cases. All shown information in application cannot be

manipulated freely because there might bring misleading or privacy-violating information, hence,

only admins have the authority to manage the articles within the application to ensure that the

information is not violating any laws or ethical dignity. The Admin can manage the articles including

creating, reading, updating, and deleting articles. Basic users don’t need to log in because all the

information within the application is publicly released. Also, the articles can be starred so that the

user does not need to reach to a specific category to read that article. In addition, if there is any

feedback, or information inaccurate or the users intend to join the admin group, the users can

contact the admin via the Contact Screen in application.

Figure 2. Flowchart of the project's application

7

The flowchart, as shown in figure 2, reveals how the application works based on the corresponding

conditions and types of users. The application gives permission to the users and admins with

suitable features. For instance, only basic users can star their favorite articles so that they can read

them again without choosing a specific category and finding those articles. Also, basic users can

contact the admins for feedback. Features for logging into the application, being authorized to

manage the articles, or resetting the password can only be used by the admin users.

2.2 Overview of UI

The aim to make a good-looking and useful mobile application is a simple but user-friendly

application design and helpful features that meet the users’ requirements. Figma, a web

application for interface design, was used to design the UI of the application. Moreover, Figma is a

free tool and it does not take much memory to launch or use as Adobe XD provided by Adobe does.

The application screen designs are shown in Figure 3.

Figure 3. Figma Sketch

8

3. RELEVANT TECHNOLOGIES

3.1 Flutter Framework

Flutter is known as a cross-platform framework to support developers to create applications that

can run on Android, IOS, Web, and Desktops depending on only one codebase. The Flutter

framework makes use of Dart programming language also developed by Google and an incredibly

huge set of customizable widgets that allow developers to apply their creativity to responsive, user-

friendly, and modern user interfaces (Flutter documentation, 2023).

One essential and beneficial feature of Flutter is its "hot reload" functionality, which enables

developers to immediately see the alterations of the code in the application as they are

programming, without having to start rebuilding the entire application. As a result, the process of

building the application will be more rapid and more productive (Flutter documentation, 2023).

Flutter also comes with a wide range of tools and clean architectures, such as the BLoC

architecture, which is a design pattern that assists to manage the state of the application and

organize the code structure. Furthermore, Flutter and Firebase combination undoubtedly works

really well, which offers features to the mobile application such as authentication and cloud

storage.

In other words, Flutter is a reasonable option for mobile application development because of its

flexibility, productivity, and straightforwardness. Due to the fact that Flutter is created by Google,

Flutter has its own documentation website storing concise and coherent information along with

Flutter examples (Flutter Documentation, 2023).

Additionally, there are numerous growing communities on different platforms including LinkedIn,

Facebook, and more for developers who are keen on learning and using Flutter so that they can

exchange their ideas and knowledge (Sharma, S., 2020). Flutter UI consists of widgets. The widgets

can be reused and customized without spending too much time and effort as using HTML (Tutorials

Point, 2023). Flutter widgets’ UI is based on Material UI and Cupertino UI design commonly for

Android devices and IOS devices, respectively. However, the developers have to set up manually

or with existing packages to choose the suitable design of UI with the corresponding types of

devices.

9

3.2 BLoC Design Pattern

In order to maintain the file structure organized, manage states and separate business logic from

UI components, an architectural pattern is essential in Flutter applications. BLoC, Business Logic

Component, is one of the most powerful and used architectural patterns, which provides a

straightforward separation of concerns, stream-based state management and testability and code

reusability. For instance, once a button on the mobile screen is clicked, an event is triggered, and

Bloc emits the component state along with queried data which can be fetched from the API or a

repository which can be local storage or cloud storage. If the requesting data process has errors or

depending on there are bugs in system that cause errors, the bloc will emit a state called Error

which can for example show an error message. Otherwise the state will be Success and the view

will be rebuilt and data be shown on the screen. Furthermore, there is a subset of the BLoC design

pattern called Cubit that only needs to trigger functions instead of events for emitting states

(Goswami, 2023).

