

Benard Gathimba

Windows Application Development:
Desktop User Interface

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

8 March 2021

 Abstract

Author
Title

Number of Pages
Date

Benard Gathimba
Windows Application Development: Desktop User Interface

39 pages
8 March 2021

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Mobile Solutions

Instructors

Ari Puuskari, CEO Profox Oy
Kari Salo, Principal Lecturer

This thesis project was commissioned by a Helsinki based company. The goal of the thesis
was to create a Windows desktop UI application that would launch modules from a central-
ized UI. The purpose of the application was to improve the users’ experience of the case
company’s software products. The development process of the application was segmented
into two sections: The Research section and The Implementation section.

Section one involved a research of technologies and existing solutions that serve a similar
purpose. Moreover, the research section highlights software development concepts such as
the software integration architecture for both the Windows platform operating system (OS)
and the software application. Section two involved the implementation process for the appli-
cation based on the software requirement specifications.

The project resulted in the creation of a UI application that could launch multiple modules
from a single interface. Further, the application was extensible allowing future addition of
software module products. In addition, the application now provides an uncomplicated
method of interaction with the case company’s products by its customers. Finally, future
studies to measure the application’s impact to customer productivity could be carried out.
The studies would highlight possible improvements to be made to the application.

Keywords User Interface, Desktop Application, Windows, UI, C#, WPF

Contents

List of Abbreviations

1 Introduction 1

2 Project Theory 2

2.1 Software Integration 2

2.2 User Interface Integration 6

2.3 UI Design 11

2.3.1 UI elements 12

2.3.2 Usability and user experience 15

2.3.3 Accessibility 15

2.3.4 Functionality 16

2.4 Existing UI Solutions 16

Adobe Creative Cloud Application 17

Autodesk Desktop Application 17

Microsoft Office 365 18

2.5 Development tools 20

.NET Core 20

Microsoft Visual Studio and Blend 21

Languages 21

Source Control 23

Entity Framework 23

3 Project Implementation 24

3.1 Objectives 24

3.2 Software Requirements Specification 24

3.3 App Design 26

3.4 App Creation 27

3.5 Testing 33

3.6 Publishing 35

4 Discussion 37

5 Conclusion 39

References 40

 List of Abbreviations

3D Three-dimensional. A perception of depth that represents objects or data.

IDE Integrated Development Environment. An environment utilized for software

development.

OS Operating System. The system software that manages a computer’s re-

sources, programs and hardware.

PC Personal Computer. A computing system for personal use.

SRS Software Requirement Specification. A document that details the needs

satisfied by a developed software product.

UI User Interface. The means of interaction between a user and a system

such as a computer, application or website.

WPF Windows Presentation Foundation. A user interface framework utilized to

create desktop applications.

1

1 Introduction

This thesis report was commissioned by Profox companies Oy, a Helsinki based com-

pany. The case company specializes in creating virtual designs for large scale construc-

tion projects. The virtual designs utilize new technologies to benefit a construction project

in aspects such as project accuracy, financing, scheduling, collaboration and so forth.

Moreover, one such technology example is the Navis Typhoon platform.

Navis Typhoon is a visual project portal that manages and shares a project’s 3D model

information, point cloud data and 360-degree images to all project stakeholders that in-

clude authorities and regulators, design consultants, architects, engineers, financers and

so forth. In addition, Navis Typhoon currently utilizes four software modules namely: Ad-

min module; Site control module; As-Built module; and Web module. Furthermore, the

four modules are tools utilized to evaluate the project progress during its life cycle.

The idea for this report was conceived from the case company’s need to improve the

users’ experience of customers utilizing Navis Typhoon. Currently, customers can only

launch the different software modules separately. To improve usability experience, a vi-

able solution would be creating a single User Interface (UI) with all product modules.

Moreover, since the modules are developed for the Windows environment, the UI would

also be a Windows application for the desktop Personal Computer (PC). The goal of the

thesis project is to create a Windows desktop UI application that would launch modules

from a centralized UI. The UI would also need to be dynamic to enable the addition of

more modules in the future.

2

2 Project Theory

This chapter will be a theoretical review of software development. The section will ana-

lyze aspects such as software integration for the windows platform, the design and inte-

gration of a UI, a review of existing UI solutions that serve a similar purpose to that in-

tended by the project and finally the development tools that will be utilized.

2.1 Software Integration

There are numerous integration procedures that can be adopted for a piece of software

based on the context of use and the level of sophistication required. Moreover, such

procedures vary based on aspects that include but are not limited to the operating sys-

tem, target platform, hardware or software technologies. The first context to consider is

that the case company’s project should run on a Windows operating system. An Operat-

ing System (OS) is a piece of software that efficiently manages a computing system’s

resources, hardware and executes programs [1, p. 154]. The next context is the target

platform which in this case is a Windows desktop PC and finally the subject of how to

integrate the software for the chosen OS and platform.

Integration can be defined as the assembly of different components to produce one sys-

tem or subsystem [2, p. 2]. A computing system contains various components that enable

it to perform as expected. In addition, such components include the OS that allows a

user’s interaction with the system through input and output devices, namely audio de-

vices such as a microphone, a display monitor, keyboard, wired or wireless networks

and so forth. Moreover, the OS is divided into several layers that manage different as-

pects and functions that are a result of command prompts by the software or hardware.

The induced command prompts can be categorized into four main sections.

The first section involves single-threaded applications that run exclusively over an un-

derlying processor core layer. Therefore, this type of applications rely on embedded de-

vice drivers and libraries generally developed using the C programming language so as

to access peripheral devices such as keyboard or display. The second section catego-

rizes multi-threaded applications that are also executed over an underlying processor

core. However, multithreaded applications require the use of a kernel or an OS that

3

would permit application switching so as to utilize multiprocessor communication layers

and middleware. The third section entails hardware accelerators that are programmable

to enable faster execution of tasks and functions. The programmability of the hardware

enables the execution of smaller firmware programs which could receive software up-

dates. Finally, the fourth section involves hardwired hardware accelerators. These hard-

wired accelerators have a set parameter configuration during assembly and cannot flex-

ibly receive software updates. [3, pp. 90-91.] Figure 1 below is a diagrammatic represen-

tation of these four sections with abbreviations HW and SW for hardware and software

respectively.

Figure 1. The software and hardware infrastructure model based on the source of the execution
command prompts. a) Single-threaded applications. b) Multi-threaded applications. c)
Programmable accelerators. d) Hardwired accelerators. Copied from Kempf et al
(2011) [3, p. 91].

Figure 1 illustrates the dissected layers of interaction that combine to execute a com-

mand prompt sent by either the software application or hardware. The location of an

application on the hierarchy stack denotes what underlying layer the application can im-

mediately interact with. Figure 1 a) denotes applications that prompt device drivers such

4

as those utilized for a keyboard. Figure 1 b) denotes applications that require the mid-

dleware and OS to allow access for other functions such as multiprocessor communica-

tions between layers. Figure 1 c) illustrates applications that are responsible for hardware

acceleration through firmware updates and finally Figure 1 d) shows a hardwired hard-

ware accelerator whose configuration parameter values are set during manufacture and

do not have a mechanism or application to update the configuration post-manufacture.

