VAMK

VAASAN AMMATTIKORKEAKQULU
UNIVERSITY OF APPLIED SCIENCES

Thi Dinh

GAME BOY EMULATOR WRITTEN IN RUST

School of Technology
2023

ABSTRACT

Author Thi Dinh

Title Game Boy Emulator Written in Rust
Year 2023

Language English

Pages 43

Name of Supervisor Mikael Jakas

The main object of this thesis is to present the design and implementation of an
original Game Boy handheld console for retro gaming enthusiasts. Emulation is
the process of recreating the functionality and behavior of the hardware using
modern software, allowing Game Boy games to be able to run on modern hard-
ware.

The project lifecycle of this thesis is the waterfall model, further detail about this
model is mentioned in the next part. The project process was divided into two
main phases: Research the Game Boy’s architecture and Implementation of the
emulator. The research is needed to outline the structure of the project and to
understand how each of the components behaves. The implementation part will
show how those behaviors can be emulated using modern day programming lan-
guage and hardware.

The thesis aims to emulate the original Game Boy as closely as possible. How-
ever, sound functionality and communication between consoles are not sup-
ported due to time constraints.

Overall, this thesis provides a comprehensive overview of the challenges and so-
lutions involving developing and emulating a gaming console.

Keywords Emulation, programming, and software development

CONTENTS

ABSTRACT
1 INTRODUCTION ...ttt 8
2 METHODOLOGYoiiiiiiiiiiiieisie ettt bbbttt 9
2.1 RESEAICN DESIGNeiuiiiiiiiiiieie et 9
211 REQUITEMENES ...cviitieii ettt sttt sttt sre e re e e 9
S I -1 o | o S USRS 10
2.2 Technology OVEIVIEWcc.ciieiiiiiic ettt s 10
2.2.1 RUSE. ottt 10
2.2.2 SDL2..c s 11
3 GAME BOY ARCHITECTUREcoiiiiiiiteiese s 12
3.1 CPU12
KT8 S (=T 1) (=] £ USRS 13
312 OPCOUES ...ttt sttt re et b e r e ae e 15
31,3 MEMOIY MAP .o e 16
3.2 Picture ProCessing UNItcoceieieiiiniiie e 17
3.2.1 Video Random ACCESS MEMOIYccourviriirieieisisese e 17
3.2.2 Object Attribute MEMOIYccoiiiiiiiieeeee s 19
3.3 Cartridge and Memory Bank Control............ccoceoereriiiiniinine e 20
3.3. 1 Cartridge HEAUEc.eiviieeeeiee s 21
3.3.2 Memory Bank Control...........ccoviiiiininiiiecse s 23
4 IMPLEMENTATION ...ttt sttt be b e 25
41 CPU25
I R BT 1 3 (=] £SO PRRRTRSR 26
41,2 OPCOUES ...ttt ettt sttt sttt et e st e e e e te e saeenee e 26
4.1.3 Memory Management UNit..........cccoooeiiriiinieniiiieiesesee e 33
4.2 PPU. .ottt 35
4.3 Cartridge and MBCcoiiiee et 37
5 CONCLUSIONS ...ttt bbb 40
5.1 Product EVAIUALIONcoiiiiiiieieieeeiee s 41

5.2 FULUre DeVEIOPMENToiuiiii ettt sttt 41

RIS c L c iV [T Lo TR

REFERENCES

LIST OF FIGURES

Figure 1. DMG Game Boy's Motherboardcccoeeciiiiicciie e 12
Figure 2. Tile map used in @ POKEMON aME........oiiiiiiiiiiiciiee e 19
Figure 3. Pokémon Red and Blue Cartridge........ccuveeeeuiiieicciiie et 21
FISUIre 4. 501 OPCOUES.uviiiiiiiiiieeeiitee et e ettt e e et e e s s sbe e e s s ata e e e e s bbeeeessasaaeesesreeeeesnneeaeas 28
Figure 5. USING SCraper Crate ...uuuuiiiiiiiiiiiiiitteet ettt e et e e e e e s s e s siae e e e e e e e s s s asreeeeeas 29
Figure 6. EXtracted HTIML tEXtuuiiiieii i e e e e e e e neae s 30
T U T AR o G 1 [PPSR 30
Figure 8. Parsed data.....cccooccciiiiieeee e e e e e e s nerare s 31
FIgUIre 9. Tera temMPIate ...uuiee i e e e e e e s e e e e e s aaeeee s 32
[T { UL K0 o o Yol o Yo [T o UEERR 32

Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22,

8-bit read Method..........oooiiii e 33
8-bit Write Method.........coiiiiiiiiii e 34
16-bit read and write Methods.........cuoo i 35
e e 1 ot PP OPPPI 35
PPU FEAQ ...ttt 36
PPU W vt 36
e e U =T oo 1= PP OPP PP 37
Read ROM and RAM in MIBC......couiiiiiiiiieiee e e 38
LY g T =4 o T (O Y PP 38
MBC imMPlemMENTATION....eeiiiii ettt e e e e e e e e e e e e sesanrreaeeas 39
o 0 T =Tt A o U o B = 40

0 aTU1 Y o o AV o o 11 = TP 41

LIST OF TABLES

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.