Figure 4. Illustration of how BLoC and Cubit work

As Figure 4 shows, BLoC and Cubit have the same responsibility which is emitting a new state to

change the UI once a response is received or a request is sent. However, there is one difference,

cubit starts to work when a function is called while bloc starts running when an event is added.

In the project, BLoC was used to manage the theme and authentication state of the application

throughout the application lifetime. To implement BLoC architecture, its dependencies need to be

installed in the pubspec.yaml file. Required dependencies are equatable, bloc and flutter_bloc

packages. With these dependencies, developer can create three classes namely AuthBloc,

AuthEvent, and AuthState by a few clicks instead of creating every class manually. Whereas, Cubit

only needs to trigger functions instead of events for emitting states. Hence, there are ThemeCubit

and ThemeState class only.

10

Figure 5 shows the files needed for making Cubit, and BLoC patterns possible within the project.

Cubit is created to be a simpler alternative version of BLoC; thus, it only needs two files while Bloc

needs three. First file is theme_cubit.dart file, that contains a class inherited from the Cubit class

provided by flutter_bloc. Theme_cubit.dart is responsible for managing triggered functions as

input events and changing the state according to those input events. Second file is

theme_state.dart, that stores unmodified theme states containing read-only properties. There is

one difference shown for BLoC to manage the authentication state which is auth_event.dart file

which is storing the various authentication event such as login event, logout event or reset

password besides auth_state.dart and auth_bloc.dart file.

Figure 5. File Structure when using Bloc and Cubit

Moreover, BlocProvider needs to be used to provide a single instance of a bloc inside the widget

tree. However, in this project, MultiBlocProvider can be used instead because there is more than

one bloc which is ThemeCubit and AuthBloc so that instances of AuthBloc and ThemeCubit can be

used to update state across multiple widgets. For instance, to get the current theme mode via the

current state of the application, an instance of ThemeCubit can be called by including

BlocProvider.of<ThemeCubit>(context).state.themeMode method within the BlocBuilder widget.

11

Figure 6. MultiBlocProvider in the main.dart file

After making the ThemeCubit and AuthBloc available in the application, BlocBuilder is required to

rebuild the widgets for switching between states as shown in Figure 6. The theme mode of the

application will change to light or dark based on the application current state.

Figure 7. Functions of theme cubit

12

Theme cubit has two functions, setTheme() and getTheme(). setTheme() function saves the user

theme preference into the local storage of the device. After that, this function will trigger

ThemeCubit to emit the corresponding theme state. getTheme() method is used for getting the

theme from the local storage and for emitting that theme to change the related theme mode of

the application once the user starts using the application. These functions are shown in Figure 7.

Figure 8. BlocBuilder using AuthBloc

When the users open the application, the current state needs to be checked. The starting state for

the application is AuthStateUninitialized as shown in Figure 8. In starting state, Bloc initializes the

Firebase repository via AuthRepository to ensure that the user has already logged in as an admin

and then emit the following state as shown in Figure 9. If the current state is AuthStateSignedIn,

the drawer will show the options that only administrators can only see and choose.

Figure 9. AuthBloc class

13

3.3 Google Firebase

Google Firebase, a back-end software brought by Google, is a development tool that enables

developers to create applications for iOS, Android, and web platforms with a range of necessary

features namely authentication, databases, or tracking analytics (Rosencrance, L., 2019). Despite

various features, this project only uses two features from Firebase: Firebase Authentication and

Cloud Firestore.

Firebase Authentication is a secure authentication service that offers straightforward

authentication methods either for mobile or web applications. The users are able to register and

sign in using numerous identity providers such as Facebook, GitHub, and Google, which will push

the authentication process more quickly and effortlessly (Firebase Documentation, 2023).

Cloud Firestore is developed to store and synchronize data in real-time across multiple clients and

devices, which is suitable for building cutting-edge, scalable, and offline-capable applications. It

automatically synchronizes the data in real-time. Cloud Firestore is able to handle huge datasets

and the developers can set the read and write permissions via built-in security rules for specific

clients. Hence, it gains security to protect the clients’ data. Moreover, Cloud Firestore provides

advanced querying capabilities including support for complex queries, sorting, filtering, and so on,

which helps developers retrieve and manage the data from the database without any difficulties

(Pathik, 2021).