The model illustrated by Figure 1 b) would be a sufficient solution architecture for the

case company’s UI application. Typically, the model would enable the UI application to

execute functions such as those in the following scenario: First, the application would

use device drivers to send a launch command induced by a mouse click to the OS; next,

the OS would execute the sent command by launching the correct application and des-

ignating the required resources to support it.

To implement the above scenario, the OS has to utilize components that create a suitable

environment to run the UI application. The following are the components that an OS

provides:

1. Program Process Management: The component responsible for tasks such as

program creation, loading, optimization, execution, process scheduling, process

synchronization, suspension or resumption and finally process termination.

2. Memory Management: The component that keeps track of the main memory uti-

lized by application processes and determines whether to increase or decrease

memory allocation based on program activity.

3. Storage Management: The management of secondary memory storage where

application data is stored. The responsibility of the component is to manage file

creation, deletion or manipulation by a program or the defragmentation, allocation

or de-allocation of storage blocks.

4. Input / Output: The component that gives a level of abstraction from hardware

devices, maintains the interfaces of device drivers, ensures that devices are uti-

lized properly and avoids device errors.

5

5. Protection: The component that provides security to kernel code, hardware, data,

files and processes from otherwise malicious or erroneous programs.

6. Networking: The component that enables processors to communicate with each

other through communication lines called networks.

7. Command Interpreter: This component is responsible for facilitating the interac-

tion between a user and the operating system through compatible environments.

[4, pp. 41-42.]

To evaluate the components that the case client’s project would need to integrate, it is

important to know all the services offered by an OS. Figure 2 below depicts the services

offered by an OS as a result of its components.

Figure 2. Services of an Operating System. Copied from Garg (2017) [4, p. 43].

Figure 2 above shows numerous component services offered by an OS to an end user.

All the services are essential for adoption and integration during the development phase.

6

Moreover, the purpose of the services can easily be discerned from the OS components

with the exception of accounting. In this context, the accounting service means the OS

will track system activity for future performance optimization.

There are two programming models to consider during the development phase of the

case project. The first model is the event-driven model in which the system handles the

program using event interruptions triggered by either the software or hardware. The

premise of this model is that there are two contextual channels. One channel is meant

for the event handlers that are urgent and of a high-priority in nature while the other

channel is meant for the flow of the order of instructions known as tasks. A suitable

example of these two channels would be an event that triggers when a packet of data is

available for processing. The event is handled using the first channel as it is time-critical

though the processing and storage of the data in the packet is handled using the second

channel as it may take additional time. This approach avails the system to new event

triggers without blocking or queueing events while executing the tasks required by earlier

events in a separate channel.

The second programming model is the thread-driven model. In this model, the system

allows multiple program processes or threads to run concurrently on a single central

processing unit. The main benefit of this model is that it leads to the creation of software

components in an organized and logical manner as more emphasis is placed on the

sequence of task executions. [5, pp. 699-700.]

2.2 User Interface Integration

This section will review the UI as one of the components in an application and the manner

in which it is integrated. Further, an application is made up of various multi-layered com-

ponents that interact and communicate with each other to perform the application’s func-

tion. The number of layers as well as their functions vary depending on the purpose of

the application and the target platform such as the Web, mobile phones, robots or ma-

chines and so forth. The report will make use of two applications to illustrate the different

components utilized in creating the applications as well as show how the components

are categorized. The first application is an employment information management system

that is offered as a Web Service application. This application aggregates the information

7

of college employments provided by users with different roles such as guests, students,

teachers and administrators. The Web Service application’s framework design is shown

in Figure 3 below with abbreviations DAL for the Data Access Layer and BLL denoting

the Business Logic Layer.

Figure 3. Web Service application for the employment information management system. Copied
from Meng (2013) [6, p. 1933].

Figure 3 above illustrates the framework design for the Web Service application. The

components in the UI or Presentation layer offer interactive interfaces for the users. The

BLL serves as a link between DAL and the Presentation Layer and manages the efficient

transfer of data between the two layers while also maintaining data security. The DAL

provides a means for data manipulation and persistence storage. [6, pp. 1931-1933.]

The second application is called Yamasuta and it is a financial data analysis software

robot. The robot is used to study financial markets and to provide users with investment

decisions. Due to the volatility of financial markets, a financial software needs to analyze

and process large data and to subsequently display the computed results dynamically

through views and charts that can easily be understood by human end users. The com-

ponents of the Yamasuta robot are structured into a seven layered model. However, the

component-based architecture for an application comprises of the following overarching

parent layers: The Presentation layer; The Application layer; The Integration layer; and

8

the Data layer. Figure 4 below illustrates the architectural layers of the Yamasuta plat-

form application.

Figure 4. Framework layers of the Yamasuta platform. Adapted from Dayyani (2016) [7, p. 47].

As can be viewed from Figure 4, each major layer of the application has numerous com-

ponents. Users interact with the Yamasuta application through the Presentation layer

that is used to display content. The content displayed on the views varies dynamically

based on the parameters set by the user. The Application layer is comprised of the view

controllers, and the business logic. In this case, the business logic includes the view

model and the intelligence layer. The Data layer is constituted by data storage and data

manipulation components. Finally, the Integration layer denotes components used to fa-

cilitate the interpretation and communication between the four layers such as through

the view controllers and the message bus. [7, pp. 45-51.]

 The two software examples have similar framework layers with very different constitut-

ing components. The process of creating an application based on its framework and

components should be efficient and reusable. To achieve this efficiency and reusability,

a component library system is needed. This system is utilized to govern, detail, store and

9

fetch components for software development processes based on the software compo-

nent reuse. Therefore, the component library system supports the entire software life-

cycle from its development to its use. The component library is constructed hierarchically

using a four-layer based architecture model that includes: The Framework layer; The

Component layer; The Leaf class layer and; The Leaf method also known as Leaf func-

tion layer.

First, the Framework layer is used to define the main components of the overall software

structure and their relationship. As a result, the assembly of components for each layer

structure during development is directed by the framework layer. Second, the Compo-

nent layer describe the actual components adopted for use during development that have

a specific function such as project planning, design, analysis, test, document, data and

so forth. Next, the Leaf class layer is the subject of object-oriented development used to

define objects through classes and inheritance. The purpose of this layer is to increase

the reusability of a component by other components or software systems. Finally, the

Leaf function layer is the lowest layer of architecture and only provides services. This

layer can further be divided into two categories comprising of the strategy functions and

the implementation functions. The purpose of the strategy functions is to perform system-

wide status checks in real-time, make decisions, manage resources, provide arguments

and handle errors. The purpose of the implementation functions is to execute processes

such as complex algorithms and return the execution status. A failed execution will have

an error which is then handled by strategy functions. [8, pp. 101-103.]

The development process for a UI integration needs to be organized in such a way that

the resulting application is robust and efficient. Consequently, the following software ar-

chitecture elements are considered during the development process. The first element

is the specifications which provide the scope for the basic concepts and restrictions for

the application’s functionality. The second element involves the architectural compo-

nents that resolve the specified technicalities. The third element involves the environ-

ment’s integration channels and internal integration frameworks that support the appli-

cation’s architecture and components. The final element involves the architectural strat-

egies utilized to implement the software system requirements.

10

The software architecture for an application should encompass the whole scope of infra-

structure and levels where a user’s functionality are deployed. As a result, the architec-

tural elements exist in all levels of granularity that include the concepts, architectural

patterns, strategies, components and relationships. [9, p. 370.]

