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Quasi-brittle porous material: simulated effect of stochastic air

void structure on compressive strength

Anna-Leena Erkkilä, Teemu Leppänen, Jussi Virkajärvi, Joni Parkkonen,

Leena Turunen, Tero Tuovinen

� A simulation procedure to investigate the effect of porosity comprised

of spherical air voids on the compressive strength of a quasi-brittle

material is introduced.

� Based on the simulated results, the relationship between compressive

strength and air void fraction (porosity) is presented.

� A linear relationship was achieved between the cubic root of porosity

and the simulated compressive strength.
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Anna-Leena Erkkiläa, Teemu Leppänena, Jussi Virkajärvib, Joni
Parkkonenb, Leena Turunenc, Tero Tuovinenc,∗

aFaculty of Information Technology, University of Jyväskylä, Finland
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Abstract

The effect of porosity comprised of spherical air voids on the compressive

strength of quasi-brittle material was studied via simulations. The simu-

lated porous structures were based on pore size distributions of two mortar

samples measured by X-ray microtomography. While the simulation method

set practical limits on the size of sample, the base of the statistics was es-

tablished by simulating 128 small structures generated by sampling from

pore structures of two mortars. By studying the application of the classical

strength-porosity formulas to the simulated data, a new simple model was

formed. A linear relationship was achieved between the cubic root of air void

fraction (porosity) and the simulated compressive strength. The reasons for

scattering of simulated strength around fitted trend remained unresolved in

this study; no clear dependence on pore number or other distribution proper-

ties was observed. With the presented simulation approach, the dependence

of compressive strength on porosity is achieved independently of disturbances
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that occur in experimental studies creating understanding of compressional

behavior of low porosity materials.

Keywords: Porosity, Mortar, Compressive strength, Finite element

method, Simulation, Model

1. Introduction

The strength and behavior of a material depends on its internal struc-

ture. In particular, in the case of a porous material, it is known that porosity

affects strongly e.g. elastic modulus, yield behavior and tensile and compres-

sive strength. Concrete and other cement-based materials are widely used

porous materials where porosity has a crucial role in the suitability of the

materials for their numerous uses. For this reason, and in addition to the

need to make these materials more environmentally friendly by utilizing ad-

ditives, the effect of the porosity on the behavior of the material has been

extensively studied for several decades. The importance of porosity, pore

distribution and potential additives for the compressive strength of cement-

based materials has been clarified in several studies, see for example, [1–10].

These studies have shown that porosity has a strong effect on compressive

strength and, in addition, in the case of additives, changes in compressive

strength come at least in part due to a change in porosity. The phenomeno-

logical, experiment based, equations introduced by Balshin [11], Ryshkewitch

[12], Schiller [13] and Hasselman [14] have been utilized to describe the de-

pendence of the compressive strength of cement-based materials on porosity

for decades. Analytical approaches have also been developed to describe this

dependence [15, 16].

2



The pores of cement-based materials are often classified into different cat-

egories based on their size and type: e.g. gel (< 10 nm), capillary (0.005 -

10 µm), and air (macropores 0.005 - 5 mm) pores. Also, the cracks due to

shrinkage at aggregate-cement interface are common. The ranges of pore

categories are not strictly defined and different sources cite slightly different

ranges, see, e.g., [17–23]. Capillary pores and other larger pores are found to

be responsible for reduction in strength of cement paste, while the effect of gel

pores are noticed to be negligible [1, 4]. Several measurement methods have

been applied to the porous structure characterization of cement-based mate-

rials, such as mercury intrusion porosimetry (MIP), vapor sorption, scanning

electron microscopy, and X-ray tomography. Frequently used mercury intru-

sion as well as vapor sorption techniques are indirect methods, which means

that the interpretation of the results usually requires some assumptions and

theoretical simplifications [24–27]. Mercury intrusion technique allows pore

sizes over a broad range to be measured, whereas the vapor sorption tech-

niques are more sensitive to gel scale pores. In MIP, the closed pores remain

nonintruded, while for those large pores, which are only accessible by very

narrow throats, the size is misinterpreted; this mechanism is commonly re-

ferred to as the ”ink bottle” effect [22]. To observe a direct physical structure

of the microstructure different imaging techniques have been utilized. Scan-

ning electron microscopy produce images of microstructure features from

2D cross sections with resolution of submicron ranging from capillar poros-

ity scale [23, 28, 29]. For the acquisition of 3D information of the pores,

some studies using X-ray computed tomography have been presented [30–

32]. Micro-tomography provides resolution in the order of few microns.

3



In recent decades, the finite element method has been extensively utilized

in the study of the behavior of cement-based heterogeneous materials. These

studies are focused on, e.g., the dependence of the elastic properties on the

aggregate content and on the shape and distribution of the aggregate, see

for example, [33, 34]. In addition to the elastic properties, the strength and

fracture behavior of the material and its dependence on aggregate properties

have been considered, e.g., in references [35–39]. The most common approach

in these studies is to divide the cement-based material into the cement matrix,

the aggregate, and the interfacial transaction zone, each of which has its

own material properties. In addition to the effect of aggregate, the effect of

porosity on the mechanical behavior of cement-based material has also been

studied by the finite element method [40, 41] and by the discrete element

method [42].

This paper aims to investigate the effect of variations in porous structure

on the compressive strength of quasi-brittle material through a numerical

approach. X-ray microtomography was used to determine 3D pore structure

of two mortar samples, without and with 10 % green liquor dregs (GLD).

GLDs, which are a side streams of pulping mills containing environmentally

hazardous metals, are a recycling challenge. Its treatment and recycling are

under investigation by several parties. However, in this study, the role of

GLD as an additive of mortar is limited to the generation of different struc-

tures for porosity studies. To simulate the compressive strength, 128 cubes

with the sides of 0.5 mm and different pore volume ratios, distributions and

positionings were constituted based on the measured pore size distributions.

Due to the cube size of the simulations and the measurement resolution the
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pore sizes were limited to between 20 µm and 500 µm. The statistically

relevant number of pore structures was used in the simulations to reveal the

dependence of compressive strength solely on porosity, without interference

with other factors due to composition and manufacturing process.

