

Emma Tauriainen

DATABASE UTILIZATION IN EMBEDDED SOFTWARE DEVELOPMENT

3

DATABASE UTILIZATION IN EMBEDDED SOFTWARE DEVELOPMENT

Emma Tauriainen
Bachelor’s Thesis
Spring 2023
Information Technology
Oulu University of Applied Sciences

4

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Option of Device and Product Design

Author: Emma Tauriainen
Title of thesis: Database Utilization in Embedded Software Development
Supervisors: Petri Honkala and Petri Saari (Nordic Semiconductor) and Jukka Jauhiainen (OUAS)
Term and year when the thesis was submitted: Spring 2023
Number of pages: 44 + 4 appendices

The topic of this thesis was database utilization in embedded software development and it was
commissioned by Nordic Semiconductor. This work was intended to develop and improve software
quality and performance metrics tracking applications by implementing a database with the most
suitable features into use.

To find the best choice, five different databases, two SQL-based and three NoSQL-based, were
taken into comparison. The databases to be compared were selected based on their popularity and
comments from the IT support of the company. When comparing them, their properties were
presented and discussed in relation to the requirements of the company. For database transaction
model, ACID-model was selected, which left two databases for comparison, PostgreSQL, and MS
SQL Server. These two were compared by benchmarking of which MS SQL Server was selected.
The database was created to the company’s server and database handler script was implemented
using Python programming language. The structure of the database handler was planned and
implemented to be as generic and scalable as possible. Table structure of the database was
designed as efficient and clear as possible as well.

The result of this thesis was a successful entity which consisted of MS SQL Server, its handler
script, and an application used to make queries to the database with. For further development a
web user interface and interactive visualization web application were discussed.

Keywords: Relational database, SQL, NoSQL, ACID model, benchmarking, MS SQL Server, Py-
thon

5

ACKNOWLEDGEMENT

First, I would like to thank Nordic Semiconductor for the opportunity to complete this thesis. Spe-

cifically, I would like to thank Petri Saari and Petri Honkala for being my supervisors from the com-

pany. They offered excellent guidance, help, and support during this thesis. I would also like to

thank my supervisor Jukka Jauhiainen from OUAS for giving feedback, tips, and perspective on

the work.

Additionally, I would like to thank the company’s IT support for their comments, tips, and help in

defining comparable databases and implementing test databases.

In Oulu 23.2.2023

Emma Tauriainen

6

CONTENTS

ACKNOWLEDGEMENT .. 5

ABBREVIATIONS .. 7

1 INTRODUCTION ... 8

2 DATABASE COMPARISON .. 9

2.1 Database options and requirements ... 10

2.2 Microsoft SQL Server ... 11

2.3 PostgreSQL .. 12

2.4 MongoDB ... 13

2.5 Cassandra .. 15

2.6 InfluxDB .. 16

3 DATABASE SELECTION .. 18

4 DATABASE IMPLEMENTATION ... 22

4.1 Table structure ... 22

4.2 Code structure .. 24

4.3 Backend implementation .. 30

4.4 Application implementation ... 32

5 FURTHER DEVELOPMENT.. 39

6 CONCLUSION ... 40

REFERENCES .. 41

APPENDICES .. 44

7

ABBREVIATIONS

ACID Database model (Atomicity, Consistency, Isolation, Durability)

BASE Database model (Basically Available, Soft State, Eventually Con-

sistent)

CPU Central processing unit

FK Foreign key, field that refers to primary key

GUI Graphical user interface

IoT Internet Of Things

JSON JavaScript Object Notation, an open data interchange format

LAPP Linux-Apache-PostgreSQL Application server

NoSQL Non-SQL, No SQL -based database

ORDBMS An open-source object-relational database management system

PK Primary key, column in a relational database table, distinctive for

each record

RAM Random-access memory, computer memory’s form, typically

used to store working data and machine code

RDBMS A relational database management system

SQL Structured Query Language

Tps Transactions per second

TSDB Time series database

UI User Interface

8

1 INTRODUCTION

Embedded software development focuses on embedded systems which are devices built around

a microprocessor where the software is programmed into. Embedded software development and

its quality monitoring produce different kinds of metrics that need to be stored utilizing a database.

The database is a collection of data to which the data, metrics, are stored usually in electronic form.

With the database, the metrics can be monitored and tracked for example to ensure the quality of

the software implementation or for other possible further development. These metrics can be, for

example, power consumption, the execution time of the system, and free space left in memory. In

embedded software development the databases can be embedded in the systems, or they can be

external. In this work, the implemented database is external in the company’s server.

The commissioner of this work, Nordic Semiconductor, is a fabless semiconductor company from

Norway focusing on wireless communication technology that powers the Internet of Things (IoT)

(1). The idea behind this thesis was triggered by the need to store and monitor data used in tracking

the software quality and performance metrics. When developing software, whether in embedded

software development or not, publishing the software does not mean forgetting it. Instead, its out-

come, quality, and maintainability must be monitored. With different software quality and perfor-

mance metrics tracking applications, the development maintains for example cost-effectivity since

from these can be seen if the changes affect the software. If they affect, reacting to them in early

stage is possible. This work intends to develop software quality and performance metrics tracking

applications for which the selected database will eventually be taken into use. In addition, the im-

plementation will be demonstrated with a demo application.

To select the database meeting the company’s needs the best, five different databases are com-

pared and the best one of them is selected and taken into use. This work provides one final choice

and implementation of the database around which the applications can be built. The result of this

work secures the data storage, prevents data losses, or restores the data if needed.

9

2 DATABASE COMPARISON

Databases were chosen based on their types and upon the usage requirements. These types are,

for example, an object-oriented database, a relational database, or personal database where the

database is a single file where data is written and read. File-based database, for example, JSON

file located in a network drive is not a very safe and efficient choice for a database. If a database

is in use for several years, file-based database will become slow due to its increasing file size.

Some file systems may cause limitations on file sizes, or a library can be made with some program-

ming language, for example, C or C++, which could have memory limitations, too. However, for

example Python is a dynamic programming language so file-based database depends on the com-

puters’ memory when handling large amount of data. Using JSON file database in network drive

might cause connection problems which could end up corrupting the file.

A proper database would make its applications more reliable and secure since the database most

likely has proper back up methods, less data corruption, and its performance is quicker from which

the company or any operator benefits. Moreover, it makes configurability easier and increases the

usability of the applications that use the database. For example, if applications are changed, the

changes can be done to the application-side, and there is no need to modify the database. Acces-

sibility and visibility of the data can also be delimited so that it is not misused or damaged.

In addition, using proper database makes handling the database more straightforward; for example

ready-made libraries can be used rather than spend time on making one of its own. If the data

consists of small data sets with arbitrary and unrelated data, for example file-based database, so-

lution might be more efficient than a proper database. However, for this work file-based database

is not an option due to the needs of the company.

Database selection is a big decision considering its long-term use and data change. Correct selec-

tion ensures that the applications that use the database will be available, performant, and scalable

over time. Therefore, comparison between different databases is desirable.

10

2.1 Database options and requirements

The data to be stored and monitored is from tracking the quality and performance of the software

metrics in embedded software development; this means that the database must be able to handle

a large amount of data. As mentioned in the introduction, the database itself will not be located in

any embedded hardware device of the company but rather in their server giving lots of options for

its selection.

For comparing different options, five different databases, two SQL-based and three NoSQL-based

databases were selected. The options were chosen based on their popularity, availability, and the

view of the company’s IT support. MySQL (2), one of the most popular databases was left out from

the comparison because the company’s current version is MySQL community, which is based on

mostly non-critical and light usage, and its restore handling is not very reliable. Since a better op-

tion, MS SQL Server (3), is available and the company already uses it, it was taken in place of

MySQL. If MySQL was used, a commercial version that has better restore handling would have

been chosen.

