

Degree Thesis, Åland University of Applied Sciences,
Bachelor of Information Technology/Bachelor of Engineering

DEVELOPMENT OF A TASK
MANAGEMENT APPLICATION

- a Progressive Web Application

Kåre Hampf

2020:43

Publishing date: 20.01.2021
Supervisor: Björn-Erik Zetterman

DEGREE THESIS
Åland University of Applied Sciences

2

Study program: Bachelor of Information Technology/Bachelor of Engineering

Author: Kåre Hampf

Title: Development of a Task Management Application

Academic Supervisor: Björn-Erik Zetterman

Technical Supervisor:

Abstract

The purpose of this thesis is to document the development of a cross-platform application
for managing tasks stored in a specific plaintext formatted file residing on a server.

The application has been developed in JavaScript, HTML and CSS and uses technologies
such as the Vue.js framework, WebDAV and IndexedDB.

The result is a JavaScript library conforming to the ES module standard with a Progressive
Web Application (PWA) as a graphical user interface with functionality to manage tasks
lists in a personal todo.txt formatted text file hosted on a Nextcloud server.

Keywords
 JavaScript, ESM, Vue.js, PWA, todo.txt, WebDAV

Serial number: ISSN: Language: Number of pages:
 2020:43 1458-1531 English 36 pages

Handed in: Date of presentation: Approved on:
 30.12.2020 17.12.2020 20.01.2021

EXAMENSARBETE
Högskolan på Åland

3

Utbildningsprogram: Informationsteknik

Författare: Kåre Hampf

Arbetets namn: Utveckling av en applikation för hantering av arbetsuppgifter

Handledare: Björn-Erik Zetterman

Uppdragsgivare:

Abstrakt

Syftet med det här examensarbetet är att dokumentera utvecklingen av en
plattformsoberoende applikation för att hantera uppgifter i en specifikt formaterad textfil på
en server.

Utveckling av applikationen har skett i JavaScript, HTML och CSS och använder
teknologier såsom ramverket Vue.js, WebDAV och IndexedDB.

Resultatet är ett JavaScript-bibliotek som följer ES-modulstandard med ett grafiskt
användargränssnitt i form av en progressiv webbapplikation (PWA) med funktioner för att
hantera uppgifter i en todo.txt-formaterad textfil på en Nextcloud-server.

Nyckelord (sökord)
 JavaScript, ESM, Vue.js, PWA, todo.txt, WebDAV

Högskolans
serienummer:

ISSN: Språk: Sidantal:

 2020:43 1458-1531 Engelska 36 sidor

Inlämningsdatum: Presentationsdatum: Datum för godkännande:
 30.12.2020 17.12.2020 20.01.2021

TABLE OF CONTENTS

1. INTRODUCTION 6
1.1. Purpose 6
1.2. Method 6
1.3. Limitations 7
1.4. Background 7

2. DESIGN AND TECHNOLOGIES 8
2.1. Cross-platform compatibility 9
2.2. Design patterns 10
2.3. JavaScript and ECMAScript 10
2.4. Object-Oriented Programming 11
2.5. Progressive Web Application (PWA) 12
2.6. Client-side data storage 13
2.7. Nextcloud application 13

3. APPLICATION DEVELOPMENT 14
3.1. Preparation 14

3.1.1. Integrated Development Environment 14
3.1.2. ECMAScript Modules 15
3.1.3. Proof of concept PWA 15
3.1.4. Transpiling JavaScript and modules into bundles 15
3.1.5. JavaScript utilities and frameworks 16

3.1.5.1. Lodash 16
3.1.5.2. Vue.js 17

3.1.6. Project directory structure 17
3.1.6.1. JavaScript library directories and file naming conventions 17
3.1.6.2. PWA directories 18

3.1.7. Code repository setup 18
3.2. Development 18

3.2.1. JavaScript library for parsing the todo.txt format 18
3.2.1.1. Serializing todo.txt into JSON 19
3.2.1.2. Testing of the JavaScript library 20

3.2.2. JavaScript PWA 21
3.2.2.1. Reading of text files 21
3.2.2.2. Retrieval of data using the Nextcloud API 21
3.2.2.3. Retrieval of data using WebDAV 21
3.2.2.4. Icon design 22

4

3.2.2.5. Responsive styling using CSS 23
3.2.2.6. Persistence of data inside the browser 23
3.2.2.7. Task editor 23
3.2.2.8. Vue.js components 24
3.2.2.9. Listing tasks using Sortable.js and Vue.Draggable 25
3.2.2.10. Task sorting and filtering 25
3.2.2.11. Installation functionality on desktops and smartphones 26

3.2.3. Nextcloud application in PHP 26
3.2.3.1. Interaction between the Nextcloud application and the PWA 26

3.2.4. Deployment and publication 26

4. CONCLUSION 28
4.1. Result 28

4.1.1. The js-todotxt library 28
4.1.1.1. Installation of the library 28
4.1.1.2. Using the library 28

4.1.2. The js-todotxt-webdav PWA 29
4.1.2.1. Using the application 30
4.1.2.2. Configuration of WebDAV credentials 31

4.1.3. The todotxt Nextcloud application 31
4.2. Reflections 32

REFERENCES 34

APPENDIX 37
Definitions 37

5

1. INTRODUCTION

1.1. Purpose

The purpose of this thesis is to document the development of a cross-platform application for

managing tasks stored in a specific plaintext formatted file residing on a server.

From a user perspective, there are a few aspects to consider. The first is that data need to be

resilient and that any changes in the task manager application must be synchronized. Another

important aspect to consider is the possibility to use the task manager application on different

platforms and allow for interaction with the data using other tools. These two aspects need to

be tightly integrated so that a user with access rights can access information and update

information from different platforms.

1.2. Method

A collection of common definitions, abbreviations and acronyms are included in the

Appendix. Application development will be done using cross-platform software tools

compatible with multiple operating systems such as Microsoft Windows, Apple MacOS,

GNU/Linux and variants of BSD. Development will result in cross-platform software, also

compatible with multiple platforms. The JavaScript (JS) programming language has been

chosen for this project as it meets the above requirements.

Ideally the chosen Integrated Development Environment (IDE) should be multiple-language,

supporting both JavaScript (JS) and the PHP scripting language. Meeting all requirements at

least initially, Code OSS (the open source version of Microsoft Visual Studio Code) has been

chosen as the IDE but other tools may be introduced at a later stage.

A source code repository hosted in the network using git for version-control will provide 1

incremental backups separate from the development environment. Publication under a

suitable license can be made when the project has matured.

1 https://git-scm.com/

6

1.3. Limitations

The separation into parts needs to be clear. A library for parsing and rendering should be

reusable in other projects. A web application should be compatible with all major web

browsers and a Nextcloud application should be implemented following good practices

defined by the developers of Nextcloud. JavaScript will be run on clients while a Nextcloud

application written in PHP runs on the server. Configuration of Nextcloud, WebDAV and

backend server-side data storage mechanisms using file systems and/or SQL-databases will

not be covered in this thesis. There are licensing issues when using external formats or

relying on external libraries.