2. Pore structures

2.1. Preparation of mortar samples

Mortar samples with dimensions 40 mm x 40 mm x 160 mm were prepared

according to the standard EN 196-1. Two different mortars were produced:

Sample 1 consisted of CEN standard sand, water and cement and in Sample

2 10 % of cement weight was replaced by dried and milled green liquor dregs.

The six parallel samples with size approximately 5 mm × 5 mm × 5 mm

were cut from the produced samples.

2.2. X-ray tomography imaging and image analysis

Internal 3D-structure of mortar samples was measured using SkyScan

1172 X-ray microtomographic scanner; examples about measured cross-sections

are shown in Fig. 1. X-ray source parameters of 85 kV and 82 µA were used

and Al+Cu plate was placed in front of the detector to filter out low X-ray

energies. Camera pixel binning 2 × 2 was applied resulting in image pixel

size of 5.0 µm. Exposure time for a single frame was 3540 ms and average

over 4 frames was taken for each projection. Full rotation of 360◦ was made

with 0.3◦ rotation step resulting in 1200 projection images. The scan du-

ration was 6 hours. Tomographic reconstructions were made using NRecon

software, which applies Feldkamp algorithm [43].
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Figure 1: X-ray microtomography cross-sections from Sample 1 (left) and Sample 2 (right).

The size of the measured samples was approximately 5 mm × 5 mm × 5 mm.

Pore volumes where determined from the tomography images using Fiji

[44] and Matlab softwares. Two different croppings were performed for the

original sample image. One of the cropped images included the whole sample

and the other a smaller box-shaped volume from inside the sample. Fiji build-

in 3D Gaussian filter with standard deviation σGi = 1 for all i ∈ {x, y, z} was

applied for both cropped images. The pore space was segmented using Fiji

build-in Otsu auto thresholding. The segmented pores, in the larger cropped

images, which were not completely inside the sample but touched the exterior

background, were read as background and thus were not included in the pore

analysis.

From all the images a relative porosity was calculated. The porosity

results from the smaller cropped images were used for consistency checks.

Matlab DIPimage [45] watershed was used for the pore structural segmen-
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tation. Inverted distance transform images, produced from the pore binary

images, provided base geometry for watershed. Sizes of individual pores were

measured after pore labeling for the larger cropped images. As 18-connected

neighborhood was used in watershed analysis, moderate under-segmentation

of pore structures was observed. For example, not all larger connected pores

were segmented properly, on the other hand some smaller “non-spherical”

voids, like cracks, were not over-segmented either. These cause moderate

distortion in the pore distributions mainly by reducing the total number of

pores and increasing the number of larger pores while decreasing the num-

ber of smaller ones. Results determined for pore-like objects smaller than

50 voxels can be considered unreliable due to mixing with noise. This also

means that capillary pores are not taken into account in the present study,

and thus the porosity refers to air voids here only.

2.3. Structures for simulation

For each sample, the X-ray tomography results of six parallel samples

were merged. The porosity distributions obtained for Sample 1 and Sample

2 are shown in Fig. 2 and the statistical properties of distributions are given

in Table 1. Due to the measurement noise, pores with a radius of less than 10

µm (pore-like objects less than 34 voxels) are excluded from consideration.

Cubes of equivalent volume to the total volumes of parallel samples were

formed having side length of 9.6 mm for Sample 1 and 10.0 mm for Sample

2. Since the pores studied consisted mainly of air-voids, the shape of the

sphere is a suitable approximation for simulations. The measured individual

pores were randomly placed inside the volume-equivalent cubes as volume-

equivalent spheres. For the simulations, subcubes with a side length of 0.5

7



Figure 2: Pore radius distributions related to Sample 1 and Sample 2. The overlap of the

distributions is shown in a mixed color.

mm were picked from porous volume-equivalent cubes at the points of a

regular 8 × 8 grid. Thus, for both samples, 64 subcubes were produced for

simulations. Details of subcubes are given in Tables A.5 and A.6 (Appendix).

A single subcube based on Sample 1 is referred to as S1γ ∈ S1 and the subcube

of Sample 2 is referred to as S2γ ∈ S2 (γ = 1, 2, . . . , 64), respectively. Only

pores that remained completely inside the subcube were accepted. This

means that pores with a radius greater than 0.25 mm are not included in

the study. Because the largest pores are excluded from the study, the mean

values of pore volume of the subcubes remains, on average, clearly lower

than the mean values of measured porosity presented in Table 1. Sampling

also resulted in four subcubes of data set S1 with no pores. An example of

subcube is illustrated in Fig. 4.
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Table 1: Data of Sample 1 and Sample 2; pores with r < 10 µm are excluded. Symbols

V , r and N stands for volume, pore radius and number of pores, respectively.

Sample 1 2

Cube side dimension (mm) 9.60 10.00

Mean r (mm) 0.0211 0.0221

Median r (mm) 0.0148 0.0180

Mean pore V (mm3) 6.0471e-04 1.8482e-04

Median pore V (mm3) 1.3627e-05 2.4430e-05

N 33943 232939

Mean N in V = 0.53 mm3 4.7956 29.1174

Porosity (%) 2.32 4.30

N (r ≥ 250 µm) 34 54

Mean N (r ≥ 250 µm) in V = 0.53 mm3 0.0048 0.0068

Porosity (r ≥ 250 µm) (%) 1.53 0.94

3. Constitutive model

The constitutive model used is the damaged plasticity model available in

Abaqus [46]. The original model is presented in the reference [47] and its

modifications in the reference [48]. The stress-strain relation is governed by

σ = (1− d)Del
0 (ε− εpl) (1)

where σ, d, Del
0 , ε and εpl are the Cauchy stress, scalar stiffness degradation

variable, undamaged elastic stiffness of the material, total strain and plastic

strain, respectively. The stress-strain behavior corresponding to the undam-

aged (d = 0) material used in the model is shown in Fig. 3 with respect

to tension and compression. In the elastic region, the material is defined
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Figure 3: Stress-strain behavior of undamaged (d = 0) material for tension (left) com-

pression (right). Stress and inelastic strain data is given in Table 2. The limiting point

between elastic and inelastic regions is marked with ’o’.

by Young’s modulus E = 30 GPa. Poisson ratio ν = 0.2 does not depend

on strain. Stress-strain behavior, Young’s modulus and Poisson ratio are

selected to represent typical behavior and values used for concrete [49, 50].

