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Object detection on embedded devices is becoming increasingly more popular in 

industrial use, as well as in individual use. Object detection can be used in many 

useful ways, such as security devices, quality assurance devices and many more. 

Object detection is a powerful technology to detect object in either images, videos 

or live video feed. This thesis is introducing the reader in to the world of object 

detection using Nvidia Jetson Nano as a sole developing environment. Unravel 

the capabilities of Nvidia Jetson Nano to be used for such object detection 

applications. Introduce the tools and technologies needed to deploy object 

detection application on embedded device and also demonstrate of such 

deployment from ground up. 

The reader is also introduced to the outcoming data of such application, meaning 

of the data and using the data to solve a problem. Also, to consider possible 

alternative usages of example implementation application. 
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ESINEENTUNNISTUS NVIDIA JETSON NANOLLA 

Esineentunnistus sulautetuilla laitteilla on tulossa yhä suositummaksi teollisessa 

käytössä, kuten myös henkilökohtaisessa yksityisessä käytössä. 

Esineentunnistusta voidaan käyttää monella eri hyödyllisellä tavalla, kuten 

turvalaitteissa, laadunvarmistuslaitteissa ja lukuisilla muilla tavoilla.  

Esineentunnistus on tehokas työkalu esineiden tunnistamiseen kuvissa, 

videoissa ja videon suoratoistossa. Opinnäytetyö käsitteli esineentunnustusta  

käyttämällä Nvidia Jetson Nanoa ainoana kehitysympäristönä. Opinnäytetyössä 

selvitettiin Nvidia Jetson Nanon kykyjä ja ominaisuuksia suorittaa 

esineentunnistussovellus. Opinnäytetyössä esitettiin työkalut ja teknologiat, joita 

tarvitaan esineentunnistussovelluksissa sulautetuissa laitteissa, sekä 

demonstroitiin tällaisen sovelluksen käyttöönotto alusta loppuun. 

Opinnäytetyössä tutustuttiin myös tällaisen sovelluksen tuottamaan tietoon, 

tiedon merkitykseen ja tiedon hyödyntämiseen.  
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1 INTRODUCTION 

Object detection becoming more and more popular on everyday usage. Object 

detection can be used for variety of purposes, for example safety critical and 

precise applications, but using it for more day-to-day applications that helps the 

community is becoming more popular and can be carried out on lighter devices. 

Working with neural networks used to be a very sophisticated field, but 

technologies are moving forward with very fast pace. Nowadays, there is many 

powerful pretrained neural networks  models. That are available to everyone.  

The focus of the thesis is to investigate the elements needed for deploying object 

detection application on embedded device called Nvidia Jetson Nano and its 

capabilities to carry out object detection application. Such elements what we are 

going to examine are Nvidia Jetson Nano itself and its operating system JetPack. 

Jetson-inference, which is Nvidia’s docker container consisting variety of neural 

network examples and tools to help guide a way to build a custom application. 

Take a look at programming language which is used heavily in the field of 

machine learning and neural networks, Python. Brief look at heuristics of SSD-

Mobilenet. Deeper functionalities of neural networks are out of the scope of this 

thesis. Also going over transfer learning and model conversion. 

Thesis also includes a detailed instruction of example implementation of object 

detection application on embedded device. 

Thesis is structured as follows. Chapter 2 introduces the reader to the 

environment, tools and methods of object detection on Nvidia Jetson Nano. In the 

following chapters, Chapter 3 and Chapter 4, go over of implementing object 

detection application and its steps. Demonstrating the usage of the application 

and go over the performance of application created.  
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2 THEORETICAL BACKGROUND 

Everyone has bad habits while doing something important or trying to be 

productive. Some has more some has less, and everyone’s habits are unique. [1] 

This chapter is focusing on technologies and devices used in the thesis. Thesis 

is focusing on capabilities and deployment of Nvidia Jetson Nano to run object 

detection application as an embedded device. Program’s ability to help the users 

become more self-aware of their behavior. 