To summarize the integration process for an application’s software, consider the follow-

ing hypothetical school application called Studies. Users of Studies include teachers and

students with an account in the application. Further, students can log into the school

system and access lecture materials from the application. Moreover, the Studies appli-

cation can access the resources using a university’s Web Application Processing Inter-

face (API). The software development architecture for the Studies application can be

found on Table 1 below with abbreviations SF and IF denoting strategy functions and

implementation functions respectively.

Table 1. UI integration using a multi-layered multi-component based model.

Framework Layer Presentation
Layer

Application
Layer

Data
Layer

Integration Layer

Composition Layer

Views

Business
Logic

Database
System

View Controller

View Model Message Bus

Leaf Class Layer

Button Web API
Database
Connec-
tion class

Application or sys-
tem dependencies
such as a charting
library, I/O system
classes or Network

protocol classes

Image Student

Text Input
Teacher

Leaf Function /
Leaf Method

Layer

SF Click method

API connec-
tion method.
Responds
with a new
data packet

On start
method

Open a connection
method

IF Connect to an

API

Process the
data packet

Create or
Read
from a

database

Send or Receive
data from an API

Table 1 illustrates the architectural structure and components of the hypothetical Studies

application. The first column and first row of Table 1 represent the overall infrastructure

11

of the application. The other cells in the table represent sample components based on

the architecture with subsequent lower levels of granularity. A use case scenario for the

Studies application could involve the following steps: First, a student launches the Stud-

ies application which starts the on start method that ensures that a database system

exists. Consequently, the user is then presented with a log in screen view that includes

other components such as a text input field or a submit button. Further, the student enters

the required credentials and presses the submit button that uses the click method to start

a connection to the school API.

Next, the application’s Business Logic determines which API should be accessed and

what authorizations should be used. As a result, the integration layer utilizes an open

connection method to send the credentials over a network protocol and receive data from

the school API. Then, the business logic processes the data packet and displays it to the

student. Finally, if the student choses to save the lecture material, another button click

method is fired that opens a database connection and stores the data in the database

system. This scenario shows how different layers perform different functions to meet the

user’s requirements while interacting with other layers and components. A similar archi-

tectural approach shall be considered during the development process of the client com-

pany’s UI application.

2.3 UI Design

This section will analyze the components to consider when designing a layout. The de-

sign process of an effective UI layout should be centered and oriented to the user. Fur-

ther, the design process should result in a product that achieves the intended require-

ments through a rigorous research of the user’s psychology, behavior and expectation.

[10, p. 171.] The meaning of an effective UI layout is that it should be one that functions

as expected. To better understand user expectations, it is important to understand the

users’ needs. Research performed on users helps inform design decisions and results

in a superior design product. The details of a UI design method that is user oriented can

be found on Table 2 on the next page.

12

Table 2. User Centric UI design method. Copied from Liu (2016) [10, p. 171].

Category Contents

Research

Define Objectives and Schedule

Review current work and products

Understanding user needs and behaviours

Modelling User and customer model

Requirement definition

Scenario

Describing the ability of the product

Framework definition

Defining information and functions

Designing overall architecture of user ex-
perience

Describing interaction of user roles and
products

Design refinement Making the design more specific

Support Revising the design to adapt new con-
straints and time arrangements

Table 2 illustrates the different categories that constitute a design process. The research

category refers to information gathering that instructs aspects such as the products ob-

jective, project schedule, existing solutions and user needs. Further, the modelling cate-

gory refers to creating the product based on the user or customer. The requirement def-

inition entails the product ability based on the context or environment used. The frame-

work definition defines the development structure of the product, its functions and user

interactions. In addition, the design refinement category refers to polishing the product

functions and finally the support category adapts the products to changes or prior ar-

rangements. Certain aspects of the modelling category will be discussed in subsequent

subheadings.

2.3.1 UI elements

The UI is a link between human and system interactions [11, p. 2]. The interactions are

categorized as either an inputs or an output. To adequately support input operations, the

13

UI has to present a structured layout comprising of elements such as icons, typography,

animations and so forth. The elements create an environment in which the goal of the

application can be realized for a user’s needs based on the application’s capabilities or

limitations. The output operation is the presentation of system computational result. The

presentation is done through UI elements in a manner that is understandable to the user.

The following subheadings present a comprehensive review of some of the elements.

Layout element

The layout consists of multiple components that have been systematically arranged rel-

ative to each other to create a holistic view. The components include:

 Elements that perform tasks such as data analysis.

 Component elements that are based on the context of the state of the sys-
tem, application or use.

 Elements that perform user’s tasks and actions.

 The elements that enable the visualization of the interface presented to the
user.

 The elements that result in the transformation of the layout. [12, pp. 8-9.]

A simpler explanation for a layout element is that items in a layout have a wide range of

functions. For example, some items are responsible for input operations such as a text

input element. In addition, an item such as an image element is responsible for visually

presenting images to the user. Further, there are items responsible for performing user

tasks or data tasks for example a button element for the former and a grid view element

for the later. The grid view element can be used to display information from the database

which is a data analysis task.

The project may adopt a more conventional rectangular layout design or experiment with

more modern circular layouts. The effectiveness of the layout would be tested based on

factors such as the application’s ability to achieve its development objective and meet

the user’s needs and expectations.

14

Icon element

An icon is a picture that is used to convey the meaning of a word or idea in a piece of

software system. Icons have been adopted for use due to the fact that they are simple

to understand and are a communication language that is globally recognizable. [13, p.

954.] An example of an icon is the “X” image that is used to replace the word close and

is understood to mean shut down the application. Similar icons will be adopted for the

project as expected and the testing for the same would be in the ability for the users’ to

understand the information conveyed by the icons.

Typography element

Typography is the method used to order characters such as alphabetic letters, numbers,

glyphs, scripts, ascenders, descenders and so forth. The ordered characters make words

or sentences that are printed in blocks known as a type. The purpose of typography is to

make the written type readable, legible and appealing when printed or displayed on a

screen. [14, p. 1.] For this project, typography would be utilized to determine the optimal

design for the typography variables used on the type such as font size, weight, spacing,

slant, kerning and so forth. A measure of the user’s satisfaction with the typography used

can be evaluated using two category metrics: the objective metric and the subjective

metric. The objective metric involves aspects such as the user’s fixation duration on the

type used, the apprehension score, reading time and so forth. The subjective metric is

mainly based on the users rating of the overall satisfaction with the typography utilized.

[15, p. 2.]

Animation element

An animation is the result of playing successive image frames of an object with sufficient

speed to create the illusion of movement. In digital products, the benefits of animations

include making information interesting, brand recognition using memory retention and

improved user experience. [16, pp. 376-377.] UI animations of an object may include any

number of the following actions:

15

 Object scaling and resizing.

 Object translation from one position to another.

 Object visibility or transparency change.

 Object rotation. [17, p. 357.]

Color scheme element

Color can be described as the property of light that is visual in nature but not related to

the light’s glossiness, lightness, texture, saturation or translucency [18, p. 3]. Color can

be classified into numerous existing theories such as the primary colors, secondary,

complementary, tertiary, chromatographic, contrast and so forth. The ability to build ef-

fective digital media relies on the designer’s ability to apply color harmony to an applica-

tion. [19, pp. 1-14.]

