BUILDING INFORMATION MODELLING IN STRUCTURAL

ANALYSIS

Finite element method

Bachelor's thesis

Construction Engineering

Visamäki, spring 2020

Ilja Loginov

Degree Programme in Construction Engineering Hämeenlinna University Centre

Author	Ilja Loginov Year 2020					
Title	Building information mode	elling in structural analysis				
Supervisor(s)	Cristina Tirteu					

ABSTRACT

The purpose of this Bachelor's thesis was to examine the applicability of Dlubal RFEM, a structural analysis software based on Finite Element method on a renovation project made in a BIM software Autodesk Revit. The aim was to make observations on the performance and collaboration of the software and produce useful information about learning to use it.

The thesis consisted of making a virtual structural model of a residential multi-storey building's frame and using it to generate a modern alternative to the 100-year-old structure with minimum changes made to the historical and architectural appearance of the building. The model was then subjected to a structural analysis where suggestions were made regarding its structural design. Throughout the project, observations were made on both Aurodesk Revit and Dlubal RFEM features and its user assistance materials.

As a result of the thesis it was concluded that Dlubal RFEM can be practical in combination with Autodesk Revit for such renovation projects, even though greatly affecting performance of computer the generated materials satisfy initial requirements and provide new opportunities for the further steps of the project.

Keywords BIM, CAD, FEM, FEA, renovation, Autodesk Revit, Dlubal RFEM.

Pages 57 pages including appendices 28 pages

CONTENTS

1	INTRODUCTION	1
2	BUILDING INFORMATION MODELLING	1
3	AUTODESK REVIT	2
4	DLUBAL RFEM	3
5	AS OY FRANZENINAUKIO PROJECT	4
	 5.1 Building information 5.1.1 Demolition of old structures 5.1.2 Intermediate floor repairs 	4 6 6
6	BUILDING MODEL	8
	 6.1 Model preparation	8 10
7	STRUCTURAL ANALYSIS 1	۱2
	 7.1 Conflicts after transfer	L2 L4 L5 L8
8	STRUCTURAL ANALYSIS RESULTS 1	19
	8.1Result summary	20 21 22 22 22 24
9	CONCLUSION 2	24
RE	ERENCES 2	26

- Appendix 1 Old demolished, damaged and repaired floor slabs
- Appendix 2 Autodesk Revit generated model and drawings
- Appendix 3 Dlubal RFEM generated analytical model
- Appendix 4 Structural analysis results
- Appendix 5 RF-Concrete structural designs
- Appendix 6 Updated BIM Model

1 INTRODUCTION

With the rising number of buildings approaching the end of their serviceability period, renovation plays an ever-larger role in residential and commercial expansions. The goal of this Bachelor's thesis is to apply structural renovation on a multi-storey building to increase its sustainability and serviceability period, while preserving its cultural and architectural appearance. This is a stage where Building Information Modelling (BIM) plays a significant role in the construction process.

There are many BIM platforms in use today, each coming with its pros and cons. This thesis specifically explores Autodesk Revit, a powerful BIM software, and Dlubal RFEM, an easy yet powerful structural analysis program based on Finite Element method (FEM).

The thesis shows the process of structural modelling applied on an existing aged building in order to assist its potential future renovation. Additionally, it explores renovation possibilities, performance, application and collaboration of software providing insights into learning to use Autodesk Revit and Dlubal RFEM that can be useful to other people working or studying in construction industry.

This is done through observation and application of tools provided by the software. The programs are used to generate data on buildings and make suggestions on its structural design and potential renovation.

The building is of cultural and historical value located in Kallio, Helsinki. It is a five-storey residential building with an additionally constructed sixth floor in the old attic area. The goal of this project is to perform a structural renovation by replacing the old deteriorating intermediate concrete floor with a new reinforced concrete structure to prolong serviceability of the building.

2 BUILDING INFORMATION MODELLING

Building Information Modelling (BIM) can be depicted as a process of developing, managing and bringing into existence a digital project, which contains functional characteristics and physical properties of purposefully used facilities. Based on the results of extensive research the outcome of this process is represented in a model which nowadays is generated through a specially developed software. Apart from graphical visualisation a model includes a decisive information concerning a project cycle and every aspect of it (Cherkaoui, 2017).

Rapidly growing due to its applicability, BIM technology has become a widely discussed topic and an essential part of construction industry. Possibility to visualize and alter the existent and non-existent facilities has allowed project managers to see a construction prior its physical execution, reduce conflicting areas of the project, improve safety issues, and analyse and apply simulations of potential impacts. Additionally, it allows controlling estimation, costs, material supply and facility maintenance throughout the lifespan of a project, affecting its efficiency (Cherkaoui, 2016).