1.4. Background

The todo.txt format defines a structure of tags and markers for describing tasks together with 2

metadata and context using plaintext files. It was perhaps not originally invented by but

named and popularized by Gina Trapani and an online community after a publication on the

site Lifehacker in 2006 (Trapani, n.d., 2006). 3

Plaintext is compatible with multiple, perhaps all platforms and can be manipulated using a

vast number of text editors. Specialised tools for managing tasks in the todo.txt-format exist

but not all provide user friendly graphical interfaces or offer cross-platform compatibility.

Nextcloud is a free open source collaboration suite for hosting files similar to services such 4

as Dropbox and Google Drive. Nextcloud also provides the infrastructure needed to run

server-side applications but no dedicated tool for the todo.txt format exists in the Nextcloud

ecosystem.

2 http://todotxt.org
3 https://lifehacker.com
4 https://nextcloud.com/hub/

7

https://paperpile.com/c/otbwUk/aeIti+TlGvR

2. DESIGN AND TECHNOLOGIES

The implementation will consist of three main parts as illustrated by Figure 1:

1. A standalone, reusable, library written in JavaScript

2. A Progressive Web Application written in JavaScript with a User Interface (UI) 5

using HTML and styled with CSS

3. A Nextcloud application written in the PHP scripting language 6

Figure 1. Illustration of the project divided into parts.

The JavaScript library will be compatible with lists of tasks stored in plaintext conforming to

the todo.txt format. The library will include functionality to parse lists to an internal format

and back to plaintext for synchronization purposes.

The Progressive Web Application (PWA) provides the user with a graphical user interface for

manipulating tasks using the JavaScript library. Functionality in PWAs are built using

JavaScript and the structure of the graphical user interface is defined in HTML with layout

and styling in CSS (Web Design and Applications - W3C, n.d.).

The Nextcloud server acts as a host and serves plaintext files and the PWA which enables the

user to load the web application inside a Nextcloud application (making it a hybrid PWA).

The web application should ideally also as a pure PWA be able to interact directly with the

5 https://web.dev/what-are-pwas/
6 https://nextcloud.com/

8

https://paperpile.com/c/otbwUk/TieLd
https://paperpile.com/c/otbwUk/TieLd
https://paperpile.com/c/otbwUk/TieLd

WebDAV API provided by the Nextcloud or any other WebDAV server. Both scenarios are 7

illustrated in Figure 2.

Figure 2. Illustration of a hybrid PWA Nextcloud application alongside a pure PWA implementation.

2.1. Cross-platform compatibility

Development tools used and the software built using them should ideally both be

cross-platform software and platform-independent. Cross-platform applications may run on

different operating systems and hardware platforms (Wikipedia contributors, 2020e).

Web browsers are used to access information on the World Wide Web from a wide variety of

existing devices. It is estimated that around 5 billion people use a browser globally and the

most popular browsers, Google Chrome and Mozilla Firefox together with their derivatives 8 9

(e.g., Chromium, Microsoft Edge) are cross-platform software compatible with all major

operating systems (Wikipedia contributors, 2020d).

7 https://www.rfc-editor.org/info/rfc4918
8 https://www.google.com/chrome/
9 https://www.mozilla.org/en-US/firefox/browsers/

9

https://paperpile.com/c/otbwUk/FjNJ
https://paperpile.com/c/otbwUk/ykCH

2.2. Design patterns

For libraries where reusability and an extendable interface to build upon are desired the

module or revealing module pattern is a good choice. Modules are contained to their own

scope which limits pollution of the global namespace (Paltoglou et al., 2018, sec. III a).

The graphical task manager application will use a pattern resembling MVP

(Model-View-Presenter) as the view in the browser or in the interface provided by the

browser already acts as a passive view, rendering the output in a presenter using templates

and from HTML generated in a model containing the business logic.

2.3. JavaScript and ECMAScript

Applications for mobile devices and desktops have traditionally been implemented by

compiling source code into binary executables. The compatibility of binary executables are

limited to a single platform and a limited number of devices or operating systems (Schneider

& Gersting, 2018, p. 495).

JavaScript is a scripting language conforming to the ECMAScript (ES) specification

standardised by the European Computer Manufacturers Association (ECMA), renamed as

Ecma international in 1994 (Wikipedia contributors, 2020a). Scripting languages are not run

from binary executables but instead interpreted at runtime inside a host environment.

JavaScript was at first designed to be a scripting language for the web providing functionality

for elements defined inside the markup language of web pages, for instance, the functionality

of a button element in a form using the onclick attribute. Over time JavaScript has evolved

into a general purpose language with a wide range of uses. While still commonly found

running inside web browsers, today JavaScript also runs outside of web browsers on

desktops, servers, smartphones and embedded devices. The Node.js runtime environment

runs JavaScript on servers without the need for graphical environments and Espruino is an

example of an interpreter for running JavaScript on microcontrollers (Williams, 2017).

“These days, it’s safe to say that JavaScript is everywhere” (Stefanov & Sharma, 2013,

Chapter 1).

10

https://paperpile.com/c/otbwUk/VUVTc/?locator_label=section&locator=III%20a
https://paperpile.com/c/otbwUk/PGaO/?locator=495
https://paperpile.com/c/otbwUk/PGaO/?locator=495
https://paperpile.com/c/otbwUk/QApz
https://paperpile.com/c/otbwUk/2ASHo
https://paperpile.com/c/otbwUk/poaGO/?locator_label=chapter&locator=1
https://paperpile.com/c/otbwUk/poaGO/?locator_label=chapter&locator=1

2.4. Object-Oriented Programming

Defining objects containing data and code and the encapsulation of objects in classes with

inheritance using Object-Oriented Programming (OOP) in high-level languages originates in

the 1950s (Wikipedia contributors, 2020b).

The concept of classes were introduced in ECMAScript 2015 as syntactic sugar, alternate

syntax for already existing features. Classes in JavaScript are special functions subject to

stricter syntax with the ability to provide a constructor function with access to functions

inherited from a superclass (Mozilla and individual contributors, 2020a). In JavaScript

properties are always public so encapsulation of classes will in contrast to other OOP

languages not provide information hiding into categories such as public, private or protected

(Stefanov & Sharma, 2013, p. 17).

Key concepts in OOP (Stefanov & Sharma, 2013, p. 15):

● Objects with attributes and methods (properties and functions)

● Classes as blueprints for objects

● Encapsulation of data with methods for manipulating the data using abstraction

● Aggregation of multiple objects into more complex objects

● Inheritance of objects allowing for reusability with modification

● Polymorphism where different objects can share common attributes and methods

The separation of JavaScript namespaces into modules can be performed using OOP with

polymorphic classes and using inheritance. Implementing module functionality using

principles of OOP design throughout seems ideal when it comes to designing reusable

libraries.