2.3.2 Usability and user experience

The measure of usability on an interface is the degree to which the product, service or

system is utilized within the specified context based on attributes such as learnability,

effectiveness, efficiency, memorability and satisfaction. Usability is tested by focusing on

how an interface can perform a user’s needs based on interactive design or empirical

calculations. [20, p. 146.] User experience is characterized by the following three factors:

It involves a user; the user interacts with the interface of a product, service or system;

the user’s experience during the interaction is observable and measurable [21, p. 4]. The

usability and the user experience of an interface are important aspects to consider during

software development. The purpose of these aspects is to ensure the creation of func-

tionally practical solutions that are enjoyable to use.

2.3.3 Accessibility

An application is designed with target users in mind. However, most applications fail to

extend the user base so as to reach users with a limited dexterity, diminished vision,

impaired speech or cognition. In essence, the purpose of accessibility is to increase a

16

product’s distribution to reach additional users that are affected by a temporary or per-

manent limitation on their physical or biological abilities. Accessibility requires awareness

of accessibility demands by application designers, developers and testers. [22, p. 94; 23,

pp. 1-2.]

2.3.4 Functionality

There are software applications that are designed to offer services through user interac-

tions. Such applications have two aspects that characterize their implementation. The

aspects are the UI and functionality. When an application is launched, it starts a design

process that is utilized by the two aspect to convey important information. This design

process is known as a task model. The task model describes an application’s interactive

UI tasks in parallel to its functional or system tasks with regard to their interactions and

temporal order. While the task model may function as expected during development,

certain considerations have to be made. These considerations include: How the software

will be utilized; the context of use and; the existing environment where the software is

deployed. Thus, the developer is challenged to implement safeguards that guarantee

that the software will function as expected. [24, pp. 2-10.] The safeguards may involve

features such as validity checks for text inputs, size limits for resources, the minimum

required version of dependencies and so forth.

2.4 Existing UI Solutions

This section will review existing UI solution from companies such as Adobe, Autodesk

and Microsoft. These companies offer numerous software products to their customers

packaged in suites. The section will study the different considerations made by each

company during the development of an application manager UI. Moreover, the study will

revolve around aspects such as the UI layout, functionality and usability.

17

Adobe Creative Cloud Application

Adobe is a computer software company that was founded in America in 1982. The com-

pany has numerous multimedia software products and services for creative design, pho-

tography, web, video and so forth. Customers of Adobe can access software tools

through an online subscription-based payment plan, known as Creative Cloud (CC) [25,

p. 22]. Furthermore, CC is a collection of software products that include Photoshop, Il-

lustrator, InDesign, Premiere Pro, XD and so forth. Figure 5 below depicts the Creative

Cloud UI with key features in the layout highlighted.

Figure 5. Creative Cloud user interface.

Figure 5 above illustrates the Creative Cloud UI. The UI has features such as the menu

bar, the platform, a navigation side panel and so forth. This UI provides the users with

an overview of all CC products as well as the ability to perform certain functions such as

software updates, downloads or uninstallation.

Autodesk Desktop Application

Autodesk Incorporated is an American software company that was founded in 1982. Au-

todesk software tools are used by customers from professions that include but are not

limited to media, manufacturing, construction, architecture and so forth. The customers

use the tools to plan, envision and simulate various concepts. [26.] Autodesk customers

18

manage software tools under subscription through the use of Autodesk desktop app. The

Autodesk desktop app offers customers training content and product updates based on

purchased subscriptions. [27.] Figure 6 below depicts the layout of an Autodesk desktop

app.

Figure 6. Autodesk Desktop Application user interface. Adapted from Kirby et al (2017) [28,
p.928].

Figure 6 highlights the aspects used to interact with the Autodesk desktop app. Further-

more, customers can access or update software tools through tabs as shown in Figure

6. Moreover, customers can login to the application to activate subscriptions or update

purchased software. In addition, access to learning content is based on purchased sub-

scriptions. The purpose of the learning content is to empower the customers with

knowledge of newly deployed features. The new features are a result of software updates

that improve the product or patch any bugs.

Microsoft Office 365

Microsoft Corporation is an American company founded in 1975. The company provides

numerous products and services such as electronics, cloud hosting, operating system

software and so forth. Further, Microsoft offers Microsoft Office 365 which is a subscrip-

tion-based application manager. Benefits to Office 365 subscribers include access to

Office software, Office on Demand, software upgrades, SkyDrive online storage and so

forth. [29, p.1.] Figure 7 on the next page shows the layout of Microsoft Office 365 appli-

cation.

19

Figure 7. Microsoft Office 365 Application user interface.

Figure 7 above, depicts the layout of Microsoft Office 365. From the layout, the settings

tab has a brighter background highlight as compared to the help and account tabs. The

highlight is utilized to visually interpret an active tab. The Create New Tab has a similar

highlight which infers that a consistent design pattern was utilized throughout the layout.

Moreover, the layout includes numerous software products that are aligned on the left-

hand side panel.

There are similar layout design aspects deduced from Figures 5, 6 and 7 that can be

considered as a basic layout structure for the case company’s project. The first aspect

is that the layouts have the tabs that perform default Window operations to minimize,

maximize or close the application Window. The second aspect is that the layouts have

two major rows. The first row has been utilized as a menu bar and includes features such

as the company logo, a search bar, settings tab, help tab and an account tab. The menu

bar’s function is to personalize the layout through account setup or settings, perform

quick search operations, seek help from professionals or even give feedback. A major

benefit of personalized UI layout is the improved user experience.

The second row is divided into two or three column segments. The first column is the left

hand side panel used to navigate through software products. The second column is in

20

the middle and is the largest segment. This segment may contain more information about

the installed software or software available for download. Moreover, the segment may

contain useful information such as training or feedback. Finally, the third column is the

right hand side panel that is used to display various aspects of features found under the

settings or account tabs.

There is a logical business decision for companies to offer customers software tools and

benefits such as software upgrades and updates. The decision is meant to ensure a

steady business growth through the study of predictive user intended actions. A user

intended action includes customer behavior patterns that are valuable to the company

such as customer acquisition or loss, product subscription, defaults in payment and so

forth. Through predicting customer intended actions, companies can enhance their busi-

ness growth result. [30, p. 487.] Similarly, the case company seeks to proactively im-

prove the customer experience by offering a UI application that manages all the com-

pany’s software tools.

2.5 Development tools

This section will review a few of the development tools needed to implement a UI soft-

ware. Moreover, such tools include the .NET Core, development language, Visual Stu-

dio, Blend, Project management tools and so forth. The review is meant to highlight the

tools’ contributions during a project development.

.NET Core

.NET Core is an open source cross-platform version of the .NET platform. It is composed

of the following four main parts: .NET Core runtime; framework libraries; SDK tools and;

language compilers. The goals of .NET Core include:

 The ability to support cross-platform development. In addition to the sup-
port of iOS and Android deployment through the use of Xamarin, .NET Core
also runs on Windows, mac OS and Linux.

 Top performance: .NET core has a consistently high performance with ad-
ditional improvements after each new release.

21

 A .NET standard specification for uniform portable class libraries that can
be utilized across all .NET runtimes.