2.1 Nvidia Jetson Nano Developer Kit 

Nvidia Corporation is a global technology company from the United States of 

America. Nvidia’s main products include graphics processing units (GPU) and 

system on a chip units (SoCs). [2] 

Nvidia Jetson Nano is a small sized, but powerful computer. Its main focus is to 

run AI applications in energy-efficient environment. Jetson Nano, even though its 

small size and reasonable price has impressive hardware inside. Jetson Nano 

has a GPU which is utilizing Nvidia Maxwell architecture with 128 Nvidia CUDA® 

cores. Nvidia Jetson Nano also have Quad-Core ARM Cortex-A57 MPCore 

processor as its CPU. For memory Nvidia Jetson Nano has 4GB 64-bit LPDDR4 

RAM, running at speed of 1600MHz and 25.6 GB/s. Nvidia Jetson Nano also has 

multiple USB 3.0 ports, Ethernet connectivity, HDMI 2.0 and DP 1.4 ports and 

interfaces to connect GPIO, I2C, I2S, SPI and UART. [3]  
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Figure 1. Nvidia Jetson Nano. – Source: https://developer.nvidia.com/  

2.1.1 JetPack and Jetson-inference 

Nvidia Jetson Nano utilizes Nvidia JetPack SDK, which is built on Ubuntu 18.04 

operating system. JetPack SDK is a customized OS image and purposely made 

for building AI applications. JetPack SDK comes with multiple useful libraries 

prebuilt in the OS image and L4T. L4T stands for Linux for Tegra. L4T is Nvidia 

Jetson Linux Driver Package, and it is the main support package for the Nvidia 

Jetson Nano. It comes with Linux Kernel, Nvidia drivers, bootloader, flashing 

utilities and more based on Ubuntu 18.04 operating system. Such as TensorRT, 

which is vital part of this project. JetPack also includes APIs for deep learning 

and computer vision. [4] 

Jetson-inference is completely an open-source repository, and its purpose is to  

guide users on how to use Nvidia Jetson Nano as an embedded device with deep 

neural network capabilities. Jetson-inference is made by Nvidia, and its main 

maintainer is Dustin Franklin. Jetson-inference includes many tutorials how to try 
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out different deep neural networks and some python scripts to get started with 

own projects. [5]  

2.2 Python 

Python in general, is a programming language. Python got its name from British 

comedy show called Monty Python’s Flying Circus. Guido van Rossum got the 

idea while reading scripts of the show. [6] Creator of the Python is aforementioned 

Guido van Rossum. He is from Netherlands. Python was released on February 

20, 1991. [7] 

Python can be described as interpreted language, which means that python 

programs execute programs directly, without compiling program into machine-

language. Python programming language also falls in to category of object-

oriented languages. Python can be used for many different purposes, for example 

web development, software development, scripting and many more. It is also 

used as a language to build to existing applications together, because Python is 

also high-level language. Python is also very user-friendly and because of its 

easy to learn syntax it is also really beginner-friendly language. [8] 

 

Figure 2. Example of Python syntax. 

This is one of the reasons why Python is on the top of the list of the most popular 

programming languages. [9] Python is also highly recognized and used by major 

companies and applications, such as Spotify. [10] As to this day even though 

Python is over 30-year-old language it is highly respected language among 



13 

Turku University of Applied Sciences Thesis | Tino Nummela 

programmers and many companies are looking for skilled Python programmers 

according to career advice from techgig.com. [11] 

2.3 SSD-Mobilenet 

SSD-Mobilenet is an object detection model. Which is using Single-Shot multibox 

Detector(SSD) neural network architecture. This means that object detection 

takes one image or one frame at a time and is able to detect multiple boxes. 