11

https://paperpile.com/c/otbwUk/Rf1VZ
https://paperpile.com/c/otbwUk/0aUE
https://paperpile.com/c/otbwUk/poaGO/?locator=17
https://paperpile.com/c/otbwUk/poaGO/?locator=15

2.5. Progressive Web Application (PWA)

The term Progressive Web Application was coined by designer Frances Berriman and Google

Chrome engineer Alex Russel in 2015 (Russell, 2015; Wikipedia contributors, 2020c). PWAs

are built using a combination of existing technologies like HTML, CSS and JavaScript. Using

technologies that already exist in billions of devices connected to the internet PWAs aim to

give users a platform native experience similar to what they are already used to. The

experience of a PWA is predominantly dependent on the application being fast, reliable and

engaging (Sheppard, 2017, p. 6). See Figure 3 for the “community-approved” logo

representing the concept of PWAs (Salnikov, 2017).

.
Figure 3. Logo for Progressive Web Applications by Diego González-Zúñiga (CC0).

What makes PWAs “progressive” is that they use emerging web browser features such as

secure contexts (use HTTP with SSL encryption), are described in a application manifest and

include service workers that can perform tasks in the background (Mozilla and individual 10

contributors, 2020c). PWAs use smart caching where the application can present the user

with cached data immediately on load and refresh the displayed contents after successful

synchronization. They can be described as standalone web pages that run their own code with

the ability to access data independently of their web server host and are compatible with all

platforms that provide a standards compliant web browser. Additionally PWAs may use

mechanisms for updating their own running code when a newer version is available and they

can also receive push notifications from their host. To make PWAs look less like web 11

browser windows and more like native applications they can display a splash screen while

loading.

10 https://web.dev/service-worker-mindset/
11 https://web.dev/push-notifications-overview/

12

https://paperpile.com/c/otbwUk/MUmob+Gl16v
https://paperpile.com/c/otbwUk/gxFkK/?locator=6
https://paperpile.com/c/otbwUk/JJew
https://paperpile.com/c/otbwUk/6vZx
https://paperpile.com/c/otbwUk/6vZx

2.6. Client-side data storage

Persistent data in JavaScript running in web browsers has traditionally been stored using

JavaScript Object Notation (JSON) and the Window.localStorage API. This API is not

available to workers and service workers in a PWA running in an offline state (Sheppard,

2017, Chapter 5).

A complex transactional database named IndexedDB capable of storing multiple types of 12

data is available to PWAs. Wrappers that simplifies its use exist, for example, Dexie by 13

David Fahlander. While some wrappers try to simplify the API, others provide relational

SQL-like syntax (e.g., JsStore by Ujjwal Gupta, Lovefield from Google) so again a choice 14 15

to be made.

A wrapper library named localForage created by the Mozilla team also provides a fallback to

localStorage if the client platform should lack support for IndexedDB (Mozilla and individual

contributors, 2013). For this project localStorage would in principle be sufficient (but being

synchronous and consequently lock up the application while loading data) so localForage was

chosen.

2.7. Nextcloud application

The Nextcloud documentation includes an example that was used as a base for building a

custom application. The example includes a custom API using Representational State

Transfer (REST) and a frontend user interface built using the Vue.js framework that 16

consumes the API (Nextcloud GmbH, 2020).

12 https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
13 https://dexie.org/
14 https://jsstore.net/
15 https://google.github.io/lovefield/
16 https://vuejs.org/

13

https://paperpile.com/c/otbwUk/gxFkK/?locator_label=chapter&locator=5
https://paperpile.com/c/otbwUk/gxFkK/?locator_label=chapter&locator=5
https://paperpile.com/c/otbwUk/z8GVZ
https://paperpile.com/c/otbwUk/z8GVZ
https://paperpile.com/c/otbwUk/lzVTR

3. APPLICATION DEVELOPMENT

3.1. Preparation

Before writing any code some decisions were made and a couple experiments carried out.

First the ISC software license was chosen for its suitability and widespread use in similar 17

applications. Multiple environments, utilities and frameworks were evaluated before being

used in the project.

3.1.1. Integrated Development Environment

The desire for cross-platform compatibility did not limit the choices as many modern IDEs

are platform independent. Examples are Eclipse , Apache Netbeans , Microsoft Visual 18 19

Studio (VS) Code , Jetbrains WebStorm and PHPStorm . 20 21 22

The todo.txt JavaScript library was developed using a text editor (vim/gvim) in combination 23

with VS-Code. This environment was then also used to create a simple PWA and a prototype

version of the todo.txt application. All dynamic elements of the output were created

programmatically using template strings. Plugins and add-ons to VS-Code could handle small

parts of the work but this was a slow process.

A second prototype of the task manager application was created in the WebStorm IDE by

importing existing the prototype codebase but this provided only modest improvements. The

IDE made the process of splitting up the codebase into smaller parts easier as WebStorm

could analyze sources. At this point the decision was made to start over using a template and

then incorporate parts of the existing code instead. The task manager application was then

fully created in PHPStorm (an almost identical IDE to WebStorm but with additional support

for the PHP scripting language that would later be needed for the Nextcloud application).

17 https://opensource.org/licenses/ISC
18 https://www.eclipse.org/
19 https://netbeans.org/
20 https://code.visualstudio.com/
21 https://www.jetbrains.com/webstorm/
22 https://www.jetbrains.com/phpstorm/
23 https://www.vim.org/about.php

14

3.1.2. ECMAScript Modules

When the source code grew in size a desire to split it into manageable parts led to confusion

over module standards. Node.js was the first JavaScript interpreter to support module loading

implementations but it has multiple standards. One of the module standards is CommonJS

which uses a require statement to load dependencies from external sources. As the standards

in use by Node.js are incompatible with JavaScript in web browsers tools for bundling

external dependencies into standalone and browser-compatible JavaScript files were

developed. Bundlers like Browserify and Webpack offer a method to incorporate modules in

transpiled (translated and “compiled”), backward and web browser compatible form

(Webpack contributors, n.d.).

A new standard for JavaScript modules included in the 6th edition of the ECMAScript

specification, ECMA-262 (more commonly known as ES6 or ECMAScript 2015), adds

support for ECMAScript-modules (ES-modules, or simply ESM). This standard is endorsed

by the W3C and support for it has become widely available at least in web browsers (and also

in Node.js with some help from third party libraries).