A Structured Query Language (SQL) is a standard programming language that executes queries

to a database. It is used with relational databases where the data is stored in tables. The tables are

collections of related data entries consisting of columns and rows. (4.) Non-SQL (NoSQL) data-

bases deviate from the traditional relational model. These databases are non-tabular and their type

is based on their data model. Document, key-value, wide-column, and graph are the main types for

NoSQL databases. (5.)

The database must be able to store a large amount of data and has proper handling of backups.

When thinking about data post-processing and monitoring, the possibilities for graphical data

presentation, continuous monitoring, and the possibility to add own notes must be considered as

well as the possibility for user interface (UI) and configurability. The database must also be able to

use with Python programming language (6) and its respective libraries or the database must have

drivers that enable the usage.

11

2.2 Microsoft SQL Server

Microsoft SQL Server (MS SQL Server) is SQL-based, RDBMS, and it was developed by Microsoft

in April 1989. Nowadays it works both on Windows and Linux and it is used commercially a lot for

example by Atlassian Corporation’s tools, work management tool Jira, a team workspace Conflu-

ence and version control system repository management solution Bitbucket. Database queries use

Microsoft’s variant of SQL called Transact-SQL (T-SQL) (7) which adds a set of proprietary pro-

gramming constructs. It supports different data types including the primitive types such as integer,

float, and decimal (8).

For online backup strategies, there are three recovery models: simple, full, and bulk-logged. The

most recommended one is full recovery model, which permits no data loss making database re-

covery possible at any time if backups are up to date at that time. (9.) Simple recovery model is

also highly used. It gives a simple backup and ability to do an entire copy of the database or backup

with any changes since the last complete backup. This may expose database to failures because

the data can be restored only from the point when the backup occurs. (10.) Bulk-logged recovery

model permits high performance bulk copy operations. It uses minimal logging for most bulk oper-

ations reducing log space but log backup sizes can be substantial because a log backup has as

few logged operations as possible. However, the choice of the recovery model is not final as it can

be changed at any time. (11.)

One of the features of MS SQL Server is that via a software application SQL Server Management

Studio task can be scheduled thus enabling continuous monitoring (12). Also, its configurability is

simple by using the application or T-SQL but it is not available for all users. Only the system ad-

ministrator, database owner, and members of the sysadmin can change the configuration settings

for the database. (13.)

MS SQL Server would be reliable choice because it has been around for a long time and has

several big clients. It would also give flexibility with data types since future data types are not known.

Additionally, this database manages to handle large amount of data and supports Python which

would meet some requirements of the company. T-SQL is an extension of SQL and when com-

pared these two T-SQL contains procedural programming and local variables with more options for

database handling. Adding own notes and graphical data presentation could be handled with T-

SQL. T-SQL also supports join-clauses which might be a good addition if the database is chosen

12

to be a relational database. Therefore, the data structure and its format definition would be straight-

forward, and data post-processing and follow-up should not cause bigger problems.

MS SQL Server supports partial indexes as well as automated functionality for index management

which is an important part in usability of databases. Overall, due to its pivotal features, robust se-

curity platform, industry-leading performance, and intelligence across all the data with big data

clusters, MS SQL Server is a great option.

2.3 PostgreSQL

PostgreSQL is a free, open-source object-relational database management system (ORDBMS)

(14). It emphases extensibility and SQL compliance and runs on all major operating systems. Post-

greSQL supports various data types such as primitives, structured, and documents. Users can also

create their own data types giving flexibility for future data types. It can also store a large amount

of data and it uses primary keys, foreign keys, and exclusion constraints to keep data integrity.

PostgreSQL supports index-based table organization and stored functions and procedures as well

as multiple programming languages like Python and Perl. (14.) With these features data structure

and its format definition would be simple making data post-processing and follow-up possible.

With its capability of extending, PostgreSQL gives multiple options for data handling. One of its use

cases is LAPP (Linux, Apache, PostgreSQL, Perl, PHP, and Python), an open-source stack for

running dynamic apps and websites. This would be beneficial for future developing, for example

developing a web UI. Along with this, it has support for JSON and foreign data wrappers allowing

it to link with other data stores. PostgreSQL’s system liberates the disk space by looking for empty

rows and eliminates unnecessary elements by scanning the table of a data layer. This needs a lot

of CPU, which could impact performance, even though it may not be a problem in this implemen-

tation. For repetitive tasks, PostgreSQL does not have support for a built-in job scheduler but it

supports external tools like Cron or Task Scheduler which are already in use in the company. (12.)

For backup utilities there are built-ins such as pg_dump and pg_dumpall. Also, third-party tools are

available such as Amandam NetVault Backup and Bacula (9).

13

For graphical data presentation PostgreSQL could be used with Grafana which is a multi-platform

open-source analytics and an interactive visualization web application. Grafana provides charts,

graphs, and alerts and it is used for composing observability. (15.) It would expand the usage and

usability vastly in graphical data presentation.

2.4 MongoDB

MongoDB is a source-available document-oriented and a NoSQL database program (16). It uses

JSON-like documents meaning that data structure is composed of field and value pairs. The data

structure makes storing structured or unstructured data easy for developers and they do not have

to think about the data normalization. MongoDB’s advantage is that it also provides high perfor-

mance data persistence. (17.) MongoDB was released in February 2009 making it quite a new

database compared to MS SQL Server. Nevertheless, it has become one of the most popular da-

tabases, as shown in figure 1 below.

14

Figure 1. The most popular databases worldwide in August 2022 (18.)

MongoDB works well with real time analytics, content management, and other types of applications.

With unstructured or structured data with rapid growth potential, it is an ideal choice. However, in

this case the data increases steadily. MongoDB’s best features are its performance levels, simplic-

ity, and high speed and higher availability. It stores most of the data in random-access memory

(RAM) allowing a quicker performance during execution of queries. The data is stored as docu-

ments in compressed Binary JavaScript Object Notation (BSON) files which are binary encoded

JSON textual object notations The data can be retrieved directly in JSON format making it easy to

read and understand. Since MongoDB is a document-based database, its attributes like replication

and gridFS allow an increase in data availability. In addition, using indexing and document access-

ing is easy. On the other hand, MongoDB does not support transactions because high performance

15

requires the right indexes making data corruption possible. If they are out of order or shoddily im-

plemented, it will operate at slow speed. With some of these downside features it could lead to

duplicate or corrupted data which does not make it quite reliable choice. (19, 20.)

MongoDB has Python support making it possible to add your own notes and do data post-pro-

cessing and reasonable follow-up. MongoDB offers backup methods with Atlas (21), MongoDB

Cloud Manager (22) or Ops Manager (23) and mongodump as well as copying underlying data files

(24). It also offers a graphical user interface (GUI), MongoDB Compass for querying, aggregating,

and analyzing data. MongoDB Compass is free and the source available (25) and supports macOS,

Windows, and Linux making MongoDB Compass one option for graphical presentation of data.

2.5 Cassandra

Cassandra is also an open-source, NoSQL database (26). It uses a traditional model with a table

structure with columns and rows. In addition, it provides an SQL-like programming language, Cas-

sandra Query Language (CQL) for creating and updating database schema and accessing data.

