Appendix 2 SPSS TABLES

Table 1. Nonparametric Correlations
Correlations

			shopping frequency	whether to know brand before buying
Spearman's rho	shopping frequency	Correlation Coefficient	1,000	,440"
		Sig. (2-tailed)		,000
		N	100	100
	whether to know brand	Correlation Coefficient	,440	1,000
	before buying	Sig. (2-tailed)	,000	
		N	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Table 2. Crosstabulation between Prior Purchase Brand Decision and Shopping Frequency
whether to know brand before buying * shopping frequency Crosstabulation

Table 3. Chi-Square Tests for Question one and Question two
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare Likelihood Ratio	$\left.\begin{array}{\|r\|} \hline 20,916 \\ a \\ 26,061 \end{array} \right\rvert\,$	6 6	$\begin{aligned} & \hline, 002 \\ & , 000 \end{aligned}$	$\begin{gathered} , 002^{\mathrm{b}} \\ , 000^{\mathrm{b}} \end{gathered}$	$\begin{aligned} & \hline, 001 \\ & 000 \end{aligned}$	$\begin{aligned} & \hline, 004 \\ & , 001 \end{aligned}$			

a. 6 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is ,50.
b. Based on 10000 sampled tables with starting seed 2000000.
c. The standardized statistic is 3,970 .

Table 4. Contingency Test for Question one and Question two
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	,416	,002	,003 ${ }^{\text {a }}$,001	,004

a. Based on 10000 sampled tables with starting seed 299883525.

Table 5. Nonparametric Correlations between Question two and Question three
Correlations

			whether to know brand before buying	importance of alternatives
Spearman's rho	whether to know brand before buying	Correlation Coefficient Sig. (2-tailed) N	$\begin{array}{r} \hline 1,000 \\ 100 \\ \hline \end{array}$	$\begin{array}{r} \hline, 140 \\ , 163 \\ 100 \\ \hline \end{array}$
	importance of alternatives	Correlation Coefficient Sig. (2-tailed) N	,140 , 163 100	1,000 100

Table 6. Crosstabulation between prior purchase brand decision and importance of alternatives
whether to know brand before buying * importance of alternatives Crosstabulation

			importance of alternatives				Total
			$\underset{t}{\text { unimportan }}$	neither important nor unimportant	$\begin{gathered} \text { importan } \\ \mathrm{t} \end{gathered}$	$\begin{gathered} \text { very } \\ \text { important } \end{gathered}$	
whether to know brand before buying	no	Count \% within whether to know brand before buying	$\begin{array}{r} 2 \\ 20,0 \% \end{array}$,0\%	30,0\%	5	10 $\begin{array}{r}10 \\ 100,0 \%\end{array}$
		Count	0	3	20	7	30

		\% within whether to know brand before buying	,0\%	10,0\%	66,7\%	23,3\%	100,0\%
	yes	Count \% within whether to know brand before buying	0	3 $5,0 \%$	31 $51,7 \%$	26 $43,3 \%$	60 $100,0 \%$
Total		Count \% within whether to know brand before buying	2,0\%	6 $6,0 \%$	$\begin{array}{r} \hline 54 \\ 54,0 \% \end{array}$	38 $38,0 \%$	$\begin{array}{r} 100 \\ 100,0 \% \end{array}$

Table 7. Chi-Square Tests for Question two and Question three
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson Chi- Square Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases	$\begin{array}{\|r\|} \hline 24,045 \\ 16,091 \\ 13,729 \\ 3,188^{c} \\ 100 \\ \hline \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 1 \end{aligned}$	$\begin{gathered} \hline, 001 \\ , 013 \\ , 074 \end{gathered}$	$\begin{aligned} & , 003^{\mathrm{b}} \\ & , 012^{\mathrm{b}} \\ & , 016^{\mathrm{b}} \\ & , 096^{\mathrm{b}} \end{aligned}$	$\begin{aligned} & \hline, 001 \\ & , 009 \\ & , 013 \\ & , 088 \end{aligned}$	$\begin{aligned} & \hline, 004 \\ & , 015 \\ & , 019 \\ & , 104 \end{aligned}$,049 ${ }^{\text {b }}$,043	,054

a. 7 cells $(58,3 \%)$ have expected count less than 5 . The minimum expected count is ,20.
b. Based on 10000 sampled tables with starting seed 926214481.
c. The standardized statistic is 1,786 .

Table 8. Contingency Test for Question two and Question three
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{gathered} \hline, 440 \\ 100 \end{gathered}$,001	,003 ${ }^{\text {a }}$,001	,004

a. Based on 10000 sampled tables with starting seed 926214481.

Table 9. Descriptives Statistics of Choice Criteria for Consumer Electronics

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
style	100	1	5	2,68	1,569

easytouse	100	1	5	3,17
valueformoney	100	1	5	3,30
aftersaleservice	100	1	5	2,55
availability	100	1	5	3,30
Valid N (listwise)	100			1,289

Table 10. Crosstabulation between Question six and Question seven
whether price can be a dimension tool * extent of price as a quality dimension Crosstabulation

		extent of price as a quality dimension					Total
		very small	small	medium	large	very large	
whether price can be yes a dimension tool	Count \% within whether price can be a dimension tool	$\begin{array}{r} 1 \\ 1,1 \% \end{array}$	$\begin{array}{r} 2 \\ 2,2 \% \end{array}$	$\begin{array}{r} \hline 32 \\ 35,6 \% \end{array}$	$\begin{array}{r} 37 \\ 41,1 \% \end{array}$	$\begin{array}{r} 18 \\ 20,0 \% \end{array}$	$\begin{array}{r} 90 \\ 100,0 \% \end{array}$
Total	Count \% within whether price can be a dimension tool	1,1\%	$\begin{array}{r} \hline 2 \\ 2,2 \% \end{array}$	$\begin{array}{r} 32 \\ 35,6 \% \end{array}$	$\begin{array}{r} 37 \\ 41,1 \% \end{array}$	$\begin{array}{r} 18 \\ 20,0 \% \end{array}$	$\begin{array}{r} 90 \\ 100,0 \% \end{array}$

Table 11. Descriptives of product quality dimensions on different price levels
Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
performance	100	1	7	5,86	1,652
feature	100	1	7	3,56	1,766
reliability	100	1	7	4,66	1,485
durability	100	1	7	4,78	1,593
seaviceability	100	1	7	3,08	1,555
conformance	100	1	7	3,69	1,739
styledesign	100	1	7	2,37	1,968
Valid N (listwise)	100				

Table 12. Ranking of quality dimension at low priced level $(\mathrm{n}=35)$

rating of quality dimension at low priced level (total count : 35)									
rating score	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	everage score	rank
product performance	24	4	2	1	0	3	1	6.09	1
features	0	6	5	1	6	11	6	3.17	6
reliability	1	8	13	7	4	1	1	4.66	3
durability	4	4	10	12	4	1	0	4.69	2
serviceability	1	0	4	6	17	4	3	3.23	5
conformance	2	11	1	8	4	5	4	4.09	4
style and design	3	2	0	0	0	10	20	2.09	7

Table 13. Ranking of quality dimension at middle priced level $(\mathrm{n}=55)$

rating of quality dimension at middle priced level (total count :55)									
rating score	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	everage score	rank
product performance	26	11	4	8	4	2	0	5.74	1
features	2	8	7	5	14	16	3	3.53	4
reliability	8	12	12	12	7	3	1	4.80	3
durability	13	12	12	8	4	4	2	5.04	2
serviceability	0	3	11	10	9	8	14	3.09	6
conformance	1	8	7	9	11	13	6	3.47	5
style and design	5	1	2	3	6	9	29	2.33	7

Table 14. Ranking of quality dimension at high priced level ($\mathrm{n}=10$)

rating of quality dimension at high priced level (total count : 10)									
rating score	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	everage score	rank
product performance	6	1	0	2	0	0	1	5.7	1
features	1	4	3	0	1	1	0	5.1	2
reliability	2	0	1	1	4	2	0	3.9	3
durability	0	3	0	1	3	3	0	3.7	4
serviceability	0	1	2	0	1	0	6	2.5	7
conformance	0	1	1	4	0	4	0	3.5	6
style and design	1	0	3	2	1	0	3	3.6	5

Table 15. Nonparametric Correlations between Question eight and Question nine

Correlations									
Spearma n's rho		preferr ed brand level by price	performan ce	$\begin{gathered} \text { featur } \\ e \end{gathered}$	reliabili ty	durabili ty	seaviceabil ity	$\begin{gathered} \text { conforman } \\ \text { ce } \end{gathered}$	$\begin{gathered} \text { styledesi } \\ \text { gn } \end{gathered}$
preferred brand level by price	Correlati on Coefficie nt	1	-0,135	,254	-0,069	-0,011	-0,107	-0,147	0,177
	Sig. (2tailed)		0,179	0,011	0,493	0,91	0,291	0,143	0,078
	N	100	100	100	100	100	100	100	100

Table 16. Chi-Square Tests for preferred brand level by price and performance
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	16,523	12	,168	, $154{ }^{\text {b }}$,145	,163			
Likelihood Ratio	19,201	12	,084	, 114 ${ }^{\text {b }}$,105	,122			
Fisher's Exact Test	14,593			, $161{ }^{\text {b }}$,151	,170			
Linear-by-Linear Association N of Valid Cases	$\begin{gathered} , 854^{c} \\ 100 \end{gathered}$	1	,355	,373 ${ }^{\text { }}$,360	,385	, $182^{\text { }}$,172	,192

a. 15 cells $(71,4 \%)$ have expected count less than 5 . The minimum expected count is ,20.
b. Based on 10000 sampled tables with starting seed 2000000.
c. The standardized statistic is -,924.

Table 17. Contingency Test for preferred brand level by price and performance
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{gathered} \hline, 377 \\ 100 \end{gathered}$,168	,154 ${ }^{\text {a }}$,145	,163

a. Based on 10000 sampled tables with starting seed 2000000.