3.1.3. Proof of concept PWA

The original plan was not to use any frameworks for designing a PWA and a “proof of

concept” PWA was created as a sort of a warm-up. The idea was to implement a simple

library providing algorithms (a generator of sequences of turns needed to scramble a Rubik’s

cube), perform unit testing and build a simple PWA. This side project was named Cubescram

and was created based on an example accompanied by a tutorial named Hello-PWA by James

Johnson (Johnson, 2018). The library was a simple browser compatible ES module with a

manually crafted HTML generator and unit testing was successfully performed using the

JavaScript unit testing framework QUnit . 24

3.1.4. Transpiling JavaScript and modules into bundles

After initial tests it became apparent that browser compatibility was not yet as widespread as

hoped for. While most browsers supported PWAs and also could load ES modules, the latter

24 https://qunitjs.com/about/

15

https://paperpile.com/c/otbwUk/G9Oo2
https://paperpile.com/c/otbwUk/lauIY

gave reason for looking more into transpiling JavaScript modules into backward compatible

bundles with better compatibility with JavaScript interpreters that are limited to older

standards. Bundlers additionally offer functionality to include assets like images, fonts and

CSS in a more manageable way (Webpack contributors, n.d.). The task manager application

prototype was built using Webpack (see Figure 4).

Figure 4. Webpack logo use permitted by the JS Foundation Trademark Policy.

After having used Webpack for the first prototype of the task manager application another

bundler, Rollup (see Figure 5), was found to be better suited for bundling the JavaScript

parser library into a Node.js module package as it uses a tree-shaking technique to exclude

unused parts of other imported libraries making resulting output smaller (Rollup contributors,

2020).

Figure 5. Rollup logo by Julian Lloyd released under the MIT license.

3.1.5. JavaScript utilities and frameworks

3.1.5.1. Lodash

There are a number of built-in methods in JavaScript for manipulating arrays and lists but

additional methods from the utility library Lodash (see Figure 6) proved useful. Lodash

utilities are compatible with both Node.js and web browsers, loadable from ES modules and

provide backward compatibility with older versions of JavaScript (Lodash team and

contributors, 2009).

Figure 6. Lodash logo released under the MIT license.

16

https://paperpile.com/c/otbwUk/G9Oo2
https://paperpile.com/c/otbwUk/4rqsd
https://paperpile.com/c/otbwUk/4rqsd
https://paperpile.com/c/otbwUk/3kVJf
https://paperpile.com/c/otbwUk/3kVJf

3.1.5.2. Vue.js

The need for a separate component in the user interface for altering settings and the thought

of having a small status display included somewhere lead to the realisation that a single page

design might not be the best choice. Up until this point the view was nothing more than a list

with some buttons on top.

The example Nextcloud application tutorial uses the framework Vue.js (see Figure 7) and it is

aimed at being lightweight and incrementally adoptable. This meant it could be conveniently

incorporated in the task manager application and provide a better user interface. Using Vue.js

for the user view would still be using JavaScript and HTML but with separation of user

interface parts into components and allowing for communication between components using

properties and events (Gerchev, 2018).

Figure 7. Vue.js logo by Ethan You (CC BY 4.0).

In a web browser the contents are represented internally as a HTML Document Object Model

(DOM). Vue.js keeps a virtual DOM representation that makes components written using

templates able communicate using efficient two-way data bindings. A component on a web

page can for instance display the contents of a variable and the displayed value will update

automatically when the value of the variable changes (Rojas, 2019, Chapter 5).

3.1.6. Project directory structure

A main directory with subfolders containing all parts, each in turn divided into subfolders

according to best practices of that programming language.

3.1.6.1. JavaScript library directories and file naming conventions

ECMAScript modules should ideally use a .mjs file extension and be included in other

projects using the import statement. A common practice is to put the source code of the entry

17

https://paperpile.com/c/otbwUk/I9HQ5
https://paperpile.com/c/otbwUk/6p8kd/?locator_label=chapter&locator=5

point JavaScript file index.js into a src-folder and external files in suitable subfolders of that

directory. Bundlers then process the src-folder and generate output in another specified

folder.

3.1.6.2. PWA directories

In addition to directories used by libraries, applications might also have assets such as fonts,

icons and images that need to be placed in appropriate folders. Bundlers will then wrap assets

up in bundles and include them in the output.

3.1.7. Code repository setup

The initial thought was to upload everything to GitHub. Keeping all the source code public

and out in the open before the task management application was usable and yet not stable,

likely to undergo major changes, seemed after consideration less of a good idea. Initial testing

might also involve hardcoding of credentials not meant to be shared publicly.

A software repository was required both for version control and for keeping backups separate

from the development workstation. Instead of using a public repository server, a private

server in the local network was deemed sufficient. A minimal, in comparison with other

options less resource-hungry, alternative named gitolite worked out great. 25

3.2. Development

3.2.1. JavaScript library for parsing the todo.txt format

The JavaScript todo.txt format parsing library was written as multiple ES modules with

classes for supported markers in todo.txt data. Some classes have specific parser functions

(for example due-dates) while other classes with similar markers use a common inherited

prefix and/or suffix processor. The library creates an array consisting of all lines in the input

and recursively processes them using the individual marker-specific parser classes as shown

in Figure 8.

25 https://gitolite.com/gitolite/

18

Figure 8. Class diagram of todo.txt element submodules.

After development and testing of the library yielded a usable result Rollup was used to create

several JavaScript bundles compatible with multiple targets (ESM, CommonJS and Universal

Module Definition formats). The bundles were then compressed into a distributable archive.

3.2.1.1. Serializing todo.txt into JSON

Representing data as attributes with values for use in communication or storage can be done

by using several different standardised formats. Common formats are Extensible Markup

Language (XML) and the open and in comparison somewhat relaxed standard JavaScript

Object Notation (JSON) (ECMA, 2017). Not exclusively used by JavaScript (although the

syntax resembles JavaScript and is the origin of its name), JSON is considered the standard

format for web applications (Rischpater, 2015, Chapter 1).

Using a modular design implies components or parts that need to communicate data between

the graphical JavaScript frontend, the data model and the server PHP backend. Using JSON

as a standardised format for representing data makes this a standardized procedure.

19

https://paperpile.com/c/otbwUk/CMH4J
https://paperpile.com/c/otbwUk/Op0z8/?locator_label=chapter&locator=1

Parsing the task list from plaintext generates an array of classes containing both data and

code. Arrays can in turn be serialized to text using JSON with the advantage that this process

“washes” the classes clean from code (functions) but leaves the attributes and properties

generated by the parsing process. Having parsed output in JSON also allows for easy storage

of data, conversion to HTML for displaying on a web page and conversion back into plaintext

for saving and synchronization.

3.2.1.2. Testing of the JavaScript library

A number of unit tests were written for the element parsers and the js-todotxt library in early

stages of development. Writing tests compatible with both web browsers and Node.js proved

difficult but the tests were ultimately compatible with both environments. This provided the

means to run tests with output both in terminal environments and in web browsers.

The element unit tests parse todo.txt formatted text to task objects and then compares them to

expected output in serialized JSON form. This is then parsed back to plain todo.txt and

compared to the original input. Utility functions were tested by verifying returned values by

comparing them to predefined values. Example output from QUnit is shown in Figure 9. Unit

testing simplified the development of the JavaScript library to a significant extent.