The total strain rate ε̇ is assumed to be sum of the elastic part of the strain

rate ε̇el and the plastic part of the strain rate ε̇pl. The effective stress σ̄ is

defined as

σ̄ = Del
0 (ε− εpl) (2)

and by Eq. (1) the Cauchy stress and the effective stress are related by

σ = (1− d)σ̄. (3)

The scalar stiffness degradation variable 0 ≤ d ≤ 1 is defined as

d = 1− (1− dc)(1− r(ˆ̄σ)dt) (4)
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where 0 ≤ dt ≤ 1 and 0 ≤ dc ≤ 1 are the uniaxial scalar stiffness degrada-

tion variables in tension and compression, respectively, and the stress weight

factor 0 ≤ r(ˆ̄σ) ≤ 1 is

r(ˆ̄σ) =
1
2

∑3
i=1(|ˆ̄σi|+ ˆ̄σi)∑3

i=1 |ˆ̄σi|
(5)

where ˆ̄σi are the eigenvalues of the effective stress.

Hardening variables, equivalent plastic strains in tension, ε̃plt , and in com-

pression, ε̃plc , characterize the damaged states in tension and compression

independently. The equivalent plastic strain rate ˙̃εpl is defined as

˙̃εpl = [ ˙̃εplt ˙̃εplc ]T (6)

where the plastic strain rates in tension ˙̃εplt and compression ˙̃εplc are

˙̃εplt = r(ˆ̄σ)ˆ̇εplmax (7)

˙̃εplc = −(1− r(ˆ̄σ))ˆ̇εplmin (8)

where ˆ̇εplmax and ˆ̇εplmin are the maximum and minimum eigenvalues of the plastic

strain rate ε̇pl, respectively. The stiffness degradation variables dt and dc in

Eq. (4) are selected so that

ε̃plt = ε̃int /2 (9)

ε̃plc =

ε̃
in
c when dc = 0

ε̃inc /2 when dc > 0

(10)
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Table 2: Stresses, inelastic strains and stiffness degradation variables used in the definition

of stress-strain behavior for tension and compression.

σt (MPa) ε̃int × 10−4 (-) dt (-) σc (MPa) ε̃inc × 10−3 (-) dc (-)

0 0 0 0 0 0

3.40 0 0 20.0 0 0

2.40 0.6 0.2727 40.0 0.3 0

1.60 1.3 0.5493 44.0 0.5 0

1.10 2.0 0.7317 47.6 0.8 0

0.90 2.3 0.7931 48.0 1.0 0

0.70 2.6 0.8478 47.8 1.2 0.0591

0.50 3.0 0.9000 47.0 1.5 0.1376

0.35 3.5 0.9375 40.0 2.3 0.3277

0.27 4.0 0.9569 20.0 4.0 0.6923

0.23 4.4 0.9663 16.0 4.5 0.7664

0.20 4.8 0.9730 11.0 5.5 0.8599

8.0 7.0 0.9184

7.0 8.0 0.9375

where ε̃int and ε̃inc are the inelastic strains in tension and compression, re-

spectively. Stresses and corresponding inelastic strains describing material

behavior (Fig. 3) as well as stiffness degradation variables are given in Table

2.

The plastic flow is defined by the flow rule

ε̇pl = λ̇
∂G(σ̄)

∂σ̄
(11)

where λ̇ is the nonnegative plastic multiplier and G is the flow potential
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G =
√

(εσmax
t tanφ)2 − p̄ tanφ. (12)

where ε = 0.1 is the flow potential eccentricity, σmax
t = 3.4 MPa is the uni-

axial tensile stress at fracture (Table 2), φ = 31◦ is the dilation angle in

the p-q-plane (hydrostatic pressure - Mises equivalent stress) at high confin-

ing pressure and p̄ is the effective hydrostatic pressure. Values for ε and φ

represent typical values used for concrete [51]. The yield function F ≤ 0 is

F (σ̄, ε̃pl) =
1

1− α

(
q̄ − 3αp̄+

1

2

(
σ̄c(ε̃

pl
c )

σ̄t(ε̃
pl
t )

(1− α)− (1 + α)

)
·
(
|ˆ̄σmax|+ ˆ̄σmax

)
− γ

2

(
|ˆ̄σmax| − ˆ̄σmax

))
+ σ̄c(ε̃

pl
c )

(13)

where α = 0.12 and γ = 2.91 are material constants based on reference [51],

q̄ is the Mises equivalent stress, σ̄t and σ̄c are the effective tensile and com-

pressive cohesion stresses, respectively, and ˆ̄σmax is the maximum eigenvalue

of the effective stress.

4. Simulation

In the simulations, the side of the subcube was 0.5 mm. An example of

structure is shown in Fig. 4. The x3-directional displacement was set to zero

at the bottom of the sample and 2× 10−3 mm displacement was applied into

negative x3-direction at the top of the sample, see Fig. 4. Displacements in

the x1- and x2-directions were not restricted at any point in the subcube to

ensure equal freedom in the x1- and x2-directions for each node. An example

of the simulated stress-strain behavior of eight samples is shown in Fig. 5.
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Figure 4: Example of subcube from Sample 2. Porous structure with 30 spherical pores

and 1.00 % porosity. Bottom of the sample is defined by x1-x2-plane with x3 = 0 mm and

top of the sample by x1-x2-plane with x3 = 0.5 mm. The size of the simulated samples is

0.5 mm × 0.5 mm × 0.5 mm.

The rigid body motions were prevented by a adding viscous forces term

F = cM∗v (14)

where c is a damping factor, M∗ is an artificial mass matrix calculated with

unity density and v is the vector of nodal velocities to the equilibrium equa-

tions [46]. The example presented in Fig. 6 shows insensitivity of the results

to the damping factor between 0.0001 1/s and 0.1 1/s; a constant damping

factor of 0.01 1/s was used in all simulations.