Table 18. Chi-Square Tests for preferred brand level by price and feature
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare Likelihood Ratio Fisher's Exact Test	$\begin{array}{\|r\|} \hline 16,497 \\ a \\ 17,513 \\ 14,125 \end{array}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \hline, 170 \\ & , 131 \end{aligned}$	$\begin{gathered} \hline, 165^{\mathrm{b}} \\ , 198^{\mathrm{b}} \\ , 215^{\mathrm{b}} \end{gathered}$,155	$\begin{aligned} & \hline, 174 \\ & , 208 \\ & , 226 \end{aligned}$			

Linear-by-Linear Association N of Valid Cases	$\begin{array}{r} 6,962^{c} \\ \\ 100 \end{array}$	1	,008	,008 ${ }^{\text {b }}$,006	,011	,004 ${ }^{\text {b }}$,003	,006

a. 13 cells ($61,9 \%$) have expected count less than 5 . The minimum expected count is, 30 .
b. Based on 10000 sampled tables with starting seed 2000000.
c. The standardized statistic is 2,638 .

Table 19. Contingency Test for preferred brand level by price and feature
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency N of Valid Cases	,376	,170	,165 ${ }^{\text {a }}$,155	,174

a. Based on 10000 sampled tables with starting seed 2000000.

Table 20. Chi-Square Tests for preferred brand level by price and reliability
Chi-Square Tests

		df	Asymp. Sig. (2sided)	Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value			Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	18,187	12	,110	,102 ${ }^{\text {b }}$,094	,110			
Likelihood Ratio	18,900	12	,091	, $131^{\text {D }}$,123	,140			
Fisher's Exact Test	16,920			,090 ${ }^{\text { }}$,082	,097			
Linear-by-Linear Association	,658 ${ }^{\text {c }}$	1	,417	, 441 ${ }^{\text {b }}$,429	,454	,216 ${ }^{\text {b }}$,206	,227
N of Valid Cases	100								

a. 12 cells ($57,1 \%$) have expected count less than 5 . The minimum expected count is ,20.
b. Based on 10000 sampled tables with starting seed 2000000.
c. The standardized statistic is -,811.

Table 21. Contingency Tests for preferred brand level by price and reliability
Symmetric Measures

Value	Approx. Sig.	Monte Carlo Sig.	
		Sig.	99\% Confidence Interval

| | | | | | Lower Bound |
| :--- | ---: | ---: | ---: | ---: | ---: | Upper Bound | U110 |
| :--- |
| Nominal by Nominal Contingency |
| N of Valid Cases |

a. Based on 10000 sampled tables with starting seed 2000000.

Table 22. Chi-Square Tests for preferred brand level by price and durability
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	26,046 ${ }^{\text {a }}$	12	,011	,012 ${ }^{\text {b }}$,009	,015			
Likelihood Ratio	27,334	12	,007	, $010^{\text {b }}$,007	,012			
Fisher's Exact Test	22,403			, 011 ${ }^{\text {b }}$,008	,014			
Linear-by-Linear Association	$, 572^{c}$	1	,449		,470	,496	,243 ${ }^{\text {b }}$,232	,254
N of Valid Cases	100								

a. 12 cells ($57,1 \%$) have expected count less than 5 . The minimum expected count is ,20.
b. Based on 10000 sampled tables with starting seed 2000000.
c. The standardized statistic is,- 756 .

Table 23. Contingency Test for preferred brand level by price and durability
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	, 455 100	,011	,012 ${ }^{\text {a }}$,009	,015

a. Based on 10000 sampled tables with starting seed 2000000.

Table 24. Chi-Square Tests for preferred brand level by price and seaviceability
Chi-Square Tests

Pearson Chi-	27,401	12	, 007	, 006^{b}	, 004	, 008			
Square	a								
Likelihood Ratio	30,301	12	, 003	, 002^{b}	, 001	, 003			
Fisher's Exact	25,372			, 003^{b}	, 002	, 004			
Test									
Linear-by-Linear	$1,292^{\mathrm{c}}$	1	, 256	, 281^{b}	, 269	, 292	, 138^{b}	, 129	, 147
Association	100								
N of Valid Cases	100								

a. 12 cells $(57,1 \%)$ have expected count less than 5 . The minimum expected count is ,10.
b. Based on 10000 sampled tables with starting seed 2000000 .
c. The standardized statistic is $-1,136$.

Table 25. Contingency Test for preferred brand level by price and seaviceability
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{gathered} \hline, 464 \\ 100 \end{gathered}$,007	,006 ${ }^{\text {a }}$,004	,008

a. Based on 10000 sampled tables with starting seed 2000000.

Table 26. Chi-Square Tests for preferred brand level by price and conformance
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	16,004 ${ }^{\text {a }}$	12	,191	, $188{ }^{\text {b }}$,177	,198			
Likelihood Ratio	18,422	12	,103	, $157{ }^{\text { }}$,147	,166			
Fisher's Exact Test	14,486			, $198{ }^{\text {b }}$,188	,208			
Linear-by-Linear Association	2,117 ${ }^{\circ}$	1	,146	, $154{ }^{\text {b }}$,144	,163	,083 ${ }^{\text {b }}$,076	,091
N of Valid Cases	100								

a. 12 cells $(57,1 \%)$ have expected count less than 5 . The minimum expected count is, 30 .
b. Based on 10000 sampled tables with starting seed 2000000.
c. The standardized statistic is $-1,455$.

Table 27. Contingency Test for preferred brand level by price and conformance
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{array}{r} \hline, 371 \\ 100 \end{array}$,191	,188 ${ }^{\text {a }}$,177	,198

a. Based on 10000 sampled tables with starting seed 2000000.

Table 28. Chi-Square Tests for preferred brand level by price and styledesign
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson Chi- Square	30,844 ${ }^{\text {a }}$	12	,002	$, 003^{\text {D }}$,002	,005			
Likelihood Ratio	29,924	12	,003	,003 ${ }^{\text {b }}$,002	,004			
Fisher's Exact Test	23,923			,005 ${ }^{\text {b }}$,003	,007			
Linear-by-Linear Association	$3,300^{\text {c }}$	1	,069	,074 ${ }^{\text {b }}$,081	,041 ${ }^{\text {D }}$,036	,047
N of Valid Cases	100								

a. 16 cells $(76,2 \%)$ have expected count less than 5 . The minimum expected count is ,30.
b. Based on 10000 sampled tables with starting seed 2000000.
c. The standardized statistic is 1,817 .

Table 29. Contingency Test for preferred brand level by price and styledesign
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal	Contingency Coefficient		,486	,002	,003 ${ }^{\text {a }}$,002	,005
N of Valid Cases		100					

a. Based on 10000 sampled tables with starting seed 2000000.

Table 30. Crosstabulation between preferred brand level by price and price bands knowledge level
preferred brand level by price * price brands knowledge level Crosstabulation

Table 31. Nonparametric Correlations for Question eight and Question ten
Correlations

			preferred brand level by price	price brands knowledge level
Spearman's rho	preferred brand level by price	Correlation Coefficient	Sig. (2-tailed)	1,000

Table 32. Chi-Square Tests for Question eight and Question ten
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2- sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	4,261 ${ }^{\text {a }}$	6	,641	,652 ${ }^{\text {b }}$,640	,664			
Likelihood Ratio	4,653	6	,589	,646 ${ }^{\text {b }}$,634	,659			
Fisher's Exact Test				,626 ${ }^{\text {b }}$,613	,638			
Linear-by-Linear Association	2,803 ${ }^{\text {c }}$	1	,094	, $105^{\text {b }}$,097	,112	,054 ${ }^{\text {b }}$,048	,060

a. 6 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is, 30 .
b. Based on 10000 sampled tables with starting seed 1660843777.
c. The standardized statistic is 1,674 .

Table33. Contingency test for Question eight and Question ten
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		$\begin{gathered} \hline 202 \\ 100 \end{gathered}$,641	,652 ${ }^{\text {a }}$,640	,664

a. Based on 10000 sampled tables with starting seed 1660843777.

Table 34. Descriptives of value proposition
Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
functional	100	1,00	3,00	2,5900	, 65281
emotional	100	1,00	3,00	2,0500	, 62563
selfexpressive	100	1,00	3,00	1,3600	, 65935
Valid N (listwise)	100				

Table 35. Ranking of value proposition at low price level($\mathrm{n}=35$)

rating of price related benefits at low price level (total count : 35)					
	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	average score	rank
Functional benefits	28	5	2	2.74	1
Emotional benefits	3	28	4	1.97	2
Self-expressive benefits	4	2	29	1.29	3

Table 36. Ranking of value proposition at middle price level($\mathrm{n}=55$)

rating of price related benefits at middle price level (total count :55)					
	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	average score	rank
Functional benefits	35	15	5	2.55	1
Emotional benefits	15	28	12	2.05	2
Self-expressive benefits	5	12	38	1.40	3

Table 37. Ranking of value proposition at high price level(n=10)

rating of price related benefits at high price level (total count : $\mathbf{1 0}$)					
	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	average	
score	rank				
Functional benefits	5	3	2	2.3	1
Emotional benefits	4	5	1	2.3	1
Self-expressive benefits	1	2	7	1.4	2

Table 38. Nonparametric Correlations for Question eight and Question 11
Correlations

			preferred brand level by price	functional	emotional	$\begin{array}{\|c} \text { selfexpressiv } \\ \mathrm{e} \end{array}$
Spearman's rho	preferred brand level by price	Correlation Coefficient	1,000	$-, 208^{\circ}$,135	,116
		Sig. (2-tailed)		,037	,182	,252
		N	100	100	100	100
	functional	Correlation Coefficient	-,208	1,000	-,527 ${ }^{\prime \prime}$	-,406
		Sig. (2-tailed)	,037		,000	,000
		N	100	100	100	100
	emotional	Correlation Coefficient	,135	$-, 527 \times$	1,000	-,505**
		Sig. (2-tailed)	,182	,000		,000
		N	100	100	100	100
	selfexpressive	Correlation Coefficient	,116	-,406**	-,505**	1,000
		Sig. (2-tailed)	,252	,000	,000	
		N	100	100	100	100

*. Correlation is significant at the 0.05 level (2 -tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

Table 39. Chi-Square Tests for preferred brand level by price and functional benefits
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2- sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	4,942 ${ }^{\text {a }}$	4	,293	,293 ${ }^{\text {b }}$,281	,305			
Likelihood Ratio	4,805	4	,308	,361 ${ }^{\text {b }}$,348	,373			
Fisher's Exact Test	5,199			,246 ${ }^{\text {b }}$,235	,257			

Linear-by-Linear Association N of Valid Cases	$4,122^{\text {c }}$	1	1	, 042	, $048^{\text {b }}$, 043	, 054	, $028^{\text {b }}$, 024

a. 4 cells ($44,4 \%$) have expected count less than 5 . The minimum expected count is ,90.
b. Based on 10000 sampled tables with starting seed 677935123.
c. The standardized statistic is $-2,030$.