CQL supports features such as user-defined types, functions and aggregates and local secondary

indices as well as modifying data in existing tables. However, cross partition transactions, distrib-

uted joins and foreign keys or referential integrity are not supported by Cassandra because they

require cross partition coordination as they are typically slow. Cassandra supports incremental

backups where data can be backed up as it is written making it more robust. Cassandra is a dis-

tributed database and is designed to handle massive amounts of data across many commodity

servers. This provides high availability with no points of failures. The downside of this is latency

issues due to transactions slowing down. Still, selecting Cassandra would offer scope and reliability

at least compared to MongoDB. A disadvantage of Cassandra is that like in some NoSQL data-

bases, subqueries and joins are not supported. (26.)

In Cassandra the data post-processing and follow-up differs from RDBMS. For example, returned

data’s order in RDBMS can easily be done with Order by query or by default the records will return

in the order in which they are written. In Cassandra the sorting is defined by the order specified by

the clustering columns which are defined when a table is created. This may not be a good solution

for the company’s needs because all use cases of the data usage cannot be known beforehand or

16

the data structure may change in the future. Also, the database structure might get confusing if

there are a lot of different tables for different queries. (27.)

Cassandra is configurable and it has a comprehensive documentation about configuration on its

website. Cassandra itself does not offer GUI but it is supported by various database designers like

DbSchema. DbSchema provides a diagram-oriented database designer and GUI tool for SQL and

NoSQL databases, in addition to Cassandra, also for MS SQL Server, PostgreSQL, and MySQL,

for instance. (28.)

Since Cassandra supports Python with Cassandra Driver, it is possible to create own graphs from

data if a third-party GUI is not wanted to be used. Even though Cassandra is not a very popular

database, as shown in the figure 1, it has some of the biggest companies as users such as Face-

book, Twitter, and Reddit. (29.)

2.6 InfluxDB

InfluxDB is an open-source time series database (TSDB) with a rich library (30). It is developed by

InfluxData for storing and retrieving time series data meaning that a series of data points are in-

dexed in time order. The data can be for example IoT data, real-time analytics, or application met-

rics. (30.) InfluxDB has its own data scripting language called Flux, which is designed for querying,

processing, writing, analyzing, and acting on data. However, Flux can be also used with other

sources like SQL Databases (For example MS SQL Server), annotated CSVs and JSON. It would

make adding own notes, data post-processing and follow-up possible as well as configuring the

database. (31.)

Since InfluxDB is used for storing time series data, it has great support for large amounts of data.

It makes data storage one of its strengths and would meet the requirements of the database selec-

tion.

InfluxDB has support for client libraries including Python to integrate InfluxDB to programming lan-

guages’ scripts and applications. However, many data accessing methods are not currently pro-

vided which could cause issues to implementation side. (32.) Data visualization is possible with the

InfluxDB UI. It provides multiple visualization types to visualize data such as a gauge view and

17

band visualization. Currently, a graph view is not available yet. (33.) However, InfluxDB is sup-

ported by Grafana which initially targeted time series databases (15). InfluxDB backs up data and

metadata by copying them to a set of files which are in a specified directory on user’s local filesys-

tem (34). This backup method is easy to implement and to access but if a local filesystem is used

as a place for backup, user should carefully decide the place for backup to avoid possible corrup-

tions. A safer option would be a cloud backup which, for example, MongoDB provides (25).

18

3 DATABASE SELECTION

There are two different database transaction models: ACID (Atomicity, Consistency, Isolation and

Durability) model, compliant with relational databases, and BASE (Basically Available, Soft State,

Eventually Consistent) model, compliant with NoSQL databases. BASE model provides high avail-

ability and focuses on flexibility and speed while ACID provides a consistent system ensuring the

integrity of the database. In ACID model, Atomicity means that all the operations must be executed

or none of them are leave no partially executed transactions. Consistency means that after any

transaction the database must remain in a consistent state and no transaction should have an

adverse effect on the existing data. Isolation means that transactions cannot affect each other and

if there are unfinished executions, they cannot be visible to other transactions. Durability makes

sure that even if the system fails or restarts, the database is durable enough to hold all its latest

updates. Basically, Available in BASE refers that in NoSQL databases the data availability is spread

and replaced across the database cluster’s nodes instead of making immediate compulsory con-

sistency of it. Soft State refers to database delegating its responsibility from its consistency to de-

velopers. Eventually, Consistent means that even though BASE does not obligate immediate con-

sistency, it does not mean that it never achieves it. However, data reads are possible until the

consistency is achieved. Typically, ACID models’ code type is simpler than in BASE model. (35.)

After the research work, it was decided that ACID model was selected due to its four properties

providing a reliable and robust database. With a BASE model, the developers should be very aware

of data of the database. In addition, an often-recommended relational database was chosen for the

implementation. If the BASE model had been selected, one of the NoSQL databases would have

been the choice. Choosing ACID Model left MS SQL Server and PostgreSQL databases as options

even though all the options had their advantages and disadvantages for this implementation. Since

between these two options there were not any mutually exclusive features and both could have

been suitable choice, the choice was made by comparative analysis, i.e. benchmarking.

At first, test databases including fake data for three years were generated. Both databases ran on

virtual computers in the same platforms (VMWare clusters) and table structure was used to make

all the data included in one table as seen in figure 2.

19

FIGURE 2. Table structure of the test databases

After the test databases were made, Python scripts were made for both databases. The scripts

measured the execution time of establishing connections to the databases making queries and

closing the connections (The scripts can be seen in figures 24 and 25 from appendix 1). The queries

were select statements and average value calculations from tables contained more than four thou-

sand rows of dummy data. They returned all data in ascending date order for defined release for 1,

2 and 3 years of dummy data. As seen from table 1 below, a clear difference was already observed

between execution times. The execution times in MS SQL Server were only a couple of hundreds

of milliseconds while in PostgreSQL they were over two seconds.

20

TABLE 1: Execution times with different queries for both databases with table style one

Query Post-
greSQL

MS SQL
Server

SELECT * FROM testidb WHERE date >= '2021-11-24' ORDER BY date
ASC

2.15s 0.076s

SELECT * FROM testidb WHERE date >= '2020-11-24' ORDER BY date
ASC

2.25s 0.21s

SELECT * FROM testidb WHERE date >= '2019-11-24' ORDER BY date
ASC

2.38s 0.33s

SELECT * FROM testidb WHERE (date >= '2021-11-24') AND
(release_version='version_x') ORDER BY date ASC

2.11s 0.078s

SELECT * FROM testidb WHERE (date >= '2020-11-24') AND
(release_version='version_x') ORDER BY date ASC

2.15s 0.09s

SELECT * FROM testidb WHERE (date >= '2019-11-24') AND
(release_version='version_x') ORDER BY date ASC

2.19s 0.16s

SELECT * FROM testidb WHERE (date >= '2019-11-24') AND
(sw_branch='branch_x') ORDER BY date ASC

2.18s 0.14s

SELECT AVG(data_value) AS avg FROM testidb WHERE
(date >= '2021-11-24')

2.09s 0.065s

SELECT AVG(data_value) AS avg FROM testidb WHERE
(date >= '2020-11-24')

2.10s 0.052s

SELECT AVG(data_value) AS avg FROM testidb WHERE
(date >= '2019-11-24')

2.12s 0.056s

SELECT AVG(data_value) AS avg FROM testidb WHERE
(date >= '2021-11-24') AND (sw_branch='branch_x')

2.09s 0.053s

SELECT AVG(data_value) AS avg FROM testidb WHERE (date >=
'2020-11-24') AND (sw_branch='branch_x')

2.11s 0.056s

SELECT AVG(data_value) AS avg FROM testidb WHERE (date >=
'2019-11-24') AND (sw_branch='branch_x')

2.12s 0.066s

In addition to these comparisons with Python, PostgreSQL’s performance was evaluated with

pgbench-program (See figures 26-29 from appendix 2). It runs benchmark tests on PostgreSQL

such as the same sequence of SQL commands in multiple concurrent database sessions and cal-

culates the average transaction rate (36). With a default run, five SELECT, UPDATE, and INSERT

commands per transaction were executed resulting in 1012.145 transactions per second (tps) with-

out initial connection time (Figure 26). With 10 clients, 2 threads, 10000 number of transactions per

client, tps without initial connection time was 1446.76 (Figure 27). When selecting all data from a

time period of three years in date order with ten clients, two threads and 10000 number of transac-

tions, tps was 258.35 (Figure 28). With selection using same parameters but with defined release

21

version, tps was 743.63 (Figure 29). When calculating average value from the same data with same

parameter settings, tps was 1722.35 (Figure 30). These tps values describe tps capacity of the

PostgreSQL server meaning that this database is also quite efficient. MS SQL Server does not

have a similar tps benchmarking method so tps’ cannot be compared together.