(O o W ==] o T 13
o =T = 1) =] PP P PP PP PPPPPPPPPPPPPPPPPPPPRt 14
8-bit LOad INSTFUCLIONS ...t 15
CPU'S IMEMOIY VAP .eetiiieieiiiee e eeiitee sttt e e e st e e e st e e s s ba e e e e snabaeeesenstaeessnnsaeeaean 16
Example Of tile dataocceeiee i e 18
Sprite attribution table ... 19
Cartridge Header's STTUCTUIE ...oc.vviei ittt e 21
U] oY oo T g d=Te Y12 TG AV o TSP 23

LIST OF ABBREVATIONS

APU
BCD
CGB
CPU
DMG
EXRAM
HRAM
JSON
MBC
MMU
OAM
PEG
PPU
RAM
ROM
RTC
SDL
VRAM
WRAM

Audio Processing Unit
Binary-Coded Decimal

Color Game Boy

Central Processing Unit

Dot Matrix Game

Extra Random Access Memory
High Random Access Memory
JavaScript Object Notation
Memory Bank Control
Memory Management Unit
Object Attribute Memory
Parsing Expression Grammars
Picture Processing Unit
Random Access Memory
Read-only Memory

Real Time Clock

Simple DirectMedia Layer
Video Random Access Memory

Work Random Access Memory

1 INTRODUCTION

The Game Boy is a handheld console developed and distributed by Nintendo, released in Ja-
pan back in 1989. The Game Boy was one of the bestselling gaming consoles of its time and is

still popular among retro gaming enthusiasts till this day.

In this project, the aim is to create an emulator for the original DMG Game Boy and to provide
an accurate and faithful gaming experience. The research methods, implementation and var-

ious challenges that arose during the process are also outlined in this thesis report.

On the part of the author, this thesis helps to widen my knowledge regarding embedded soft-
ware as well as Rust development and ecosystem. Time management, resource searching,

and logic implementation will also be improved throughout the study.

The result of the project is a workable program that can faithfully emulate the Game Boy’s
behavior, from the CPU, the display screen, sound system to the connection between con-
soles. It must be able to read the game cartridge (ROM), render the game to the display and
allows the user to interact with the game using the keyboard. Games with save files and in-

ternal clock should also be supported.

2 METHODOLOGY

This chapter will describe an overview of the pre-implementation phase of the thesis: the

research method and the technology overview.

2.1 Research Design

This thesis adopts the waterfall model for the development cycle of the console emulator.
With the help of this model, it was possible to execute the project with a planned and me-
thodical approach to development, making sure that each stage was finished before moving
on to the next. The waterfall model includes 5 main stages: Requirements, Design, Develop-

ment, Testing and Maintenance.

2.1.1 Requirements

In this stage the features, mandatory and stretched goals are determined.

Mandatory features:
e Working CPU, with all 256 opcodes supported
e Working internal Timer
e Accept keyboard input as convert that to Joystick and button registers
e Be able to read ROM cartridge, supporting at the very least MBCO
e Render game sprite data to the screen

e Run on Linux platform

Stretched goals:
e Audio support

e Support other MBCs

e Support RTC for those MBCs that have it
e Support serialized data transfer, which is the link cable in hardware terms
e Support for other platforms

e Application Ul instead of command line only

2.1.2 Design

First, the technology that meets the purposes best was chosen. Rust was chosen as the main
programming language. For the screen rendering Simple DirectMedia Layer 2 (SDL2) was
used. The reason for these decisions will be explained more thoroughly in part 2.2: Technol-

ogy Overview.

Secondly, the structure and architecture of the Gameboy console and its game cartridge
needed to be analyzed. With that knowledge it is possible to design the structure of the code-

base and plan out the timetable for the whole development cycle.

2.2 Technology Overview

In this part certain technologies for this project are explained and why they were chosen.