 Stand-alone or portable application deployment. This means that applica-
tions can either use the system-wide .NET Core installation or be published
together with the framework.

 One of the primary objectives of .NET Core is to target command line sup-
port.

 .NET Core including its documentation are fully open source.

 .NET Core allows for interoperability with the .NET Framework. This means
that it is possible to reference .NET Framework libraries for use in .NET
Core. [31, pp. 1245-1246.]

Microsoft Visual Studio and Blend

Visual Studio is an integrated development environment (IDE) with tools for efficient and

productive software development. An application may contain one or more project code.

The project code is contained in a solution. The solution can contain projects that have

been written using a mixture of .NET languages such as a C# project with a VB.NET

project. Some of the tools that Visual Studio offers developers include a code editor,

code navigation capabilities, debugger, testing, source control features and so forth. [32,

pp. 9-210.] Blend for Visual Studio is a tool used as an interactive design tool for UI

elements. It is utilized to build interfaces using features such as its graphical oriented

tools, animation elements, visual template customizations, action triggers, effects, ele-

ment binding and reactions to state changes. Further, Visual Studio and Blend for Visual

Studio do not require extra configurations to allow for the synchronization of project files

during development. [33, p. 449.]

Languages

Common Language Runtime (CLR) is a central component of the .NET Framework

runtime execution environment. Code running on .NET runtime is often referred to as

managed code. However, before managed code can execute on the .NET, it has to be

compiled using the following two steps: First, the source code is compiled into Microsoft

Intermediate Language (IL); second, the IL is compiled by the CLR into platform-specific

code. The IL is a low-level byte code language that is based on numeric code and can

be translated quickly into native machine code. In addition, the IL offers three distinct

22

advantages for development in .NET that include: Language interoperability; perfor-

mance improvements and; Platform independence.

Language interoperability means that source code from one language can be compiled

to IL and should then be interoperable to other IL code from other source code lan-

guages. Languages supported by .NET include C#, F#, Visual Basic (VB) and so forth.

Performance improvement implies that IL performs Just-In-Time (JIT) compilation of an

application’s source code during execution while platform independence means that

cross-platform implementation of .NET is possible. [34, pp. 3-6.] Figure 8 below illus-

trates a diagrammatic representation of the .NET Framework showing the different layers

of infrastructure.

Figure 8. Infrastructure of the .NET Framework. Copied from Joshi (2017) [35, p. 11].

Figure 8 above shows the stacked infrastructure of the .NET Framework. Further, com-

bining the literature from previous sections on .NET Core and Microsoft Visual Studio

and Blend sections, it is possible to deduce the following: An example of a Windows

Forms application written in C# can reference a VB base class library; the application’s

source code would then be compiled through the common infrastructure layer on runtime

and executed by the OS in native machine code. In addition, the diagram illustrates the

23

difference between the .NET Framework and .NET Core in that .NET Framework is

meant for the Windows OS while the .NET Core supports cross-platform implementation.

Source Control

Source Control Management is the process of making a catalogue of any modifications

or customization to the source code of an application once it has been deployed. Modi-

fications imply that the version of the current application is different from the previous

application. There are many reason for creating new software versions such as for se-

curity updates or for integrating new features. However, such changes could introduce

potential errors or bugs to the application. The purpose of version control is to enable

developers to easily identify the cause of such errors and fix them. An example of a

decentralized version control system tool is Git. Git enables developers to create repos-

itories of their projects and store the project files on a local machine or on the server. In

addition, Git gives developers access to operations such as file commits, view of file

changes from history, revision control, continuous integration and so forth. [36, pp. 219-

220.]

Entity Framework

Entity Framework is a component of the ADO.NET framework which is a data access

technology for Microsoft .NET. Further, Entity framework is a bridge between practical

applications and their database concepts. An Entity Data Model (EDM) incorporates re-

lational models with the concepts of Entity-Relationship Model. In addition, some of the

features of the Entity framework include: It provides an interface for EDM queries; can

bridge from conceptual level to relational level using a mapping mechanism and; can

extend relational data model. Data manipulation on the Entity framework are done using

either one of the following methods: the LINQ to Entities; Entity SQL or; Query Builder.

[37, p. 94.]

24

3 Project Implementation

This chapter will detail the development process during the implementation of the case

company’s project. The section will analyze topics such as the project objectives, soft-

ware requirements, App design and creation, testing and publishing. The implementation

of the project will be based on the theoretical concepts discussed in Chapter 2.

3.1 Objectives

The objective of the project is to create a user interface that supports the following as-

pects:

 The application should contain all the software modules sold by the case
company in one centralized UI.

 The application should allow users to launch the software modules from
the UI.

 The application should be extensible for future software module products
from the case company.

3.2 Software Requirements Specification

This section will discuss the requirements that need to be fulfilled by the software. The

software requirement specification (SRS) document is the framework by which a new

piece of software is developed. Moreover, the document serves as an anchor used to

verify and validate that the software satisfies the intended essence of the product. As

such, the finished software product is put through qualification testing. The testing com-

pares the developed software versus the SRS to determine whether the acceptable cri-

teria for a desired system behavior has been met. [38, p. 33.]

In simpler terms, requirement specifications are an elaborate plan that consists of design,

features, components and solutions. An effective method used to capture the essence

of the requirements is known as “user stories”. Figure 9 on the next page highlights the

three components of a user story.

25

Figure 9. The three elements of a user story. Copied from Rachel (2015) [39, p. 91].

As illustrated in Figure 9, a user story has three components that constitute the function-

ality valuable to the software user. The components create a technical analysis for hy-

pothesized requirements. Furthermore, the components serve as a template that incor-

porates: The user role, the goal to be achieved, and the benefit to be gained. [39, pp. 91-

97.] This project adopted a modified version of the user story template to outline the

software requirements. The list of requirements includes:

1. The application shall allow users to access all modules from one UI.

2. The application design shall have considerations for readability and usability.

3. The application shall have notifications that inform users of important status
changes.

4. The application shall have the Web Module as the default module for all users.

5. The application shall have a database that stores all module data.

6. The application shall allow users to launch a module from the UI.

7. The application shall allow users to add modules to the UI.

8. The application shall allow users to scroll through a list of all added modules.

9. The application shall allow users to set some modules as active from a list of
other possible modules.

26

10. The application shall allow users to update existing module data in the database.

11. The application shall have an adaptive UI that automatically changes to reflect
the module updates without a need for a restart.

12. The application shall allow users to delete modules.

13. The deployed application should include all required dependencies.

14. The application should run on a Windows 64-bit Operating System (OS) with an
x64-based processor.

3.3 App Design

The application was designed using an interactive design tool called Figma. During the

design process, the following considerations were made: The UI would adopt either a

rectangular or circular layout; the design should have a menu bar; the menu bar shall

have buttons for Windows functions such as minimize, maximize and close; the UI should

have a settings button; the UI should include a settings interface UI; the settings UI shall

have a layout for module operations such as create, read, update or deletion of modules

and so forth. Figure10 below shows earlier design concepts that were presented to the

case company for consideration.

Figure 10. Project layout design concepts.

27

Figure 10 from the previous page illustrates two layout concepts with software modules

aligned to either the left side panel or radially from a circular center. The case company

chose the circular layout and suggested utilizing the rectangular layout for the settings

page.