At first, a Firebase project must be created from the Firebase console. The easiest way to initiate

a Firebase project is by installing and using Firebase CLI which stands for Command Line Interface.

By using Firebase CLI, developers do not need to spend time registering for the Android and iOS

part of the Flutter application, downloading and setting up files provided by Google for the project

(Firebase Google, 2023). Firebase CLI will help the developers configure the Flutter application

connected to the existing Firebase project or a new one.

14

Figure 10. Firebase Authentication implementation

Code to implement Firebase and FirebaseAuth methods for initializing Firebase inside the

application and be ready to use to get and check the current logged-in admin is shown in Figure

10. Email/Password will be the sign-in provider for the application. Only administrators can sign in

to the application to add and edit articles.

Speaking of Cloud Firestore, the application can make use of it to store data in the cloud-based

environment instead of local storage. Firestore utilizes a collection-document-data model which

means the data will be stored in collections, documents, and fields. Collections can be understood

as tables of a relational database in MongoDB. Documents are simply single records within the

collections and stored in the JSON-like format, which enables complex data structures. Meanwhile,

fields can be compared as columns of a table in MongoDB.

Moreover, Cloud Firestore offers real-time data synchronization, which means fetching the latest

updated data to the application. The application uses the Cloud Firestore so that the admins can

save and manipulate the written articles in the database. The addNewArticle() function is shown

below illustrating that the ArticleModel class needed to be converted into JSON-like format and

then inserts into the cloud storage as a new document. The other methods namely updateArticle()

and deleteArticle() are used for passing an id as an argument to query the document having the id

field same as the passed id so that the Firestore database can update or delete it. Otherwise, it

throws an error.

15

Figure 11. Cloud Firestore implementation

3.4 Google Maps and OpenRouteServices API

Google Maps is software from Google that can be used to navigate the current location of the

users and the destination by any means of transportation. OpenRouteServices API, an open-source

API, works as the Direction API of the Google Maps platform for developers that only have the

Google Maps API key but do not have any billing account or have problems when creating a billing

account on the Google Cloud Platform. With OpenRouteServices API, developers can generate

dynamic polylines as direction routes between two coordinates; the current location of the user

and the location of the given address within the application (Rohan, A, 2020).

16

Google Maps is one of the most popular applications coming from Google for navigation. In order

to use Google Maps API, developers need to create an account for the Google Cloud Console so

that they can enable the Maps SDK for Android and iOS devices, and Directions API.

Figure 12. Enable APIs and Services

After account creation, credentials must be created to generate an API key and add it to 2

important files: AndroidManifest.xml for Android and AppDelegate.swift for iOS. This is required

for the Flutter application can fully integrate Google Maps.

Directions API is needed for the project to draw a dynamic polyline instead of a plain straight

polyline from the current location of the user to the destination. If facing any problems when

enabling a billing account for Directions API, OpenRouteServices API is one of the best solutions

to address.

Creating one or more polylines between two locations is conducted on the GoogleMap widget of

the google_maps_flutter package verified by Google’s Flutter developers. It requires the longitude

and latitude of two coordinates of the current location and the destination, and also the API key

for OpenRouteServices API in order to make the mentioned feature possible.

17

Figure 13. Open Route Services API implementation

As shown in Figure 10, the latitude and longitude of two locations are passed into the getData()

function. getData() function passes the arguments in a GET query to the API. Query returns a String

response which is converted into JSON format using jsonDecode() function. The

getPolylineCoordinates() function claims the returned value from the previous function and then

creates a list of coordinates between the current location and destination coordinates. As a result,

google_maps_flutter allows generating a polyline instance by connecting them in order.