Playing a major role in BIM, Computer-Aided Design (CAD) has granted people the possibility to represent and record the shape information, which can be altered at any time, given the possession of the BIM model. That made an impact on visual communication and allowed people to learn about the progression of the erection, functionality of building components and required quantity of materials regarding an upcoming project. Instantaneous modifications to the model have preserved large amount of time spent by drafters to apply the necessary changes. It significantly raised accuracy of the drawings and production of the drafting copies (Cherkaoui, 2017).

With a wide variety of BIM platforms present today, each coming with its assets and liabilities, the choice falls on specific tools, provided by the software. Primarily used in architecture, engineering and construction (AEC), BIM software unites all three disciples in to one industry. Integration of the separate parts of one project and working together to bring it into existence has made work and collaboration more efficient.

3 AUTODESK REVIT

Autodesk, Inc. is a multinational software corporation founded in 1982 in the United States by John Walker. It specializes in several business fields: product design, manufacturing, architecture, engineering, construction, media, and entertainment (Funding Universe, n.d.). With the company's main office located in San Rafael, California, Autodesk is a leader in 3D design and engineering, having customers worldwide and offices established in more than thirty countries (Autodesk, 2019).

The company is best known for their CAD platforms, AutoCAD – a drafting application, and Revit – a powerful BIM software. Both are widely used by architects, engineers and structural designers to design, draft and model structures and other different objects.

Autodesk Revit was originally developed by Charles River Software, founded in 1997 by Leonid Raiz and Irwin Jungreis. It was later renamed in Revit Technology Corporation in 2000 and acquired by Autodesk in 2002.

Intending to create an architectural version of software that could handle more complex projects than ArchiCAD, Revit came out as a very powerful BIM collaboration tool, which brings the unique perspectives of different disciples into one three-dimensional model, including geometry, design and construction information (Bergin, 2012). The interface of the program can be seen in Figure 1.

Figure 1. Interface screenshot of Autodesk Revit

4 DLUBAL RFEM

DLUBAL software was founded as a one-man company in 1987 in Harswinkel, Germany by George Dlubal. The company is specialized in structural analysis solutions which are based on FEM. The method implies approximation of the unknown result by subdividing a large system into smaller simpler parts, running them through algebraic equations and assembling into a larger system, modelling the entire problem. Some of the interest areas of the problems are structural analysis, heat transfer, fluid flow and electromagnetic potential (Finite element method (FEM), 2019).

Ever since its establishment the company has continuously developed and optimized user-friendly and powerful programs for structural design and analysis. The most notable ones are RSTAB – an analysis and design software for beam, frame and truss structures, and RFEM – a 3D Finite Element Analysis (FEA) software for design and analysis of structures made of various materials.

Having more than 200 employees the company have established offices in 6 countries at 9 locations and is being used by more than 7800 companies

with more than 45,000 satisfied customers in 95 countries (Dlubal software, 2019).

Dlubal RFEM is a 3D FEA software operating under Microsoft Windows. The program is used to define structures, various materials such as concrete, steel, timber, glass, and various loads. RFEM consists of different corresponding add-on modules providing deformations, internal forces, stresses, support forces and soil contact stresses. Such concept allows to manually tailor a program package that suits a user's individual needs and allows to perform further analysis and design according to various standards (RFEM, 2019). The interface of RFEM is shown below in Figure 2.

The program offers numerous interfaces and a wide range of useful features for data exchange within the BIM process, maintaining all data in a digital 3D model, which is used throughout all planning stages. As a result, RFEM is a good alternative to other structural analysis software such as SAP 2000, RISA and Robot Structural analysis, which has an integration in the standard BIM software such as Revit or Tekla. Various CAD and structural analysis programs can use the same model, which can be transferred between programs.

Figure 2. Interface screenshot of DLUBAL RFEM

5 AS OY FRANZENINAUKIO PROJECT

5.1 Building information

As Oy Helsingin Franzeninaukio is a multi-storey building located on Fleminginkatu 10, Kallio, Helsinki. The original designs of the project are

dated in 1910 and the building itself was erected in 1912 by the Finnish designer and builder Heikki Kaartinen, (Figure 3). The building is of great architectural, cultural and historical value and falls under a protection class Sr-2 (suojeltava rakennus), which restricts demolition, extension and reconstruction works of any parts of the building that affect historical value or architectural features without permission from the building committee. The building has four residential floors and an attic floor. Two spacious staircases going through the building.