Single Shot multibox Detection is designed for real time object detection.  Reason 

why SSD architecture is highly used for real time detection is that it is fast and 

can reach higher frames per second while monitoring out output. SSD is faster 

compared to other reminiscent algorithms because it is not using region proposal 

network architecture. [12] 

 

Figure 3. SSD-Mobilenet layers. -- Source: https://arxiv.org/abs/1512.02325  

Mobilenet itself is a convolutional neural network made specifically for mobile and 

embedded devices. Mobilenet is using streamline architecture, which means that 

it is using depth-wise and point-wise convolutions. Mobilenet has 28 layers. The 

mobilenet was designed to build the neural network models light enough to be 

deployed on devices with limited computing power such as aforementioned 

mobile and embedded devices. [13] Mobilenet architecture was first introduced 

by Google in 2017. [14] 
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2.3.1 Re-training (Transfer learning)  

Transfer learning is a technique to use existing or pretrained model as a 

backbone of the new model. Transfer learning also referred as re-training is a 

quite common approach to create new neural network models. Creating well 

performing neural networks can be a challenge, because they need an immense 

amount of data and resources to begin with. [15] 

In transfer learning, the re-trained model is trying as much as possible to use the 

pre-trained model’s knowledge and apply it to re-trained model. 

 

Figure 4. Transfer learning visualized. – Source: https://www.topbots.com/transfer-

learning-in-nlp/   

In transfer training, we are only using couple of first layers from pre-trained model 

and use rest of the layers are used for re-training. Pre-trained model is already 

trained to detect objects in images or frames of live feed and then transfer 

learning comes in to play. In the latter layers transfer training is training the 

network to detect new labels. As an example, pre-trained model made to detect 

cars in images is used to transfer learning into re-trained model detecting trains. 

[16] 
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2.3.2 Converting trained model 

Converting neural network model is common practice in the field of machine 

learning. Thousands of experiments with neural networks and machine learning 

are done on a daily basis around the globe. There are multiple valid frameworks 

to do those experiments and programs, such as Keras, PyTorch and TensorFlow. 

Open Neural Network Exchange (ONNX) is a tool or package which can be used 

to convert trained neural network model for example from PyTorch to be used in 

multiple different frameworks. So, in other words, you can use any machine 

learning framework to train your model, and only after training you can convert 

the trained model into ONNX format. ONNX is also community driven open-

source project, which is highly praised by major companies like Microsoft, Hewlett 

Packard Enterprise, Nvidia and many more minor and major companies. [17]

 

Figure 5. ONNX logo. – Source: 

https://en.wikipedia.org/wiki/Open_Neural_Network_Exchange  
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3 IMPLEMENTATION 

Nvidia Jetson Nano is capable of many different types of applications and 

programs. This chapter contains a closer look into making object detection 

application. Implementation of such application requires many steps and is quite 

time consuming. Chapter is structured step by step, from very start of setting up 

Nvidia Jetson Nano with operating system image to very end of structure of 

python script that runs the application and gathers data.  

3.1 Setting up Jetson Nano 

To get started with the application, first we need to make sure we have minimum 

required peripherals to setup Nvidia Jetson Nano with display attached in to it. 

Peripheral needed to do this are the following USB or CSI camera, USB mouse, 

USB keyboard, HDMI or DP cable, compatible display, internet connection with 

either WiFi dongle or WiFi module, Micro-USB power cable or compatible DC 

Barrel Jack power supply and of course finally microSD card. Even though 

recommended minimum for the microSD card is 32GB with at least 100 MB/s bus 

interface speed. It is preferred to have at least 64GB microSD card with at least 

100MB/s bus interface speed. This is recommendation is due to some machine 

learning applications can possibly be using large datasets, thus more memory is 

preferred. 

3.1.1 Flashing Jetpack onto SD Card 

Nvidia Jetson Nano itself is useless without operating system. Next step is to 

flash JetPack 4.6.1 onto microSD card. JetPack version 4.6.1 is utilizing L4T 

version R32.7.1. First step is to download the JetPack image from Nvidias 

developer website. It is recommended to format the card clean, before flashing 

anything onto it. Thus, next step is the preparation of the microSD card. To format 

the card program called SD Memory Card Formatter from SD Association come 

into play. Quick format is preferred. SD Association is organization established in 
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2000 by Panasonic, SanDisk Corporation and Toshiba Corporation to develop 

memory card standards. 