However, in addition to Python executing tests, elapsed time measurements were executed for MS

SQL Server in its UI, MS SQL Server Management Studio (See figures 31-35 from appendix 3).

The measurements showed that with the same queries as in other tests, the elapsed time for exe-

cution was only a couple of milliseconds depending on the query. For example, the execution time

for three years’ worth of data was 9 ms (Figure 31), for two years’ data it was 6 ms (Figure 32) and

for one year’s data it was 1 ms (Figure 33). Also, when selecting defined release version’s data

from three years ago in date order, the execution time was 4 ms (Figure 34). When the average

value was calculated, the execution time was only 1 ms (Figure 35). This shows the power of MS

SQL Server, at least if it is executed in Management Studio. These results indicated rapid and

efficient transactions even with a larger amount of data.

These were the results of a brief benchmarking. Even though they are not directly proportional, it

shows that MS SQL Server is faster, at least with the tools used in comparison. Keeping the pur-

pose of this work in mind, MS SQL Server offers an easy-to-use software application (Management

Studio) that facilitates database usability. For example, wide knowledge of T-SQL programming

language is not necessary because Management Studio provides quick and simple bases for que-

ries. The idea of database handling is also to keep it as simple as possible. The company also

recommended MS SQL Server, if possible, due to its familiarity and fault tolerance, so MS SQL

Server was chosen as the database.

22

4 DATABASE IMPLEMENTATION

The first steps of the implementation were to design database table structures as well as a data-

base handling code. First, different table structures, their linking, and their data types had to be

examined and designed. The structure of the code had to be designed to be as generic and efficient

as possible and include all possible transactions that may be needed with the database. After the

design was made, the database could be created and implemented.

4.1 Table structure

For design of the table structure in database, three different styles were considered. The 1st style

was a single table containing all the data for all software branches and their respective data which

is the same structure as used in benchmarking (See the figure 2).

The 2nd style was a parent table containing child tables for each software branch, where the data

was stored. It is described in figure 3 below. Both tables had primary keys (PK) that are unique

identifiers for each row in a table. In relational databases when tables are linked together, the child

table has a foreign key (FK) that refers to the parent table’s primary key. A reference between data

is called referential integrity.

FIGURE 3. Table style two

23

The 3rd style was to make more distributed tables. The style had the parent table where each

software branch had their own child tables. The child tables contained release versions, each of

which had its own child tables where the data was stored. The 3rd style is described in figure 4.

FIGURE 4. Table style three

Since the database is relational, the tables can be modified afterwards. For example adding or

deleting columns and rows is possible making the database more flexible for the future. If the da-

tabase is in use for several years, it probably needs to be modified at some point. There might also

be a need to add different use cases to the database, in which case it may be desirable to link their

tables together (Figure 5).

FIGURE 5. All possible tables in database

For readability, maintenance, and simple and continuous monitoring, style two was chosen for table

structure because querying is a little faster. When compares to style one, the difference is not

24

significant (See figures 36-39 from the appendix 4). Since new releases are constantly being de-

veloped, it is good that they are separated into their own tables. In the future, the data from some

early releases might not be needed to be visible. With style three, the structure might have been

too complicated. Although MS SQL Server supports complex structures, it was wanted to keep

simple and clear.

As mentioned in chapter 2.1, MS SQL Server supports primitive data types, so the tables were

initially designed to support these. If necessary, they can be modified afterwards, and columns can

be added and removed from the existing tables.

4.2 Code structure

Using Pyodbc module a new class called database class was created using Python programming

language and for using MS SQL Server. Pyodbc module is an open-source module and implements

the DB API 2.0 specification (37). The class was designed to support basic SQL queries such as

insert, select, update, alter and delete. Functionality of the class code was divided into six different

sections which is illustrated in the following flowcharts (Figures 6-11). Figure 6 below describes

what happens when the class is created. Due to the selected table structure, the existences of the

tables are checked. If they do not exist, they are created, and their records are added. If they cannot

be created due to, for example, invalid table columns’ datatypes, errors are raised, and the con-

nection is closed if it has been created.

25

FIGURE 6. Flowchart of connecting the database

Figure 7 below shows the structure of the insert method which inserts data to the database if the

parameters given are correct; otherwise, an error is raised. The parameters are the table name and

the values that will be inserted. The values must be in the same order as the columns in the table

26

because the method assumes that values are added to all the columns in the table. Errors can be

caused by for instance invalid data types or incorrect definitions of table columns.

FIGURE 7. Flowchart of the insert method

Figure 8 below describes the selection method. It returns selected data from the database if the

parameters are correct; otherwise, it raises an error. Columns and table where the data is returned

from, must be defined but the conditions for it are optional. The conditions can be, for example,

returning order of the data or definitions for returned values.

27

FIGURE 8. Flowchart of the select method

The update method is described in figure 9. It is used when a row in an existing table needs to be

modified. For its parameters the method receives the table name, name of the column whose value

will be updated, new replaceable value, and definition of the row to be modified. The definition of

the row can be its id number for instance. If the parameters are not correct, an error is raised, and

execution stops, otherwise the row is updated.

28

FIGURE 9. Flowchart of the update method

The alter method described in figure 10 below is used when columns from existing table need to

be added, deleted, or modified. It is also used when different constraints need to be added or

dropped. The user can define what needs to be altered in the table by giving it a statement argu-

ment. If table parameters or statement are incorrect, an error is raised. For example, if a new col-

umn is added, it must support NULL-values as they are added in the each existing row.

29

FIGURE 10. Flowchart of the alter method

The delete method described in figure 11 below is used for deleting records from an existing table.

The user can decide whether to give optional parameters or not. If none are defined, all the records

from the table will be deleted; otherwise, specified records will be deleted. The user decides how

those records are selected, for example, by the id number of a row or with defined values of the

row.

30

FIGURE 11. Flowchart of the delete method

4.3 Backend implementation

The database was created to the company server by their IT support. Connection to it was done

with an earlier mentioned Pyodbc module which provides two objects: Connection and Cursor.