Figure 3. Fleminginkatu 10. Franzeninkatu 23 (Helsinki kuvia, n.d.)

During a major renovation taking place in 1980-1982, two elevator shafts were constructed on both sides of staircases, going from the ground floor to the last floor of the residential area. The elevator and ventilation engine rooms were placed on the attic. The basement is redesigned for office and storage area and cold offices in the attic were replaced with additional storage area. Improvements were made to electricity, plumbing and ventilation allowing extension of the bathrooms. During the renovation, the style of 1910s faced, roof structure, spacious stairwells and the heights of the apartments were preserved (Rakennuslupa, 2016).

A major renovation took place in 2016-2018 with major changes done to the deteriorating wooden roof structure and apartment arrangement. Previously installed electrical and HVAC systems were completely removed and replaced with a modern one. Old and deteriorating exterior plaster and ornament was removed and reapplied anew with the same architectural view as the original (Rakennuslupa, 2016).

5.1.1 Demolition of old structures

Renovation included construction of eight new residential apartments on the attic floor, for which to be feasible the old roof structure had to be demolished and rebuilt anew, differing as little as possible from the original architectural view. Though majority of old chimneys were preserved, slight modifications were made to them to fit the ventilation pipes. The demolition drawing of the attic can be found in Appendix 2.

The old wooden attic and residential intermediate floors were removed and emptied of the old insulation, revealing the original structure (see Figure 4). To bear the new roof structure, additional beams were placed between the structure's external and internal bearing walls and overlapping concrete slabs. The internal part of the eaves is reinforced to support the bottom of the new roof. The old staircase floor of the attic area is demolished and cast anew to match the level of the attic's new intermediate floor.

Figure 4. Demolished roof structure

5.1.2 Intermediate floor repairs

As the old wooden floor structure was removed, it was revealed that the old intermediate concrete slabs were covered with cracks, going from top to bottom of the slab at some places. Holes in some slabs also showed the

lack of reinforcement in them (see Figure 5). The slabs themselves rested on the bottom eaves of the old INP 200 beams.

Figure 5. Cracked floor slab

Since renovation required removal of the old wool, filled in the area between the slab and wooden floor, and refilling the empty space with a heavier small grain gravel, it was necessary to perform an inspection for the presence of cracks on all the concrete slabs and make necessary repairs. Old demolished structures, damaged and repaired slabs can be seen on the photos given in Appendix 1.

As the minor reparations were made to the concrete slabs, leaving uncracked ones under heavier load, it is certain that more cracking will occur, and the building will be a subject to a major structural renovation after next serviceability check (see Figure 6).

Figure 6. Repaired intermediate floor slab

6 BUILDING MODEL

6.1 Model preparation

The generation of the models in Autodesk Revit is done using the parametric modelling method, which means that the model is created based on a series of pre-programmed algorithms. Using its internal logic, the program is automatically generating elements rather than manually manipulating them (BIM Wiki, 2019). Autodesk offers numerous useful and easy to follow video lectures and tutorials to assist users in operating their programs.

The file containing original 3D BIM model is generated using architectural template in Autodesk Revit (Figure 7). It includes both architectural and structural drawings, types of structures, properties of objects and

installation guidance. The list of attached drawings can be seen in Table 1, parts of which can be found in Appendix 2.