  

Figure 6. SD Card Formatter interface. 

After formatting microSD card, it needs to be flashed with JetPack 4.6.1. To do 

this it is recommended to use program named Etcher by Balena. 

 

Figure 7. Etcher interface. 
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After completing flashing the image, Nvidia Jetson Nano is ready to be booted for 

the first time. 

3.1.2 Initial setup of the Jetpack with Display 

Booting Nvidia Jetson Nano with fresh JetPack operating system image for the 

first time with display. First insert the microSD card containing the image into 

Nvidia Jetson Nano. After this, all of the peripherals aforementioned need to be 

plugged in. Insert power supply last as Nvidia Jetson Nano will turn on after power 

is supplied. During the first boot, the developer kit takes user through initial setup. 

3.1.3 Setting up Jetson-inference 

Setting up the Jetson-inference repository as a Docker container. Jetson-

inference containers are using the L4T-pytorch container as a base container. 

Which means that the containers come with PyTorch and torchvision installed in 

it. So, Jetson-inference container comes with support to perform transfer learning 

as it comes. Cloning the jetson-inference repository and running the docker 

container with the following commands. 

 

Figure 8. Cloning and running jetson-inference container. 

When running the Jetson-inference docker container for the first time, it will pull 

the precise container tag from Docker Hub. Container tag is established on 

JetPack L4T version. Also, during this step prompt will ask which neural network 

models to download. Such as SDD-Mobilenet. 
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3.1.4 Editor (IDE) 

As an Editor using Visual Studio Code (VSCode). VSCode has great capabilities 

for remote development. Using SSH connection to develop on Nvidia Jetson 

Nano is not required, but highly recommended. Establishing SSH connection to 

Nvidia Jetson Nano can be achieved with Remote-SSH plugin for VSCode. 

Remote-SSH software is made by Microsoft. 

Though this is not necessary, editor called Gedit that comes with JetPack 

operating system will work just fine also. It comes down to personal preference 

working through an SSH connection. 

3.1.5 Mounting Swap Memory 

As Nvidia Jetson Nano is a small sized embedded device, it comes with some 

limitations. Memory being one of them. For transfer learning it is recommended 

to mount more Swap memory. Swap memory is used to support RAM memory 

when running memory heavy applications. Even though Swap memory is 

distinctly slower than RAM, it is efficient to have Swap memory to ease off the 

load on RAM. Mounting Swap memory on Nvidia Jetson Nano can be achieved 

as follows. 

 

Figure 9. Mounting swap memory on Nvidia Jetson Nano. 
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3.2 Gathering data 

At this point forward next steps are in Jetson-inference docker container. Run the 

docker container with docker/run.sh shell script. 

 

Figure 10. Running Jetson-inference docker container. 

Gathering data for custom object detection model can be done in multiple ways. 

There is not one right way to do this. With Jetson-inference container, comes the 

camera-capture software, which can be used to obtain images from USB or CSI 

camera. Object detection needs an image of the object, and also a bounding box. 

With camera-capture software collecting data of the object is made simple. 

 

Figure 11. Running data collecting software. 

Before starting to collect own dataset, path to the dataset and labels needs to be 

established. That can be achieved by creating new directory inside /jetson-

inference/python/training/detection/ssd/data with labels.txt file inside, which 

contains labels. In this case there should only be word phone. 

 

Figure 12. Correct data directory. 
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Next step is to gather data. Insert correct data path and class labels in camera-

capture tool. Freeze the frame and draw bounding box around the object. 

 

Figure 13. Example of data collection into training dataset. 