Connection object manages connections to the database and executions to the database are made

with Cursor object that represents a database cursor. Database connection and object creations

can be seen in figure 12 below.

self.connection = pyodbc.connect("driver={%s};server=%s;database=%s;uid=

 %s;pwd=%s" % (driver, server, db, user, password))

self.cursor = self.connection.cursor()

Figure 12. Database connection and object creations

31

The database class was written using Python programming language and the class included the

methods described in the previous chapter. In addition, the class had private get methods which

made sure the connection was established, and they were used in every method. The class had

also disconnect method that closed the database connection if it was created. The class required

at least the database parameters in order to use its methods. Those parameters are driver of the

database, server’s name, database’s name, username, and password. An example code of the

disconnect method and get methods are shown in figure 13 below.

def __get_connection(self):

 """Returns self.connection if exists"""

 if self.connection:

 return self.connection

 else:

 raise Exception("Database is not connected!")

def __get_cursor(self):

 """Returns self.cursor if exists"""

 if self.cursor:

 return self.cursor

 else:

 raise Exception("Database is not connected!")

def disconnect(self):

 """Disconnects database connection if exists"""

 if self.connection:

 self.cursor.close()

 self.connection.close()

 print(" Connection is closed")

 self.cursor = None

 self.connection = None

Figure 13. Example code of the disconnect method and get methods

Database tables were created in the database class using the table structure style two with neces-

sary relations and primitive data types such as string, date, float, and integer. They could have

been created in Management Studio as well. MS SQL Server has support for stored procedures

that are prepared SQL code and can be called for executing. However, in this implementation they

were not used since database handling could easily be done with one-line queries.

32

4.4 Application implementation

A demo application was implemented to demonstrate the usage of the database class. The appli-

cation utilized class methods and parameters of the database could be given as an input with Py-

thon’s argparse-module. However, the parameters were defined as default values in the applica-

tion. Argparse-module is used when arguments and sub-commands are given from the command-

line (38). The user could also define the usage of the application with arguments that are updating

rows to an existing table, deleting rows from one, and altering tables. By default, the database was

updated. Table 2 below shows the executing commands.

TABLE 2. Different use cases for demo application

Execution code with args Use case

python demo_app.py -r Updates row to an existing table

python demo_app.py -d Deletes defined row from table

python demo_app.py -a Adds or deletes column from table

python demo_app.py -u Updates the database (DEFAULT)

Since the implementation was a demonstration, dummy data was created to the database. It con-

sisted of dates from the last two years, random data values generated by Python’s random module,

increased values for the number column and NULL values for the item column.

In the beginning of any execution, the application created the database class, checked table exist-

ences and did the necessary table creations as described in the figure 5. Without additional argu-

ments, the application updated the database but if one was used, the database was not updated.

To follow the table structure defined at the beginning of the database update, the value of the

branch id was selected from the parent table since the branch id was the foreign key of the table.

The selecting can be seen in figure 14 below.

33

def update_db(self, branch, table):

 # Get branch_ID

 rows = self.DB.select(table_name=('dbo.' + self.parent_table),

 columns='branch_ID', conditions =

 "WHERE sw_branch ='{}'".format(table))

 for row in rows:

 branch_ID = row.branch_ID

Figure 14. Defining branch id

After that, all values from database’s number column and all dates from the database’s table were

returned. If there were not any records, the value of the number was given as one and the date

was set to the current day. Otherwise, both were given their most recent values as shown in figure

15 below.

for version in versions:

 db_numbers = []

 db_dates = []

 # Get numbers and dates from db in date order

 rows = self.DB.select(table_name=('dbo.' + table), columns=('date,

 number'), conditions= "WHERE release_version =

 '{}' ORDER BY date ".format(version))

 db_numbers = [row.number for row in rows]

 db_dates = [row.date for row in rows]

 # If no records in table

 if not db_numbers:

 start = 1

 db_date = str(datetime.date.today())

 else:

 start = db_numbers[-1]

 db_date = db_dates[-1]

Figure 15. Setting values for number and date variables

From defined value of the number column to the next five values were looped and data for the

database was fetched. Also, dates were increased with Python’s datetime module as depicted in

figure 16.

34

stop = start + 5

Fetch and create dummy data

for number in range(int(start), int(stop) + 1):

 try:

 data = self.fetch_data(number=number, date=db_date)

 except Exception as error:

 logger.info("UNABLE TO FETCH DATA... ERROR: {} ".format(error))

 continue

 # Convert str date to datetime object and increase the value of date

 db_date = datetime.datetime.strptime(db_date, "%Y-%m-%d")

 db_date += datetime.timedelta(days=1)

 db_date = str(datetime.datetime.date(db_date))

Figure 16. A for loop for fetching data

The fetched data was created from dummy data, too. It had number from the loop and date was

the latest date of the database, the current date, or the increased value by the datetime module.

The data value was also generated with random module as figure 17 shows.

def fetch_data(self, number, date):

 data = {}

 data["date"] = date

 data_value = round(random.uniform(100, 200), 2)

 data["data_value"] = data_value

 number = number + 1

 data["number"] = number

 return data

Figure 17. Fetching data function

After the data was fetched, the application checked whether it existed in the database since the

insert method does not take a position on that. The existence was figured out by selecting the row

with the data. If no records were returned, it meant that the data was not in the database so it was

inserted. Whether the data was inserted or not the loop continued to the next round until the end of

the loop. This is shown in figure 18 below.

35

date = data.get("date")

data_value = data.get("data_value")

number = data.get("number")

item = 'ISNULL'

data_to_db = (version, date, data_value, number, item, branch_ID)

Insert data to table if does not exist

conds = "WHERE release_version='{}' AND date='{}' AND data_value={} AND

 number={} AND branch_ID={}".format(version, date, data_value,

 number, branch_ID)

rows = self.DB.select(table_name=('dbo.' + table), columns=columns,

 conditions=conds)

if not rows:

 self.DB.insert(table_name=table, data=data_to_db)

Figure 18. Checking data existence and possible inserting

As mentioned earlier, the application executions were done from the command-line. If a row was

wanted to be updated to an existing table, the application displayed all tables from the database.

The user could select the one to be modified after proper class and table creations. After the se-

lection was taken as an input, the application displayed all data in date order from the table. Based

on the data, the user could define which column value was about to be modified as the application

displayed columns of the table as well. The correct row was defined by its id number and new value

to be replaced was entered to the application by the user. A successful print appeared to the com-

mand-line if no errors occurred, all parameters were correct, and the transaction was completed.

The execution of this function is shown in figure 19 below.

Figure 19. Execution of updating row to an existing table

36

One of the use cases of the application was to delete a row from table. It had similar functionality

as updating the row method. At first, all the tables from the database were shown to the user to

select the one that would be affected. After the selection, data of the table was displayed in date

order from which the user could select the id number of the row that needed to be deleted. Before

deleting, the application ensured confirmation from the user about the row’s deletion and if the user

confirmed it, the row was deleted. Without confirmation, the execution was aborted. Figure 20

shows the user view of this method.

Figure 20. Deleting row from table

The application offered two different methods for altering tables. Columns could be added or de-

leted from tables. At first, tables were shown, and the user had to select one. The columns of the

selected table were shown, and the user had to choose whether to add or delete a column. If a

column was wanted to be added, the user entered his or her name. If no errors occurred, it was

altered to the table successfully, as seen in figure 21. In this implementation, new columns’ datatype

were strings with NULL value support but they can be defined as wished when using the database

class.

37

Figure 21. Adding a column to table

If a column was wanted to be deleted, after the choice of use was made, the application asked for

the name of that column and confirmation from the user. If no errors occurred, the column was

deleted successfully, as seen in figure 22.

Figure 22. Deleting a column from table

Figure 23 below shows an example when non existing column is tried to be deleted from the table

and an error is raised.

38

Figure 23. Deleting an invalid column from table

Backup methods for the demo application were not created but when the database is used for other

applications, backup will be handled by the IT support of the company.