Figure 7. As Oy Franzeninaukio 3D architectural model

Table 1. List of attached architectural and structural drawings

Sheet Catenorod Sheet Number Sheet Name 01 Architectural 02 Asiakinaluettelo 01 02 Arakinaluettelo 02 Arakinaluettelo 03 01 Architectural 03 Paaoinustus 002 01 ASEMAPIIRROS 01 Architectural 03 Paaoinustus 004 01 LEIKKAUS A-A JA PHAJULKISNU 01 Architectural 03 Paaoinustus 004 01 LEIKKAUS A-A JA PHAJULKISNU 01 Architectural 03 Paaoinustus 004 03 LEIKKAUS C-C JA PHAJULKISNU 01 Architectural 03 Paaoinustus 004 03 LEIKKAUS C-C JA PHAJULKISNU 01 Architectural 03 Paaoinustus 004 02 LEIKKAUS C-C JA PHAJULKISNU 01 Architectural 03 Paaoinustus 009 02 KATTOIKKUNAT 01 Architectural 01 Architectural 03 Paaoinustus UITE 1 PINTA-ALA KAAVICT 01 Architectural 03 Paaoinustus UITE 4 ASEMAPIIROS 01 Architectural 03 Paaoinustus UITE 4 ASEMAPIIROS 01 Architectural 03 Paaoinustus UITE 4 ASEMAPIIRON 01 Architectural 03 Paaoinustus 002 PHAPI	A	B	C	D
01 Architectural 02 Asiakinaluettelo 00 03 Paaoiiuustus 01 AR biirustusluettelo 03 Paaoiiuustus 002 01 ASEMAPIIRROS 01 Architectural 03 Paaoiirustus 004 01 LEIKKAUS A-A JA PIHAJULKISIVU 01 Architectural 03 Paaoiirustus 003 01 POHJAPIIRUSTUS ULLAKKO 01 Architectural 03 Paaoiirustus 004 03 LEIKKAUS C-CJ A PIHAJULKISIVU 01 Architectural 03 Paaoiirustus 004 00 LEIKKAUS C-CJ A PIHAJULKISIVU 01 Architectural 03 Paaoiirustus 005 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Paaoiirustus 009 01 RAKENNE TYPIT 01 Architectural 03 Paaoiirustus 004 04 LEIKKAUKSET DD. EE JA FF 01 Architectural 03 Paaoiirustus LITE 1 VESIKATON VISUALISOINT 01 Architectural 03 Paaoiirustus 002 02 PIHAPIIRUSTUS 01 Architectural 03 Paaoiirustus 002 02 PIHAPIIRUSTUS 01 Architectural 03 Paaoiirustus 002 02 PIHAPIIRUSTUS 01 Architectural 04 Paakalaskenta 03 01 Pohiaoiirustus vesikato 01 Architectural 04 Paakalaskenta 103 01 Pohiaoiirustus vesikato<	Sheet Category	Sheet Sub-1 category	Sheet Number	Sheet Name
U1 Architectural U2 Asiakinialuettelo U2 Asiakinialuettelo 100 01 AR birustusuettelo U3 Architectural 103 Pääöiirustus 002 01 ASEMAPIIRROS U3 Architectural 103 Pääöiirustus 002 01 ASEMAPIIRROS U3 Architectural 103 Pääöiirustus 005 01 JULKISKVU FRANZENINKATU U3 Architectural 103 Pääöiirustus 004 01 LEIKKAUS S-A JA PIHAJULKISKVU U3 Architectural 103 Pääöiirustus 004 02 LEIKKAUS S-B U3 Architectural 103 Pääöiirustus 005 02 JULKISKVU FLEMIGINKATU U4 Architectural 103 Pääöiirustus 009 02 KATTOIKKUNAT U4 Architectural 103 Pääöiirustus 009 02 KATTOIKKUNAT U4 Architectural 103 Pääöiirustus LIITE 1 VESIKATON VISUALISOINTI U4 Architectural 103 Pääöiirustus LIITE 4 ASEMAPIIRROS U4 Architectural 104 Pääöiirustus LIITE 4 ASEMAPIIRROS U4 Architectural 104 Pääöiirustus LIITE 4 ASEMAPIIRROS U4 Architectural 04 Urakkalaskenta 1				
02 Asiakinaluettelo 100.01 AR. Diirustusluettelo 03 Pääoiirustus 002 01 ASEMAPIIRROS 01 Architectural 03 Pääoiirustus 004 01 LEIKKAUS A.A. JA.PIHAJULKISIVU 01 Architectural 03 Pääoiirustus 004 01 LEIKKAUS A.A. JA.PIHAJULKISIVU 01 Architectural 03 Pääoiirustus 005 01 JULKISIVU FRANZENINKATU 01 Architectural 03 Pääoiirustus 004 02 LEIKKAUS CG.J.A.PIHAJULKISIVU 01 Architectural 03 Pääoiirustus 006 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Pääoiirustus 009 01 RAKENNETYPTI 01 Architectural 03 Pääoiirustus 004 04 LEIKKAUKSUKETDD. EE JA FF 01 Architectural 03 Pääoiirustus LIITE 1 VESIKATON VISUALISOINTI	01 Architectural			