2.2.1 Rust

Rust is a multi-paradigm, high-level, general-purpose programming language that emphasizes

performance, type safety, and concurrency.

Rust was chosen for the following reasons:

11

e Performance: Rust is a systems programming language that emphasizes performance
and efficiency. It provides low-level control over system resources, enabling develop-
ers to write high-performance code that runs efficiently on modern hardware. As an
emulator is a computationally intensive task that requires high-performance code,
Rust is an ideal choice for developing an emulator.

e Memory safety: Rust’s memory safety features to enable common-memory-error-free
codebase, such as buffer overflow or null pointer dereferences.

e Ecosystem: Rust has a growing ecosystem of robust community libraries (crates) and
tools that can make development more efficient. Couple with its excellent package
manager (cargo) and Vscode extension (rust-analyzer) make a great developer expe-

rience.

2.2.2 SDL2

Simple DirectMedia Layer 2 (SDL2) is a cross-platform development library designed to pro-
vide low level access to audio, keyboard, mouse, joystick, and graphics hardware via OpenGL

and Direct3D. (1)

SDL2 offers a simple and consistent API for accessing hardware features across different plat-
forms, including Windows, macQOS, Linux. It provides functions for handling events, such as

mouse clicks and keyboard presses, as well as rendering graphics and playing audio.

Rust has a crate called rust-sdl2 that wraps SDL2’s low-level C component in Rust code to

make them more idiomatic and make inappropriate manual memory management abstract.

(2)

3 GAME BOY ARCHITECTURE

In this part we will go through all the important components of the Gameboy internal exclud-

ing the Audio Processing Unit (APU) and the Link Cable system (Serial Data Transfer).

l———‘

- ll 220

Ny d:-
s (7}

LA nnmmmnmmm

= 551(9"
Py :z:ummum' o O 5 e
mm smm’

,AMM

xgasov

] c4 -aA-
IUISOV

Figure 1. DMG Game Boy's motherboard

3.1 CPU

The Game Boy uses the Sharp LR35902 CPU, which is a custom mix of the Zilog Z80 and Intel
8080. The Zilog Z80 is more powerful and modern compared to the 8080, and Z80 also has
backward support as it also supports all of 8080’s instructions. The Sharp LR35902 meanwhile
supports almost all 8080’s instructions, supports some of the new Z80’s newly added instruc-

tions and at the same time adds some more original instructions of its own. (3)

3.1.1 Registers

13

Sharp LR35902 contains 8 8-bit registers A, B, C, D, E and F. However, 2 8-bit registers can be

combined into a 16-bit one thus there are an extra 4 16-bit registers AF, BC, DE, and HL in

addition to the program counter and the stack pointer.

Table 1. CPU Registers

16-bit Hi Lo Name
AF A - Accumulator and Flags
BC B C BC
DE D E DE
HL H L HL
SP - - Stack Pointer
PC - - Program counter

Some more information on the registers:

The A or Accumulator is a special one since arithmetic and logical operations can only

be done on this and not the other registers.

The F or Flags is used to store the state of various processor flags. These flags can be

used to indicate whether certain operations have been completed successfully, or

whether certain conditions are true. Its first 4 bits is always set to O.

o Z-Zero flag: Indicates whether the result of the last operation is equal to 0

o N —Negative flag: Indicates whether the last operation is a subtraction opera-
tion (only use for the BCD operation DAA)

o H - Half-carry flag: this flag is set if the result of the operation caused a carry
or borrow in the lower 4 bits (only use for the BCD operation DAA)

o C—Carry flag: this flag is set if the result of an operation exceeds 8 bits and can

be used to detect overflows in addition and subtraction.

Table 2. F Register

Bit Symbol Name
7 VA Zero
6 N Negative
5 H Half-carry
4 C Carry

The other 8-bit registers are used to store 8-bit data and are interchangeable in terms
of functionality.

The program counter holds the memory address of the next instruction to be executed
and it will get updated after each instruction.

The stack pointer holds the position of the top of the stack, or HRAM. It will get up-
dated after each POP and PUSH instructions.

The other 16-bit registers are used to store 16-bit data, usually addresses.