In the simulations, the material experienced a reduction in stiffness and

softening behavior reducing the convergence rate. To avoid too low con-
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Figure 5: Simulated stress-strain behavior of eight samples.

vergence rate, viscoplastic regularization based on a generalization of the

Duvaut-Lions regularization [52] was utilized. The regularized stress-strain

relation

σ = (1− d+ µḋv)D
el
0 (ε− εpl + µε̇plv ) (15)
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Figure 6: Effect of damping factor c (1/s) on the simulated results.
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is obtained by adding a viscoplastic strain rate tensor ε̇plv and viscous stiffness

degradation rate ḋv to Eq. (1). The intensity of regularization on the solution

is determined by the value of the viscosity parameter µ. Fig. 7 shows the

effect of the viscosity parameter on the simulated behavior for two subcubes.

By making a compromise between the computation time and the effect of

regularization, the value of the viscosity parameter used in the simulations

was 0.0001 s.

Numerical solutions were obtained by finite element method (FEM) us-

ing Abaqus/Standard version 2018. The mesh was generated by free mesh-

ing technique with default mesh generation algorithm to create elements

C3D10M [46]. Element C3D10M, a 10-node modified tetrahedron with hour-

glass control, was selected based on numerical testing emphasizing on the

behavior of stress fields. During the simulations, excessive element distor-

tion did not occur with the selected element type and boundary conditions.

Excessive element distortion and automatic time incrementation scheme was
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Figure 7: Effect of viscosity parameter µ (s) on the simulated results for S1γ (left) and

S2γ (right).
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Figure 8: Stiffness degradation variable d from cross-section (x3 = 0.25 mm) of S2γ during

compression. Darker color correspond higher value of d. Compression in the top row from

left to right: 8.0×10−4 mm, 8.4×10−4 mm, 8.8×10−4 mm and 9.2×10−4 mm. Compression

in the bottom row from left to right: 9.6× 10−4 mm, 1.4× 10−3 mm, 1.6× 10−3 mm and

2.0× 10−3 mm. The size of the sample is 0.5 mm × 0.5 mm × 0.5 mm.

controlled by Abaqus [46]. An example of damage behavior is shown in Fig.

8 and the porous structure of the corresponding sample in Fig. 9. Due to

the behavior of a structure including softening of the material and damage

behavior, mesh density affects on the numerical solution [53, 54]. Fig. 10

shows that a denser mesh causes the specimen to lose its load carrying ca-

pacity with a lower load. However, the compressive strength of low and high

porosity subcubes appears to behave similarly as a function of mesh density.

To reasonable the computation time, a seed of 0.050 mm was chosen to be

used in the mesh generation. Fig. 11 represents how the results shown in

Fig. 10 are located among the simulated results for all samples.
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Figure 9: Porous structure of a sample which simulated damage behavior is shown in Fig.

8: 3D representation of the sample (left) and projection into a plane perpendicular to the

direction of compression (right). The sample size is 0.5 mm × 0.5 mm × 0.5 mm.

5. Results

The simulation procedure was performed on 128 subcube specimens. The

measured pore distributions of Sample 1 and Sample 2 were the basis for two
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Figure 10: Effect of mesh density on the simulated results for S1γ (left) and S2γ (right).
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Figure 11: Simulated maximum stress as a function of porosity and the effect of the

mesh density. Circles and squares are used for samples based on Sample 1 and Sample

2, respectively. Color of the markers describes the number of elements in the sample and

triangles with green edges represent the mesh density tests in Fig. 10.

sets of structures, S1 and S2; 64 subcube specimens were taken from each.

The simulated maximum stresses as a function of porosity and number of

pores in the subcube specimens are presented in Fig. 12 (see also Tables A.5

and A.6 (Appendix)). The number of pores divides the subcubes into two

separate groups; the number of pores in S1 varies between 0 and 8 and in

S2 between 14 and 35. However, the properties of S1 and S2 intersect in

terms of porosity and compressive strength, as even a single large pore at the

volume of interest significantly increases porosity, see Fig. 12.

Several general types of functions developed to model the relationship

between strength σmax and porosity p of engineering materials have been

commonly utilized in the field of cement-based material research, e.g.,
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Figure 12: Simulated maximum stress as a function of porosity. Subcubes from Sample 1

are marked with circles and from Sample 2 with squares. Color of the markers describes

the number of pores in a sample.

σmax = σ0(1− p)k1 (Balshin [11]) (16)

σmax = σ0e
−k2p (Ryshkewitch [12]) (17)

σmax = k3 ln

(
p0

p

)
(Schiller [13]) (18)

σmax = σ0 − k4p (Hasselman [14]) (19)

where σ0 is the strength at zero porosity, ki are constants and p0 is the

porosity at zero strength. Atzeni et al. [10] proposed a formula for hardened

cement pastes in which, in addition to porosity p, the strength is related to

mean distribution pore radius rm
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σmax = k5σ0
1− p
√
rm

. (20)

In this study, a volume weighted mean radius is used for rm as

rm =

∑
Vnrn∑
Vn

(21)

where Vn is the volume and rn is the radius of the pore n. Li et al. [15] used a

simplified center pore model to derive an analytical solution for compressive

strength of concrete

σmax = σ0
(1− c)2

5c+ 1
(22)

where c is defined as

c =
r2
p

r2
V

= p2/3. (23)

In Eq. (23) rp is the volume equivalent sphere radius of the sum of the pore

volumes and rV is the volume equivalent sphere radius of the subcube (Vγ =

0.5 mm × 0.5 mm × 0.5 mm).

Fig. 13 shows the least-squares fits of the above mentioned six strength-

porosity relation models to the simulated data. The fittings have been applied

to the entire data (S1+S2) as well as separately to the sample sets S1 and

S2. Root-mean-square deviation (RMSD) is used as a measure of goodness

of fit. Regardless of the data set to which the fittings are made (S1, S2 or

S1+S2), deviations are always calculated using the entire data set (S1+S2).

The fitting parameters and deviations are presented in Table 3.