Of Architectural (02 Asiakirabuettelo 100 01 AR piirustus 01 Architectural (03 Pääoiirustus 002 01 ASEMAPIIRROS 01 Architectural (03 Pääoiirustus 004 01 LEIKKAUS A. JA PIHAJULKISIVU 01 Architectural (03 Pääoiirustus 005 01 JULKISIVU FRANZENINKATU 01 Architectural (03 Pääoiirustus 004 03 LEIKKAUS CC. JA PIHAJULKISIVU 01 Architectural (03 Pääoiirustus 004 02 LEIKKAUS CC. JA PIHAJULKISIVU 01 Architectural (03 Pääoiirustus 006 02 LEIKKAUS SD. 01 Architectural (03 Pääoiirustus 009 01 RAKENNETYPHT 01 Architectural (03 Pääoiirustus 009 02 KATTOKIKUNAT 01 Architectural (03 Pääoiirustus 001 02 PiHAPIIRUSTUS 01 Architectural (03 Pääoiirustus 002 02 PiHAPIIRUSTUS 01 Architectural (04 Urakkalaskenta 103 01 Pohiaoiirustus veikatko 01 Architectural (04 Urakkkalaskenta 109 01 <tk< td=""><td>02 Asiakirialuette</td><td>elo</td><td>1</td><td></td></tk<>	02 Asiakirialuette	elo	1	
03 Pääpiirustus 002 01 ASEMAPIIRROS 01 Architectural 03 Pääpiirustus 004 01 LEIKKAUS.A-A JA PIHAJULKISIVU 01 Architectural 03 Pääpiirustus 005 01 JULKISIVU PANZENINKATU 01 Architectural 03 Pääpiirustus 003 01 POHJAPIRUSTUS ULLAKKO D 01 Architectural 03 Pääpiirustus 004 02 LEIKKAUS.B-B D 01 Architectural 03 Pääpiirustus 004 02 JULKISVU FLEMGRIKATU 01 Architectural 03 Pääpiirustus 004 02 JULKISVU FLEMGRIKATU 01 Architectural 03 Pääpiirustus 004 02 POHJAPIRUSTUS VESIKATO 01 Architectural 03 Pääpiirustus 009 02 KATTOIKKUNAT 01 Architectural 03 Pääpiirustus 002 02 PIHAPIIRUSTUS 01 Architectural 04 Urakkalaskenta 103 01 Pohiapiirustus uliakko<	01 Architectural	02 Asiakirialuettelo	100 01	AR piirustusluettelo
01 Architectural 03 Pääpiirustus 002 01 ASEMAPIIRKOS 01 Architectural 03 Pääpiirustus 005 01 JULKISIVU FRANZENIINKATU 01 Architectural 03 Pääpiirustus 004 01 LEIKKAUS A- A JA PIHAJULKISIVU 01 Architectural 03 Pääpiirustus 004 03 LEIKKAUS A- A JA PIHAJULKISIVU 01 Architectural 03 Pääpiirustus 004 03 LEIKKAUS B-B 01 Architectural 03 Pääpiirustus 004 03 LEIKKAUS B-B 01 Architectural 03 Pääpiirustus 005 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Pääpiirustus 009 01 RAKENNETYYPIT 01 Architectural 03 Pääpiirustus 009 02 KATKOIKSIVUS VESIKATTO 01 Architectural 03 Pääpiirustus 009 02 KATKOIKSIVATT 01 Architectural 03 Pääpiirustus 009 02 KATKOIKSIVAT 01 Architectural 03 Pääpiirustus 009 02 KATKOIKSIVAT 01 Architectural 03 Pääpiirustus UITE 1 VESIKATON VISUALISOINTT 01 Architectural 03 Pääpiirustus UITE 2 PINITA-ALA KAAVIOT 01 Architectural 03 Pääpiirustus 002 02 PIHAPIIRUSTUS 01 Architectural 03 Pääpiirustus 002 02 PIHAPIIRUSTUS 01 Architectural 04 Varkkalaskenta 103 01 Pohiapiirustus ullakko 01 Architectural 04 Urakkalaskenta 103 01 Pohiapiirustus ullakko 01 Architectural 04 Urakkalaskenta 103 01 Pohiapiirustus vesikatto 01 Architectural 04 Urakkalaskenta 109 01 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoikhunat 01 Architectural 04 Urakkalaskenta 109 03 IIKkuna kaavio 01 Architectural 04 Urakkalaskenta 109 04 Rakennetvovit 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Orakkalaskenta 109 05 Oviluettelo - Ullakko 03 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 04 Structural 104 Orakkalaskenta 109 05 Oviluettelo - Ullakko 05 Structural 104 Orakkalaskenta 109 05 Oviluettelo - Ullakko 05 Structural 104 Ovinustus 315 LEIKKAUS 5 - 5 TORNI 05 Structural 104 Ovinustus 316 LEIKKAUS 5 - 5 TORNI 05 Structural 104 Ovinustus 317 LEIKKAUS 5 - 5 TORNI 05 Structural 104 Ovinustus 328 DET 1-1 05 Structural 104 Ovinustus 329 DET 1-9 05 Structural 104 Ovinustus 320 DET 3-3 05 Structural 104 Ovinustus 320 DET	03 Pääpiirustus		1992 2 7	