Table 40. Contingency test for preferred brand level by price and functional benefits
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	, 217 100	,293	,293 ${ }^{\text {a }}$,281	,305

a. Based on 10000 sampled tables with starting seed 677935123 .

Table 41. Chi-Square Tests for preferred brand level by price and emotional benefits
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	9,903 ${ }^{\text {a }}$	4	,042		,035	,046			
Likelihood Ratio	10,393	4	,034	, 046 ${ }^{\text {b }}$,041	,051			
Fisher's Exact Test	9,804			,030 ${ }^{\text {b }}$,026	,034			
Linear-by-Linear Association	$1,817^{\mathrm{c}}$	1	,178	,205 ${ }^{\text {b }}$,194	,215	, $115^{\text {b }}$,106	,123
N of Valid Cases	100								

a. 2 cells $(22,2 \%)$ have expected count less than 5 . The minimum expected count is 1,70 .
b. Based on 10000 sampled tables with starting seed 677935123.
c. The standardized statistic is 1,348 .

Table 42. Contingency test for preferred brand level by price and emotional benefits
Symmetric Measures

Nominal by Nominal ContingencyCoefficient	, 300	, 042	, $041^{\text {a }}$,035	,046
N of Valid Cases	100				

a. Based on 10000 sampled tables with starting seed 677935123.

Table 43. Chi-Square Tests for preferred brand level by price and selfexpressive benefits
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	4,267 ${ }^{\text {a }}$	4	,371	,368 ${ }^{\text {b }}$,356	,381			
Likelihood Ratio	4,895	4	,298	,368 ${ }^{\text {b }}$,356	,381			
Fisher's Exact Test	4,824			,279 ${ }^{\text {b }}$,267	,291			
Linear-by-Linear Association N of Valid Cases	$\begin{gathered} , 534^{c} \\ 100 \end{gathered}$	1	,465	,538 ${ }^{\text {b }}$,526	,551	,272 ${ }^{\text {b }}$,261	,284

a. 3 cells ($33,3 \%$) have expected count less than 5 . The minimum expected count is 1,00 .
b. Based on 10000 sampled tables with starting seed 677935123.
c. The standardized statistic is ,731.

Table 44. Contingency test for preferred brand level by price and selfexpressive benefits
Symmetric Measures

a. Based on 10000 sampled tables with starting seed b .

Table 45. Crosstabulation between preferred brand level by price and attitude toward price premium
preferred brand level by price * attitude toward price premium Crosstabulation

by price	\% within preferred brand level by price	$42,9 \%$	$45,7 \%$	$11,4 \%$	$100,0 \%$	
	middle priced brand	Count \% within preferred brand level by price	$12,7 \%$	$41,8 \%$	$45,5 \%$	$100,0 \%$
		high price brand	Count \% within preferred brand level by price	, 0%	$20,0 \%$	$80,0 \%$

Table 46. Nonparametric Correlations for Question eight and Question 12
Correlations

**. Correlation is significant at the 0.01 level (2-tailed).

Table 47. Chi-Square Tests for Question eight and Question 12
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		4	,000	, $000{ }^{\text {b }}$,000	,000			
Likelihood Ratio	27,092	4	,000	, $000{ }^{\text {b }}$,000	,000			
Fisher's Exact Test	23,964			$, 000^{\mathrm{b}}$,000	,000			
Linear-by-Linear Association N of Valid Cases	23,300 100	1	,000	, $000{ }^{\text {b }}$,000	,000	,000 ${ }^{\text {b }}$,000	,000

a. 3 cells $(33,3 \%)$ have expected count less than 5 . The minimum expected count is 2,20 .
b. Based on 10000 sampled tables with starting seed 1333095690.
c. The standardized statistic is 4,827 .

Table 48. Contingency Test for Question eight and Question 12
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal	Contingency Coefficient		,446	,000	,000 ${ }^{\text {a }}$,000	,000
N of Valid Cases		100					

a. Based on 10000 sampled tables with starting seed 1333095690 .

Table 49. Crosstabs between attitude toward price premium and comparison between price and quality
attitude toward price premium * comparison between price and quality Crosstabulation

Table 50. Chi-Square Tests for Question 12 and Question 13
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	15,784	6	,015	$, 008^{\mathrm{b}}$,005	,010			
Likelihood Ratio	16,260	6	,012	,008 ${ }^{\text {b }}$,006	,011			
Fisher's Exact Test	14,242			,008 ${ }^{\text {b }}$,006	,010			

a. 6 cells $(50,0 \%)$ have expected count less than 5 . The minimum expected count is ,22.
b. Based on 10000 sampled tables with starting seed 79654295.
c. The standardized statistic is $-3,069$.

Table 51. Contingency Test for Question 12 and Question 13
Symmetric Measures

a. Based on 10000 sampled tables with starting seed 79654295 .

Table 52. Nonparametric Correlations for Question 12 and Question 13
Correlations

			attitude toward price premium	comparison between price and quality
Spearman's rho	attitude toward price premium	Correlation Coefficient	1,000	-,309 ${ }^{\text {² }}$
		Sig. (2-tailed)		,002
		N	100	100
	comparison between price and quality	Correlation Coefficient	-,309 ${ }^{\text {- }}$	1,000
		Sig. (2-tailed)	,002	
		N	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Table 53. Statistics of personal income
income per month

					Cumulative Percent
Valid	<1000	9	9,0	9,0	9,0
	$1000-1999$	42	42,0	42,0	51,0
	$2000-3999$	35	35,0	35,0	86,0
	$4000-5999$	8	8,0	8,0	94,0
	$6000-7999$	3	3,0	3,0	97,0
	>8000	3	3,0	3,0	100,0
	Total	100	100,0	100,0	

Table 54. Crosstabulation between income per month and whether to know brand before buying
income per month * whether to know brand before buying Crosstabulation

Table 55. Chi-Square Tests for personal income level and prior purchase brand decision
Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson Chi- Square	$\begin{array}{r} 24,024 \\ a \end{array}$	10	,008	, 011 ${ }^{\text {b }}$,008	,014			
Likelihood Ratio Fisher's Exact Test	25,844 21,956	10	,004	$\begin{aligned} & , 005^{\mathrm{b}} \\ & , 004^{\mathrm{b}} \end{aligned}$,003	$\begin{gathered} , 007 \\ 006 \end{gathered}$			
Linear-by-Linear Association N of Valid Cases	$\begin{array}{r} 13,880 \\ c \\ 100 \end{array}$	1	,000		,000	,001	, $000{ }^{\text {b }}$,000	,000

a. 13 cells $(72,2 \%)$ have expected count less than 5 . The minimum expected count is, 30 .
b. Based on 10000 sampled tables with starting seed 826030962.
c. The standardized statistic is 3,726 .

Table 56. Contingency test for personal income level and prior purchase brand decision
Symmetric Measures

a. Based on 10000 sampled tables with starting seed 826030962 .

Table 57. Nonparametric Correlations for personal income level and Question two
Correlations

			income per month	whether to know brand before buying
Spearman's rho	income per month	Correlation Coefficient	1,000	,440**
		Sig. (2-tailed)		,000
		N	100	100
	whether to know brand	Correlation Coefficient	,440**	1,000
	before buying	Sig. (2-tailed)	,000	

**. Correlation is significant at the 0.01 level (2-tailed).

Table 58. Nonparametric Correlations for personal income level and Choice criteria for consumer electronics

Correlations

			income per month	style	easytous\|	valueformo ney	aftersalese rvice	availabili ty
Spearman's rho	income per month	Correlation Coefficient	1,000	,327 ${ }^{\text {²}}$,099	-,450	-,266	,143
		Sig. (2-tailed)		,001	,325	,000	,008	,157
		N	100	100	100	100	100	100
	style	Correlation Coefficient	,327**	1,000	-,020	-,516	-,281**	-,336
		Sig. (2-tailed)	,001		,847	,000	,005	,001
		N	100	100	100	100	100	100
	easytouse	Correlation Coefficient	,099	-,020	1,000	-,183	-,360"	-,146
		Sig. (2-tailed)	,325	,847		,069	,000	,148
		N	100	100	100	100	100	100
	valueformone y	Correlation Coefficient	-,450	$-, 516$	-,183	1,000	,308	-,338*
		Sig. (2-tailed)	,000	,000	,069		,002	,001
		N	100	100	100	100	100	100
	aftersaleservic e	Correlation Coefficient	-,266		-,360"	,308*	1,000	-,476**
		Sig. (2-tailed)	,008	,005	,000	,002		,000
		N	100	100	100	100	100	100
	availability	Correlation Coefficient	,143	-,336	-,146	-,338**	-,476**	1,000
		Sig. (2-tailed)	,157	,001	,148	,001	,000	
		N	100	100	100	100	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Table 59. Chi-Square Tests for income per month and style
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare Likelihood Ratio	$\begin{array}{r} 58,90 \\ 9^{a} \\ 50,69 \\ 1 \end{array}$	20 20	$\begin{aligned} & 000 \\ & , 000 \end{aligned}$	$\begin{aligned} & , 000^{\mathrm{b}} \\ & , 000^{\mathrm{D}} \end{aligned}$	$\begin{aligned} & 000 \\ & , 000 \end{aligned}$	$\begin{aligned} & 000 \\ & , 001 \end{aligned}$			

Fisher's Exact Test	$\begin{array}{r} 42,46 \\ 2 \end{array}$,000 ${ }^{\text {b }}$,000	,001			
Linear-by-Linear Association	$\begin{array}{r} 11,10 \\ 2^{\mathrm{c}} \end{array}$	1	,001	,001 ${ }^{\text {b }}$,000	,001	,000 ${ }^{\text {b }}$,000	,001
N of Valid Cases	100								

a. 22 cells $(73,3 \%)$ have expected count less than 5 . The minimum expected count is, 33 .
b. Based on 10000 sampled tables with starting seed 957521522.
c. The standardized statistic is 3,332 .