18

4. METHODOLOGY

4.1 Project Methodology

Regardless of the project scale, a time schedule has to be followed to finish the project before

the expected deadline arrives and to ensure that each feature of the final product works at least

normally as planned. To reach these goals, Agile and Scrum methodologies were used.

As the diagram shows above, small or big projects have to go through all of these Agile

methodology phases namely Requirement analysis, Design, Coding, Testing, Deploy,

Maintenance, and finally Release. Agile software development practice cannot be neglected

because a big project can be divided into small parts so that daily or weekly tasks will always be

on track and must be completed. Agile is a project management and software development

approach involving working iteratively to meet customers’ requirements faster and more

efficiently. Instead of waiting for a final gigantic launch at once, agile teams’ target is bringing

well-qualified value in smaller increments. (Atlassian, 2023)

Scrum is a framework for managing complex projects in an iterative manner and helping teams

work collaboratively and better-organized structure. Agile Scrum methodology has been used by

many companies to bring high-end teamwork and efficiency to project-based work. Hence, Agile

Scrum is based on Agile principles such as satisfying customer needs, and continuous amelioration

along with the benefits of Scrum.. (Peek, S, 2023)

Figure 14. Agile lifecycle methodology

19

Even though Agile and Scrum are two distinct methods they can be worked individually.

Nevertheless, their combination will bring a huge benefit either for the project or for the one who

is working on the project (Peek, S., 2023). The tasks will be separated into small chunks within a

specific timeframe which is known as a sprint. Hence, using Agile Scrum assists the project being

built more quickly because the goals have been set to be done in the planned time and frequent

planning and goal setting are required to make the scrum team focus on the current sprint’s

objectives. In other words, Agile Scrum not only helps the scrum team to catch up but also ensures

that there is nothing they are missing, and they know what to be done in the backlog and what

to be improved in the future, which is adaptable to change and maintenance (Peak, 2023).

Therefore, Agile Scrum can be considered to be the most reasonable and best option for the

project.

4.2 Overview of the Development Process and Tools

First and foremost, Azure DevOps, a product created by Microsoft for reporting, requirements

management, and project management, was chosen to manage the project in order to practice

the methodology mentioned above. Project was divided in one-week sprints, as shown in Figure

15. Also, each huge task was separated into small tasks.

Figure 15. Azure DevOps

20

Afterward, a use-case diagram and flow chart were needed to make progress go further and know

how the application would work depending on what state the application is in. Hence, the

necessary features for the application were clarified clearly to ensure not to miss any features

when building the application. In addition, use-case diagram shows what features are available

for the basic users and what are for the administrators.

The application would not be usable without interfaces for the user to interact, with the design

of the application has to be done after use-case diagrams and flow charts are defined.

The main tool of this project was the Flutter framework written in Dart. To start working with

Flutter, the Flutter SDK, which stands for Software Development Kit, which provides tools used

for programming or as operating system environments, can be installed into the computer by

either cloning its repository from GitHub or its documentation website. There are two options for

developers to install which are the stable and beta version. The stable version brings a reliable

environment while the beta version provides new features and upgrades that are still under

development. However, it is recommended by many Flutter developers to choose the stable

version to avoid unexpected issues when coding. In order to debug on Android devices or iOS

devices, Android Studio or XCode for Android and iOS devices is needed (Janson, T., 2022).

Moreover, Android SDK and Java JDK have to be included as environmental variables of the

computer after installing Android Studio to ensure that Flutter applications can be installed and

run smoothly on Android devices. Flutter provides a command which can be run on the terminal

to check if the environment variable is set so that the Flutter runs correctly without any problems.

Command is “flutter doctor”. Not only for environment variables, command can also check for

possible new updates and provide more details information about platforms enabled to be run

on Flutter by passing a parameter “-v”, which is shown in the picture below.

21

Figure 16. Running "flutter doctor -v

The BloC design pattern, Firebase Authentication, and other Google services that are used in the

project, need dependencies. Required dependencies are listed in pubspec.yaml file of the project

and those dependencies or external packages can be found and understood by visiting the

pub.dev website as known as the Dart programming language package manager. Required

packages for project are shown in Figure 17. To get the packages utilized and take effect inside

the project, “flutter pub get” command needs to be run. Also, this command can automatically

be run when saving the pubspec.yaml file when using Visual Studio Code just by pressing Ctrl + S.