01 Architectural 03 Paabinstus 004 01 LEIKKAUS A-A JA PIHAUUKISIVU 01 Architectural 03 Paabinstus 005 01 JULKISIVU FRANZENINKATU 01 Architectural 03 Paabinstus 004 01 LEIKKAUS C-2 JAPHAJULKISIVU 01 Architectural 03 Paabinstus 004 02 LEIKKAUS C-2 JAPHAJULKISIVU 01 Architectural 03 Paabinstus 004 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Paabinstus 005 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Paabinstus 009 01 RAKENNETYPHT 01 Architectural 03 Paabinstus 009 02 KATTOIKKAUNAT 01 Architectural 03 Paabinstus 009 02 KATTOIKKAUNAT 01 Architectural 03 Paabinstus 009 02 KATTOIKKAUNAT 01 Architectural 03 Paabinstus 009 02 KATTOIKKUNAT 01 Architectural 03 Paabinstus 009 02 RATTOIKKUNAT 01 Architectural 03 Paabinstus 002 02 PIHAPIRUSTUS VESIKATTO 01 Architectural 03 Paabinstus LIITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Paabinstus 002 02 PIHAPIRUSTUS 01 Architectural 03 Paabinstus 002 02 PIHAPIRUSTUS 01 Architectural 03 Paabinstus 002 02 PIHAPIRUSTUS 01 Architectural 04 Varkkalaskenta 103 01 Pohiabinstus ullakko 01 Architectural 04 Urakkalaskenta 103 01 Pohiabinstus ullakko 01 Architectural 04 Urakkalaskenta 109 01 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoihtv 01 Architectural 04 Urakkalaskenta 109 02 Kattoihtv 01 Architectural 04 Urakkalaskenta 109 02 OI Kattoihtv 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 04 Rakennehvorit 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 04 Rakennehvorit 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Urakkalaskenta 109 06 VIAKON VALIPOHJA - KANTAVAT 02 Structural 104 Urakkalaskenta 109 07 Ikkuna Kaavio 01 Architectural 04 Urakkalaskenta 109 08 Ikkuna Kaavio 02 Structural 104 Urakkalaskenta 109 07 Ikkuna HVANAT 02 Structural 104 Urakkalaskenta 109 07 Ikkuna HVANAT 02 Structural 104 Urakkalaskenta 109 07 Ikkuna HVANAT 02 Structural 104 Urakkalaskenta 109 07 Ikkuna H	01 Architectural	03 Paapiirustus	002.01	ASEMAPIIRROS
01 Architectural 03 Paabirustus 005 01 JULKISVU FHANZENINKATU 01 Architectural 03 Paabirustus 004 03 LEIKKAUS C-C JA PIHAJULKISIVU 01 Architectural 03 Paabirustus 004 03 LEIKKAUS C-C JA PIHAJULKISIVU 01 Architectural 03 Paabirustus 005 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Paabirustus 005 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Paabirustus 003 02 POHJAPIRUSTUS VESIKATTO 01 Architectural 03 Paabirustus 003 02 POHJAPIRUSTUS VESIKATTO 01 Architectural 03 Paabirustus 009 02 KATTOKKUNAT 01 Architectural 03 Paabirustus 002 02 PIHAPIRUSTUS VESIKATON VISUALISOINTI 01 Architectural 03 Paabirustus 002 02 02 PIHAPIRUSTUS 01 Architectural 03 Paabirustus 002 02 02 PIHAPIRUSTUS 04 Urakkalaskenta 01 Architectural 04 Urakkalaskenta 103 01 Pohiabirustus vesikatto 01 Architectural 04 Urakkalaskenta 103 01 Pohiabirustus vesikatto 01 Architectural 04 Urakkalaskenta 109 01 Katoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Katoihtiv 01 Architectural 04 Urakkalaskenta 109 02 Katoihtiv 01 Architectural 04 Urakkalaskenta 109 02 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 04 