Table 60. Contingency test for income per month and style
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		$\begin{gathered} \hline, 609 \\ 100 \\ \hline \end{gathered}$,000	,000 ${ }^{\text {a }}$,000	,000

a. Based on 10000 sampled tables with starting seed 957521522.

Table 61. Chi-Square Tests for income per month and easy to use
Chi-Square Tests

		df	Asymp. Sig. (2sided)	Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value			Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		20	,590	,597 ${ }^{\text {b }}$,585	,610			
Likelihood Ratio	21,881	20	,347	, $465{ }^{\text {b }}$,453	,478			
Fisher's Exact Test	15,491			,704 ${ }^{\text {b }}$,692	,716			
Linear-by-Linear Association	1,680 ${ }^{\circ}$	1	,195	,202 ${ }^{\text {b }}$,192	,213	, $102{ }^{\text {b }}$,094	,110
N of Valid Cases	100								

a. 24 cells $(80,0 \%)$ have expected count less than 5 . The minimum expected count is ,18.
b. Based on 10000 sampled tables with starting seed 957521522.
c. The standardized statistic is 1,296 .

Table 62. Contingency test for income per month and easy to use
Symmetric Measures

| | | | | | Lower Bound |
| :--- | ---: | ---: | ---: | ---: | ---: | Upper Bound \mid,610

a. Based on 10000 sampled tables with starting seed 957521522.

Table 63. Chi-Square Tests for income per month and value for money
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	45,358	20	,001	$, 001^{\mathrm{D}}$,000	,002			
Likelihood Ratio	46,742	20	,001	, $000{ }^{\text {b }}$,000	,001			
Fisher's Exact Test	38,088			$, 000^{\mathrm{D}}$,000	,000			
Linear-by-Linear Association N of Valid Cases	$\begin{array}{r} 21,010 \\ 100 \end{array}$	1	,000	, $000{ }^{\text {b }}$,000	,000	, $000{ }^{\text {b }}$,000	,000

a. 22 cells $(73,3 \%)$ have expected count less than 5 . The minimum expected count is ,33.
b. Based on 10000 sampled tables with starting seed 957521522.
c. The standardized statistic is $-4,584$.

Table 64. Contingency test for income per month and value for money
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	, 559 100	,001	,001 ${ }^{\text {a }}$,000	,002

a. Based on 10000 sampled tables with starting seed 957521522.

Table 65. Chi-Square Tests for income per month and aftersale service
Chi-Square Tests

	Monte Carlo Sig. (2-sided)		Monte Carlo Sig. (1--sided)		
			99\% Confidence Interval		99\% Confidence Interval

	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	$\begin{array}{\|r\|} 25,81 \\ 3^{a} \end{array}$	20	,172	,168 ${ }^{\text {b }}$,158	,178			
Likelihood Ratio	$\begin{array}{\|r} 31,93 \\ 4 \end{array}$	20	,044	,062 ${ }^{\text {b }}$,056	,068			
Fisher's Exact Test	$\left.\begin{array}{\|r\|} 23,33 \\ 1 \end{array} \right\rvert\,$			$\text { , 114 }{ }^{\mathrm{D}}$,105	,122			
Linear-by-Linear Association N of Valid Cases	6,945 ${ }^{\text {c }}$	1	,008	,008 ${ }^{\text {b }}$,006	,011	,003 ${ }^{\text {b }}$,002	,005

a. 23 cells $(76,7 \%)$ have expected count less than 5 . The minimum expected count is, 30 .
b. Based on 10000 sampled tables with starting seed 957521522.
c. The standardized statistic is $-2,635$.

Table 66. Contingency test for income per month and aftersale service
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal	Contingency Coefficient		,453	,172	,168 ${ }^{\text {a }}$,158	,178
N of Valid Cases		100					

a. Based on 10000 sampled tables with starting seed 957521522.

Table 67. Chi-Square tests for income per month and availability
Chi-Square Tests

a. 24 cells $(80,0 \%)$ have expected count less than 5 . The minimum expected count is ,30.
b. Based on 10000 sampled tables with starting seed 957521522 .
c. The standardized statistic is 1,536 .

Table 68．Contingency test for income per month and availability
Symmetric Measures

		Value	Approx．Sig．	Monte Carlo Sig．			
		Sig．		99\％Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal	Coefficient		，434	，277	，273 ${ }^{\text {a }}$	，262	，285
N of Valid Cases		100					

a．Based on 10000 sampled tables with starting seed 957521522.

Table 69．Crosstabulation between income per month and importance of price
income per month＊importance of price Crosstabulation

			importance of price				
			unimporta nt	neither important nor unimportant	$\underset{\mathrm{t}}{\operatorname{importan}}$	very important	Total
income per month	＜1000	Count \％within income per month	$\begin{array}{r} 1 \\ 11,1 \% \end{array}$	， 0	77，8\％${ }^{7}$	11，${ }^{1}$	9 $100,0 \%$
	$\begin{aligned} & 1000- \\ & 1999 \end{aligned}$	Count \％within income per month	1	䧑	$\begin{array}{r} \hline 28 \\ 66,7 \% \end{array}$	7 $16,7 \%$	$\begin{array}{r} 42 \\ 100,0 \% \end{array}$
	$\begin{aligned} & 2000- \\ & 3999 \end{aligned}$	Count \％within income per month	2 $5,7 \%$	10	18 $51,4 \%$	5 $14,3 \%$	$\begin{array}{r} 35 \\ 100,0 \% \end{array}$
	$\begin{aligned} & 4000- \\ & 5999 \end{aligned}$	Count \％within income per month	， 0	12，5\％	75，${ }^{6}$	1 $12,5 \%$	䧑
	$\begin{aligned} & 6000- \\ & 7999 \end{aligned}$	Count \％within income per month	， 0	解	， 0	1 $33,3 \%$	
	＞8000	Count \％within income per month	66，7\％	， 0	， 0	1	
Total		Count \％within income per month	6，${ }^{6}$	19 $19,0 \%$	59 $59,0 \%$	16 $16,0 \%$	$\begin{array}{r} \hline 100 \\ 100,0 \% \end{array}$

Table 70．Chi－Square Tests for personal income and importance of price
Chi－Square Tests

		Monte Carlo Sig．（2－sided）		Monte Carlo Sig．（1－sided）	
			99% Confidence Interval		99% Contidence Interval

	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		15	,002	,006 ${ }^{\text {b }}$,004	,008			
Likelihood Ratio	27,537	15	,025	, $025^{\text {b }}$,021	,029			
Fisher's Exact Test	23,482			,021 ${ }^{\text {b }}$,017	,024			
Linear-by-Linear Association N of Valid Cases	$2,877^{\circ}$ 100	1	,090	,094 ${ }^{\text {b }}$,086	,102	,054 ${ }^{\text {b }}$,048	,060

a. 17 cells $(70,8 \%)$ have expected count less than 5 . The minimum expected count is ,18.
b. Based on 10000 sampled tables with starting seed 1810951851.
c. The standardized statistic is $-1,696$.

Table 71. Contingenct test for personal income and importance of price
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal	Contingency Coefficient		,510	,002	,006 ${ }^{\text {a }}$,004	,008
N of Valid Cases		100					

a. Based on 10000 sampled tables with starting seed 1810951851.

Table 72. Nonparametric test for personal income and importance of price
Correlations

		income per month	importance of price
Spearman's rho	income per month	Correlation Coefficient	1,000
	Sig. (2-tailed)	,- 139	
	N		, 168
		Correlation Coefficient	,- 139
	Sig. (2-tailed)	, 168	1,000
	N	100	100

Table 73. Nonparametric test for personal income and price's role as quality indicator
Correlations

		income per month	extent of price as a quality dimension
Spearman's rho income per month	Correlation Coefficient Sig. (2-tailed)	1,000	, $288^{* \prime}$

	N	100	90
extent of price as a quality	Correlation Coefficient	, 288°	1,000
dimension	Sig. (2-tailed)	, 006	
	N	90	90

**. Correlation is significant at the 0.01 level (2-tailed).

Table 74. Crosstabulation between income per month and Question seven
income per month * extent of price as a quality dimension Crosstabulation

			extent of price as a quality dimension					Total
			very small	small	medium	large	$\begin{aligned} & \text { very } \\ & \text { large } \end{aligned}$	
income per month	<1000	Count \% within income per month	$\begin{array}{r} 1 \\ 11,1 \% \end{array}$	$\begin{array}{r} 0 \\ 0 \% \end{array}$	$\begin{array}{r} \hline 2 \\ 22,2 \% \end{array}$	$\begin{array}{r} 4 \\ 44,4 \% \end{array}$	$\begin{array}{r} 2 \\ 22,2 \% \end{array}$	9 $100,0 \%$
	$\begin{aligned} & 1000- \\ & 1999 \end{aligned}$	Count \% within income per month	, 0	0	$\begin{array}{r} 22 \\ 55,0 \% \end{array}$	16 $40,0 \%$	2	40
	$\begin{aligned} & 2000- \\ & 3999 \end{aligned}$	Count \% within income per month	0	1 $3,7 \%$	$\begin{array}{r} \hline 5 \\ 18,5 \% \end{array}$	14 $51,9 \%$	$\begin{array}{r} 7 \\ 25,9 \% \end{array}$	27 $100,0 \%$
	$\begin{aligned} & 4000- \\ & 5999 \end{aligned}$	Count \% within income per month	0	$\begin{array}{r} 1 \\ 12,5 \% \end{array}$	$\begin{array}{r} 2 \\ 25,0 \% \end{array}$	$\begin{array}{r} 2 \\ 25,0 \% \end{array}$	$\begin{array}{r} 3 \\ 37,5 \% \end{array}$	8 8
	$\begin{aligned} & 6000- \\ & 7999 \end{aligned}$	Count \% within income per month	, 0	0	$\begin{array}{r} 1 \\ 33,3 \% \end{array}$	33,3\%	$\begin{array}{r} 1 \\ 33,3 \% \end{array}$	100,0\%
	>8000	Count \% within income per month	0	0	0	0	$\begin{array}{r} 3 \\ 100,0 \% \end{array}$	100,0\%
Total		Count \% within income per month	1,1\%	2 2	$\begin{array}{r} 32 \\ 35,6 \% \end{array}$	$\begin{array}{r} 37 \\ 41,1 \% \end{array}$	$\begin{array}{r} 18 \\ 20,0 \% \end{array}$	90 $100,0 \%$

Table 75. Chi-Square Tests for income per month and Question seven
Chi-Square Tests

	Value df			Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
			Asymp. Sig. (2- sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare Likelihood Ratio Fisher's Exact Test	$\left.\begin{array}{\|l\|} \hline 41,185 \\ a \\ 35,131 \\ 38,965 \end{array} \right\rvert\,$	20 20	$\begin{aligned} & \hline, 004 \\ & 019 \end{aligned}$,049 ${ }^{\text {b }}$,044	,055			

Linear-by-Linear Association N of Valid Cases	$\left\|\begin{array}{r} 8,744^{c} \\ 90 \end{array}\right\|$	1	,003	,004 ${ }^{\text {b }}$,002	,005	,002 ${ }^{\text {b }}$,001	,002

a. 24 cells ($80,0 \%$) have expected count less than 5 . The minimum expected count is ,03.
b. Based on 10000 sampled tables with starting seed 1110856691.
c. The standardized statistic is 2,957 .