22

Figure 17. Flutter dependencies for the project

Using already-made, high-quality, and trusted libraries created by Google will be more convenient

and less frustrating than spending too much time and effort creating complex libraries by self.

Hence, these libraries push the process of building the application more rapidly. In addition, tools

and services available from the packages make the application’s animation or features easily

created such as opening a web view or another app when needed, handling the users for

permissions of accessing the users’ current location and using local storage space memory to

store favorite articles for the users.

23

5. IMPLEMENTATION

After creating the Flutter project, a clear and well-organized file structure is essential so that the

application can be fixed and improved later on. First and foremost, the assets folder was created

to store the necessary images and icons for the application. After that, model classes were created

so that the application can manipulate the data by passing a class object.

In this project, there are only three classes, Admin, Article, and Category. The admin model is

responsible for getting an admin email which can be passed for an Article instance to record who

has added or modified the article in the Cloud Firestore database. Within the Article model class,

there are factory constructors for converting the Article object into the suitable format of data

for local and cloud databases and vice versa. Whereas, the Category model is used to generate a

list of article categories for the home screen. Hence, the admins do not need to select any

category every time they tap on the add button when viewing the articles belonging to a specific

category.

Figure 18. Overall view of the project's file structure

24

As shown in Figure 18, the files are organized in folders. The services folder is the folder containing

files to apply the BLoC design pattern, methods for API calls, and local storage provided by Sqflite

and SharedPreferences packages. Sqflite is a package that allows SQLite code implementation inside

the application which is used to save starred articles for the users when they want to read them

once again without choosing a specific category and find them again. Meanwhile, the Shared

Preferences package provides a key-value store for saving and retrieving simple data locally on the

device as we have mentioned above for saving and loading the theme preferences. The Utils folder

stores customized widgets and immutable constants which can be used around the project. Done

for the BLoC and data section, moving on to the UI section which is the Views folder, there are

portioned widgets for each screen and the completed screens in the widgets and pages folder,

respectively.

Without a clear file structure, maintaining and upgrading the application would be difficult. Also,

thanks to the BLoC design pattern, there are always three layers which are the UI layer, BLoC, and

the data layer. UI or widgets layer is a layer that is visible to the users. The repository or data layer

manages the data and works with the back end. The BLoC is the intermediate layer between the UI

layer and the data layer. In other words, the UI layer and data layer can only communicate with the

BLoC layer separately. The BLoC layer claims events emitted from the UI layer and conducts business

logic via the data layer and returns the output event to the UI layer (Islomov, S., 2022). Code for UI,

bloc, and repository should not be merged on the same file which would be a bad practice, especially

for those trying to maintain and update the code within the project.

In addition, the Bloc state of the application can be tested and observed along with Bloc Observer.

In this project, there is a customized bloc observer that prints the current state of the application by

assigning the observer instance as the customized bloc observer instance, which is illustrated in

Figure 19. With the Bloc Observer, developers can check the current state of the application to avoid

unauthenticated users manipulating the articles’ data and only to star articles. Bloc Observer also

helps developers follow the state change, transition, and debug if there are unexpected errors.

25

Figure 19. Customized Bloc Observer

Figure 20 shows the printed logs on the debug console observing the state of the theme cubit. The

application sets the system theme as default because of the theme cubit and then the theme mode

is saved in the local storage so that the theme mode will be loaded and set automatically for the

next usage. It also shows the state of the authentication bloc which makes sure the states transit

correctly.

Figure 20. Customized Bloc observer log

Widgets are essential components building up a complete application. They also can be customized.

The customized widgets and tools are packaged under custom folder, as shown in Figure 21. Custom

folder contains also for example theme settings for dark and light modes and a customized word

limit format to ensure that the users can write in the given specific number of words in the contact

screen.