The formulas of Balshin, Ryshkewitch, and Hasselman (Eqs. (16), (17)

and (19)) each contain two fitting parameters, σ0 and ki. Based on the
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Figure 13: Eqs. (16)-(20) and (22) fitted to the simulated results. Fittings are done for

result data concerning Sample 1 (blue), Sample 2 (red) and both samples (blue and red:

black line) by fitting with all parameters free (dashed line) and with one parameter fixed

(solid line). Parameters are given in Table 3.

22



Table 3: Fitted parameters and root-mean-square deviation (RMSD) for Eqs. (16)-(20)

and (22). Fixed parameters are given in bold font and fittings are done for simulated

results concerning Sample 1, Sample 2 and both samples.

Sample 1&2 1 2 1&2 1 2

Balshin [11]

σ0 (MPa) 48 48 48 43.245 44.248 38.902

k1 (-) 27.531 39.722 26.672 18.626 22.473 11.105

p0 (-) 1 1 1 1 1 1

RMSD (MPa) 3.933 5.063 3.941 2.254 2.430 3.771

Ryshkewitch [12]

σ0 (MPa) 48 48 48 43.267 44.258 38.943

k2 (-) 27.781 40.067 26.914 18.841 22.707 11.282

p0 (-) ∞ ∞ ∞ ∞ ∞ ∞

RMSD (MPa) 3.910 5.046 3.918 2.240 2.415 3.749

Schiller [13]

k3 (MPa) 5.998 5.491 7.394 2.617 1.907 4.506

p0 (-) 1 1 1 5.536e3 2.847e6 19.810

RMSD (MPa) 7.060 7.761 11.333 1.753 2.678 4.672

Hasselman [14]

σ0 (MPa) 48 48 48 42.715 44.013 38.448

k4 (MPa) 0.981e3 1.209e3 0.964e3 0.629e3 0.763e3 0.361e3

p0 (-) 0.049 0.040 0.050 0.068 0.058 0.107

RMSD (MPa) 4.637 5.181 4.641 2.515 2.734 4.030

Atzeni et al. [10]

σ0 (MPa) 48 48 48 - - -

k5 (mm1/2) 0.124 0.121 0.129 - - -

p0 (-) 1 1 1 - - -

RMSD (MPa) 5.404 5.495 5.636 - - -

Simplified center pore model [15]

σ0 (MPa) 48 - - 46.236 45.888 46.795

p0 (-) 1 1 1 1 1 1

RMSD (MPa) 2.181 - - 1.604 1.630 1.671

material model used in the simulations, the compressive strength at zero

porosity is σ0 = 48 MPa. Eqs. (16), (17) and (19) are fitted using first the
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fixed value for σ0 = 48 MPa and then the free parameters for σ0 and ki.

When fixed σ0 is used, the RMSDs are high, but the deviations decreases

when models are fitted with free parameters. At low porosity values the

Balshin, Ryshkewitch and Hasselman models equal. This can be easily seen

by Taylor expanding the Balshin Eq. (16) and the Ryshkewitch Eq. (17)

models as function of porosity and by taking only the two leading terms

for low porosity. This equivalency at low porosity values is also observed

when fitting the models in the simulation results. At very low porosities,

the curves do not bend steeply enough, underestimating the strength at the

zero porosity, and the fits of Eqs. (16), (17) and (19) extrapolate nearly

identical values to σ0 (Table 3). Porosity at zero strength is one for Balshin

and infinity for Ryskewitch based on the type of equations. The Hasselman’s

model extrapolates low values to the fitting variable p0, ranging from 4.0 %

to 10.7 % depending on data set and the fitting approach.

Schiller’s equation (Eq. (18)) goes to infinity at zero porosity. To include

subcubes with zero porosity in the fittings of Schiller, the porosity is set to

p = 10−5 for those subcubes. The values of the fitting parameter p0 are

unrealistically high. The Schillers’s models were also fitted using a fixed

porosity p0 = 1, but the deviations increased even more. In the Atzeni’s

model (Eq. (20)), in addition to the porosity p, the variable rm describing the

pore distribution is included. However, ideal linearization is not achieved and

the approach does not reduce scattering of data points around the strength-

porosity relationship curve.

The solution of Li’s formula (Eq. (22)) can be directly calculated when σ0

is know, but by fitting the equation an estimate for σ0 is also provided. The
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Figure 14: Eq. (24) fitted to the simulated results with different combinations of fixed and

free state of parameters σ0 and k5. Fittings are done for result data concerning Sample

1 (blue), Sample 2 (red) and both samples (blue and red: black line). Parameters and

approximated σ0 and p0 are given in Table 4.

fits are fairly independent of data set and the lowest RMSDs were achieved

when compared to the deviations observed with other formulas studied. The

values of σ0 are only slightly underestimated by fitting. The Li’s model

follows quite well the data at low porosity, but differs more with increasing

porosity.

It appeared in this study that a simple power law function pk7 could

provided a good alternative to linearize the relationship. By using 1− pk7 to
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Figure 15: Linearized data (left) and Eq. (24) fitted with k7 = 1/3 (right). Fittings are

done for results concerning Sample 1 (blue), Sample 2 (red) and both samples (blue and

red: black line). Parameters and approximated σ0 and p0 are given in Table 4.

change from a negative correlation to a positive correlation and constants k6

and σ0 for scaling, the model takes a form

σmax = σ0(1− k6p
k7) (24)

where k6 and k7 are the fitting parameters. In total, the model contains three

fitting parameters, which can make the fitting unstable and extrapolation of

σ0 and p0 unreliable. If σ0 is fixed to 48 MPa and k6 to 1, the equation

passes through two points (p, σ) = (0, 48) and (1, 0), and then the constant

k7 defining the shape of the function is only fitting parameter. The results

of these fittings are presented in the upper-left in Fig. 14. The upper-right

figure shows the fitting results with free k6, in which case the estimates for

p0 are derived, see Table 4. For both of these approaches, the RMSDs are

low and fitting is quite insensitive to data set selection. Estimation of σ0

can be derived with the fixed k6 = 1 or with all three parameters free, see
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bottom-left and bottom-right in Fig. 14. The fittings of the data set S2