Table 76. Contingency test income per month and Question seven
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		$\begin{array}{r} \hline, 560 \\ 90 \end{array}$,004	,049 ${ }^{\text {a }}$,044	,055

a. Based on 10000 sampled tables with starting seed 1110856691.

Table 77. Nonparametric test for personal income and preferred brand's price level
Correlations

		income per month	preferred brand level by price
Spearman's rho	income per month	Correlation Coefficient	1,000
	Sig. (2-tailed)	, 358	
	N	100	, 000
		Correlation Coefficient	, 358
	preferred brand level by	price	Sig. (2-tailed)
	N	, 000	1,000

${ }^{* *}$. Correlation is significant at the 0.01 level (2-tailed).

Table 78. Crosstabulation between income per month and preferred brand level by price
income per month * preferred brand level by price Crosstabulation

		\% within income per month	22,9\%	62,9\%	14,3\%	100,0\%
	4000-5999	Count	1	7	0	8
		\% within income per month	12,5\%	87,5\%	,0\%	100,0\%
	6000-7999	Count	0	1	2	3
		\% within income per month	,0\%	33,3\%	66,7\%	100,0\%
	>8000	Count	0	1	2	3
		\% within income per month	,0\%	33,3\%	66,7\%	100,0\%
Total		Count	35	55	10	100
		\% within income per month	35,0\%	55,0\%	10,0\%	100,0\%

Table 79. Chi-Square Tests for income per month and preferred brand level by price
Chi-Square Tests

	Value df			Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
			Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	39,746	10	,000	, 000 ${ }^{\text {b }}$,000	,000			
Likelihood Ratio	35,491	10	,000	, $000{ }^{\text {b }}$,000	,000			
Fisher's Exact Test	30,050			,000 ${ }^{\text {b }}$,000	,000			
Linear-by-Linear Association	15,219 ${ }^{\text {c }}$	1	,000		,000	,000	, $000{ }^{\text {b }}$,000	,000
N of Valid Cases	100								

a. 14 cells $(77,8 \%)$ have expected count less than 5 . The minimum expected count is, 30 .
b. Based on 10000 sampled tables with starting seed 139908985 .
c. The standardized statistic is 3,901 .

Table 80. Contingency test for income per month and preferred brand level by price
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal	Contingency Coefficient		,533	,000	,000 ${ }^{\text {a }}$,000	,000
N of Valid Cases		100					

a. Based on 10000 sampled tables with starting seed 139908985.

Table 81. Nonparametric test for personal income and price bands knowledge level

			income per month	price brands knowledge level
Spearman's rho	income per month	Correlation Coefficient	1,000	,416"
		Sig. (2-tailed)		,000
		N	100	100
	price brands knowledge	Correlation Coefficient	,416*******	1,000
		Sig. (2-tailed)	,000	
		N	100	100

**. Correlation is significant at the 0.01 level (2-tailed).
Table 82. Crosstabulation income per month and price brands knowledge level
income per month * price brands knowledge level Crosstabulation

			price brands knowledge level				Total
			unclearly	neither unclearly nor clearly	clearly	very clearly	
income per month	<1000	Count \% within income per month	8 $88,9 \%$	0	11,1\%	0	9 $100,0 \%$
	$\begin{aligned} & 1000- \\ & 1999 \end{aligned}$	Count \% within income per month	17 $40,5 \%$	18	7 $\begin{array}{r}7 \\ 16,7 \%\end{array}$	0	42
	$\begin{aligned} & 2000- \\ & 3999 \end{aligned}$	Count \% within income per month	11 $31,4 \%$	10	13 $37,1 \%$	1	35 $100,0 \%$
	$\begin{aligned} & \hline 4000- \\ & 5999 \end{aligned}$	Count \% within income per month	0	午	3 $37,5 \%$	1 $\begin{array}{r}1 \\ 12,5 \%\end{array}$	8 $100,0 \%$
	$\begin{aligned} & \hline 6000- \\ & 7999 \end{aligned}$	Count \% within income per month	0	2 ${ }^{2}$	0	1	3 $100,0 \%$
	>8000	Count \% within income per month	0	1	62 ${ }^{2}$	0	3
Total		Count \% within income per month	$\begin{array}{r} 36 \\ 36,0 \% \end{array}$	35 $35,0 \%$	26	3 $3,0 \%$	100 $100,0 \%$

Table 83. Chi-Square Tests for personal income and price bands knowledge level
Chi-Square Tests

	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	CopUp pe r Bo un d
Pearson ChiSquare	38,322 ${ }_{\text {a }}$	15	,001	$, 005^{\mathrm{b}}$,003	,007			
Likelihood Ratio	38,908	15	,001	, $000{ }^{\text {b }}$,000	,000			
Fisher's Exact Test	32,527			, $000{ }^{\text {b }}$,000	,001			
Linear-by-Linear Association	16,956	1	,000		,000		,000 ${ }^{\text {b }}$,000	,0
N of Valid Cases	100								

a. 18 cells $(75,0 \%)$ have expected count less than 5 . The minimum expected count is, 09 .
b. Based on 10000 sampled tables with starting seed 520973818 .
c. The standardized statistic is 4,118 .

Table 84. Contingency test for personal income and price bands knowledge level

Symmetric Measures

a. Based on 10000 sampled tables with starting seed 520973818.

Table 85. Crosstabs between income per month and attitude toward price premium income per month * attitude toward price premium Crosstabulation

		\% within income per month	25,0\%	50,0\%	25,0\%	100,0\%
	6000-7999	Count	0	1	2	3
		\% within income per month	,0\%	33,3\%	66,7\%	100,0\%
	>8000	Count	1	0	2	3
		\% within income per month	33,3\%	,0\%	66,7\%	100,0\%
Total		Count	22	41	37	100
		\% within income per month	22,0\%	41,0\%	37,0\%	100,0\%

Table 86. Chi-Square Tests for income per month and attitude toward price premium
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2- sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson Chi- Square		10	,020	,014 ${ }^{\text {b }}$,011	,017			
Likelihood Ratio	25,277	10	,005	,007 ${ }^{\text {b }}$,005	,010			
Fisher's Exact Test	20,898			,006 ${ }^{\text {b }}$,004	,008			
Linear-by-Linear Association	1,429 ${ }^{\text {c }}$	1	,232	,239 ${ }^{\text {b }}$,228	,250	, $134{ }^{\text {b }}$,125	,142
N of Valid Cases	100								

a. 12 cells ($66,7 \%$) have expected count less than 5 . The minimum expected count is ,66.
b. Based on 10000 sampled tables with starting seed 1535910591.
c. The standardized statistic is 1,196 .

Table 87. Contingency test for income per month and attitude toward price premium
Symmetric Measures

a. Based on 10000 sampled tables with starting seed 1535910591.

Table 88. Nonparametric test for income per month and attitude toward price premium

			income per month	attitude toward price premium
Spearman's rho	income per month	Correlation Coefficient	1,000	,148
		Sig. (2-tailed)		,141
		N	100	100
	attitude toward price premium	Correlation Coefficient	,148	1,000
		Sig. (2-tailed)	,141.	
		N	100	100

Table 89. Nonparametric test for income per month and Question 13
Correlations

			income per month	comparison between price and quality
Spearman's rho	income per month	Correlation Coefficient	1,000	-,448**
		Sig. (2-tailed)		,000
		N	100	100
	comparison between price	Correlation Coefficient	-,448*	1,000
	and quality	Sig. (2-tailed)	,000	
		N	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Table 90. Crosstabulation between income per month and Question 13
income per month * comparison between price and quality Crosstabulation

			comparison between price and quality				
			quality > price	$\begin{aligned} & \text { quality } \\ & =\text { price } \end{aligned}$	quality <price	$\begin{gathered} \text { something } \\ \text { else } \end{gathered}$	Total
income per month	<1000	Count \% within income per month	, 0	88,9\%	11,1\%	$\begin{array}{r}0 \\ , 0 \%\end{array}$	$\begin{array}{\|r\|} \hline 9 \\ 100,0 \% \end{array}$
	$\begin{aligned} & 1000- \\ & 1999 \end{aligned}$	Count \% within income per month	11,9\%	35	1	1	42 $100,0 \%$
	$\begin{aligned} & 2000- \\ & 3999 \end{aligned}$	Count \% within income per month	12 $34,3 \%$	21	2	0	35 $100,0 \%$
	$\begin{aligned} & 4000- \\ & 5999 \end{aligned}$	Count \% within income per month	[4	[4	0	0	8 8
	$\begin{aligned} & 6000- \\ & 7999 \end{aligned}$	Count \% within income per month	[3	0	0	0	3 $100,0 \%$
	>8000	Count \% within income per month	[3	0	0	0	

Total	Count \% within income per month	$27,0 \%$	$68,0 \%$	$4,0 \%$	100	$1,0 \%$

Table 91. Chi-Square Tests for income per month and Question 13
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	30,504	15	,010	$, 073^{\mathrm{b}}$,066	,080			
Likelihood Ratio	33,157	15	,004	, $000{ }^{\text {b }}$,000	,001			
Fisher's Exact Test	33,897			, 001 ${ }^{\text {d }}$,000	,001			
Linear-by-Linear Association	20,836	1	,000			,000	,000 ${ }^{\text {b }}$,000	,000
N of Valid Cases	100								

a. 18 cells ($75,0 \%$) have expected count less than 5 . The minimum expected count is ,03.
b. Based on 10000 sampled tables with starting seed 1437578359.
c. The standardized statistic is $-4,565$.