Figure 21. Custom folder

26

Due to the fact that there are widgets used recurrently that have many and the same properties in

the project, it brings redundancy of the amount of the boilerplate code if there are customized

widgets with pre-set properties. Not only that, this ensures monotony and consistent design across

the widgets on the same screen. Additionally, creating reusable customized widgets promotes the

reusability and maintainability of the codebase. Developers do not have to enter all the parameters

for every widget iteratively which carries the same property settings.

For instance, in the adding or editing article screen or details screen, there are multiple text form

fields having the same filled color, label text color, and other same properties when the users tap

on the text form field. Customized widget is a crucial solution for the risk of missing needed passed

arguments resulting in differences in design or colors between widgets.

Figure 22. Optional and required parameters of the customized text form field widget

The constructor of the customized text form field widget has been created as shown in Figure 22.

The parameters containing the data types with question marks behind are the optional parameters,

for instance, the text field can have a suffix icon or prefix icon. The text form field can also work as

a one-line text field in default or a text area by passing a number of lines more than one to the

maxLines property. Furthermore, the input keyboard can be varied namely phone, email, or normal

input type, which helps the users to input information quicker. The only required parameter is the

text editing controller because it is used to pass value when adding new articles or set the value

from the existing articles when updating.

27

Figure 23. Text form field customization

28

The customization of the text form field is shown in Figure 23. Without reusable and common

customization, it would cause a disastrous codebase as it brings more code duplication for each

widget on one screen that is needed to pass the same arguments just for its appearance. This

customized widget is used not only in add and editing screen but also in the contact screen and login

screen.

The biggest benefit of using customized widgets is that changes occur on one file only and are

applied to all the presence of the text form fields of the application in no time. It is possible to use

multiple customized widgets having the same appearance even though the number of the passed

arguments is slightly different. An example within the add_edit_view.dart file is shown in Figure 24:

Figure 24. Customized widgets implementation

29

As shown in Figure 24, even though CustomTextFormField is reused multiple times, it can pass

distinct arguments, which proves that it not only brings the consistency of the design but also the

flexibility of the design so that developers can set and alter the properties as they want. For example,

several text form fields only have one line while some have more than one line. Also, there are

different validators for the application to check if the administrators enter valid information or not.

Figure 25. Add new article screen

The result showing the consistency and flexibility of the customized widget is shown in Figure 25.

Additionally, it might be noticed that adding and editing article screen using the same widgets for

their corresponding features instead of creating individual screens for each feature. The way to

know the application is in creating a new article or updating an existing article case is that checking

if the AddEditView widget which contains the mentioned customized widgets is passed an article as

an argument or not. If there is no passed article into this view, all customized text box form fields of

this screen are empty, and a new article will be created on the Google Cloud Firestore database

once the admin enters all the necessary information and click the “Save & Close “button. Otherwise,

text fields will be shown the information of the passed article and update the existing stored on the

Firestore database based on the altered information.

30

Bloc Consumer is the combination of Bloc Listener and Bloc Builder from Bloc packages (Wogu, J.,

2022). Bloc Consumer adds a listener to watch what the current AuthState is emitted in the

application at the moment and return the corresponding result, for example, showing error dialog

to handle invalid login or navigate from one to another screen when logging in. The builder section

of the Bloc Consumer is used for building the widget UI also based on the emitted AuthState. For

instance, if the user has completed entering the email and the password to login as an admin which

causes the current auth state carrying a property called isLoading to change to another kind of auth

state, the builder section will rely on the isLoading property to show a loading icon or the button to

login the application. BloC Consumer is shown in Figure 26.

Figure 26. BLoC Consumer

31

6. TESTING

In order to test the Cubit for the application theming and BLoC for the authentication, BLoC offers

testability as separating clearly business logic and UI components. Unit test for the BLoC can be

written by utilizing mocking events and checking the emitted states.

State and theme management in an application are extremely necessary to bring comfortable user

experience to the consumers. Hence, within the project, there are several unit tests when

implementing BLoC pattern for the application with the help of Flutter_test and Bloc_test libraries.