15

3.1.2 Opcodes

An opcode, or operation code, is the instruction for a machine, dictating which instruction to

perform. The Game Boy’s CPU has more than 500 opcodes, separated into 8 groups. (4)

For an example, this is all the opcodes in the “8-bit Load instructions” from Pandocs’ CPU

Instruction Set (4):

Table 3. 8-bit Load Instructions

Clock

Mnemonic Encoding cycles

Description

Id r,r XX
Idrn

Id r,(HL)

ld (HL),r

Id (HL),n

ld A,(BC)

Id A,(DE)

Id A, (nn)

ld (BC),A

Id (DE),A (DE)=A
Id (nn),A (nn)=A

Id read from io-port n (memory
A,(FF@@+n) FFQ@+n)

Id write to io-port n (memory
(FF@@+n),A FFQQ+n)

Id read from io-port C (memory
A (FFQo+C) FFQ0+C)

Id write to io-port C (memory
(FFO@+C),A FFQO+C)

Idi (HL),A (HL)=A, HL=HL+1
Idi A,(HL) A=(HL), HL=HL+1
ldd (HL),A (HL)=A, HL=HL-1
Idd A,(HL) A=(HL), HL=HL-1

r=r

r=n
r=(HL)
(HL)=r
(HL)=n
A=(BC)
A=(DE)
A=(nn)
(BC)=A

ha

o~

4
8
8
8
1
8
8
1
8
8
1

o~

=1
o]

=
%]

A more detailed table that lists all the opcodes and their instruction code can be found in

izik1's gbops, an accurate opcode table for the Game Boy. (5)

Or if a more in depth explanation of what each opcode does is desired, refer to the Game Boy

CPU Manual. (6)

3.1.3 Memory Map

To address ROM, RAM, and 1I/O ports, the Game Boy uses a 16-bit address bus. The Game

Boy’s CPU is 64KB and mapped into 12 regions:

Table 4. CPU's Memory Map

Start Description Notes

0000 16 KiB ROM bank 00 From cartridge, usually a fixed bank

From cartridge, switchable bank via
er (if any)

8000 8 KiB Video RAM (VRAM) In CGB mode, switchable bank @/1

AQ0Q 8 KiB External RAM From cartridge, switchable bank if any

Cooo 4 KiB Work RAM (WRAM)

D000 4 KiB Work RAM (WRAM) In CGB mode, switchable bank 1~7

4000 16 KiB ROM Bank @1~NN

Mirror of COQ@~DDFF Nintendo says use of this area is
(ECHO RAM) prohibited.

FEQO Sprite attribute table

E000Q

FEAQ Not Usable Nintgn_do says use of this area is
prohibited

FFoO I/O .

FF80 High RAM (HRAM)

Interrupt Enable register

FFFF (1)

A short explanation of each memory region: (4)

e 0000 — O7FF: This read-only region is the ROM copied from the cartridge. From the
CGB version onward, the MBC will dictate the content of 4000-7FFF. The MBC will be
discussed more in depth in chapter 3.3: Cartridge and MBC.

e 8000 —9FFF: This is the VRAM, sprites for characters and background are stored here.

17

e A000 — BFFF: This is the EXRAM, copied from the game cartridge, used to store game
save files.

e (C000 — DFFF: This is the WRAM of the Game Boy, games can read or write freely in
this region, but will be wiped on shut-down.

e EOO0O0 — FDFF: Prohibited area as stated by Nintendo, this region is ignored in this im-
plementation.

e FEOO — FE9F: This is the OAM; this region is the logic for how the sprites and the back-
ground should be rendered.

e FEAO — FEFF: Prohibited area as stated by Nintendo, this region is ignored in this im-
plementation.

e FFOO-FF7F:1/0 Registers. Registers for the joystick and buttons as well as serial trans-
fer, audio and more are stored here.

e FF80 — FF7F: HRAM, also known as the stack, is stored here.

e FFFF: the Interrupt Enable register is stored here.

3.2 Picture Processing Unit

The Game Boy outputs graphics to a 160x144 pixel LCD. The component controlling the ren-
dering process is the Picture Processing Unit (PPU). The PPU consists of 2 main sub-compo-

nents: VRAM and OAM. (5)

3.2.1 Video Random Access Memory

The Video Random Access Memory (VRAM) is where the Game Boy stores its tile data and tile

map.