39

5 FURTHER DEVELOPMENT

Further development for the database and the database class was already considered during the

selection of the database and its design. Data growth and expansion of the database were taken

into consideration by selecting and designing the table structure so that it would not affect nega-

tively the database usage in the future. The code of the database class was made to be generic in

order to be utilized with other applications if wanted. In the future, an application could be created

allowing the database to be used with other SQL-based databases as well and not to be dependent

on MS SQL Server.

In the future, a web UI could be implemented to the database. It would provide the class methods

to the user, so the user would not need to know anything about the code or the database. Web UI

would take care of the database handling and provide the user with a web page where all the

functionality and the requirements such as graphical data presentation and adding own notes are

supported. It would provide a great compilation of the database and the database class making it

easy for anyone to use.

An existing ready-made tool, for example earlier mentioned Grafana, could be used for data visu-

alization. It creates fast and flexible charts, it has dynamic dashboards, and the user can define

alert rules for the most important data bringing more usability. It also provides wide graphical use

that might be needed in different use cases. In addition, Grafana could be embedded to the web

UI.

Overall, this implementation has great potential to develop and improve in the future.

40

6 CONCLUSION

The purpose of this thesis was to improve the company’s software quality and performance metrics

tracking applications because a proper database for storing and monitoring data from the applica-

tions was needed. Selection of the database that met the company’s need the best was made by

comparing five different databases. From these five, due to model choice of the database, two were

left for benchmarking. Based on the benchmarking, MS SQL Server was selected due to its pivotal

features, reliability, and speed.

The implementation met the database requirements mentioned in chapter 2.1. For example, MS

SQL Server supports large amount of data, adding own notes to the database is possible, and it

has an UI. MS SQL Server implementation was effortless after the tools and T-SQL became famil-

iar. With its UI, outlining of the database was easy and it helped in the implementation. Implemen-

tation of Pyodbc module was simple and did not cause any bigger issues. The designed goals were

achieved, and the implementation worked as expected. Nothing unexpected happened so, all in

all, this work was uncomplicated making the work time-efficient and enabled full focus on it. With

these outcomes, this work improved the company’s software quality and performance metrics track-

ing applications by making them faster, more secure, more generic, and more scalable correspond-

ing to the purpose of this work.

The thesis work was split into weekly tasks to ensure its progress. First, the work was scheduled,

and its structure was designed into a plan. After the plan was completed, research of the databases

was done. When enough information on the databases was gathered, benchmarking and selection

work started. Implementation work after the selection included design and creation of the database

as well as the implementation of the demo application. The final part of the work was to finish the

remaining documentation work. With the plan, working was consistent and straightforward, which

ended up in a successful result.

By completing this work I gained a lot of new knowledge and developed my academic writing skills

as well as my coding skills that were my personal aims of this work. With this work, I was able to

do a bigger project by myself, which was very interesting and educational and proved to me the

importance of every step in long-term projects. This work was related to my previous school pro-

jects in the company thus making the last courses of my studies a great compilation.

41

REFERENCES

1. About Nordic Semiconductor. Who we are. Date of retrieval 09.11.2022. https://www.nor-

dicsemi.com/about-us.

2. DB-Engines Ranking. Date of retrieval 23.01.2023. https://db-engines.com/en/ranking.

3. SQL Server 2022. Date of retrieval 23.01.2023. https://www.microsoft.com/en-us/sql-

server/sql-server-2022.

4. Introduction to SQL. What is SQL? Date of retrieval 10.11.2022.

https://www.w3schools.com/sql/sql_intro.asp.

5. What is NoSQL? Date of retrieval 15.11.2022. https://www.mongodb.com/nosql-explained.

6. Python. Date of retrieval 23.01.2023. https://www.python.org/.

7. Getting Started with SQL Server. What is SQL Server. Date of retrieval 14.11.2022.

https://www.sqlservertutorial.net/getting-started/what-is-sql-server/.

8. SQL Server Basics. SQL Server Data Types. Date of retrieval 14.11.2022.

https://www.sqlservertutorial.net/sql-server-basics/sql-server-data-types/.

9. Martyna Sławińska 2021. MS SQL Server vs. PostgreSQL: Which Should You Choose for

a New Project? Date of retrieval 18.11.2022. https://learnsql.com/blog/ms-sql-vs-post-

gresql/.

10. SQL Server Tutorial. SQL Server Simple Recovery Model. Date of retrieval 21.12.2022.

https://www.mssqltips.com/sqlservertutorial/4/sql-server-simple-recovery-model/.

11. Relational Databases. Backup & restore. Recovery Models (SQL Server). Date of retrieval

21.12.2022. https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/re-

covery-models-sql-server?view=sql-server-ver16.

https://www.nordicsemi.com/about-us
https://www.nordicsemi.com/about-us
https://db-engines.com/en/ranking
https://www.microsoft.com/en-us/sql-server/sql-server-2022
https://www.microsoft.com/en-us/sql-server/sql-server-2022
https://www.w3schools.com/sql/sql_intro.asp
https://www.mongodb.com/nosql-explained
https://www.python.org/
https://www.sqlservertutorial.net/getting-started/what-is-sql-server/
https://www.sqlservertutorial.net/sql-server-basics/sql-server-data-types/
https://learnsql.com/blog/ms-sql-vs-postgresql/
https://learnsql.com/blog/ms-sql-vs-postgresql/
https://www.mssqltips.com/sqlservertutorial/4/sql-server-simple-recovery-model/
https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/backup-restore/recovery-models-sql-server?view=sql-server-ver16

42

12. Salman Ravoof 2022. PostgreSQL vs SQL Server: 16 Critical Differences. Date of retrieval

17.11.2022. https://kinsta.com/blog/postgresql-vs-sql-server/.

13. Relational Databases. Manage. Change the Configuration Settings for a Database. Date

of retrieval 21.12.2022. https://learn.microsoft.com/en-us/sql/relational-databases/data-

bases/change-the-configuration-settings-for-a-database?view=sql-server-ver16.

14. PostgreSQL. About. Date of retrieval 17.11.2022. https://www.postgresql.org/about/.

15. Grafana. Overview. Date of retrieval 15.11.2022. https://grafana.com/grafana/.

16. MongoDB Manual. What is MongoDB? Date of retrieval 14.11.2022. https://www.mon-

godb.com/docs/manual/.

17. MongoDB Manual. Introduction to MongoDB. Date of retrieval 14.11.2022.

https://www.mongodb.com/docs/manual/introduction/.

18. Petroc Taylor 2022. Most popular database management systems worldwide 2022. Date

of retrieval 21.12.2022. https://www.statista.com/statistics/809750/worldwide-popularity-

ranking-database-management-systems/#:~:text=As%20of%20Au-

gust%202022%2C%20the,rounded%20out%20the%20top%20three..

19. XTIVIA 2019. The Pros and Cons of MongoDB. Date of retrieval 15.11.2022. https://virtual-

dba.com/blog/pros-and-cons-of-mongodb/.

20. Debra Bruce. Understanding the Pros and Cons of MongoDB. Date of retrieval 16.11.2022.

https://www.knowledgenile.com/blogs/pros-and-cons-of-mongodb/.