Figure 9. Screenshot of unit testing using QUnit on a todo.txt element parser.

20

3.2.2. JavaScript PWA

3.2.2.1. Reading of text files

At first a single web page was written in HTML, containing a button element which could

bring up the file chooser and let the user upload a file from the local filesystem. The

application then listed the parsed contents using functions for generating HTML. While

developing the JavaScript library the upload button-approach was sufficient but having to

constantly upload files while testing became a chore. Automatically accessing the local

filesystem outside the sandboxed JavaScript environment has been proposed as a standard

Web API (Mozilla and individual contributors, 2020b), but JavaScript in browsers can

currently not read from the local filesystem without using non-standard browser-specific

APIs or external components written in ActiveX or Java.

3.2.2.2. Retrieval of data using the Nextcloud API

The todo list could be displayed using functions for generating HTML inside a Nextcloud

application which was based on a tutorial application included in the Nextcloud

documentation (Nextcloud GmbH, 2020). In this environment it was natural to use GET and

PUT methods from the Nextcloud API for reading and writing plaintext files which also lead

to a dependency on Nextcloud.

3.2.2.3. Retrieval of data using WebDAV

Pages on the World Wide Web were in the beginning read-only files in hypertext format

hosted by servers and retrieved by using the Hyper-Text Transfer Protocol (HTTP). Making

these files available on a server required copying them from some sort of removable storage

media or uploading them remotely over some other protocol such as the File Transfer

Protocol (FTP). To extend the functionality of HTTP, the World Wide Web Distributed

Authoring and Versioning (WebDAV), enabled remote authenticated clients to upload files

(IETF Group, IETF Network & Others, 2007).

Ideally the task managing application should also work fully outside of the Nextcloud server

or perhaps even without using Nextcloud altogether with the file stored on some different

21

https://paperpile.com/c/otbwUk/uns1X
https://paperpile.com/c/otbwUk/lzVTR
https://paperpile.com/c/otbwUk/Gz0qZ

kind of server. Nextcloud does provide a standards compliant WebDAV service and if the

application were to use this it would be compatible with but not dependent on Nextcloud.

Support for transferring the todo.txt file using WebDAV presented another challenge as long

as the application was not directly hosted using the same web server, overcoming

Cross-origin Resource Sharing (CORS) issues. If JavaScript requests resources from a source

that is different than its own origin, the browser will query the host of the resource whether

this is a valid request or not. The conclusion is that the server needs to be configured to allow

requests from scripts loaded from other origins (Mozilla and individual contributors, 2019).

When the web application is hosted on the same web server as the todo.txt file they share a

common origin but in all other scenarios CORS needs to be configured to allow requests.

While Nextcloud provides WebDAV server it cares less about CORS. After failed attempts at

using a number of Nextcloud helper applications that were supposed to be able to configure

CORS inside the Nextcloud server, the solution was ultimately to reconfigure the hosting

Apache web server and then manipulate HTTP headers outside of Nextcloud. This allowed

for development of the PWA independently of Nextcloud while still maintaining

compatibility with its WebDAV implementation.

3.2.2.4. Icon design

Nextcloud applications use a 32 by 32 pixels icon and support vector graphics. Icons in

Scalable Vector Graphics (SVG) format were created using the Inkscape open source 26

vector graphics editor and can be seen in Figure 10. These icons can also be used for example

in splash screens.

Figure 10. Samples of the icon design.

26 https://inkscape.org/

22

https://paperpile.com/c/otbwUk/2EeCa

Several tools for generating bitmap versions of the icons in all needed sizes can be found as

Node.js npm-packages together with tools that generate package manifests for PWAs.

3.2.2.5. Responsive styling using CSS

Stylesheets in CSS format were created throughout the development of the application. It

became a continuous part of the development process to style the user interface of the task

manager application, in part to aid in the spotting of errors in generated HTML pages and

CSS.

3.2.2.6. Persistence of data inside the browser

Credentials for accessing the todo.txt file on the server are stored inside the client web

browser using IndexedDB through the localForage wrapper (Mozilla and individual

contributors, 2013). To allow the application to work in a disconnected state while being

offline, a copy of the remote todo.txt data is also cached on download allowing tasks to be

manipulated and then synchronized at a later stage when the user is back online.

3.2.2.7. Task editor

A text input element styled to look like an existing task, as seen in Figure 11, accepts the

input of new tasks and inserts them in the local data store for synchronization after parsing.

When the user wants to edit an existing task the task is converted to plaintext and preloaded

in the editor. A date picker and other interactive elements could be added, for instance, a

dropdown suggesting existing project- and content-tags.

23

https://paperpile.com/c/otbwUk/z8GVZ
https://paperpile.com/c/otbwUk/z8GVZ

Figure 11. Editing of a task in the todo.txt application.

3.2.2.8. Vue.js components

The need for a separate settings dialogue in the task manager application made it clear that

developing the application without using any framework was a needlessly difficult process.

Creating forms on additional web pages is a minor task but managing the links pointing from

one page to another is likely to break functionality at some point.

Routing between screens in a web application turned out to be easily accomplished in Vue.js

using components. Pages can themselves consist of multiple components that appear

dynamically. When creating new tasks or editing existing tasks in the application all code and

stylesheet matter belonging to the task editor could be placed inside a separate and reusable

Vue.js component template and then included where needed (Rojas, 2019, Chapter 5).

The framework Vue.js is extendable by the use of plugins that, for example, provide support

for managing PWA manifests and service workers. Internally Vue.js uses the exact same

libraries that were planned to be used in the task manager application in the first place, for

24

https://paperpile.com/c/otbwUk/6p8kd/?locator_label=chapter&locator=5

instance Google Workbox for service workers and Webpack for bundling and generating

distributable archives. Additionally Vue.js offered a layer of abstraction on top of those

libraries with the option to choose between multiple similar solutions without major changes

to existing code, still with the ability to manually adjust the configurations of those

underlying libraries if necessary.

3.2.2.9. Listing tasks using Sortable.js and Vue.Draggable

A desire to make the task list interactive in combination with adding functionality by loading

third-party modules resulted in trying out Sortable.js , a JavaScript library providing 27

functionality for making list items in web browsers manually sortable. When the task

manager application started to use the Vue.js framework a Vue component named

Vue.Draggable (see Figure 12) was found that provided the features of Sortable.js and 28

allowed for integration with the view model in Vue.js.

Figure 12. Sortable.js and Vue.Draggable logos (both projects released under the MIT license).

3.2.2.10. Task sorting and filtering

Sorting of the displayed task list was initially implemented using simple buttons in the user

interface and sorting tasks by the value of different tags and attributes was accomplished

using the object-oriented design of the JavaScript todo.txt library where all elements had type

attributes and comparable values. At early stages of development sorting was only performed

in the view and not stored as state. When the task list in the user interface was reimplemented

as a Vue.js component the handling of the tasks in an internal array made dynamic updates of

changes in the displayed list possible. Tasks could now be manually sorted by dragging them

27 https://sortablejs.github.io/sortablejs/
28 https://github.com/SortableJS/Vue.Draggable

25

around as well as automatically reordered using sorting methods called from the user

interface.