Tile data represents the actual pixel patterns used to form graphics on the screen. Tile data is
stored in area 0x8000-0x97FF, each taking 16 bytes. So, the whole region which is Ox17FF

bytes can store 284 tiles. In CGB mode, cartridge can provide another switchable VRAM bank,

so the number of tiles stored can go up to 768. In each tile, every 2 bytes make up a line, 2
bits of each byte makes 1 color ID for 1 pixel of the tile, the first byte is the least significant

bit while the second byte is the most significant bit of the color ID. (4)

An example of a line in a tile makes out of 0x0 and OxAC (or Ob1001_0000 and 0b1010_1100):

Table 5. Example of tile data

Index 7 6 5 4 3 2 1 0

Byte 1 1 0 0 1 0 0 0 0

Byte 2 1 0 1 0 1 1 0 0
A line of 11 00 10 01 10 10 00 00
tile data

Tile map defines the layout of tiles on the screen. It specifies which tile from the tile data
should be rendered at different positions on the screen. The VRAM contains two 32x32 tile
maps in memory location 0x9800-0x9BFF and 0x9C00-0x9FFF. Any of those maps can be used
to display the Background or the Window. (4)

An example of a tile map is given in Figure 2. (7)

El

Tilemap Tileset Edit View Tools Help

4 files

N ReE BED 96 BFAE wieho SHEB &

J J J J TUKIMIE
.&BEDEFEﬁ& ﬁMHG

STk Y S Co ot
abchthqulmnDp
Qrstuuixy =
Sl 5 G0
=R =, L
! Pty — ol TV N L
Fr. 2 FO12F45678

nBCDEFGHIVS LH @

Tilemap: 20x 18 GSC Town Map

kanto.bin

Figure 2. Tile map used in a Pokémon game.

3.2.2 Object Attribute Memory

19

The Object Attribute Memory (OAM) stores the sprite attributes, which will dictate the be-

havior of each sprite. The OAM’s memory region starts at OxFEOO and ends at OxFE9SF, which

is 160 bytes, it can store 40 entries of sprite attributes, each takes up 4 bytes. This is the

structure of each sprite attribute entry:

Table 6. Sprite attribution table

Byte index Name

Short description

0 Y Position

Y = Sprite’s vertical position on the

screen + 16.

1 X Position X = Sprite’s horizontal position on the

screen + 8.

2 Tile index Position of the sprite in the tile data

at 0x8000-0x8FFF.

3 Attributes/Flags Some other information: if sprite is
flipped, which VRAM bank to use,
color palette, if BG and Window over

sprite.

3.3 Cartridge and Memory Bank Control

A ROM cartridge (or just cartridge) is a replaceable part designed to connect to the back of a

Game Boy. It stores the game data, including program instructions and game sprites. (8)

Since our emulator can only read digital ROMs, we will focus on them. This type of ROM con-
sists of two main parts: the header (from address place 0x0100 to 0x014F) and the instruc-

tions (the rest of the cartridge) which will be referred to as ROM for the rest of the thesis. (4)

21

Figure 3. Pokémon Red and Blue Cartridge

3.3.1 Cartridge Header

The cartridge header provides all the meta data about the cartridge and the expected hard-

ware it expects to run on.

Table 7. Cartridge Header's structure

Start End Description Note

0100 0103 Entry point The first instructions the Game Boy’s boot ROM
jump to at start-up, which points to the actual first

instruction.

0104 0133 Nintendo logo Needs to be the Nintendo logo as the Game Boy

does check it. A way for Nintendo to control piracy.

0134 0143 Title The game’s title in uppercase ASCII.

(013Ein

CGB mode)

013F 0142 Manufacturer code | Only in CGB mode. Unknown purpose.

0143 0143 CGB flag Determines between Color mode (CGB Mode) or
monochrome compatibility mode (non-CGB Mode)

0144 0145 New licensee code | Indicating the game’s publisher.

0146 0146 SGB flag Determines if the cartridge supports SGB functions.

0147 0147 Cartridge type Determines the MBC of the cartridge.

0148 0148 ROM size Size of the ROM and number of ROM banks.

0149 0149 RAM size Size of the RAM and number of RAM banks.

014A 014A Destination code Specifies whether this version of the game is in-
tended to be sold in Japan or elsewhere.

014B 014B Old licensee code | This byte is used in older (pre-SGB) cartridges to
specify the game’s publisher. If equals to 0x33, use
the new licensee code instead.

014C 014C Mask ROM version | Specifies the version number of the game. It is usu-

number ally 00.

014D 014D Header checksum | This byte contains an 8-bit checksum computed
from the cartridge header bytes 0134 to 014C.

014E 014F Global checksum These bytes contain a 16-bit (big-endian) checksum

simply computed as the sum of all the bytes of the

cartridge ROM (except these two checksum bytes).

23

3.3.2 Memory Bank Control

The Memory Bank Control (MBC) is a separate chip not included in the Game Boy console but
inside the physical cartridge itself. It was created to solve a big issue regarding ROM size lim-

itation of the Game Boy console.