Figure 27. Tests for Theme Cubit

32

In Figure 27, there are test cases for Cubit’s theme management. Each test case has its own

description, code procedure and result expectation. For example, the last test case within the Figure

27, whose actions including calling the setTheme() method at first to set and save the selected

theme. In this case, the selected theme is light theme as it is located at the first index of the

enumerated list called enum. After that, the current instance of ThemeCubit will be closed and a

new instance of ThemeCubit is created to get the saved theme. The expect property asks for a list

of states which will be emitted during the methods are called in the act property.

33

Figure 28. Test cases for AuthBloc

34

For BLoC, an event is needed for the act property and a list of states is expected in order once the

needed event is added as shown in Figure 28. The “isA” matcher is extremely helpful for asserting

the instances of the AuthState. Moreover, “having” matcher can be used along with “isA” to ensure

the property value of the instance same as expected.

For the last test case shown in Figure 28 as an example, the act property adds the reset password

event to the bloc with an email in invalid format. The expect property determines the expected

sequence of states emitted by the bloc. Even though there is only the same type of state which is

AuthStateResetPassword, they carry distinct property values. The first one carries true value of

isLoading property and no exception but the second one contains an exception which is

InvalidEmailException and isLoading returns to false.

After writing several test cases to ensure that the application works normally relating to

authentication and theming, the tests can be run and revealed by using “Text Extension UI”

extension on Visual Studio Code or simply clicking on the run test button next to the test cases or

group of test cases. The test results of ThemeCubit and AuthBloc that ensures whether they are

performing correctly or not are shown in Figure 29. The passed tests will be ticked in green next to

the test case description. Otherwise, there will be red crosses if the actual results are not as same

as the expected results.

Figure 29. Test results

35

7. CONCLUSION

As conclusion, Flutter is undoubtedly a useful tool to build cross-platform mobile applications

instead of programming different codebases for Android and iOS devices. Having the ability to

create an application that can run on any device platform, the importance of Flutter's existence

might be noted and allured later on. Flutter might not be an ideal tool at the moment to build big-

scale projects which might bring lagging and low performance especially when the project is getting

bigger but hopefully, Google upgrades Flutter more in the near future. Even though the complexity

of the BLoC design pattern, the file structure of the Flutter project becomes more straightforward

and neater.

With the help of the Agile Scrum methodology, the project was completed before the given deadline.

Hence, it can be considered a finished project and treated as a usable application but there are still

some improvements that can be taken place on this application to bring it to the best performance

and usage. The developed application is a prototype, whose functionalities are tested using mobile

devices.

Even though author did not have much experience with UI/UX design in advance, during the

project sketching the UI design with Figma was learned. Application is simple to use and user-

friendly for the users.

While building the project, there were several problems and challenges encountered and needed

to resolve. The biggest problem was related to Google Maps. The billing account on Google Cloud

could not be created, which most probably was because of banking issues. Open Route Services was

used as an alternative to the Direction API of Google.

From this project, the author has a clearer understanding of the design pattern so that the

application can be improved in the near future. Even though this application is simple and easy

for some professional developers, it is helpful for authors’ future careers by allowing apply the

knowledge of Flutter. Regardless of the challenges and the shortage of finance, the project was

finally completed into a functional application in the given timestamp.

36

REFERENCES

Atlassian (2023) What is Agile? Accessed: 17.04.2023 https://www.atlassian.com/agile

Cherednichenko, Sveta. (2023) How to implement the Bloc architecture in flutter: Benefits

and best practices, Mobindustry. Accessed: 17.04.2023.

https://www.mobindustry.net/blog/how-to-implement-the-bloc-architecture-in-flutter-

benefits-and-best-practices/.

Flutter - introduction (2023) Tutorials Point. Accessed: 10.04.2023.

https://www.tutorialspoint.com/flutter/flutter_introduction.htm#

Flutter documentation (2023) Flutter. Accessed:10.04.2023. https://docs.flutter.dev/.