Then data collection can start. For each image, there needs to be a bounding box 

around the object, this can make the process time consuming if using this tool to 

collect large amounts of data. Camera-capture software creates training, 

validation and testing datasets. Amount of data collected varies a lot. Preferred 

amount per object is around 1000 images and annotations. To get more reliable 

results out of the object detection model, it is important to take variety of sample 

data of the object with different angles and backgrounds. Data should be 

distributed to 80% of training images, 10% validation images and 10% testing 

images. 800 training image, 100 validation images, 100 testing images. 
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3.2.1 Data Format (Pascal VOC, image/annotation) 

Pascal VOC stands for Pattern Analysis, Statistical Modeling, Computational 

Learning Visual Object Challenge. This data format provides standardized data 

for object detection. Pascal VOC data format includes images and their 

annotations. Annotations are the bounding boxes in XML format from previous 

step. Annotation is created automatically by camera-capture tool based on the 

bounding box drawn by the user. 

 

Figure 14. Example of a bounding box annotation in XML format. 



23 

Turku University of Applied Sciences Thesis | Tino Nummela 

3.3 Re-training SSD-Mobilenet 

After data has been collected, next step is to use transfer learning to re-train SSD-

Mobilenet with the new model. Jetson-inference provides python script to do so. 

Transfer learning is done by using PyTorch. 

 

Figure 15. Example of how to start transfer learning. 

Parameters like –dataset-type=voc declares that data used for re-training is in 

Pascal VOC format. Parameter –data=data/BadHabits stands for path where 

data is located. And parameter –model-dir=models/BadHabits includes class 

labels. Optional parameters are to there to slightly spare memory while training. 

And –epochs=10 declares how many times PyTorch is going to go through the 

data during re-training. Training neural networks to produce reliable and accurate 

results can be time consuming. Example implementation went through 80 

epochs. Training was done in multiple parts. Total time rounded up to 4 hours of 

pure training. 

3.3.1 Resume training 

For performance point of view. It is sometimes necessary to resume training. 

Resume training continues from the last successful epoch. Every epoch creates 

new model and next epoch continues from that checkpoint. Sometimes to get 

model loss and accuracy to meet the requirements, additional training is needed. 

Resuming from last epoch can be achieved by the following command. Standard 

reliable loss is between 2.5-1.0. 

 

Figure 16. Example of how to resume training from previous epoch. 
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3.4 Exporting model 

When transfer learning is done, the model needs to be exported to .onnx format. 

Models of .onnx format can be run on many major machine learning frameworks. 

To export freshly transfer trained model to .onnx format. Jetson-inference 

provides python script to do so. We can achieve this by executing this terminal 

command. 

 

Figure 17. Exporting the model in .onnx format. 

This python script outputs ssd-mobilenet.onnx file which is the custom re-trained 

model. 

3.5 Python program 

Next, we are structuring the python program that is going to use the custom SSD-

Mobilenet model created in the previous steps and gather some useful data out 

of the program. This program is utilizing jetson.inference, jetson.utils, time and 

datetime modules. 

 

Figure 18. Importing required modules. 

Up next is initialization of the network, input source and output source. As a 

network we are using the model we created above. Parameters in network 

variable are the location of the model and labels. Also setting confidence 

percentage and boxes on location of the detected object.  



25 

Turku University of Applied Sciences Thesis | Tino Nummela 

 

Figure 19. Initializing network, input and output. 

Structuring the main function. First is declared start variable that holds start time 

of the main function. Which is later used to get the total runtime of the program. 

Then global variables timeHold and totalTime. Variable timeHold is total time 

when object is detected and totalTime is total runtime. Variable timeHold is set to 

zero. 

 

Figure 20. Start of the main function. 

After declaring some variables and setting start timer comes the try block. Try 

block includes another timer which is used to count the value of timeHold variable. 

Next while loop, which includes many essential features. Variable phoneDetected 

is set to False so startTimeStamp can be reset in case that frame of the video did 

not include an object. Setting variable liveFeed to set input source to capture. 