expose the sensitivity of determining σ0 and p0 by extrapolation. However,

the behavior can be stabilized by using fixed exponent k7 = 1/3. The degree

of linearization is illustrated in the left in Fig. 15 and corresponding fits are

presented in the right in Fig. 15. The deviations are low regardless of the data

set in fitting and estimates for σ0 and p0 are in reasonable range, see Table

4. The use of exponent value 1/3 can be interpreted as a change of variable

substituting the porosity by ratio of radius of volume equivalent spheres or

ratio of side lengths of volume equivalent cubes, i.e., p1/3 = rp/rV or p1/3 =

lp/lV where rp and rV are as in Eq. (23), lp is the volume equivalent cube side

length of the sum of the pore volumes and lV is the volume equivalent cube

side length of the subcube (0.5 mm). Now Eq. (24) can be written in the form

σmax = σ0(1 − k6ξ), where ξ is defined as the void length ratio ξ = p1/3. σ0

defines the maximum stress at zero porosity, while single fitting parameter

k6 defines porosity at zero maximum stress in the form p0 = k
−1/3
6 . The

model assumes a simple linear decrease of maximum strength as a function

of increasing void length ratio, ξ, between points (ξ, σ) = (0, σ0) and (ξ, σ) =

(1/k6, 0).

6. Discussions

The simulations were performed on CSC’s (the Finnish IT center for sci-

ence) new supercomputer Puhti. For one standard sample simulation, a wall

clock time of 36 hours was set aside, during which time all samples exceeded

the maximum stress point. The computation time required to simulate the

entire compressible distance was considerably longer, varying from several
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Table 4: Parameters and root-mean-square deviation (RMSD) for Eq. (24) fits. Fixed

parameters are given in bold font and fittings are done for simulated results concerning

Sample 1, Sample 2 and both samples.

Sample σ0 k6 k7 p0 RMSD (MPa)

1&2 48 1 0.283 1.000 1.375

1 48 1 0.303 1.000 1.707

2 48 1 0.273 1.000 1.477

1&2 48 1.416 0.353 0.373 1.103

1 48 1.419 0.358 0.376 1.126

2 48 1.235 0.320 0.517 1.173

1&2 50.410 1 0.253 1.000 1.199

1 49.212 1 0.280 1.000 1.441

2 55.996 1 0.207 1.000 1.850

1&2 48.886 1.292 0.322 0.451 1.084

1 48.608 1.298 0.331 0.455 1.114

2 209.186 0.942 0.026 10.176 28.533

1&2 48.629 1.342 1/3 0.413 1.087

1 48.572 1.311 1/3 0.444 1.112

2 47.629 1.284 1/3 0.472 1.190

days to two weeks. The wall clock time needed for the simulations was de-

creased by paralleling the computation, see Fig. 16. In the simulations, the

convergence rate strongly depends on the intensity of regularization and, to a

lesser extent, the mesh density. Higher convergence rate is easily achieved by

increasing the intensity of regularization. However, with too high intensity

the regularization begins to dominate the solution. A denser mesh may also

increase the convergence rate at that price that the computation time used

to solve set of equations increases dramatically. Naturally, the sample size
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Figure 16: Effect of parallelization on wall clock time.

also affects the size of the set of equations to be solved.

The X-ray tomography image pixel size (here 5 µm), resolution and noise

in the images restricts the size of pore structures which can be reliably dis-

tinguished from the images. Also, the image processing and analysis, such

as filtering, thresholding and watershed, affects the porosity results obtained

from the images. With the present imaging set-up and analysis methods, dis-

cussed in detail in Section 2.2, the results obtained for pore-like structures less

than 50 voxels are considered unreliable, which also indicates that the cap-

illary pores cannot be investigated in the current study. To capture smaller

pore structures, one should use larger geometrical magnification in imaging

or different higher resolution tomography scanner and longer image exposure

times. Also, different, more sophisticated, filtering and thresholding methods

might provide more insight for pore structures. To further estimate and re-

duce the perceptible uncertainty in the pore number distributions one could
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try to validly combine the current watershed results, utilizing 18-connected

neighborhood, with another 26-connected neighborhood watershed analysis

results. In related analysis it was observed that the total number of pores

can be clearly larger when using 26-connected neighborhood in watershed

analysis. Particularly number of smaller pores got increased. Part of this in-

crease is justified i.e. there are more connected small pores than indicated by

18-connected analysis. But part of the increase is due to over-segmentation

of some pore structures e.g. some non-spherical voids, like some cracks, get

over-segmented. Thus, further investigation and possible combination of 18-

and 26-connected results would be reasonable. The use of seed images in

the watershed analysis could improve the watershed results also. These are

subjects for possible further studies.

The presented simulation approach is based on compromises related to

the above issues, while the measurement method limits the category of pores

considered. The number of pores in one simulation subcube is small and they

can be categorized as macroscale pores corresponding air voids. The choice of

spherical pores, of course, affects the simulation results, but serves as a good

estimate for the air pores on which research has focused. The base of the

statistics was established by simulating 128 subcubes generated by sampling

from pore structures of two mortar: Sample 1 and Sample 2. Sample 1 and

Sample 2 differ in the porosity distribution; both structures results in groups

of 64 subcubes that differ in variations of porosity, pore distribution and

pore placement. However, the material model used in the simulations of all

subcubes is the same so that it is possible to study the effect on strength

due to porosity and pore size distribution alone. Thus, a general trend can
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be observed as well as scattering around it for the simulated compressive

strength-porosity relation as can be seen from Fig. 12.

The nonlinear general trend of decreasing maximum stress with increasing

porosity was successfully linearized using cubic root of porosity, i.e., p1/3.

Interestingly, the physical meaning of p1/3 can be interpreted as the ratio

of volume equivalent sphere radii or volume equivalent cube sides of void

and total volume, i.e., the void length ratio ξ. Decrease in maximum stress

appears to be linear as a function of ξ . Whether this is fundamental behavior

or associated to spherical shape of pores or other material model issues in

simulations, is a question for further research. Exemplary fittings of that

model to a few measured data sets are shown in Fig. 17. Despite the diversity

of materials and methods of preparation between and within data sets and

differences in measurement techniques, the formula Eq. (24) appears to model

the data in the examples considered reasonably well. The model also gives

estimates for both parameters σ0 and p0. Uncertainty in extrapolating values

significantly beyond the data observed is obvious. Approximated pressure at

zero strength obtains reasonable values, p0 < 1. No conclusions can be drawn

about the accuracy of σ0 approximations due to the lack of low porosity data.