The ROM region in the memory map of the Game Boy has 32 KiB which is just right for games
such as Tetris, which has exactly 32 KiB ROM and does not have an MBC. However, games can
have more, for example, Pokémon Crystal has 976 KiB ROM, and would not fit. Nintendo used
the switchable bank approach to solve this issue. The first 16 KiB of the ROM will always stay
the same, the rest of the ROM will be mapped into 16 KiB chunks and the MBC will determine

which chunk will be accessed. (4)

There are more than 10 types of MBC. In this project only some of the most popular ones are
emulated: MBC1, MBC2 and MBC3 and their subtypes. Only switchable ROM banks are com-

mon in all MBCs; RAM, battery and RTC are not always present.

Table 8. Supported MBC types

ROM ONLY

MBC1

MBC1+RAM
MBC1+RAM+BATTERY
MBC2

MBC2+BATTERY
MBC3+TIMER+BATTERY

MBC3+TIMER+RAM+BATTERY ~
MBC3

MBC3+RAM “
MBC3+RAM+BATTERY *

MBC has several registers to control its behavior. Each register can be overwritten by attempt

to write on various read-only regions of the ROM: (4)

- ROM bank register: specify which ROM bank is being accessed. Always greater than 0.
Will change to 1 if set to 0. Max value depends on MBC. Set to 1 by default.
- RAM bank register: specify which RAM bank is being accessed. Max value depends on
MBC.
- RAM enable: if false the CPU will not be able to EXRAM. Disabled by default.
- Clock counter registers (0x08 - 0x0C):
o Registers 0x08 to 0x0A specify the seconds, minutes, and hours of the clock.
o OxOB register specifies the lower 8 bits of the day counter (as it is a 9-bit num-
ber).
o OxOC register specifies the most significant bit of the day counter as well as the
timer halt flag and the day counter carry flag.
- Timer enable: if false, disable the timer.
- RTCregister select: if true, when CPU accesses a certain part of the RAM, the MBC will
instead return the result of the Latch Clock Data register.
- Latch Clock Data: when writing 0x00 and then 0x01 to this register, the current time
becomes latched to the RTC registers and will not change until it becomes latch again.

This provides a way to read RTC registers while the clock keeps ticking.

25

4 |IMPLEMENTATION

With the Game Boy’s architecture in mind, 3 components are required to be emulated. The
CPU is the heart of the console, so it is the most important component. The CPU manages the
memory of the console as well as executes the instructions from the cartridge. The PPU over-
sees taking the sprites, tile map in the VRAM and following the instructions in the OAM to
render graphics to the screen. The MBC on the hand, is quite different. The actual physical
Game Boy does not contain the MBC, instead the MBC resides in the physical cartridge. How-
ever, digital ROMs do not contain the MBC (nor the extra WRAM or EXRAM), just the game

data, so the task of implementing the MBC falls on the emulator.

These are my implementations for the most important parts of the Game Boy’s system: CPU,

PPU and MBC.

41 CPU

The CPU is the most important part of the system, especially the MMU since it controls the

read and write memory operations. Therefore, the first component is emulated.

A typical CPU cycle of the emulator should include these following steps:

Read the next opcode.

- Follow the opcode’s instruction, updating the internal state.
- Increase the program counter.

- Render the changes to the screen if needed.

- Handle the interrupt if needed.

- Repeat.

4.1.1 Registers

The Game Boy CPU has 8 8-bits registers and 6 16-bits registers. Since they will not need to

store negative numbers, all of them are made unsigned integers. (4)

Setters and getters are also made for each of them, which will make creating opcodes in the

next part much less of a hassle.

4.1.2 Opcodes

The Game Boy has in total 501 opcodes, including both regular and CB prefixed opcodes. (5)

501 opcodes are much to code manually, adds to the fact that many of them share many
similarities. Methods for each of them were generated with the help of crates such as

V]

“scraper”, “pest” and “tera”. A short description of each crate:

e Scraper: a crate that provides an interface for HTML parsing and querying with CSS
selector. (9)

e Pest: pest is a general-purpose parser. It can parse plain text using a PEG file (similar
to regex in spirit). (10)

e Tera: tera is a template engine for Rust. It can be used to generate Rust code if pro-

vided with an appropriate template. (11)

A separate new Rust project was created for this generator called “gb_opcode_gen”:

First, information was required on every opcode. The HTML was downloaded from gbops’

table of opcode shown in Figure 4. (5)

Then the crate “scraper” could be used to extract the raw string data from the downloaded

HTML as shown in Figure 5.