Flutter Documentation (2023) Hot reload, Flutter. Accessed: 17.04.2023.

https://docs.flutter.dev/development/tools/hot-reload.

Goswami, R. (2023) Bloc v/s cubit in Flutter application. Medium. FlutterDevs. Accessed:

17.04.2023. https://medium.flutterdevs.com/bloc-v-s-cubit-in-flutter-application-

6caa2825b26a.

Islomov, S. (2022) Getting started with the Bloc pattern. Accessed: 17.04.2023

https://www.kodeco.com/31973428-getting-started-with-the-bloc-pattern

Janson, T. (2022) How to install and configure flutter SDK on Windows 10, Liquid Web. Accessed:

17.04.2023 https://www.liquidweb.com/kb/how-to-install-and-configure-flutter-sdk-windows-

10/.

Pathik. (2021). 7 reasons to choose google cloud firestore as your database solution,

BlueWhaleApps. Accessed: 17.04.2023 https://bluewhaleapps.com/blog/7-reasons-to-choose-

google-cloud-firestore-as-your-database-solution

Peek, S. (2023) What is agile scrum methodology? Business News Daily. Accessed: 17.04.2023.

https://www.businessnewsdaily.com/4987-what-is-agile-scrum-methodology.html

https://www.atlassian.com/agile
https://www.mobindustry.net/blog/how-to-implement-the-bloc-architecture-in-flutter-benefits-and-best-practices/
https://www.mobindustry.net/blog/how-to-implement-the-bloc-architecture-in-flutter-benefits-and-best-practices/
https://www.tutorialspoint.com/flutter/flutter_introduction.htm%23
https://docs.flutter.dev/
https://docs.flutter.dev/development/tools/hot-reload
https://medium.flutterdevs.com/bloc-v-s-cubit-in-flutter-application-6caa2825b26a
https://medium.flutterdevs.com/bloc-v-s-cubit-in-flutter-application-6caa2825b26a
https://www.kodeco.com/31973428-getting-started-with-the-bloc-pattern
about:blank
about:blank
about:blank
https://bluewhaleapps.com/blog/7-reasons-to-choose-google-cloud-firestore-as-your-database-solution
https://bluewhaleapps.com/blog/7-reasons-to-choose-google-cloud-firestore-as-your-database-solution
https://www.businessnewsdaily.com/4987-what-is-agile-scrum-methodology.html

37

Rohan, A. (2020) Drawing route direction in flutter using openrouteservice API and google maps in

Flutter. Accessed: 17.04.2023 https://medium.com/@rohanarafat86/drawing-route-direction-in-

flutter-using-openrouteservice-api-and-google-maps-in-flutter-4431a2989dd5.

Rosencrance, L. (2019) What is Google Firebase? Definition from TechTarget, Mobile Computing.

TechTarget. Accessed: 17.04.2023.

https://www.techtarget.com/searchmobilecomputing/definition/Google-Firebase.

Sharma, S. (2020) The growth of flutter development- 3years after the birth of alpha. Accessed:

17.04.2023 https://medium.flutterdevs.com/the-growth-of-flutter-development-3years-after-the-

birth-of-alpha-78baee809dff.

Wogu, J. (2022) Flutter bloc made easy. Accessed: 17.04.2023

https://medium.com/@Ikay_codes/flutter-bloc-made-easy-d244dd369e9a.

https://medium.com/@rohanarafat86/drawing-route-direction-in-flutter-using-openrouteservice-api-and-google-maps-in-flutter-4431a2989dd5
https://medium.com/@rohanarafat86/drawing-route-direction-in-flutter-using-openrouteservice-api-and-google-maps-in-flutter-4431a2989dd5
https://www.techtarget.com/searchmobilecomputing/definition/Google-Firebase
https://medium.flutterdevs.com/the-growth-of-flutter-development-3years-after-the-birth-of-alpha-78baee809dff
https://medium.flutterdevs.com/the-growth-of-flutter-development-3years-after-the-birth-of-alpha-78baee809dff
https://medium.com/@Ikay_codes/flutter-bloc-made-easy-d244dd369e9a