No clear correlation was found between scattering around trend and pa-

rameters related to pore size distribution, such as number of pores or volume-

weighted mean pore size. In general, the effect of pore size distribution re-

mained unresolved; the small number of pores in each individual subcube

caused that a statistical analysis of the porosity distribution of the subcube

could not be reasonably performed. The placement and clustering of single

pores may explain this variation, but appeared difficult to study. The causes
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Figure 17: Eq. (24) fitted to the published data: Titanium-matrix foam [55], geopolymer

[56], basaltic volcano rock [57], foamed concrete [58] and mortar [59].

of scattering around the trend line in terms of maximum stress and porosity

remains unresolved in this study.

7. Conclusions

A large number of simulations were performed to reveal the compressive

strength-porosity relation for quasi-brittle material at low porosity region

from zero to 3.5 %. 128 stochastic structures that included only variabil-

ity due to porosity, pore distribution and pore placement were generated for

simulations based on measured distributions. Practical factors related to ma-

terial, measurement method and simulation approach limited the porosity,

the side length and the number of pores of a single cube used in simulations.

The use of X-ray microtomography in pore distribution measurements di-
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rected the focus of this study towards air pores and established the use of

spherical pores in the simulations. The finite element method used causes

limitations on, for example, the size of the structure and number of pores

due to computational time. However, the generation of porous structure is

practical even with a commercial program by using scripting interface. The

resulting simulated strength-porosity relationship included a clear trend and

some scattering around it. The relationship was convincingly linearized with

cubic root of porosity (p1/3), suggesting that the ratio of volume equivalent

sphere radii or volume equivalent cube sides of void and total volume corre-

late linearly to compressive strength. There was no simple explanation for

scattering around strength-porosity trend. The approach presented in this

paper made it possible to study the effect of porosity on compressive strength

without disturbances due to material property variations.
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Data tables of subcubes.
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Table A.5: Sample 1: Number of pores with radius r (µm), mean of radius r (µm),

standard deviation (SD) of radius r (µm), porosity p (%) and simulated maximum stress

σmax (MPa).
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1 3 0 0 0 0 0 11.3 1.0 0.015 44.18 33 1 3 0 0 0 0 17.1 3.2 0.072 43.03