Detections variable is using provided model to detect input source liveFeed. Then 

output source display is set to render liveFeed and stream it on the window with 

SetStatus() function. Capture, Render and SetStatus are part of jetson.utils 

module and Detect is part of jetson.inference module.  
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Figure 21. Start of the try block and while loop. 

Next, we have for loop to go through labels within the provided model. Variable 

label is getting the labels from the model with jetson.inference modules function 

GetClassDesc(). Then if statement with condition that the label that is detected is 

phone. When If condition is met that means that in current frame object was 

detected. Then phoneDetected is set to True and newTimeStamp timer is started 

to count time passed in current frame. After this startTimeStamp is being reset. 

Else statement should not happen since no other labels are in the model, if it 

does happen, it prints error. At the end of the while loop startTimeStamp is reset 

if phoneDetected value remain False.  

 

Figure 22. For loop and time keeping. 
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To end the program and gather the data program is using except Keyboard 

Interrupt block. Inside except variable end saves another time stamp and 

totalTime is calculated between end and start values. Variable without phone is 

calculated between totalTime and timeHold. Program prints some values to the 

terminal. Also, percentageHold and saveStats functions are called at this stage. 

 

Figure 23. Expect block with data gathering. 

Function to calculate the percentage of time object is detected compared to total 

runtime of the program. Saving and writing the stats of the program into a text file 

for further data analysis is done with saveStats function. Function appends into 

text file called bad_habit_statistics.txt. Including the date and time when program 

was running, and percentage of how long object was detected and total runtime 

of the program. 

 

Figure 24. Calculating percentage and saving statistics into text file. 
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4 TESTING 

4.1 Running the program 

Running the program created above can be little confusing. Python file running 

the program must be located inside jetson-

inference/python/training/detection/ssd/models directory. Running the program is 

done by running the python script from the terminal using following terminal 

command. 

 

Figure 25. Running the application. 

 

Figure 26. Screen capture of running program. 
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After running the program for 54 seconds and 186 seconds. And having a phone 

in hand for time to time each time. Program gives following output in the terminal 

and in the text file.  

 

Figure 27. Terminal output. 

 

Figure 28. Text file output. 

Running several tests with an external stopwatch. Timer performance proved to 

be accurate and reliable.  

4.2 Performance and Model accuracy 

Object detection application is running consistently around 40-50 frames per 

second. Which is respectable numbers for an embedded device. This proves that 

SSD-Mobilenet is capable of running lightweight neural network models. 

Detection of the object is handling well when the object is in certain angle and 

distance from the input source. Performance also drops if object is covered too 

much with hand. Can handle different backgrounds quite well. Program is 

handling bright places notably better than dark. That could be yield of training 

material being mainly with bright background.  
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5. CONCLUSIONS 

Machine learning and object detection is becoming more and more popular within’ 

embedded devices. For industrial use, as an example for monitoring devices, 

security devices, quality assurance devices and many more, but also object 

detection with embedded devices for personal use is accessible. The ability to 

create such applications using object detection networks can help an individual 

or industry solve a variety of different problems and tasks. 

Purpose of this thesis was to introduce the reader on basic tools and technologies 

used in such applications and development on embedded device called Nvidia 

Jetson Nano. Also, to demonstrate deployment of object detection application 

from ground up. Even though program is not nowhere near perfect, thesis proved 

the capabilities of Nvidia Jetson Nano to be a sole environment of development 

for such application. For further improvements of application in question, would 

be furthering the data set, continue training for even better accuracy, but also add 

variety of bad habits. Object detection is not limited in any way on which object is 

decided to detect, thus it is powerful technique to improve day to day life. Nvidia 

Jetson Nano carried out the application with satisfaction, but it does come with 

limitations. Such as computing power. Handling even larger object detection 

applications can be troublesome, in example training large data sets. 