Table 92. Contingency test for income per month and Question 13
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		$\begin{gathered} \hline, 483 \\ 100 \end{gathered}$,010	,073 ${ }^{\text {a }}$,066	,080

a. Based on 10000 sampled tables with starting seed 1437578359 .

Table 93. Chi-Square Tests for importance of price and style
Chi-Square Tests

Pearson Chi-	33,615	12	, 001	, 001^{D}	, 000	, 001			
Square									
Likelihood Ratio	36,536	12	, 000	, 000^{b}	, 000	, 001			
Fisher's Exact Test	31,960			, 000^{b}	, 000	, 000			
Linear-by-Linear	$9,172^{\mathrm{c}}$	1	, 002	, 002^{b}	, 001	, 003	, 001^{D}	, 000	, 002
Association	100								
N of Valid Cases	100								

a. 13 cells $(65,0 \%)$ have expected count less than 5 . The minimum expected count is ,66.
b. Based on 10000 sampled tables with starting seed 91445366 .
c. The standardized statistic is $-3,029$.

Table 94. Contingency test for importance of price and style
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		$\begin{gathered} \hline, 502 \\ 100 \end{gathered}$,001	,001 ${ }^{\text {a }}$,000	,001

a. Based on 10000 sampled tables with starting seed 91445366 .

Table 95. Chi-Square Tests for importance of price and easy to use
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		12	,353	,354 ${ }^{\text {b }}$,341	,366			
Likelihood Ratio	13,620	12	,326	,452 ${ }^{\text {b }}$,439	,465			
Fisher's Exact Test	12,261			,341 ${ }^{\text {d }}$,329	,354			
Linear-by-Linear Association	,203 ${ }^{\text {c }}$	1	,652	,653 ${ }^{\text {b }}$,641	,665	,345 ${ }^{\text {b }}$,333	,358
N of Valid Cases	100								

a. 13 cells $(65,0 \%)$ have expected count less than 5 . The minimum expected count is ,36.
b. Based on 10000 sampled tables with starting seed 91445366 .
c. The standardized statistic is ,451.

Table 96. Contingency test for importance of price and easy to use
Symmetric Measures

			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{gathered} \hline, 342 \\ 100 \end{gathered}$,353	, 354 ${ }^{\text {a }}$,341	,366

a. Based on 10000 sampled tables with starting seed 91445366 .

Table 97. Chi-Square Tests for importance of price and value for money
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	23,206 ${ }_{\text {a }}$	12	,026	$, 021^{\mathrm{b}}$,017	,024			
Likelihood Ratio	22,805	12	,029	,052 ${ }^{\text {b }}$,046	,058			
Fisher's Exact Test	19,345			$, 036^{\mathrm{b}}$,031	,041			
Linear-by-Linear Association N of Valid Cases	$\begin{array}{r} 14,003 \\ \mathrm{c} \\ 100 \end{array}$	1	,000	, $000{ }^{\text {b }}$,000	,000	,000 ${ }^{\text {b }}$,000	,000

a. 13 cells ($65,0 \%$) have expected count less than 5 . The minimum expected count is ,66.
b. Based on 10000 sampled tables with starting seed 91445366 .
c. The standardized statistic is 3,742 .

Table 98. Contingency test for importance of price and value for money
Symmetric Measures

a. Based on 10000 sampled tables with starting seed 91445366 .

Table 99. Chi-Square Tests for importance of price and aftersaleservice

Chi-Square Tests

					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	$\begin{array}{\|r\|} \hline 11,21 \\ 5^{\mathrm{a}} \end{array}$	12	,511	,521 ${ }^{\text {b }}$,508	,533			
Likelihood Ratio	$\begin{array}{r} 11,37 \\ 3 \end{array}$	12	,497	,643 ${ }^{\text {b }}$,631	,655			
Fisher's Exact Test	9,270			,656 ${ }^{\text {b }}$,643	,668			
Linear-by-Linear Association	1,126 ${ }^{\text {c }}$	1	,289	,305 ${ }^{\text {b }}$,293	,316	, $157^{\text {b }}$,148	,166
N of Valid Cases	100								

a. 13 cells $(65,0 \%)$ have expected count less than 5 . The minimum expected count is ,60.
b. Based on 10000 sampled tables with starting seed 91445366 .
c. The standardized statistic is 1,061 .

Table 100. Contingency test for importance of price and aftersaleservice
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{gathered} \hline, 318 \\ 100 \end{gathered}$,511	,521 ${ }^{\text {a }}$,508	,533

a. Based on 10000 sampled tables with starting seed 91445366 .

Table 101. Chi-Square Tests for importance of price and availability
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	25,886 ${ }^{\text {a }}$	12	,011	$, 010^{\mathrm{b}}$,008	,013			
Likelihood Ratio	25,137	12	,014	,025 ${ }^{\text {b }}$,021	,029			
Fisher's Exact Test	20,727			,019 ${ }^{\text {b }}$,015	,022			
Linear-by-Linear Association	1,148 ${ }^{\text {c }}$	1	,284	,302 ${ }^{\text { }}$,290	,314	, $152^{\text {b }}$,142	,161
N of Valid Cases	100								

a. 13 cells ($65,0 \%$) have expected count less than 5 . The minimum expected count is ,60.
b. Based on 10000 sampled tables with starting seed 91445366 .
c. The standardized statistic is $-1,071$.

Table 102. Contingency test for importance of price and availability
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient	,453	,011	,010 ${ }^{\text {a }}$,008	,013
N of Valid Cases	100				

a. Based on 10000 sampled tables with starting seed 91445366 .

Table103. Nonparametric Correlation between question five and question four

Correlations

			importanc e of price	style	$\begin{array}{\|c\|} \hline \text { easytou } \\ \text { se } \end{array}$	valueform oney	aftersalese rvice	availabil ity
Spearman's rho	importance of price	Correlation Coefficient	1,000	$\begin{array}{r} \hline-, 323 \\ \\ , 001 \\ 100 \end{array}$	$\begin{gathered} \hline, 049 \\ \\ \hline 631 \\ 100 \end{gathered}$	$\begin{array}{r} \hline, 333 \\ \\ \hline, 001 \\ 100 \\ \hline \end{array}$	$\begin{gathered} \hline, 089 \\ , 377 \\ 100 \end{gathered}$,- 085 , 399 100
		Sig. (2-tailed)						
		N	100					
	style	Correlation Coefficient	-,323	1,000	-,020	-,516	-,281	-,336
		Sig. (2-tailed)	,001		,847	,000	,005	,001
		N	100	100	100	100	100	100
	easytouse	Correlation Coefficient	,049	-,020	1,000	-,183	-,360**	-,,146
		Sig. (2-tailed)	,631	,847		,069	,000	,148
		N	100	100	100	100	100	100
	valueformone y	Correlation Coefficient	, 333	$-, 516^{* *}$	-,183	1,000	,308**	-,338********
		Sig. (2-tailed)	,001	,000	,069		,002	,001
		N	100	100	100	100	100	100
	aftersaleservic e	Correlation Coefficient	,089	$-, 281{ }^{\text {* }}$	-,360	,308********	1,000	-,476*
		Sig. (2-tailed)	,377	,005	,000	,002		,000
		N	100	100	100	100	100	100
	availability	Correlation Coefficient	-,085	-,336	-,146	-,338**	-,476********)	1,000
		Sig. (2-tailed)	,399	,001	,148	,001	,000	
		N	100	100	100	100	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Table 104. Crosstabulation between importance of price and Question seven importance of price * extent of price as a quality dimension Crosstabulation

			extent of price as a quality dimension					Total
			very small	small	mediu m	large	very large	
importance of price	unimportant	Count \% within importance of price	0 0 \%	$\begin{array}{r} \hline 0 \\ , 0 \% \end{array}$	$\begin{array}{r} 1 \\ 16,7 \% \end{array}$	$\begin{array}{r} 1 \\ 16,7 \% \end{array}$	$\begin{array}{r} 4 \\ 66,7 \% \end{array}$	100,0 $\%$
	neither important nor unimportant	Count \% within importance of price	, 0	, 0	29,4\%	35,3\%	6 $35,3 \%$	17 100,0 $\%$
	important	Count \% within importance of price	1	$\begin{array}{r} 2 \\ 3,7 \% \end{array}$	$\begin{array}{r} 25 \\ 46,3 \% \end{array}$	$\begin{array}{r} \hline 23 \\ 42,6 \% \end{array}$	3 $5,6 \%$	54 100,0 $\%$
	very important	Count \% within importance of price	, 0	, 0	1 $7,7 \%$	53, 7	5	13 100,0 $\%$
Total		Count \% within importance of price	1,1\%	2,2\%	$\begin{array}{r} 32 \\ 35,6 \% \end{array}$	$\begin{array}{r} 37 \\ 41,1 \% \end{array}$	$\begin{array}{r} 18 \\ 20,0 \% \end{array}$	90 100,0 $\%$

Table 105. Chi-Square Tests for importance of price and Question seven
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	25,297	12	,013	$, 026^{\mathrm{D}}$,022	,030			
Likelihood Ratio	26,860	12	,008	,003 ${ }^{\text {b }}$,002	,005			
Fisher's Exact Test	26,247			$, 002^{\mathrm{D}}$,001	,003			
Linear-by-Linear Association N of Valid Cases	$\begin{array}{r} 1,270^{\circ} \\ 90 \end{array}$	1	,260	,276 ${ }^{\text {b }}$,264	,287	, 150°	,141	,160

a. 14 cells $(70,0 \%)$ have expected count less than 5 . The minimum expected count is ,07.
b. Based on 10000 sampled tables with starting seed 440131537.
c. The standardized statistic is $-1,127$.

Table 106. Contingency test for importance of price and Question seven

Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		,468 90	,013	,026 ${ }^{\text {a }}$,022	,030

a. Based on 10000 sampled tables with starting seed 440131537.