3.4 App Creation

The process of creating the application began with a plan on the logical flow of functions.

Based on the case company’s needs, the project would need to have a dynamic UI that

would reflect changes to the added modules. Further, this meant that the application

would need to have a database system that would store module data such as the full

path to the module location. Figure 11 below shows the logical flow of operations on the

application.

Figure 11. Project layout design concepts.

28

As can be viewed from Figure 11 on the previous page, the application performs numer-

ous functions based on user interactions. Further, the application would need to be ex-

tensible to allow the addition of extra modules. Currently, the case company has four

modules with the Web module as the default module for all customers. Therefore, the

application should have a dynamic UI that would only display the Web module on initial

launch and then change based on additional active modules chosen by the users.

The project was implemented using technologies such as: Git for source control and

project management, Visual Studio IDE, Microsoft Blend for the UI design, SQLite data-

base system using the Entity Framework, the Model-View-ViewModel (MVVM) architec-

tural pattern and so forth. Figure 12 below shows a snapshot of the Kanban project man-

agement feature on Git.

Figure 12. Git project management.

As can be viewed on Figure 12 above, the project was segmented into smaller sections.

The advantage of utilizing this development approach is the ability to add new features

in small increments making it easier to detect possible source code errors. The small

segments are also incentives for development as each milestone completed serves as

a reward for the overall project completion.

29

Visual Studio was used as the development IDE. The project folder structure utilized the

MVVM model structure. The application’s business logic and the database access ser-

vices were separated from the UI views. The ViewModels were used as a bridge between

the business logic and views. Figure 13 below shows the project’s folder structure.

Figure 13. The UI project folder structure.

Figure 13 shows the directory structure of the application UI project. The project has a

default UI that is displayed when the project is launched. Further, when a user activates

additional modules, the default UI is replaced with a doughnut chart UI. The doughnut

chart is segmented based on the software modules that are set as active. The changes

in the state of the modules is dynamically reflected on the UI views displayed. The layout

30

for the UIs was mainly developed using Microsoft Blend. Figure 14 below shows the view

of Microsoft blend.

Figure 14. Microsoft Blend UI design tool.

Figure 14 above shows the design process for the doughnut UI. Blend creates UI designs

and enables synchronization with Visual Studio. The arc segments for the software mod-

ules was created using Microsoft Expression drawing package. The project was devel-

oped using .NET Core and the Windows Presentation Foundation (WPF) which renders

UI views.

C# was used as the development language for the project. The database was designed

using the object oriented programing concept. In addition, the Entity data model allowed

the incorporation of relational models between the module object and the active module

object. All the modules were stored as a module object to the database. The active mod-

ule object only stored modules that a user had activated. When the application is

launched, the software retrieves all the active module objects if they exist and determines

the type of UI to be rendered. In the event no active modules are stored, the application

launches using the default UI. While the application is running, the active module collec-

tion is set as an observable collection and any changes to the size of the collection trig-

gers a re-render of the UI. The UI is bound to the ViewModel using a TwoWay data

31

binding system that triggers the property change notification for any changes in the ob-

servable object collections. Figure 15 below illustrates sample source code for the main

ViewModel.

Figure 15. The main ViewModel source code.

Figure 15 above shows the sample source code for the main ViewModel. From the code,

it is possible to deduce that the modules and active modules are stored into separate

observable collections. Changes in the observable collection will result in a property

changed notification.

During the development process, the developer and the case company held multiple

virtual meetings to discuss the project. The discussions of the meetings included topics

such as the current status of the project, a review of the project minimum viable product

32

(MVP), user feedback from MVP tests and so forth. Figure 16 below illustrates feedback

received during development.

Figure 16. User feedback concerning the application.

Figure 16 above shows changes to the application that were proposed after user testing.

These changes as well as numerous others were incorporated into the final UI applica-

tion. The project was developed for about 3 months and the final version of the applica-

tion can be viewed on the next page in Figure 17.

33

Figure 17. The final version of the application user interfaces. a) The default UI. b) The circular
UI with additional modules. c) The settings UI.

Figure 17 above shows three different UIs. The default UI only has the Web module

button. The circular UI can create segments dynamically based on activated modules.

Moreover, it displays a tooltip with information of the segment under the mouse. The

tooltip adds to the user experience when using the application. Finally, the settings UI

shows a data grid with all modules from the database. In addition, the UI enables users

to perform operations such as activate modules for display, create new modules, update

modules and delete modules.

3.5 Testing

Two unit tests were carried out over the project’s development process. The initial test

was done to check the success of the Create, Read, Update, and Delete (CRUD) oper-

ations. A new Console project was utilized for the CRUD tests since the console appli-

cations execute much faster as compared to WPF projects. Figure 18 on the next page

illustrates the source code for the initial database tests.

34

Figure 18. The database unit tests.

As can be viewed from Figure 18 above, the unit tests were done on simple CRUD op-

erations on the database. The operations involved creating a new module, reading only

one and then all records from the database, updating a specific module’s data and finally

deleting the module. The success of the tests meant that similar CRUD operations could

be performed on the active module objects.

The second unit test was carried out on the UI’s ability to change based on changes in

the state of the application. The steps for testing the UI were as follows: Three different

UI layouts were created; the main layout had a navigation menu at the top of the layout;

the navigation menu had three buttons each linked to its target layout; when either of the

buttons was clicked, the main window loaded the required UI layout. The process of

changing the layout was done through delegate commands since the navigation menu

was an observable object. Therefore, if the status of the observable navigation menu

changed then a property changed notification event was prompted. Figure 19 on the next

page illustrates the code for the navigation menu observable object including the instan-

tiation of the delegate command.

35

Figure 19. The source code for the navigation menu.

Figure 19 above shows sample code utilized in the UI layouts unit tests. The code snippet

has been sourced from a previous commit on Git. Moreover, it is possible to view how

the layout is changed. The code on Figure 19 line 23 shows how the property changed

notification sets the new ViewModel of a publicly accessible “CurrentVM” variable.

3.6 Publishing

According to the Microsoft documentation, applications can be published through two

modes in .NET. The first mode involves publishing framework-dependent applications.

The mode results in producing only the application and its dependencies. Thus, a user

is required to install the .NET runtime separately. The second mode is self-contained

publishing. An application that is self-contained means that includes the application and

36

its dependencies, and the .NET runtime and its libraries. Therefore, users only have to

run the application without having to separately install the .NET runtime. The main ad-

vantages of utilizing the self-contained publishing is that it’s possible to target a specific

platform and the developer can control the .NET version deployed. [40.] The project was

published using the self-contained mode. Figure 20 below illustrates the features of self-

contained publishing.

Figure 20. The selected options for a self-contained publish.

Figure 20 shows that the UI application was published as a self-contained application

targeting the Windows x64-based processor. Therefore, it was possible for users to

launch the application using the created executable file without having to perform addi-

tional installations.

37

4 Discussion

This chapter will review the results observed during the development of the UI applica-

tion. The case company commissioned the project owing to the need to improve its cus-

tomers’ user experiences when interacting with software module products. To execute

the project, a research and development approach was adopted. The research focused

on integration methods for an OS software and an application software. Further, the re-

search was utilized to inform design decisions such as the application architecture, the

choice and purpose of components integrated and finally, a consideration of users’ ex-

pectations, psychology and limitations. The development of the application focused on

implementing concepts from the software requirement specification based on the re-

search. The research and development approach is not unique to software development

as the concept is utilized by various other industries such as in manufacturing, medical

pharmaceuticals and so forth.