Outcoming data of the example implementation application can be used in many 

different ways. Data can be used to monitor user behavior during any given day 

and time. Monitor behavior either during work or free time. Compare the gathered 

data to better the understanding of the behavior in different environments and 

use the data to understand the issue and help point a way to discard or adapt the 

unwanted habit.  
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Source code of example implementation 

''' 

Program Name:   Bad Habit Detector 

Author:         Tino Nummela 

''' 

 

# Importing needed modules 

import jetson.inference 

import jetson.utils 

import time 

from datetime import datetime 

 

# Initializing model, input source and output source 

network = jetson.inference.detectNet(argv=["--model=BadHabits/ssd-mobilenet.onnx", 

                                            "--labels=BadHabits/labels.txt", 

                                            "--input-blob=input_0", 

                                            "--output-cvg=scores", 

                                            "--output-bbox=boxes"], 

                                            threshold=0.5) 

 

# Change '/dev/video0' to 'csi://0' if you're using CSI camera. 

camera = jetson.utils.videoSource('/dev/video0') 

display = jetson.utils.videoOutput('display://0') 

 

# Function to calcultate percentage 

def percentageHold(): 

 global percent 
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 percent = timeHold / totalTime * 100 

 print("\tYou had phone in hand for", "{:.0f}".format(percent), 

    "% of the time program was running.\n\n") 

 

 

# Function to save most valuable statisics in to text file. 

def saveStats(): 

 timeNow = datetime.now() 

 timeNewFormat = timeNow.strftime("%d/%m/%Y %H:%M:%S") 

 f = open("bad_habit_statistics.txt", "a") 

 f.write("\nSession at " + timeNewFormat + " you used phone for " + 

    "{:.0f}".format(percent) + 

    "% of the total runtime. Total runtime of the program was " +      

    "{:.1f}".format(totalTime) + 

    " seconds.") 

 f.close() 

  

 

# Main function 

def main(): 

 # Starting timer and initializing global variables 

 start = time.time()  

 global timeHold 

 global totalTime 

 timeHold = 0 

  

 try: 

  print("\n WELCOME TO BAD HABIT DETECTOR \n") 
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  #Creating starting time stamp for counting time phone detected 

  startTimeStamp = time.time() 

 

  # While loop for live video feed 

  while display.IsStreaming(): 

   # Setting phoneDetected to false and starting live feed 

   phoneDetected = False 

   liveFeed = camera.Capture() 

   detections = network.Detect(liveFeed) 

   display.Render(liveFeed) 

   display.SetStatus('Bad Habit Detector | {:.0f}               

 FPS'.format(network.GetNetworkFPS())) 

 

   # For loop for going through classes/labels, easy to scale when more bad habits 

   are added 

   for detection in detections: 

    label = network.GetClassDesc(detection.ClassID) 

     

    # Deciding action when "phone" is detected 

    if label == "phone": 

     # Counting how long phone is detected 

     phoneDetected = True 

     newTimeStamp = time.time() 

     timeDelta = newTimeStamp - startTimeStamp 

     # Adding timeDelta value to timeHold variable 

     timeHold += timeDelta 

     # Setting startTimeStamp to newTimeStamp, so time.time() resets 

     startTimeStamp = newTimeStamp 

     print("BAD HABIT DETECTED") 
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    else: 

     # Print error if something else is detected 

     print("An error occurred") 

 

   # Resets startTimeStamp if phone is not detected 

   if phoneDetected == False: 

    startTimeStamp = time.time() 

 

 # CTRL+C to stop the program and print statistics 

 except KeyboardInterrupt: 

  print("\n\n\tProgram ended by the user.\n") 

  # Ending timer and doing some calculations at to be printed after program is  

  finished 

  end = time.time() 

  totalTime = end - start 

  withoutPhone = totalTime – timeHold 

  print("\tProgram was on for", float("{:.1f}".format(totalTime)), "seconds.") 

  print("\tTotal time with phone was", float("{:.1f}".format(timeHold)), "seconds") 

  print("\tTotal time without phone was", float("{:.1f}".format(withoutPhone)),  

    "seconds") 

 percentageHold() 

 saveStats() 

 pass 

# Calling main function 

if __name__ == '__main__': 

main() 
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