Table 107. Nonparametric Correlation between importance of price and Question seven Correlations

		importance of price	extent of price as a quality dimension	
Spearman's rho	importance of price	Correlation Coefficient	1,000	,- 073
		Sig. (2-tailed)		, 494
	N	100	90	
	extent of price as a quality dimension	Correlation Coefficient	,- 073	1,000
	Sig. (2-tailed)	, 494		
	N	90	90	

Table 108. Crosstabulation between importance of price and preferred brand level by price importance of price * preferred brand level by price Crosstabulation

			preferred brand level by price			
			low priced brand	middle priced brand	high price brand	Total
importance of price	unimportant	Count \% within importance of price	, 0	$\begin{array}{r} 3 \\ 50,0 \% \end{array}$	$\begin{array}{r} 3 \\ 50,0 \% \end{array}$	100,0\%
	neither important nor unimportant	Count \% within importance of price	2 ${ }^{2}$	13 $68,4 \%$	21,1\%	19 $100,0 \%$
	important	Count \% within importance of price	26 $44,1 \%$	31	2 $3,4 \%$	59 $100,0 \%$
	very important	Count \% within importance of price	7 7	[$\begin{array}{r}8 \\ 50,0 \%\end{array}$	1	16 $\begin{array}{r}16 \\ 100,0 \%\end{array}$

Total	Count \% within importance of price	$35,0 \%$	55	10	100

Table 109. Chi-Square Tests for importance of price and preferred brand level by price
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		6	,001	,001 ${ }^{\text {b }}$,000	,002			
Likelihood Ratio	21,389	6	,002	, $002{ }^{\text {b }}$,001	,003			
Fisher's Exact Test	19,322			, 001 ${ }^{\text {D }}$,000	,002			
Linear-by-Linear Association N of Valid Cases	$14,184$ 100	1	,000	, $000{ }^{\text {b }}$,000	,001	,000 ${ }^{\text {b }}$,000	,001

a. 5 cells $(41,7 \%)$ have expected count less than 5 . The minimum expected count is, 60 .
b. Based on 10000 sampled tables with starting seed 1451419960.
c. The standardized statistic is $-3,766$.

Table 110. Contingency test for importance of price and preferred brand level by price
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.		
				Sig.	99\% Confidence Interval	
					Lower Bound	Upper Bound
Nominal by Nominal	Contingency Coefficient	,429	,001	,001 ${ }^{\text {a }}$,000	,002
N of Valid Cases		100				

a. Based on 10000 sampled tables with starting seed 1451419960.

Table 111. Nonparametric Correlation between importance of price and Question eight
Correlations

		importance of price	preferred brand level by price
Spearman's rho	importance of price	Correlation Coefficient	1,000
	Sig. (2-tailed)	,- 348	
	N		100

preferred brand level by	Correlation Coefficient	,- 348	
price	Sig. (2-tailed)	1,000	
	N	1000	

${ }^{* *}$. Correlation is significant at the 0.01 level (2-tailed).

Table 112. Nonparametric Correlation between importance of price and Question nine
Correlations

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& \& importan ce of price \& perform ance \& \[
\begin{gathered}
\text { featur } \\
\mathrm{e} \\
\hline
\end{gathered}
\] \& \[
\begin{gathered}
\text { reliabi } \\
\text { lity }
\end{gathered}
\] \& durabi lity \& seavice ability \& conform ance \& stylede sign \\
\hline \multirow[t]{8}{*}{Spearma n's rho} \& importance of price \& Correlation Coefficient Sig. (2-tailed) N \& 1,000 \& \[
\begin{array}{r}
\hline-, 132 \\
, 191 \\
100
\end{array}
\] \& \[
\begin{gathered}
\hline-187 \\
, 062 \\
100
\end{gathered}
\] \& \[
\begin{array}{r}
, 235 \\
, 018 \\
100
\end{array}
\] \& \[
\begin{array}{r}
, 249 \\
, 012 \\
100
\end{array}
\] \& \[
\begin{array}{r}
\hline, 339{ }^{\mathrm{P}} \\
\\
, 001 \\
100
\end{array}
\] \& , 034
, 739
100 \& \begin{tabular}{r}
,- 394 \\
\\
\hline 000 \\
, \\
100
\end{tabular} \\
\hline \& \begin{tabular}{l}
performanc \\
e
\end{tabular} \& Correlation Coefficient Sig. (2-tailed) N \& \[
\begin{gathered}
-, 132 \\
, 191 \\
100
\end{gathered}
\] \& 1,000 \& \[
\begin{gathered}
, 091 \\
, 370 \\
100
\end{gathered}
\] \& \[
\begin{gathered}
\hline-182 \\
, 070 \\
100
\end{gathered}
\] \& \[
\begin{array}{r}
-384 \\
0 \\
000 \\
100
\end{array}
\] \& \[
\begin{array}{r}
-, 238 \\
-017 \\
100
\end{array}
\] \& ,- 083
, 411
100 \& ,- 145

, 150
100

\hline \& feature \& Correlation Coefficient Sig. (2-tailed) N \& $$
\begin{gathered}
\hline-187 \\
, 062 \\
100
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\hline, 091 \\
\\
, 370 \\
100
\end{gathered}
$$

\] \& | 1,000 |
| :---: |
| 100 | \& \[

$$
\begin{array}{r}
, 265^{*} \\
, 008 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{|r|}
\hline-446 \\
000 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline-, 400 \\
0 \\
, 000 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline-, 364 \\
\\
, 000 \\
100 \\
\hline
\end{array}
$$
\] \& , 240

, 016
100

\hline \& reliability \& Correlation Coefficient Sig. (2-tailed) N \& $$
\begin{gathered}
\hline, 235^{*} \\
, 018 \\
100
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\hline-182 \\
\\
, 070 \\
100 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
, 265 \\
, 008 \\
100
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\hline 1,000 \\
100 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\hline, 420 \\
\\
, 000 \\
100
\end{array}
$$

\] \& \[

$$
\begin{gathered}
, 062 \\
, 539 \\
100
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\hline-, 337 \\
\\
, 001 \\
100 \\
\hline
\end{array}
$$
\] \& ,- 459

, 000
100

\hline \& durability \& Correlation Coefficient Sig. (2-tailed) N \& $$
\begin{gathered}
\hline, 249^{*} \\
, 012 \\
100 \\
\hline
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
\hline, 384^{\text {}} \\
\\
, 000 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
, 446 \\
, 000 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline, 420^{0 \times} \\
0,000 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1,000 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline, 370^{* *} \\
\\
, 000 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-, 106 \\
\\
, 295 \\
100 \\
\hline
\end{array}
$$
\] \& $\begin{array}{r}-, 489 \\ \\ 0 \\ , 000 \\ 100 \\ \hline\end{array}$

\hline \& seaviceabili ty \& Correlation Coefficient Sig. (2-tailed) N \& $$
\begin{array}{r}
\hline, 339^{* *} \\
0,001 \\
100 \\
\hline
\end{array}
$$ \& \[

$$
\begin{array}{r}
-, 238 \\
\\
, 017 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
, 400^{-} \\
, 000 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
, 062 \\
\\
, 539 \\
100
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
\hline, 370^{\text {x" }} \\
000 \\
100
\end{array}
$$
\] \& 1,000

100 \& $$
\begin{array}{r}
-, 206^{*} \\
\\
, 040 \\
100
\end{array}
$$ \& $\begin{array}{r}-, 381{ }^{\prime \prime} \\ \\ , 000 \\ 100 \\ \hline\end{array}$

\hline \& conformanc e \& Correlation Coefficient Sig. (2-tailed) N \& $$
\begin{gathered}
\hline, 034 \\
\\
, 739 \\
100
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\hline-, 083 \\
\\
, 411 \\
100 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
, 364 \\
, 000 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
, 337^{*} \\
, 001 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\hline-106 \\
, 295 \\
100 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-, 206 \\
0 \\
, 040 \\
100 \\
\hline
\end{array}
$$
\] \& 1,000 \& $\begin{array}{r}\text {,049 } \\ \\ , 631 \\ 100 \\ \hline\end{array}$

\hline \& styledesign \& Correlation Coefficient Sig. (2-tailed) N \& $$
\begin{array}{r}
\hline-, 394^{-r} \\
\\
, 000 \\
100
\end{array}
$$ \& \[

$$
\begin{gathered}
-, 145 \\
, 150 \\
100
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
, 240^{*} \\
016 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
, 459^{*} \\
, 000 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{|r|}
\hline-489 \\
000 \\
100
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-, 381 \\
\\
, 000 \\
100
\end{array}
$$
\] \& ,049 \& 1,000

100

\hline
\end{tabular}

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

Table 113. Chi-Square Tests for importance of price and performance

Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	31,111	18	,028	,033 ${ }^{\text {b }}$,028	,037			
Likelihood Ratio	30,068	18	,037	,035 ${ }^{\text {b }}$,031	,040			
Fisher's Exact Test	24,583			,038 ${ }^{\text {b }}$,033	,043			
Linear-by-Linear Association N of Valid Cases	$\begin{array}{r} 2,610^{c} \\ 100 \end{array}$	1	,106	,108 ${ }^{\text {b }}$,100	,116	,052 ${ }^{\text {b }}$,046	,058

a. 23 cells ($82,1 \%$) have expected count less than 5 . The minimum expected count is ,12.
b. Based on 10000 sampled tables with starting seed 440131537.
c. The standardized statistic is $-1,616$.

Table 114. Contingency test for importance of price and performance
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		$\begin{aligned} & \hline, 487 \\ & 100 \end{aligned}$,028	,033 ${ }^{\text {a }}$,028	,037

a. Based on 10000 sampled tables with starting seed 440131537.

Table 115. Chi-Square Tests for importance of price and feature

Chi-Square Tests

	Value df			Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
			Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	40,262	18	,002	,003 ${ }^{\text {b }}$,001	,004			
Likelihood Ratio	43,335	18	,001	, 001 ${ }^{\text {b }}$,000	,001			
Fisher's Exact Test	33,050			, $002{ }^{\text {b }}$,001	,003			
Linear-by-Linear Association	$3,704^{\text {c }}$	1	,054	, 055 ${ }^{\text {b }}$,049	,061	,029 ${ }^{\text {b }}$,024	,033

N of Valid Cases

a. 22 cells $(78,6 \%)$ have expected count less than 5 . The minimum expected count is ,18.
b. Based on 10000 sampled tables with starting seed 440131537.
c. The standardized statistic is $-1,925$.