Filtering was implemented as a text input element that matched words against existing tasks

and a mechanism in HTML provided means to add a suggestions list containing all existing

tags like project names and contexts for easy insertion as filter input.

3.2.2.11. Installation functionality on desktops and smartphones

Hosting the task manager application on a web server makes it compatible with most web

browsers and operating systems. Even browsers compatible only with older standards can run

the application, albeit not as well as most of the libraries in use fall back to older, often

slower methods. On browsers with explicit support for PWAs a pop-up will indicate that the

application is installable and that it can be added to the home screen or added to the start

menu. This has been tested in Windows 10, Linux and on Android smartphones with good

results.

3.2.3. Nextcloud application in PHP

3.2.3.1. Interaction between the Nextcloud application and the PWA

If the user is logged in to the Nextcloud server, a PWA hosted from a Nextcloud application

can use the Nextcloud API and access the todo.txt file directly, or the Nextcloud application

could provide custom REST interfaces. Otherwise the client needs to authenticate using

Nextclouds login-flow which is trivial to do in a completely separate application like for

example in a native Android application but difficult when using JavaScript running inside a

web browser due to Cross-Origin Resource Sharing (CORS) issues.

3.2.4. Deployment and publication

The task manager application was deployed on a web server and hosted online using proper

SSL certificates as illustrated by Figure 13. The application is not dependent on any specific

web server. Any standard web server would work, including solutions such as static hosting

from cloud storage. To allow for users to test the application they simply need to be given the

web address to visit using their web browsers. The todo.txt file hosting service setup is

26

specific to the chosen WebDAV server (in this case Nextcloud) and comes with its own

requirements. Additional development, testing and cleanup was needed before the codebase

and the task manager application could be publicly distributed.

Figure 13. Deployment illustration.

27

4. CONCLUSION

4.1. Result

4.1.1. The js-todotxt library
The JavaScript library js-todotxt is converted into other versions for compatibility, or

transpiled, into a number of bundles that then can be imported into other projects.

4.1.1.1. Installation of the library

Before possible publication in a JavaScript package repository the library can be manually

downloaded as a compressed archive. It can then be installed as a Node.js module

dependency (i.e. added to the package.json file) using a Node.js package manager as shown

in Figure 14.

Figure 14. Example of installing the js-todotxt library into a project using shell command.

4.1.1.2. Using the library

The library can be imported as an ES module using the import statement as shown in Figure

15 (alternatively by CommonJS require-statement) after which the methods provided by the

library are available. A selection of the available methods are listed in Table 1.

Figure 15. Example of import and use of the js-todotxt library in JavaScript.

28

$ npm install todotxt-v1.0.9.tgz

import TodoTxt from 'todotxt';
let taskJSON = TodoTxt.getJSONFromTodoTxt(text);

Table 1. Description of some of the methods included in the js-todotxt library.

4.1.2. The js-todotxt-webdav PWA
The user can load the application by visiting the URL address of the hosted task manager

application using a web browser. The software license is included in a separate screen as

shown in Figure 16. Web browsers supporting the PWA standard such as the Android version

of Google Chrome will indicate that the page can be installed locally on the device.

Figure 16. The todo.txt application displaying the about screen with the ISC software license.

29

Method Description

getJSONFromTodoTxt(text) Parses todo.txt into task objects in JSON.

getTodoTxtFromTodoJSON(json) Parses task objects as JSON to todo.txt-format.

getLineFromTodoTask(task) Parses a single task object into a line of text in todo.txt format.

taskDifference(tasks1, tasks2) Produces an array of tasks in the first array missing in the second.

isDone(task) Returns true or false depending on whether a task is marked as done.

4.1.2.1. Using the application

Users can enter tasks using the add button while viewing the task list on the application home

screen and then enter text in the task editor component. Entered tasks are added to the list

where they then can be manipulated (edited, marked done, sorted etc).

Interacting with the text input labeled filter suggests previously used project- and context-tags

as well as manual input of words (or parts of words) for filtering the displayed tasks. Filtering

will hide all tasks not containing the specified words as shown in Figure 17.

Figure 17. The todo.txt application displaying a list of tasks.

Added tasks remain between application restarts and the application can after the initial load

into a browser tab or after local installation be used while being offline and disconnected

from the hosting server. The PWA does not require the hosting server to be reachable for

normal operation provided the WebDAV server is still reachable and should the WebDAV

30

server not be reachable either, the application will continue to accept tasks for later

synchronization. Synchronization between instances of the task manager application running

on other devices or with other applications and editors having access to the todo.txt file works

as intended.

4.1.2.2. Configuration of WebDAV credentials

The server address and credentials used for connecting with WebDAV for synchronization

can be configured in a settings form as shown in Figure 18. The form can be accessed by

going to the settings tab at the top of the screen.

Figure 18. The application displaying the settings dialog.

4.1.3. The todotxt Nextcloud application
When the task manager application in pure PWA form became compatible with WebDAV

using Nextcloud for the purpose of deployment of the application itself was no longer

31

necessary. Development of the Nextcloud application was halted. The PWA can access and

synchronize files in Nextcloud instances without the need for a Nextcloud application,

provided the web server CORS configuration allows WebDAV access. As the PWA has a

separate interface class for reading todo.txt using WebDAV, creating a similar component

using the same interface but that integrates with the Nextcloud API instead is still possible.

4.2. Reflections

Working with JavaScript and PWAs has been an interesting journey that started with a

teacher telling the class that “JavaScript is the future” which stood in contrast with my past

experiences. My own experience of JavaScript at the time was that it was barely useful in

verifying input in web page forms. I could not resist the idea of revisiting the language. An

abundance of books, articles and web posts about JavaScript exist today and it is easy to get

started.

As a language JavaScript offers most of the capabilities of other object-oriented programming

languages while enforcing very few rules. The syntax is relaxed, you can for example omit

semicolons at the end of most lines of code, it lets you assign whatever you like to variables

and instead of a logical true and false it pertains to concepts such as “truthy” or “falsy”.

A lot of functionality in JavaScript is not yet completely supported by all interpreters. One

example, the “standard modules” introduced in ECMAScript 2015 are supported by all major

browsers but not yet fully in Node.js. This leads to confusion over how to actually use

JavaScript modules in any form. It has been five years since the standard was introduced,

come on! Several frameworks seem to provide the exact same functionality making you

question whether you should choose one over the other based on how much their logo

appeals to you. One article can describe the best practices to follow when designing a

component while the next article describes the exact same method as an anti-pattern.

Concepts in JavaScript can be difficult to understand as there is no clearly defined standard

practice of how to use them. The upside of this is that when you at last get a grasp of things,

nothing is as complicated as it appeared to be at first.