Rakennetvvoit 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Urakkalaskenta 109 04 Rakennetvvoit 02 Structural 104 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Urakkalaskenta 109 07 LEKKAUS 5 - 5 TORIN 02 Structural 104 Urakkalaskenta 109 08 Rakennetvvoit 02 Structural 104 Urakkalaskenta 109 07 LEKKAUS 5 - 100KINT 02 Structural 104 Urakkalaskenta 109 07 LEKKAUS 5 - 100KINT 02 Structural 104 Urakkalaskenta 109 08 ULLAKKAUS 5 - 100KINT 02 Structural 104 Urakkalaskenta 109 07 LEKKAUS 5 - 100KINT 02 Structural 104 Urakkalaskenta 109 07 LEKKAUS 5 - 100KINT 02 Structural 104 Urakkalaskenta 109 07 LEKKAUS 5 - 100KINT 02 Structural	01 Architectural	03 Paapiirustus	004 01	LEIKKAUS A-A JA PIHAJULKISIVU
01 Architectural 03 Paabirustus 003 01 POHAPIIKUS IUS 0LTAKKO 01 Architectural 03 Paabirustus 004 03 LEIKKAUS C- CJ APIHAJULKISIVU 01 Architectural 03 Paabirustus 005 02 JULKISIVU FLEMIGINKATU 01 Architectural 03 Paabirustus 003 02 POHAPIIKUS IUS VESIKATO 01 Architectural 03 Paabirustus 003 02 POHAPIIKUS IVS VESIKATTO 01 Architectural 03 Paabirustus 003 02 POHAPIIKUS IVS VESIKATTO 01 Architectural 03 Paabirustus 009 01 RAKENNETYPT 01 Architectural 03 Paabirustus 009 02 KATTOIKKINNAT 01 Architectural 03 Paabirustus LIITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Paabirustus LIITE 2 PINTA-ALA KAAVIOT 01 Architectural 03 Paabirustus 002 02 PIHAPIIRUS IUS 01 Architectural 03 Paabirustus 1002 02 PIHAPIIRUS IUS 01 Architectural 03 Paabirustus 1002 02 PIHAPIIRUS IUS 01 Architectural 03 Paabirustus 1002 02 PIHAPIIRUS IUS 01 Architectural 04 Urakkalaskenta 103 01 Pohiabirustus vesikato 01 Architectural 04 Urakkalaskenta 103 01 Pohiabirustus vesikato 01 Architectural 04 Urakkalaskenta 109 01 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural Tvooiirustus 310 Rakennetvoit 02 Structural Tvooiirustus 312 LEIKKAUS 2 - 2 YLESILEKKAUS 02 Structural Tvooiirustus 313 LEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 314 LEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 314 LEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 314 LEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 315 LEIKKAUS 5 - 6 KATTOIKKUNA PERIA 02 Structural Tvooiirustus 316 LEIKKAUS 5 - 6 KATTOIKKUNA PERIA 02 Structural Tvoo	01 Architectural	03 Paapiirustus	005 01	JULKISIVU FRANZENINKATU
01 Architectural 03 PARADUCKSUC 01 Architectural 03 PARADUCKSUC PERKAUS CO 01 Architectural 03 PARADUCKSUC POHJAPIRUSTUS POHJAPIRUSTUS 01 Architectural 03 PARADUCKSUC POHJAPIRUSTUS PERKAUKS 01 Architectural 03 PARADUCKSUC POHJAPIRUSTUS PERKAUKSUC 01 Architectural 03 PARADUCKSUC PARADUCKSUC PARADUCKSUC 01 Architectural 03 PARADUCKSUC PARADUCKSUC PARADUCKSUC 01 Architectural 03 PARADUCKSUC PARADUCKSUC PARADUCKSUC 01 Architectural 04 PARADUCKSUC PARADUCKSUC PARADUCKSUC 01 Architectural 04 Urakkalaskenta 103 01 Pohiapiirustus Ulakko 01 Architectural 04 Urakkalaskenta 109 01 Architectural 04 Urakkalaskenta 109 04 Rakennetvv	01 Architectural	03 Paapiirustus	003 01	POHJAPIRUSTUS ULLAKKO