2 3 0 0 1 1 0 18.3 10.0 0.182 39.56 34 2 0 1 0 0 0 14.8 6.1 0.044 43.74

3 5 0 0 0 0 0 12.3 1.3 0.032 44.84 35 0 0 0 0 0 0 0.0 0.0 0.000 48.15

4 3 2 0 0 0 0 14.4 1.8 0.052 42.85 36 3 0 0 0 0 0 12.3 0.9 0.019 45.29

5 1 0 0 1 1 0 24.9 11.4 0.220 39.97 37 0 1 1 0 1 0 24.6 7.9 0.182 42.98

6 1 0 0 0 0 0 13.2 0.0 0.008 44.62 38 1 0 0 0 0 0 11.4 0.0 0.005 45.09

7 4 2 0 0 0 0 13.7 3.3 0.059 42.92 39 3 0 0 0 0 0 12.6 1.8 0.021 44.58

8 2 1 0 0 0 0 12.2 2.6 0.020 44.27 40 2 0 1 0 0 0 15.4 5.0 0.045 43.29

9 4 1 0 0 1 0 17.2 11.9 0.264 39.50 41 2 1 0 0 1 0 19.5 13.8 0.236 42.38

10 1 0 0 0 1 0 22.6 14.8 0.128 39.96 42 2 0 0 0 0 0 11.0 0.3 0.009 46.13

11 3 0 1 0 1 0 20.0 12.0 0.273 37.41 43 3 0 0 0 0 0 10.9 0.3 0.013 45.95

12 2 1 0 0 1 1 28.4 20.1 0.921 34.18 44 0 2 0 0 0 1 29.8 22.3 0.606 35.20

13 4 1 1 0 0 0 16.3 4.8 0.107 41.98 45 3 1 1 0 0 0 15.7 3.9 0.075 41.45

14 2 0 0 0 0 0 11.2 1.4 0.010 46.77 46 1 0 1 0 0 0 16.8 6.1 0.038 43.15

15 5 0 0 1 1 0 17.9 8.9 0.236 38.50 47 1 0 1 0 0 0 15.8 6.8 0.034 46.30

16 5 0 0 2 1 0 19.8 11.6 0.429 38.37 48 6 0 0 0 0 0 12.9 1.8 0.045 43.25

17 1 0 1 0 1 0 22.4 10.5 0.166 40.25 49 5 0 1 0 0 0 14.6 5.3 0.086 41.52

18 0 0 0 0 0 0 0.0 0.0 0.000 48.15 50 0 0 0 0 0 0 0.0 0.0 0.000 48.15

19 1 1 1 0 0 0 17.4 3.7 0.058 44.74 51 2 1 1 0 1 0 18.6 10.6 0.206 41.18

20 1 0 0 0 1 0 28.4 22.3 0.296 40.18 52 3 0 0 0 0 0 11.2 1.4 0.014 45.70

21 0 1 1 0 0 1 42.3 36.3 2.065 33.26 53 2 0 1 0 0 0 15.6 7.1 0.055 43.23

22 1 1 1 0 1 1 34.1 26.1 1.769 32.53 54 4 1 0 0 1 0 17.1 8.1 0.168 40.69

23 2 2 1 0 1 0 18.6 7.6 0.187 38.99 55 3 1 0 0 0 0 12.8 3.4 0.033 44.12

24 2 1 0 0 0 0 12.3 3.9 0.023 46.33 56 2 0 0 1 0 0 18.0 7.2 0.079 44.61

25 3 0 1 0 0 0 13.2 5.0 0.042 45.23 57 3 0 2 0 0 0 16.6 6.7 0.107 42.01

26 2 0 0 0 0 0 11.0 1.1 0.009 47.08 58 3 0 0 0 0 0 13.2 2.6 0.025 44.41

27 2 0 0 0 0 0 11.3 1.6 0.010 47.22 59 2 0 2 1 0 0 18.2 6.0 0.127 41.14

28 1 0 0 0 1 0 20.4 13.6 0.095 44.08 60 3 1 0 0 0 0 13.6 2.1 0.035 44.19

29 1 2 0 1 0 0 17.2 6.5 0.092 41.21 61 0 1 1 1 0 0 22.2 5.7 0.126 43.19

30 0 0 0 0 0 0 0.0 0.0 0.000 48.15 62 1 0 0 0 1 0 24.6 20.6 0.205 37.95

31 2 1 0 0 1 0 18.1 9.2 0.132 41.66 63 3 1 0 0 0 0 13.2 2.5 0.033 45.65

32 1 0 0 0 0 0 12.5 0.0 0.006 45.12 64 0 1 2 0 0 0 19.1 2.7 0.073 43.27
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Table A.6: Sample 2: Number of pores with radius r (µm), mean of radius r (µm),

standard deviation (SD) of radius r (µm), porosity p (%) and simulated maximum stress

σmax (MPa).
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1 5 6 10 1 0 0 18.6 4.6 0.552 36.66 33 10 8 6 1 4 1 20.8 10.8 1.785 30.89

2 10 7 8 2 3 1 21.1 10.5 1.853 30.93 34 6 2 6 4 4 0 22.6 9.6 1.331 33.21

3 11 8 3 6 5 1 21.7 10.1 2.057 30.72 35 6 6 0 0 2 1 22.0 17.5 2.005 31.70

4 11 8 1 3 3 1 20.9 13.5 2.364 28.81 36 11 7 3 1 2 0 17.8 7.6 0.753 35.26

5 13 7 4 4 3 1 20.4 10.1 1.734 30.80 37 8 3 2 2 3 1 22.3 11.8 1.389 33.23

6 8 9 6 3 2 0 19.6 6.6 0.955 35.21 38 7 9 4 3 1 0 19.1 6.0 0.730 37.43

7 4 7 2 3 1 0 19.6 7.0 0.598 36.40 39 12 10 3 1 4 0 18.4 7.6 0.990 35.32

8 11 8 4 1 2 0 17.8 6.2 0.684 35.28 40 10 6 2 0 2 1 19.3 11.3 1.176 32.73

9 7 4 3 3 1 0 18.8 7.6 0.610 37.44 41 8 8 3 3 2 2 21.8 12.1 1.963 31.14

10 12 7 2 0 1 0 15.3 6.0 0.414 36.93 42 17 3 1 4 0 0 15.9 5.9 0.490 36.95

11 11 7 3 0 3 0 18.0 8.7 0.873 33.55 43 9 6 2 3 2 1 20.0 9.5 1.127 33.81

12 4 7 6 0 5 0 22.8 10.2 1.456 31.53 44 9 5 2 1 1 0 17.3 7.6 0.535 38.18

13 9 2 2 3 3 1 22.0 11.7 1.397 33.15 45 2 4 2 2 4 0 23.8 9.2 0.927 33.79

14 13 7 1 1 4 2 21.7 13.2 2.307 30.72 46 12 4 3 1 2 0 18.0 7.9 0.729 35.44

15 8 6 4 2 3 1 22.9 16.7 3.475 28.84 47 14 5 3 1 2 0 17.4 7.8 0.753 35.38

16 13 5 4 1 0 1 17.7 10.0 1.087 35.50 48 10 9 4 2 7 1 22.6 12.4 2.730 29.59

17 8 6 0 3 2 0 18.8 8.4 0.702 36.06 49 11 3 0 2 0 0 16.0 5.7 0.311 38.48

18 6 8 2 0 2 0 18.6 9.3 0.774 35.69 50 15 9 6 0 5 0 18.3 8.1 1.220 32.86

19 8 5 6 4 0 2 21.5 12.3 1.913 30.55 51 8 5 4 2 2 0 19.8 8.9 0.935 36.20

20 10 3 7 1 6 0 22.3 10.6 1.746 30.39 52 8 6 5 3 2 0 19.7 8.4 1.012 32.86

21 9 4 7 1 4 1 21.3 9.7 1.455 31.97 53 4 2 5 0 2 1 22.8 12.9 1.250 33.97

22 11 8 3 2 5 1 21.8 12.9 2.420 32.18 54 5 3 3 1 4 2 25.3 13.0 1.824 30.90

23 10 5 5 1 2 1 20.5 13.6 2.108 30.44 55 4 7 5 3 5 0 22.7 8.6 1.371 32.40

24 10 10 6 2 3 0 19.6 8.4 1.296 33.35 56 9 5 4 2 1 1 20.8 14.5 2.244 32.20

25 11 2 1 0 3 1 18.9 11.0 0.923 34.54 57 7 6 2 2 0 0 17.2 5.0 0.362 39.73

26 14 4 0 0 1 0 14.7 4.6 0.270 41.22 58 12 5 5 1 4 1 20.9 13.4 2.432 31.30

27 7 10 5 1 0 0 17.3 3.8 0.454 36.56 59 4 9 1 1 5 0 21.7 8.5 1.021 35.20

28 7 6 1 4 0 0 18.1 6.3 0.491 36.65 60 14 2 6 0 1 0 16.6 7.9 0.665 36.65

29 7 9 4 3 1 0 18.8 6.9 0.771 35.52 61 11 6 6 2 3 0 19.6 8.7 1.197 32.40

30 6 4 2 2 1 0 18.8 8.9 0.593 37.03 62 13 7 4 1 0 0 16.0 4.6 0.435 37.76

31 12 3 1 1 3 0 18.0 8.3 0.663 38.16 63 11 5 2 1 1 0 17.1 6.4 0.510 37.50

32 5 7 9 2 2 0 20.6 7.0 1.006 33.38 64 8 4 3 1 3 0 19.2 8.3 0.715 33.22
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