21. MongoDB Atlas. Date of retrieval 23.01.2023. https://www.mongodb.com/atlas.

22. MongoDB Cloud Services. Date of retrieval 23.01.2023. https://www.mongodb.com/cloud.

https://kinsta.com/blog/postgresql-vs-sql-server/
https://learn.microsoft.com/en-us/sql/relational-databases/databases/change-the-configuration-settings-for-a-database?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/databases/change-the-configuration-settings-for-a-database?view=sql-server-ver16
https://www.postgresql.org/about/
https://grafana.com/grafana/
https://www.mongodb.com/docs/manual/
https://www.mongodb.com/docs/manual/
https://www.mongodb.com/docs/manual/introduction/
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/%23:~:text=As%20of%20August%202022%2C%20the,rounded%20out%20the%20top%20three.
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/%23:~:text=As%20of%20August%202022%2C%20the,rounded%20out%20the%20top%20three.
https://www.statista.com/statistics/809750/worldwide-popularity-ranking-database-management-systems/%23:~:text=As%20of%20August%202022%2C%20the,rounded%20out%20the%20top%20three.
https://virtual-dba.com/blog/pros-and-cons-of-mongodb/
https://virtual-dba.com/blog/pros-and-cons-of-mongodb/
https://www.knowledgenile.com/blogs/pros-and-cons-of-mongodb/
https://www.mongodb.com/atlas
https://www.mongodb.com/cloud

43

23. MongoDB Ops Manager. Ops Manager Overview. Date of retrieval 23.01.2023.

https://www.mongodb.com/docs/ops-manager/current/application/.

24. MongoDB Manual. MongoDB Backup Methods. Date of retrieval 21.11.2022.

https://www.mongodb.com/docs/manual/core/backups/.

25. MongoDB Documentation. MongoDB Compass. Overview. Date of retrieval 21.11.2022.

https://www.mongodb.com/docs/compass/current/.

26. Cassandra Documentation. Overview. Date of retrieval 15.11.2022. https://cassan-

dra.apache.org/doc/latest/cassandra/architecture/overview.html.

27. Cassandra Documentation. RDBMS Design. Date of retrieval 22.12.2022. https://cassan-

dra.apache.org/doc/latest/cassandra/data_modeling/data_modeling_rdbms.html.

28. DBMS Tools. DbSchema. Date of retrieval 22.12.2022. https://dbm-

stools.com/tools/dbschema.

29. Python Data Persistence Tutorial. Python Data Persistence – Cassandra Driver. Date of

retrieval 17.11.2022. https://www.tutorialspoint.com/python_data_persistence/py-

thon_data_persistence_cassandra_driver.htm.

30. InfluxDB. Overview. Date of retrieval 09.12.2022. https://www.influxdata.com/products/in-

fluxdb-overview/.

31. InfluxDB and Flux. What is Flux? Date of retrieval 16.11.2022. https://www.in-

fluxdata.com/products/flux/.

32. InfluxDB. Documentation. Python client library. Date of retrieval 18.11.2022.

https://docs.influxdata.com/influxdb/v2.5/api-guide/client-libraries/python/.

33. InfluxDB. Documentation. Visualization types. Date of retrieval 18.11.2022. https://docs.in-

fluxdata.com/influxdb/v2.5/visualize-data/visualization-types/.

https://www.mongodb.com/docs/ops-manager/current/application/
https://www.mongodb.com/docs/manual/core/backups/
https://www.mongodb.com/docs/compass/current/
https://cassandra.apache.org/doc/latest/cassandra/architecture/overview.html
https://cassandra.apache.org/doc/latest/cassandra/architecture/overview.html
https://cassandra.apache.org/doc/latest/cassandra/data_modeling/data_modeling_rdbms.html
https://cassandra.apache.org/doc/latest/cassandra/data_modeling/data_modeling_rdbms.html
https://dbmstools.com/tools/dbschema
https://dbmstools.com/tools/dbschema
https://www.tutorialspoint.com/python_data_persistence/python_data_persistence_cassandra_driver.htm
https://www.tutorialspoint.com/python_data_persistence/python_data_persistence_cassandra_driver.htm
https://nordicsemi-my.sharepoint.com/personal/emma_tauriainen_nordicsemi_no/Documents/.%20https:/www.influxdata.com/products/influxdb-overview/
https://nordicsemi-my.sharepoint.com/personal/emma_tauriainen_nordicsemi_no/Documents/.%20https:/www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/flux/
https://www.influxdata.com/products/flux/
https://docs.influxdata.com/influxdb/v2.5/api-guide/client-libraries/python/
https://docs.influxdata.com/influxdb/v2.5/visualize-data/visualization-types/
https://docs.influxdata.com/influxdb/v2.5/visualize-data/visualization-types/

44

34. InfluxDB. Documentation. Back up data. Date of retrieval 21.11.2022. https://docs.in-

fluxdata.com/influxdb/v2.5/backup-restore/backup/.

35. ACID Model vs BASE Model For Database. Date of retrieval 18.11.2022.

https://www.geeksforgeeks.org/acid-model-vs-base-model-for-database/.

36. Documentation. PostgreSQL Client Applications. Pgbench. Date of retrieval 25.11.2022.

https://www.postgresql.org/docs/current/pgbench.html.

37. Pyodbc 4.0.35. Date of retrieval 29.11.2022.https://pypi.org/project/pyodbc/.

38. Python Documentation. Library. Argparse. Date of retrieval 14.12.2022. https://docs.py-

thon.org/3/library/argparse.html.

https://docs.influxdata.com/influxdb/v2.5/backup-restore/backup/
https://docs.influxdata.com/influxdb/v2.5/backup-restore/backup/
https://www.geeksforgeeks.org/acid-model-vs-base-model-for-database/
https://www.postgresql.org/docs/current/pgbench.html
https://pypi.org/project/pyodbc/
https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html

45

APPENDICES

Python scripts of execution times for PostgreSQL and MS SQL Server appendix 1

Benchmarking queries and results for PostgreSQL appendix 2

Benchmarking queries and results for MS SQL Server appendix 3

Table structure comparison queries and results appendix 4

46

PYTHON SCRIPTS OF EXECUTION TIMES FOR POSTGRESQL APPENDIX 1/1

AND MS SQL SERVER

Python script of PostgreSQL:

import psycopg2

from datetime import datetime

from dateutil.relativedelta import relativedelta

from config import config

def connect():

 """ Connect to the PostgreSQL database server """

 conn = None

 try:

 start = datetime.datetime.now()

 # Read defined connection parameters from config file

 params = config()

 # Connect to the PostgreSQL server

 print('Connecting to the PostgreSQL database...')

 conn = psycopg2.connect(**params)

 # Create a cursor

 cursor = conn.cursor()

 # Make queries

 select(cursor)

 # Close the communication with the PostgreSQL

 cursor.close()

 except (Exception, psycopg2.DatabaseError) as error:

 print(error)

 finally:

 if conn is not None:

 conn.close()

 print('Database connection closed.')

 took = datetime.datetime.now() - start

 print("\n[DEBUG] processing took: %s" % took)

def select(cursor):

 # Calculates the date based on given amount of months

 timediff = datetime.today() - relativedelta(months=int(12))

 timediff = str(datetime.date(timediff))

 # Different queries

 # select = "SELECT * FROM testidb WHERE (date >= {}) AND

 # (release_version='version_x') ORDER BY date ASC".format(timediff)

 select = "SELECT * FROM testidb WHERE (date >= {}) AND

 (sw_branch='branch_x') ORDER BY date ASC".format(timediff)

47

 APPENDIX 1/2

 # Calculates average value

 # select = "SELECT AVG(data_value) AS avg FROM testidb WHERE

 # (date >= {})".format(timediff)

 # select = "SELECT AVG(data_value) AS avg FROM testidb WHERE

 # (date >= {}) AND (sw_branch='branch_x')".format(timediff)

 cursor.execute(select)

 while 1:

 row = cursor.fetchone()

 if not row:

 break

 # Print the records

 print(row)

if __name__ == '__main__':

 connect()