The extracted data for each opcode consists of 4 lines with the following format:

27

- The first line consists of 2 numbers, separated by a dash, the first one is the opcode
number in hexadecimal, the second can be 8, 16, or O, representing whether the op-
code is 8-bit, 16-bit, or a control/branch opcode (e.g., jump instructions).

- The second line is the mnemonic of the code, just for reading comprehension pur-
poses. But this is also where we can extract the operator and the operands of the
opcode. (e.g., opcode “LD A, B” has operator “LD” and operands “A” and “B”).

- The third line is the size of the opcode and how many cycles the CPU takes to execute
the opcode’s instruction.

- The fourth line is the list of flags that the opcode affects, in order: ZN H C. “-” means
unaffected, “1” means it always set the flag, “0” means it always clears the flag, oth-

erwise it depends on the operation.

Figure 6 shows the extracted data saved in a text file.

The second step is to parse the raw string into readable Rust data type with the help of the

crate “pest”. Figure 7 shows the PEG file that the script uses to parse the text.

The “pest” crate helps parsing the raw data in plain text into a hash map where we can sepa-
rate the fields to use in the generate template. The hash map was stored in a JSON file shown

in Figure 8.

The final step is to create a template and use the “tera” crate to generate the “opcodes.rs”

file based on the template. This is the template which the Rust code is generated based on.

Figure 9 is an example of macros used in the template, including macros for opcodes PUSH,

POP and ADD.

After running the project with “cargo run”, almost 7300 lines are generated. Figure 10 is the

generated Rust file with almost 7300 lines.

Figure 4. 501 opcodes

Figure 5. Using scraper crate

.enumerate

29

N | H]J|] C]| NotAffect | Set | Unset }

 Space ~ Flag ~ Space ~ Flag ~ S

${ Number ~ "t ~ Number ~

Instruction = _{ Mnemonic ~ Newline ~ Number ~ Space ~ s ~ Newline ~

Figure 7. PEG file

Figure 8. Parsed data

. "LD",

'H| (HL) ",
'LD H, (HL)",

31

rands [@]

Figure 9. Tera template

Figure 10. opcodes.rs

33

4.1.3 Memory Management Unit

The Memory Management Unit (MMU) is where the memory map of the CPU is emulated. All
the read and write operations go through here. The MMU manages which component deals
with each read and write operations. For example, if the CPU wants to read 2 bytes (16 bits)
from the memory region 0xFF90, which is in the HRAM (also called the stack) region, the MMU
will call the HRAM’s own “read_u16()” method.

Figure 11 shows how the read 1 byte or “read_u8()” method for the MMU was implemented:

© ule) -> u8 |

F
F
F
F
F
F
F
F
F
F
FF7
F
F
EE

prohibited memory region"

ss unused memory region"

Figure 11. 8-bit read method

“write_u8()” method is implemented in the same way. (Figure 12)

"Attempt to ac s unused memory region"

Figure 12. 8-bit write method

The unimplemented parts are stretched goals.

The read/write for 16-bit is doing 8-bit read/write twice:

35

ulg) -> u8:
ule,

ule) -> uleé

Figure 13. 16-bit read and write methods

4.2 PPU

First, a PPU struct was created that stores the tile data, tile map, OAM, and other PPU-related

registers.

struct PPU {
usg,
us,
us,
bool,
uleé,
ulé,

bﬂﬂl.

Figure 14. PPU struct

The MMU calls the read method of each of its subcomponent, therefore, “mem_read_u8”

method was implemented for the PPU:

s usize &

Figure 15. PPU read

The same implementation was made for the “mem_write_u8” method:

s usize & @x1FFF)] =

Figure 16. PPU write

37

In each CPU cycle, after the CPU has executed an instruction and updated all the memory

regions, the PPU calls the render function to update the screen:

in @..SCREEN_WIDTH
.setcolor(.

r

.bg_priority[x]

Figure 17. PPU render

4.3 Cartridge and MBC

The first type of cartridge is MBCO, or cartridges without an MBC. These cartridges only con-

tain up to 32KiB of ROM and do not need any special operations.

The other MBC types that my emulator supports (MBC1, MBC2 and MBC3) all have multiple
extra ROM and RAM banks as well as registers. Since they are quite similar only an example

of MBC1 implementation is shown in Figure 18.

1S usize - @

usize

Figure 18. Read ROM and RAM in MBC

Since MBC has ROM and RAM banks, whose data will be read will depend on which bank is
being selected. The bank index can be changed by writing to a certain part of ROM. Writing

this way will not change the ROM, but will update the MBC’s internal register instead:

Figure 19. Writing to ROM

Expanding those methods to fit MBC 2 and MBC3 we have finished the cartridge mod:

~ [cartridge
® mbcorrs
® mbcl.rs

& mbc2.rs

Figure 20. MBC implementation

With the MBCs covered, we have reached the end of the implementation part.