32

The task manager application is completely usable in its current state and it does what it is

supposed to do. Synchronization with a todo.txt file stored on a remote server works great.

Looking forward, provided development is continued, the application can offer more

functionality and provide a more user-friendly interface.

33

REFERENCES

ECMA. (2017). The JSON Data Interchange Syntax (No. ECMA-404).

https://www.ecma-international.org/publications/standards/Ecma-404.htm

Gerchev, I. (2018, December 19). Design Patterns for Communication Between Vue.js Components.

Envato Tuts+; Envato Tuts.

https://code.tutsplus.com/tutorials/design-patterns-for-communication-between-vuejs-component

--cms-32354

IETF Group, IETF Network, & Others. (2007). HTTP Extensions for Web Distributed Authoring and

Versioning (WebDAV) (RFC 4918). https://www.rfc-editor.org/info/rfc4918

Johnson, J. (2018). hello-pwa (Version 1.0.0) [Computer software]. GitHub.

https://github.com/jamesjohnson280/hello-pwa

Lodash team and contributors. (2009). Lodash. https://lodash.com/

Mozilla and individual contributors. (2013, April). localForage. LOCALFORAGE - Offline Storage,

Improved. https://localforage.github.io/localForage/

Mozilla and individual contributors. (2019). Cross-Origin Resource Sharing (CORS). MDN web

docs. https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Mozilla and individual contributors. (2020a). Classes. MDN web docs.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Mozilla and individual contributors. (2020b). File and Directory Entries API. MDN web docs.

https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API

Mozilla and individual contributors. (2020c). Progressive web apps (PWAs) (draft). MDN web docs.

https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps

Nextcloud GmbH. (2020). Tutorial — Nextcloud latest Developer Manual latest documentation

(Version 19.0).

https://docs.nextcloud.com/server/latest/developer_manual/app_development/tutorial.html

34

http://paperpile.com/b/otbwUk/CMH4J
http://paperpile.com/b/otbwUk/CMH4J
http://paperpile.com/b/otbwUk/CMH4J
https://www.ecma-international.org/publications/standards/Ecma-404.htm
http://paperpile.com/b/otbwUk/I9HQ5
http://paperpile.com/b/otbwUk/I9HQ5
http://paperpile.com/b/otbwUk/I9HQ5
http://paperpile.com/b/otbwUk/I9HQ5
https://code.tutsplus.com/tutorials/design-patterns-for-communication-between-vuejs-component--cms-32354
https://code.tutsplus.com/tutorials/design-patterns-for-communication-between-vuejs-component--cms-32354
http://paperpile.com/b/otbwUk/Gz0qZ
http://paperpile.com/b/otbwUk/Gz0qZ
http://paperpile.com/b/otbwUk/Gz0qZ
http://paperpile.com/b/otbwUk/Gz0qZ
https://www.rfc-editor.org/info/rfc4918
http://paperpile.com/b/otbwUk/lauIY
http://paperpile.com/b/otbwUk/lauIY
http://paperpile.com/b/otbwUk/lauIY
https://github.com/jamesjohnson280/hello-pwa
http://paperpile.com/b/otbwUk/3kVJf
http://paperpile.com/b/otbwUk/3kVJf
http://paperpile.com/b/otbwUk/3kVJf
https://lodash.com/
http://paperpile.com/b/otbwUk/z8GVZ
http://paperpile.com/b/otbwUk/z8GVZ
http://paperpile.com/b/otbwUk/z8GVZ
http://paperpile.com/b/otbwUk/z8GVZ
https://localforage.github.io/localForage/
http://paperpile.com/b/otbwUk/2EeCa
http://paperpile.com/b/otbwUk/2EeCa
http://paperpile.com/b/otbwUk/2EeCa
http://paperpile.com/b/otbwUk/2EeCa
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
http://paperpile.com/b/otbwUk/0aUE
http://paperpile.com/b/otbwUk/0aUE
http://paperpile.com/b/otbwUk/0aUE
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
http://paperpile.com/b/otbwUk/uns1X
http://paperpile.com/b/otbwUk/uns1X
http://paperpile.com/b/otbwUk/uns1X
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API
http://paperpile.com/b/otbwUk/6vZx
http://paperpile.com/b/otbwUk/6vZx
http://paperpile.com/b/otbwUk/6vZx
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
http://paperpile.com/b/otbwUk/lzVTR
http://paperpile.com/b/otbwUk/lzVTR
http://paperpile.com/b/otbwUk/lzVTR
http://paperpile.com/b/otbwUk/lzVTR
https://docs.nextcloud.com/server/latest/developer_manual/app_development/tutorial.html

Paltoglou, A., Zafeiris, V. E., Giakoumakis, E. A., & Diamantidis, N. A. (2018). Automated

refactoring of client-side JavaScript code to ES6 modules. 2018 IEEE 25th International

Conference on Software Analysis, Evolution and Reengineering (SANER), 402–412.

Rischpater, R. (2015). JavaScript JSON Cookbook. Packt Publishing Ltd.

Rojas, C. (2019). Building Progressive Web Applications with Vue.js: Reliable, Fast, and Engaging

Apps with Vue.js. Apress.

Rollup contributors. (2020). Rollup (Version 2.33.3). https://rollupjs.org/guide/en/

Russell, A. (2015, June 15). Progressive Web Apps: Escaping Tabs Without Losing Our Soul.

Infrequently Noted.

https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/

Salnikov, M. (2017, July 3). progressive-web-apps-logo.

https://github.com/webmaxru/progressive-web-apps-logo/issues/3

Schneider, G. M., & Gersting, J. L. (2018). Invitation to Computer Science. Cengage Learning.

Sheppard, D. (2017). Beginning Progressive Web App Development: Creating a Native App

Experience on the Web. Apress.

Stefanov, S., & Sharma, K. C. (2013). Object-Oriented JavaScript. Packt Pub Limited.