The result of the project was the creation of a Windows desktop UI application. The fea-

tures of the application included the ability to launch multiple software modules from a

single interface, the storage of module data to a database system, user notifications and

a modern layout design. Moreover, the application was published as a self-contained

application with a relatively large size of 165 MB. However, the benefits of such a de-

ployment is that users can execute the application without having to install additional

software. In addition, the application had the .NET runtime environment and its libraries

included which meant the application was not dependent on the versions locally installed

by the end users.

The main challenge during the project was the implementation of the doughnut UI layout.

The layout is comprised of smaller arc segments that could be drawn either program-

matically or through existing dependencies. The adopted solution was to import Microsoft

expression drawing dependency for drawing and displaying the arc. Hence, it was pro-

grammatically possible to determine what software module was associated with each

arc. The arc segment only displayed the software module icon prompting a need for a

notification system of what each segment represented. Typically, a tooltip was the obvi-

ous solution and the size of the tooltip needed to dynamically change relative to the name

of the software module.

38

As stated in the introduction, “The goal of the thesis project is to create a Windows desk-

top UI application that would launch modules from a centralized UI”, the results from the

created UI application show that the target was achieved. Further, the implementation of

the application was based on concepts highlighted during research. For instance, the

layout was designed upon review of existing UI solutions, the integration of components

was guided by the multi-layered multi-component based model and finally, the applica-

tion incorporated features that improved user experiences when utilized such as notifi-

cations and animations.

The created application is reliable in performing the needed functions. Moreover, the

application can launch other software programs also installed on the customer’s PC that

are not the case company’s products. As a result, it is expected that customer experi-

ences will be tremendously improved consequently boosting the financial benefits of the

case company. However, a distinct drawback to the application is the lack of a feature

that can enable the collection of usage data. The statistical analysis of usage data can

yield important insights such as how the application is utilized, a need for possible per-

formance improvements and the probable causes of functional errors or bug reports. The

usage data collection feature is a potential feature candidate for software improvements

in future application versions.

39

5 Conclusion

The goal of the thesis project was to create a Windows desktop UI application that would

launch modules from a centralized UI. To achieve this goal, the application had an inte-

grated database system that stored information about software modules. The project

was developed for about 3 months and resulted in the successful implementation of a UI

application.

During development, all the predefined software specifications were met and unit tests

for the database and layout were performed. In addition, users’ suggestions and feed-

back were incorporated as improvements to the application’s features. The application

was published as a self-contained executable with a size of 165 MB. The purpose of the

thesis project was to improve the user experience of module software provided by the

case company. An improved experience for customers makes the case company more

competitive in its market segment.

The UI application was the first version created during the software development pro-

cess. Subsequently, there were three beneficiaries of the project: The developer gained

additional experience in creating production software; the case company created soft-

ware that would improve its customers’ experience; the customer interaction with soft-

ware modules would be improved. In addition, future versions of the application can im-

prove the software by incorporating more features such as personal customizations, a

measure of usage metrics, support for module subscriptions or purchases and lastly, the

incorporation of helpful resources such as learning material for the module software.

In conclusion, the thesis project succeeded in creating a UI application that could launch

different software modules from a centralized UI. The application was targeted to the

Windows OS desktop and had an executable that would launch the application without

a need for additional software installations.

40

References

1 Novac, Ovidiu Constantin; Novac, Mihaela; Gordan, Cornelia; Berczes, Tamas &
Bujdosó, Gyöngyi. 2017. Comparative study of Google Android, Apple iOS and
Microsoft Windows Phone mobile operating systems. 2017 14th International
Conference on Engineering of Modern Electric Systems (EMES), 2017, pp. 154-
159. IEEE Digital Library. Accessed on 15 February 2021.

2 IIyas, Muhammad; Khan, Siffat Ullah & Rashid, Nasir. 2020. Empirical Validation
of Software Integration Practices in Global Software Development. SN Computer
Science, 2020, Article 157, pp. 1-23. Springer Digital Library. Accessed on 15
February 2021.

3 Kempf, Torsten; Ascheid, Gerd & Leupers, Rainer. 2011. Multiprocessor Systems
on Chip. New York: Springer. Electronic book. Springer Digital Library. Accessed
on 16 February 2021.

4 Garg, Ruchi & Verma, Garima. 2017. Operating Systems: A Modern Approach.
Bloomfield: Mercury Learning and Information. Electronic book. ProQuest EBook
Central. Accessed on 17 February 2021.

5 Yao, Yanjun; Wan, Lipeng & Cao, Qing. 2014. System Architecture and Operat-
ing Systems. The Art of Wireless Sensor Networks, 2014, Volume 1, pp. 697-
738. Springer Digital Library. Accessed on 17 February 2021.

6 Meng, Jian Liang & Li, Chao. 2013. Optimized Design of Employment Manage-
ment System with WebService. Applied Mechanics and Materials, 2013, Volume
401-403, pp. 1931-1934. ProQuest Digital Library. Accessed on 21 February
2021.

7 Dayyani, Basel. 2016. Software architecture design and development of multi-
layer highly modular platform using intelligent components for dynamic big data
analytics. 2016 4th International Symposium on Computational and Business In-
telligence (ISCBI), 2016, pp. 45-53. IEEE Digital Library. Accessed on 21 Febru-
ary 2021.

8 Haitao, Wang & Xing, Chen. 2011. Study of a Component Library Model Based
on Four-Layer Architecture. 2011 4th International Conference on Intelligent Net-
works and Intelligent Systems, 2011, pp. 101-104. IEEE Digital Library. Accessed
on 22 February 2021.

9 Solmz, Fritz. 2012. What is Software Architecture?. In Proceedings of the South
African Institute for Computer Scientists and Information Technologists Confer-
ence (SAICSIT '12), 2012, pp. 363-373. ACM Digital Library. Accessed on 22
February 2021.

https://ieeexplore-ieee-org.ezproxy.metropolia.fi/author/37086066500

41

10 Liu, Yajun. 2016. Analysis and Application of Interface Design Elements for Mo-
bile Platform. 2016 International Conference on Smart City and Systems
Engineering (ICSCSE), 2016, pp. 171-174. IEEE Digital Library. Accessed on 22
January 2021.

11 Laila, Siti Nur; Sabariah, Mira Kania & Suwawi, Dawam Dwi Jatmiko. 2016. UI
Design of Collaborative Learning App for Final Assignment Subject Using Goal-
Directed Design. 2016 4th International Conference on Information and Commu-
nication Technology (ICoICT), 2016, pp. 1-6. IEEE Digital Library. Accessed on
26 January 2021.

12 Hussmann, Heinrich; Meixner, Gerrit & Zuehlke, Detlef. 2011. Model-Driven De-
velopment of Advanced User Interfaces. Berlin, Heidelberg: Springer. Electronic
book. Springer Digital Library. Accessed on 26 January 2021.

13 Jylhä, Henrietta & Hamari, Juho. 2020. Development of measurement instru-
ments for visual qualities of graphical user interface elements (VISQUAL): a test
in the context of mobile game icons. User Modeling and User-Adapted Interac-
tion, 2020, pp. 949-982. Springer Digital Library. Accessed on 26 January 2021.