39

5 CONCLUSIONS

This chapter will demonstrate how the final product works, evaluate its functionalities, and

provide a self-evaluation.

Figure 21 shows the folder structure of the project.

+ [roms
1 Pokemon Silver. d bc

.gitignore

Cargo. lock

Cargo.toml

Figure 21. Project structure

To run the game Pokémon Silver for example, we will need to use the command “cargo run

roms/Pokemon) Silver.gbc”, and this is the emulator running on my laptop:

41

) 2000 GAHE FREAK inc.

Figure 22. Emulator running

5.1 Product Evaluation

The emulator is functionable, being able to run games like Tetris and Pokémon Silver.

However, it is very incomplete, as it still lacks many features of the original Game Boy. The
most notable missing feature is the audio. There was not enough time to implement the Audio
Processing Unit. The emulator also cannot run all games, it only supports game ROMs without
MBC or MBC 1 to 3. Even among the MBC3 ROMs, the emulator does not support their inter-

nal clock.

5.2 Future Development

To make the emulator feature complete, support needs to be added for audio, internal clocks
for MBCs and other types of MBCs. There are also many features that modern emulators have

that the original consoles did not, such as speed up, save state and export, import save files.

5.3 Self-evaluation

| am a software developer, and have limited knowledge regarding embedded systems, to
the point that understanding the Game Boy’s technical reference proves to be the most
challenging aspect of the whole process. | wanted to choose a project that is suitable for my
experience, not too simple but not so hard that | cannot complete for the thesis, so projects
like emulating a CHIP 8 would be too simple and emulating later generations consoles, such
as the Nintendo 3DS would be too difficult to complete within a reasonable deadline. With
all of that said, | am extremely satisfied with the process, | have gained much knowledge
about this field and most importantly, know how to read documentation for something |
know nothing about. | really believe that the knowledge gained from this project will serve

as a solid foundation for my desired career as an embedded software developer.

43

REFERENCES

1 SDL Wiki. Introduction to SDL 2.0. Accessed 10.05.2023.
https://wiki.libsdl.org/SDL2/Introduction

2 Nilsen, S., Aldridge, T., Cobrand. 2022. Rust-SDL2. Accessed 10.05.2023.

https://crates.io/crates/sd|2

3 Gbdev Wiki. 2020. CPU Comparison with Z80. Accessed 10.05.2023.

https://gbdev.gg8.se/wiki/articles/CPU_Comparision with Z80

4 Pan Docs. Accessed 10.05.2023. https://gbdev.io/pandocs/About.html.

5 izikl. gbops, an accurate opcode table for the Game Boy. Accessed 10.05.2023.

https://izikl1.github.io/gbops

6 Pan of Anthrox et al. Game Boy CPU Manual. Accessed 10.05.2023. https://realboyem-

ulator.files.wordpress.com/2013/01/gbcpuman.pdf

7 Rangi. 2019. Tilemap Studio 4.0.1: a tilemap editor+creator for Nintendo. Accessed

11.05.2023. https://gbdev.gg8.se/forums/viewtopic.php?id=648

8 Wikipedia. 2023. ROM cartridge. Accessed 11.05.2023. https://en.wikipe-

dia.org/wiki/ROM cartridge

9 June and Carlo Federico Vescovo. 2023. Scraper. Accessed 11.05.2023.

https://crates.io/crates/scraper

10 pest-parser and Dragos Tiselice. 2023. Pest. Accessed 11.05.2023.

https://pest.rs/book/

11 Vincent Prouillet. 2023. Tera. Accessed 11.05.2023. https://tera.netlify.app/

https://wiki.libsdl.org/SDL2/Introduction
https://crates.io/crates/sdl2
https://gbdev.gg8.se/wiki/articles/CPU_Comparision_with_Z80
https://gbdev.io/pandocs/About.html
https://izik1.github.io/gbops
https://realboyemulator.files.wordpress.com/2013/01/gbcpuman.pdf
https://realboyemulator.files.wordpress.com/2013/01/gbcpuman.pdf
https://gbdev.gg8.se/forums/viewtopic.php?id=648
https://en.wikipedia.org/wiki/ROM_cartridge
https://en.wikipedia.org/wiki/ROM_cartridge
https://crates.io/crates/scraper
https://pest.rs/book/
https://tera.netlify.app/