Trapani, G. (n.d.). Todo.txt. Retrieved November 22, 2020, from http://todotxt.org/

Trapani, G. (2006, May 12). Geek to Live: Reader-written todo.txt manager. Lifehacker.

https://lifehacker.com/geek-to-live-reader-written-todo-txt-manager-173018

Web Design and Applications - W3C. (n.d.). Retrieved November 20, 2020, from

https://www.w3.org/standards/webdesign/

Webpack contributors. (n.d.). Why webpack (Version 5). Retrieved November 22, 2020, from

https://webpack.js.org/concepts/why-webpack/

Wikipedia contributors. (2020a, October 28). Ecma International. Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/wiki/Ecma_International

Wikipedia contributors. (2020b, November 4). Object-oriented programming. Wikipedia, The Free

35

http://paperpile.com/b/otbwUk/VUVTc
http://paperpile.com/b/otbwUk/VUVTc
http://paperpile.com/b/otbwUk/VUVTc
http://paperpile.com/b/otbwUk/VUVTc
http://paperpile.com/b/otbwUk/VUVTc
http://paperpile.com/b/otbwUk/Op0z8
http://paperpile.com/b/otbwUk/Op0z8
http://paperpile.com/b/otbwUk/Op0z8
http://paperpile.com/b/otbwUk/6p8kd
http://paperpile.com/b/otbwUk/6p8kd
http://paperpile.com/b/otbwUk/6p8kd
http://paperpile.com/b/otbwUk/6p8kd
http://paperpile.com/b/otbwUk/4rqsd
http://paperpile.com/b/otbwUk/4rqsd
http://paperpile.com/b/otbwUk/4rqsd
https://rollupjs.org/guide/en/
http://paperpile.com/b/otbwUk/MUmob
http://paperpile.com/b/otbwUk/MUmob
http://paperpile.com/b/otbwUk/MUmob
http://paperpile.com/b/otbwUk/MUmob
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
http://paperpile.com/b/otbwUk/JJew
http://paperpile.com/b/otbwUk/JJew
http://paperpile.com/b/otbwUk/JJew
https://github.com/webmaxru/progressive-web-apps-logo/issues/3
http://paperpile.com/b/otbwUk/PGaO
http://paperpile.com/b/otbwUk/PGaO
http://paperpile.com/b/otbwUk/PGaO
http://paperpile.com/b/otbwUk/gxFkK
http://paperpile.com/b/otbwUk/gxFkK
http://paperpile.com/b/otbwUk/gxFkK
http://paperpile.com/b/otbwUk/gxFkK
http://paperpile.com/b/otbwUk/poaGO
http://paperpile.com/b/otbwUk/poaGO
http://paperpile.com/b/otbwUk/poaGO
http://paperpile.com/b/otbwUk/aeIti
http://paperpile.com/b/otbwUk/aeIti
http://paperpile.com/b/otbwUk/aeIti
http://todotxt.org/
http://paperpile.com/b/otbwUk/TlGvR
http://paperpile.com/b/otbwUk/TlGvR
http://paperpile.com/b/otbwUk/TlGvR
https://lifehacker.com/geek-to-live-reader-written-todo-txt-manager-173018
http://paperpile.com/b/otbwUk/TieLd
http://paperpile.com/b/otbwUk/TieLd
https://www.w3.org/standards/webdesign/
http://paperpile.com/b/otbwUk/G9Oo2
http://paperpile.com/b/otbwUk/G9Oo2
http://paperpile.com/b/otbwUk/G9Oo2
https://webpack.js.org/concepts/why-webpack/
http://paperpile.com/b/otbwUk/QApz
http://paperpile.com/b/otbwUk/QApz
http://paperpile.com/b/otbwUk/QApz
https://en.wikipedia.org/wiki/Ecma_International
http://paperpile.com/b/otbwUk/Rf1VZ
http://paperpile.com/b/otbwUk/Rf1VZ
http://paperpile.com/b/otbwUk/Rf1VZ

Encyclopedia. https://en.wikipedia.org/wiki/Object-oriented_programming

Wikipedia contributors. (2020c, November 19). Progressive web application. Wikipedia, The Free

Encyclopedia. https://en.wikipedia.org/wiki/Progressive_web_application

Wikipedia contributors. (2020d, December 7). Web browser. Wikipedia, The Free Encyclopedia.

https://en.wikipedia.org/wiki/Web_browser

Wikipedia contributors. (2020e, December 8). Cross-platform software. Wikipedia, The Free

Encyclopedia. https://en.wikipedia.org/wiki/Cross-platform_software

Williams, G. (2017). JavaScript for Microcontrollers. Espruino. https://www.espruino.com/

36

http://paperpile.com/b/otbwUk/Rf1VZ
https://en.wikipedia.org/wiki/Object-oriented_programming
http://paperpile.com/b/otbwUk/Gl16v
http://paperpile.com/b/otbwUk/Gl16v
http://paperpile.com/b/otbwUk/Gl16v
http://paperpile.com/b/otbwUk/Gl16v
https://en.wikipedia.org/wiki/Progressive_web_application
http://paperpile.com/b/otbwUk/ykCH
http://paperpile.com/b/otbwUk/ykCH
http://paperpile.com/b/otbwUk/ykCH
https://en.wikipedia.org/wiki/Web_browser
http://paperpile.com/b/otbwUk/FjNJ
http://paperpile.com/b/otbwUk/FjNJ
http://paperpile.com/b/otbwUk/FjNJ
http://paperpile.com/b/otbwUk/FjNJ
https://en.wikipedia.org/wiki/Cross-platform_software
http://paperpile.com/b/otbwUk/2ASHo
http://paperpile.com/b/otbwUk/2ASHo
http://paperpile.com/b/otbwUk/2ASHo
https://www.espruino.com/

APPENDIX

Definitions

29 https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
30 https://www.ecma-international.org/
31 https://www.ecma-international.org/ecma-262/6.0/
32 https://www.rfc-editor.org/info/rfc959
33 https://html.spec.whatwg.org/
34 https://www.rfc-editor.org/info/rfc7540
35 https://www.iso.org/home.html
36 https://www.ecma-international.org/publications/standards/Ecma-404.htm
37 https://nextcloud.com

API Application Programming Interface

CORS Cross-Origin Resource Sharing, a security enforcement technique 29

CSS Cascading Style Sheets - styling of HTML (W3C)

DOM Document Object Model (WHATWG, W3C)

ECMA European Computer Manufacturers Association 30

ES6 ECMA-262 , the ECMAScript standard 6th revision, ECMAScript 2015 31

ESM ECMAScript Modules standardised in ECMA-262

FTP File Transfer Protocol (RFC 959) 32

HTML Hypertext Markup Language - the markup defining elements in web pages
(WHATWG) 33

HTTP Hypertext Transfer Protocol (RFC 7540) 34

IDE Integrated Development Environment

ISO/IEC International Standards Organization/Electrotechnical Commission 35

Java A class-based object-oriented programming language (Oracle)

JavaScript Scripting language conforming to the ECMAScript standard

JSON JavaScript Object Notation file/interchange format (ECMA-404) 36

MVP Model-view-presenter software design pattern

Nextcloud Server software to provide users access to files and applications 37

38 https://www.php.net/
39 https://www.iso.org/standard/63555.html
40 https://www.w3.org/
41 https://www.rfc-editor.org/info/rfc4918

OOP Object Oriented Programming

PHP Scripting language evaluated and run inside web servers (Zend Tech.) 38

PWA Progressive Web Application with native app-like UI

REST Representational State Transfer (REST)

SVG Scalable Vector Graphics (W3C)

SQL Structured Query Language used with relational databases (ISO/IEC) 39

todo.txt Structured plaintext format for listing tasks together with metadata

UI User Interface

W3C World Wide Web Consortium 40

WebDAV World Wide Web Distributed Authoring and Versioning (RFC 4918) 41