14 Rougier, Nicolas & Esfahbod, Behdad. 2018. Digital Typography: 25 Years of
Text Rendering in Computer Graphics. In ACM SIGGRAPH 2018 Courses (SIG-
GRAPH '18), 2018, Article 12, pp. 1-29. ACM Digital Library. Accessed on 28
January 2021.

15 Wang, Junxiang; Yin, Jianwei; Deng, Shuiguang; Li, Ying; Pu, Calton; Tang, Yan
& Luo, Zhiling. 2018. Evaluating User Satisfaction with Typography Designs via
Mining Touch Interaction Data in Mobile Reading. In Proceedings of the 2018
CHI Conference on human Factors in Computing Systems (CHI '18), 2018, Paper
113, pp. 1-12. ACM Digital Library. Accessed on 28 January 2021.

16 Hidayat, Tonny & Sungkowo, Bayuarga Damar. 2020. Comparison of Memory
Consumptive Against the Use of Various Image Formats for App Onboarding Ani-
mation Assets on Android with Lottie JSON. 2020 3rd International Conference
on Computer and Informatics Engineering (IC2IE), 2020, pp. 376-381. IEEE Digi-
tal Library. Accessed on 28 January 2021.

17 Wang, Wallace. 2019. Pro iPhone Development with Swift 5. Berkeley, CA:
Apress. Electronic book. Springer Digital Library. Accessed on 28 January 2021.

18 Best, Janet. 2017. Colour Design: Theories and Applications. Cambridge: Else-
vier Science and Technology. Electronic book. ProQuest EBook Central. Ac-
cessed on 23 February 2021.

42

19 Rhyne, Theresa-Marie. 2017. Applying color theory to visualization. In ACM SIG-
GRAPH 2017 Courses (SIGGRAPH '17), 2017, Article 10, pp. 1-160. ACM Digital
Library. Accessed on 23 February 2021.

20 Adinda, Prilly Putri & Suzianti, Amalia. 2018. Redesign of User Interface for E-
Government Application Using Usability Testing Method. In Proceedings of the
4th International Conference on Communication and Information Processing (IC-
CIP '18), 2018, pp. 145-149. ACM Digital Library. Accessed on 23 February
2021.

21 Albert, William & Tullis, Thomas. 2013. Measuring the User Experience: Collect-
ing, Analyzing and Presenting Usability Metrics. San Francisco: Elsevier Science
and Technology. Electronic book. ProQuest EBook Central. Accessed on 23 Feb-
ruary 2021.

22 McWherter, Jeff & Gowell, Scot. 2012. Professional Mobile Application Develop-
ment. Somerset: John Wiley & Sons, Incorporated. Electronic book. ProQuest
EBook Central. Accessed on 23 February 2021.

23 Dowden, Martine & Dowden, Michael. 2019. Why Should I Care About Accessi-
bility?. Approachable Accessibility, 2019, pp. 1-18. Springer Digital Library. Ac-
cessed on 23 February 2021.

24 Kritikos, Kyriakos; Plexousakis, Dimitris & Paterno, Fabio. 2014. Task Model-
Driven Realization of Interactive Application Functionality through Services. Asso-
ciation for Computing Machinery (ACM), 2014, Article 25, pp. 1-31. ACM Digital
Library. Accessed on 23 February 2021.

25 Holzberg, Carol S. 2014. Adobe Creative Cloud. Tech & Learning, 2014, Volume
34 Issue 8, p. 22. ProQuest Digital Library. Accessed on 12 January 2021.

26 Anonymous. 2012. Press Release: Autodesk Adds Autodesk Inventor and Auto-
desk Revit Structure to Autodesk Plant Design Suite 2012. Dow Jones Institu-
tional News, 2011. ProQuest Digital Library. Accessed on 19 January 2021.

27 Anonymous. 2016. AutoCAD 2017 launched with enhanced usability and design
features. DataQuest, 2016. ProQuest Digital Library. Accessed on 19 January
2021.

28 Kirby, Lance; Krygiel, Eddy & Kim, Marcus. 2017. Mastering Autodesk Revit
2018. Indianapolis: John Wiley & Sons, Incorporated. Electronic book. ProQuest
EBook Central. Accessed on 19 January 2021.

29 Wilson, Kevin. 2014. Using Office 365 with Windows 8. Berkeley: Apress. Elec-
tronic book. Springer Digital Library. Accessed on 19 January 2021.

43

30 Tan, Fei; Wei, Zhi; He, Jun; Wu, Xiang; Peng, Bo; Liu, Haoran & Yan, Zhenyu.
2018. A Blended Deep Learning Approach for Predicting User Intended Actions.
IEEE International Conference on Data Mining (ICDM), 2018, pp. 487–496. IEEE
Digital Library. Accessed on 12 January 2021.

31 Troelsen, Andrew & Japikse, Philip. 2017. The Philosophy of .NET Core. In: Pro
C# 7, 2017, pp. 1245-1253. Springer Digital Library. Accessed on 24 February
2021.

32 Strauss Dirk. 2020. Getting Started with Visual Studio 2019. Berkeley: Apress.
Electronic book. Springer Digital Library. Accessed on 24 February 2021.

33 Software Falafel. 2013. Designing in Blend. Pro Windows Phone App Develop-
ment, 2013, pp. 449-516. Springer Digital Library. Accessed on 24 February
2021.

34 Nagel, Christian; Glynn, Jay & Skinner Morgan. 2014. Professional C# 5.0 and
.NET 4.5.1. Somerset: John Wiley & Sons, Incorporated. Electronic book.
ProQuest EBook Central. Accessed on 24 February 2021.

35 Joshi, Bipin. 2017. Introducing XML and the .NET Framework. Beginning XML
with C# 7, 2017, pp. 1-28. Springer Digital Library. Accessed on 24 February
2021.

36 Bertino, Nic. 2012. Modern Version Control: Creating an Efficient Development
Ecosystem. In Proceedings of the 40th annual ACM SIGUCCS conference on
User services (SIGUCCS '12), 2012, pp. 219-222. ACM Digital Library. Accessed
on 24 February 2021.

37 Mata-Toledo, Ramon & Monger, Morgan. 2011. Utilizing the ADO.NET entity
framework in database courses. Journal of Computing Sciences in Colleges,
2011, Volume 26 Number 3, pp. 93-97. ACM Digital Library. Accessed on 25
February 2021.

38 Osman, Mohd Hafeez & Zaharin, Mohd Firdaus. 2018. Ambiguous software re-
quirement specification detection: An automated approach. In Proceedings of the
5th International Workshop on Requirements Engineering and Testing (RET '18),
2018, pp. 33-40. ACM Digital Library. Accessed on 6 January 2021.

39 Rachel, Alt-Simmons. 2015. Agile by Design: An Implementation Guide to Ana-
lytic Lifecycle Management. Hoboken: John Wiley & Sons, Incorporated. Elec-
tronic book. ProQuest EBook Central. Accessed on 12 January 2021.

40 Microsoft Documentation. 2021. .NET application publishing overview. Online. 5
February 2021. Microsoft. < https://docs.microsoft.com/en-us/dotnet/core/deploy-
ing/ >. Accessed on 26 February 2021.