Figure 24. Execution time measurements script for PostgreSQL

Python script for MS SQL Server:

import pyodbc

from datetime import datetime

from dateutil.relativedelta import relativedelta

driver = '<driver>'

server = '<server_name>'

db = '<database name>'

user = '<user name>'

password = '<password>'

def connect():

 try:

 start = datetime.datetime.now()

 connection = pyodbc.connect("driver={%s};server=%s;database

 =%s;uid=%s;pwd=%s" % (driver, server, db, user, password))

 cursor = connection.cursor()

 select_data(cursor)

 except pyodbc.Error as error:

 print("Failed to connect and handle the db: {}".format(error))

 finally:

 if connection:

 cursor.close()

48

 APPENDIX 1/3

 connection.close()

 print("Connection is closed")

 took = datetime.datetime.now() - start

 print("\n[DEBUG] processing took: %s" % took)

def select_data(cursor):

 # Calculates the date based on given amount of months

 timediff = datetime.today() - relativedelta(months=int(36))

 timediff = str(datetime.date(timediff))

 # Benchmarking queries

 # cursor.execute("SELECT * FROM testidb WHERE (date >= ?)

 # ORDER BY date ASC", (timediff))

 # cursor.execute("SELECT * FROM testidb WHERE (date >= ?)

 # AND (release_version='version_x') ORDER BY date ASC", (timediff))

 # cursor.execute("SELECT * FROM testidb WHERE (date >= ?)

 # AND (sw_branch='branch_x') ORDER BY date ASC", (timediff))

 # cursor.execute("SELECT AVG(data_value) AS avg FROM testidb

 # WHERE (date >= ?)", (timediff))

 cursor.execute("SELECT AVG(data_value) AS avg FROM testidb

 WHERE (date >= ?) AND (sw_branch='branch_x')", (timediff))

 while 1:

 row = cursor.fetchone()

 if not row:

 break

 print(row)

if __name__ == '__main__':

 connect()

Figure 25. Execution time measurements script for MS SQL Server

49

BENCHMARKING QUERIES AND RESULTS FOR POSTGRESQL APPENDIX 2/1

Benchmark tests for PostgreSQL with pgbench-program.

Figure 26. Default pgbench run

Figure 27. Default pgbench run with defined parameters

50

 APPENDIX 2/2

SELECT * FROM table where date >= '2019-11-24' ORDER BY date ASC;

Figure 28. Pgbench test for query with defined parameters

SELECT * FROM table where date >= '2019-11-24' and release_version=’version_x’ ORDER

BY date ASC;

Figure 29. Pgbench test for select query

51

 APPENDIX 2/3

SELECT AVG(data_value) AS avg FROM table where date >= '2019-11-24';

Figure 30. Pgbench test for calculating average value -query

52

BENCHMARKING QUERIES AND RESULTS FOR MS SQL SERVER APPENDIX 3/1

Elapsed time measurements for MS SQL Server.

USE [testi_mssql]
GO

SET STATISTICS TIME ON;

SELECT [id],
 [sw_branch],
 [release_version],
 [date],
 [data_value],
 [number],
 [item]
 FROM [testidb]
 WHERE [date] >= '2019-11-24'
 ORDER BY [date] ASC
GO

Figure 31. Execution time for selecting data from 3 years ago in date order

USE [testi_mssql]
GO

SET STATISTICS TIME ON;

SELECT [id],
 [sw_branch],
 [release_version],
 [date],
 [data_value],
 [number],
 [item]
 FROM [testidb]
 WHERE [date] >= '2020-11-24'
 ORDER BY [date] ASC
GO

Figure 32. Execution time for selecting data from 2 years ago in date order

53

 APPENDIX 3/2

USE [testi_mssql]
GO

SET STATISTICS TIME ON;

SELECT [id],
 [sw_branch],
 [release_version],
 [date],
 [data_value],
 [number],
 [item]
 FROM [testidb]
 WHERE [date] >= '2021-11-24'
 ORDER BY [date] ASC
GO

Figure 33. Execution time for selecting data from one year ago in date order

USE [testi_mssql]
GO

SET STATISTICS TIME ON;

SELECT [id],
 [sw_branch],
 [release_version],
 [date],
 [data_value],
 [number],
 [item]
 FROM [testidb]
 WHERE [date] >= '2019-11-24' AND
 [release_version] = 'version_x'
 ORDER BY [date] ASC
GO

Figure 34. Execution time for selecting defined release version’s data from 3 years ago in date

order

54

 APPENDIX 3/3

USE [testi_mssql]
GO

SET STATISTICS TIME ON;

SELECT
 AVG([data_value])

 FROM [testidb]

GO

Figure 35. Execution time for selecting average value

55

TABLE STRUCTURE COMPARISATION QUERIES AND RESULTS APPENDIX 4/1

Execution times measured for MS SQL Server with table style 2.

USE [testidb]
GO

SET STATISTICS TIME ON;

SELECT
[dbo].[style2].[id],
[dbo].[style2].[sw_branch],
[dbo].[branch_x].[version_x],
[dbo].[branch_x].[date],
[dbo].[branch_x].[data_value],
[dbo].[branch_x].[number],
[dbo].[branch_x].[item]

FROM [dbo].[style2]
INNER JOIN [dbo].[branch_x] ON
[dbo].[style2].[id] =
[dbo].[branch_x].[id]

GO

Figure 36. Execution time for joining two tables

USE [testidb]
GO

SET STATISTICS TIME ON;

SELECT
[dbo].[style2].[id],
[dbo].[style2].[sw_branch],
[dbo].[branch_x].[version_x],
[dbo].[branch_x].[date],
[dbo].[branch_x].[data_value],
[dbo].[branch_x].[number],
[dbo].[branch_x].[item]

FROM [dbo].[style2]
INNER JOIN [dbo].[branch_x] ON
[dbo].[style2].[id] =
[dbo].[branch_x].[id]
ORDER BY [dbo].[branch_x].[date]
ASC

GO

Figure 37. Execution time for joining two tables in date order

56

 APPENDIX 4/2

USE [testidb]
GO

SET STATISTICS TIME ON;

SELECT
[dbo].[style2].[id],
[dbo].[style2].[sw_branch],
[dbo].[branch_x].[version_x],
[dbo].[branch_x].[date],
[dbo].[branch_x].[data_value],
[dbo].[branch_x].[number],
[dbo].[branch_x].[item]

FROM [dbo].[style2]
INNER JOIN [dbo].[branch_x] ON
[dbo].[style2].[id] =
[dbo].[branch_x].[id]
WHERE [dbo].[branch_x].[date] >=
'2019-12-01'
ORDER BY [dbo].[branch_x].[date] ASC

GO

Figure 38. Execution time for joining two tables from defined date in date order

USE [testidb]
GO

SET STATISTICS TIME ON;

SELECT

AVG([dbo].[branch_x].[data_value])

 FROM [dbo].[style2]
 INNER JOIN [dbo].[branch_x] ON
 [dbo].[style2].[id] =
 [dbo].[branch_x].[id]

GO

Figure 39. Execution time for calculating average value from joined table

	ACKNOWLEDGeMENT
	CONTENTS

	ABBREVIATIONS
	1 INTRODUCTION
	2 DATABASE COMPARISON
	2.1 Database options and requirements
	2.2 Microsoft SQL Server
	2.3 PostgreSQL
	2.4 MongoDB
	2.5 Cassandra
	2.6 InfluxDB

	3 Database selection
	4 DATABASE IMPLEMENTATION
	4.1 Table structure
	4.2 Code structure
	4.3 Backend implementation
	4.4 Application implementation

	5 FURTHER DEVELOPMENT
	6 CONCLUSION
	REFERENCES