Table 116. Contingency test for importance of price and feature
Symmetric Measures

		Value	Approx. Sig.	Monte Carlo Sig.			
		Sig.		99\% Confidence Interval			
		Lower Bound		Upper Bound			
Nominal by Nominal N of Valid Cases	Contingency Coefficient		$\begin{gathered} \hline, 536 \\ 100 \end{gathered}$,002	,003 ${ }^{\text {a }}$,001	,004

a. Based on 10000 sampled tables with starting seed 440131537.

Table 117. Chi-Square Tests for importance of price and reliability
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2- sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	26,369	18	,092	$, 084^{\mathrm{b}}$,077	,091			
Likelihood Ratio	32,026	18	,022	,028 ${ }^{\text {b }}$,024	,033			
Fisher's Exact Test	26,224			,028	,024	,032			
Linear-by-Linear Association N of Valid Cases	$\begin{array}{r} 4,951^{c} \\ 100 \end{array}$	1	,026	,028 ${ }^{\text {b }}$,024	,032	,014 ${ }^{\text {b }}$,011	,017

a. 23 cells $(82,1 \%)$ have expected count less than 5 . The minimum expected count is ,12.
b. Based on 10000 sampled tables with starting seed 440131537.
c. The standardized statistic is 2,225 .

Table 118. Contingency test for importance of price and reliability
Symmetric Measures

Nominal by Nominal ContingencyCoefficient	, 457	, 092	, $084^{\text {a }}$,077	,091
N of Valid Cases	100				

a. Based on 10000 sampled tables with starting seed 440131537.

Table119. Chi-Square Tests for importance of price and durability
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	21,475	18	,256	252^{b}	,240	,263			
Likelihood Ratio	23,487	18	,173	,251 ${ }^{\text {b }}$,239	,262			
Fisher's Exact Test	20,702			, $173{ }^{\text {b }}$,163	,183			
Linear-by-Linear Association	6,546 ${ }^{\text {c }}$	1	,011		,008	,014	,006 ${ }^{\text {b }}$,004	,008
N of Valid Cases	100								

a. 23 cells ($82,1 \%$) have expected count less than 5 . The minimum expected count is ,12.
b. Based on 10000 sampled tables with starting seed 440131537.
c. The standardized statistic is 2,559 .

Table 120. Contingency test for importance of price and durability
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency N of Valid Cases	,420	,256	,252 ${ }^{\text {a }}$,240	,263

a. Based on 10000 sampled tables with starting seed 440131537.

Table 121. Chi-Square Tests for importance of price and seaviceability
Chi-Square Tests

			Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
				99\% Confidence Interval			99\% Confidence Interval	
Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound

Pearson Chi-	26,491								
Square	18	, 089	, 106^{b}	, 098	, 114				
Likelihood Ratio	27,768	18	, 066	, 074^{b}	, 067	, 080			
Fisher's Exact	25,882			, 039^{b}	, 034	, 044			
Test									
Linear-by-Linear	10,635	1	, 001	, 001^{D}	, 000	, 001	, 000^{b}	, 000	, 001
Association	100								
N of Valid Cases	18								

a. 22 cells $(78,6 \%)$ have expected count less than 5 . The minimum expected count is, 06 .
b. Based on 10000 sampled tables with starting seed 440131537.
c. The standardized statistic is 3,261 .

Table 122. Contingency test for importance of price and seaviceability
Symmetric Measures

a. Based on 10000 sampled tables with starting seed 440131537.

Table 123. Chi-Square Tests for importance of price and conformance
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare	$13,991$	18	,730	$, 750^{\mathrm{b}}$,738	,761			
Likelihood Ratio	16,451	18	,561	, $720{ }^{\text {b }}$,709	,732			
Fisher's Exact Test	14,315			,661 ${ }^{\text {D }}$,649	,673			
Linear-by-Linear Association	, $065{ }^{\text {c }}$	1	,798		,811	,831	, $411{ }^{\text {b }}$,399	,424
N of Valid Cases	100								

a. 22 cells $(78,6 \%)$ have expected count less than 5 . The minimum expected count is ,18.
b. Based on 10000 sampled tables with starting seed 440131537.
c. The standardized statistic is ,

Table 124. Contingency test for importance of price and conformance
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{gathered} \hline, 350 \\ 100 \end{gathered}$,730	,750 ${ }^{\text {a }}$,738	,761

a. Based on 10000 sampled tables with starting seed 440131537.

Table 125. Chi-Square Tests for importance of price and styledesign
Chi-Square Tests

				Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value	df	Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		18	,007	$, 010^{\mathrm{b}}$,008	,013			
Likelihood Ratio	35,924	18	,007	, 006 ${ }^{\text {b }}$,004	,007			
Fisher's Exact Test	32,320			, 001 ${ }^{\text {b }}$,000	,002			
Linear-by-Linear Association	12,047	1	,001	,000 ${ }^{\text {b }}$,000	,001	,000 ${ }^{\text {b }}$,000	,001
N of Valid Cases	100								

a. 23 cells ($82,1 \%$) have expected count less than 5 . The minimum expected count is ,18.
b. Based on 10000 sampled tables with starting seed 440131537 .
c. The standardized statistic is $-3,471$.

Table 126. Contingency test for importance of price and styledesign
Symmetric Measures

	Value	Approx. Sig.	Monte Carlo Sig.		
			Sig.	99\% Confidence Interval	
				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	, 514 100	,007	,010 ${ }^{\text {a }}$,008	,013

a. Based on 10000 sampled tables with starting seed 440131537.

Table 127. Crosstabulation between importance of price and price bands knowledge level
importance of price * price brands knowledge level Crosstabulation

			price bands knowledge level				
			unclearl y	neither unclearly nor clearly	clearly	very clearly	Total
importance of price	unimportant	Count \% within importance of price	$\begin{array}{r} 2 \\ 33,3 \% \end{array}$	$\begin{array}{r} 1 \\ 16,7 \% \end{array}$	$\begin{array}{r} 3 \\ 50,0 \% \end{array}$, 0	$\begin{array}{r} 6 \\ 100,0 \% \end{array}$
	neither important nor unimportant	Count \% within importance of price	1	10 $52,6 \%$	$\begin{array}{r} 8 \\ 42,1 \% \end{array}$	0	19 $100,0 \%$
	important	Count \% within importance of price	29	19 $32,2 \%$	$\begin{array}{r} 10 \\ 16,9 \% \end{array}$	1 1	59 $100,0 \%$
	very important	Count \% within importance of price	25,0\%	5 $31,3 \%$	5 ${ }^{5}$	2	16 $100,0 \%$
Total		Count \% within importance of price	[$\begin{array}{r}36 \\ 36,0 \%\end{array}$	$\begin{array}{r} 35 \\ 35,0 \% \end{array}$	$\begin{array}{r} 26 \\ 26,0 \% \end{array}$	3	$\begin{array}{r} 100 \\ 100,0 \% \end{array}$

Table 128. Chi-Square Tests for importance of price and price bands knowledge level
Chi-Square Tests

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% ConfidenceInterval			99\% Confidence Interval	
	Value		Asymp. Sig. (2sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		9	,009	$, 016^{\mathrm{b}}$,012	,019			
Likelihood Ratio	22,854	9	,007	, 008 ${ }^{\text {b }}$,006	,010			
Fisher's Exact Test	21,384			$, 004^{\mathrm{D}}$,002	,005			
Linear-by-Linear Association N of Valid Cases	$\begin{gathered} , 500^{c} \\ 100 \end{gathered}$	1	,480	,491 ${ }^{\text {D }}$,478	,504	,258 ${ }^{\text {b }}$,247	,269

a. 9 cells ($56,3 \%$) have expected count less than 5 . The minimum expected count is ,18.
b. Based on 10000 sampled tables with starting seed 213175432 .
c. The standardized statistic is,- 707 .

Table 129. Contingency test for importance of price and price bands knowledge level
Symmetric Measures

				Lower Bound	Upper Bound
Nominal by Nominal Contingency Coefficient N of Valid Cases	$\begin{array}{r} , 425 \\ 100 \end{array}$,009	,016 ${ }^{\text {a }}$,012	,019

a. Based on 10000 sampled tables with starting seed 213175432 .

Table 130. Nonparametric Correlations importance of price and price bands knowledge level
Correlations

		importance of price	price bands knowledge level
Spearman's rho	importance of price	Correlation Coefficient	1,000
,- 100			
	Sig. (2-tailed)		, 321
	N	100	100
	price brands knowledge level Correlation Coefficient	,- 100	1,000
	Sig. (2-tailed)	, 321.	
	N	100	100

Table 131. Crosstabulation between importance of price and attitude toward price premium
importance of price * attitude toward price premium Crosstabulation

Table 132. Chi-Square Tests for Importance of Price and Attitude toward Price Premium

		df		Monte Carlo Sig. (2-sided)			Monte Carlo Sig. (1-sided)		
					99\% Confidence Interval			99\% Confidence Interval	
	Value		Asymp. Sig. (2- sided)	Sig.	Lower Bound	Upper Bound	Sig.	Lower Bound	Upper Bound
Pearson ChiSquare		6	,029	$, 022^{\mathrm{b}}$,018	,026			
Likelihood Ratio	15,127	6	,019	,028 ${ }^{\text {b }}$,024	,032			
Fisher's Exact Test	12,595			$, 033^{\text {D }}$,028	,038			
Linear-by-Linear Association N of Valid Cases	$7,625^{\circ}$ 100	1	,006	,005 ${ }^{\text {b }}$,003	,007	,003 ${ }^{\text {b }}$,002	,005

a. 5 cells ($41,7 \%$) have expected count less than 5 . The minimum expected count is 1,32 .
b. Based on 10000 sampled tables with starting seed 846668601 .
c. The standardized statistic is $-2,761$.

Table 133. Contingency Test for Importance of Price and Attitude toward Price Premium
Symmetric Measures

a. Based on 10000 sampled tables with starting seed 846668601 .

Table 134. Nonparametric Correlations between importance of price and Question 12
Correlations

			importance of price	attitude toward price premium
Spearman's rho	importance of price	Correlation Coefficient	1,000	-,258**
		Sig. (2-tailed)		,010
		N	100	100
	attitude toward price	Correlation Coefficient	-,258**	1,000
		Sig. (2-tailed)	,010	
		N	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