01 Architectural 03 Pääbiirustus 004 02 JULKSIVU FLEMIGINKATU 01 Architectural 03 Pääbiirustus 009 01 RAKENNE TYPTT 01 Architectural 03 Pääbiirustus 004 04 LEIKKAUKSET DD. ELJA FF 01 Architectural 03 Pääbiirustus 009 UKATTOIKKUNAT 01 Architectural 03 Pääbiirustus LITE VESIKATON VISUALISOINTI 01 Architectural 03 Pääbiirustus LITE PESIKATON VISUALISOINTI 01 Architectural 03 Pääbiirustus LITE ARAVANOT 01 Architectural 03 Pääbiirustus LITE ASEMAPIIRROS 04 Urakkalaskenta 103 01 Pohiapiirustus vesikato 01 01 Architectural 04 Urakkalaskenta 109 02 Katoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Katoikuna kaavio	01 Architectural	03 Paapiirustus	004 03	LEIKKAUS C-C JA PIHAJULKISIVU
Ol Akchitectural OS 02 JOLKNOV FLEMIONATO 01 Architectural 03 Paabiirustus 003 02 POHJAPIIRUSTUS VESIKATTO 01 Architectural 03 Paabiirustus 003 02 POHJAPIIRUSTUS VESIKATTO 01 Architectural 03 Paabiirustus 004 04 LEIKKAUKSET DD. EE JA FF 01 Architectural 03 Paabiirustus LIITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Paabiirustus LIITE 4 ASEMAPIIRROS 01 Architectural 03 Paabiirustus LIITE 4 ASEMAPIIRROS 04 Architectural 04 Paabiirustus LIITE 4 ASEMAPIIRROS 04 Architectural 04 Urakkalaskenta 103 01 Pohiabiirustus vesikatto 01 Architectural 04 Urakkalaskenta 103 02 Pohiabiirustus vesikatto 01 Architectural 04 Urakkalaskenta 109 01 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Ordikuteta) 02 Structural 04 Urakkalaskenta 109 03 Ikkunat kaavio 02 Str	01 Architectural	03 Paapiirustus	004 02	LEIKKAUS D-D
01 Architectural 03 Pääpiinustus 009 01 RAKENNELTYTPII 01 Architectural 03 Pääpiinustus 004 04 LEIKKAUKSET DD EE JA FF 01 Architectural 03 Pääpiinustus 009 02 KATTOIKKUNAT 01 Architectural 03 Pääpiinustus LIITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Pääpiinustus LIITE 2 PINTA-ALA KAAVIOT 01 Architectural 03 Pääpiinustus UITE 2 PINTA-ALA KAAVIOT 01 Architectural 03 Pääpiinustus 002 02 PIHAPIIRUSTUS 01 Architectural 03 Pääpiinustus 002 02 PIHAPIIRUSTUS 01 Architectural 03 Pääpiinustus 002 02 PIHAPIIRUSTUS 01 Architectural 04 Urakkalaskenta 103 01 Pohiapiirustus ulakko 01 Architectural 04 Urakkalaskenta 103 02 Pohiapiirustus vesikatto 01 Architectural 04 Urakkalaskenta 103 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 104 Urakkalaskenta 109 05 VLAPOHJA YLAPOHJA - KANTAVAT 02 Structural 104 Urakkalaskenta 310 EIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural 104 Urakkalaskenta 311 EIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural 104 Urakkalaskenta 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural 104 Urakkalaskenta 313 LEIKKAUS 3 - 1 AUKKOPALKKI 02 Structural 104 Urakkalaskenta 314 LEIKKAUS 4 - 4 LAPEIKKAUA 02 Structural 104 Urakkalaskenta 314 LEIKKAUS 5 - 5 TORNI 02 Structural 104 Urakkalaskenta 314 LEIKKAUS 5 - 5 CORNI 02 Structural 104 Urakkalaskenta 314 LEIKKAUS 5 - 8 PARKATILA 02 Structural 104 Urakkalaskenta 314 LEIKKAUS 5 - 8 PARKATILA 02 Structural 104 Urakkalaskenta 314 LEIKKAUS 5 - 8 PARKATILA 02 Structural 104 Ura	01 Architectural	U3 Paapiirustus	005.02	JULKISIVU FLEMIGINKATU
0) Architectural 03 Pääbiinustus 00404 LEIKKAUKSET DD. EE JA FF 01 Architectural 03 Pääbiinustus 009 02 KATTOIKKUNAT 01 Architectural 03 Pääbiinustus LIITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Pääbiinustus LIITE 2 PINTA-ALA KAAVIOT 01 Architectural 03 Pääbiinustus LIITE 4 ASEMAPIIRUS 05 01 Architectural 03 Pääbiinustus IITTE 4 ASEMAPIIRUS 05 01 Architectural 04 Urakkalaskenta 103 01 Pohiabiirustus ullakko 01 Architectural 04 Urakkalaskenta 103 02 Pohiabiirustus vesikatto 01 Architectural 04 Urakkalaskenta 103 01 Pohiabiirustus ullakko 01 Architectural 04 Urakkalaskenta 103 02 Pohiabiirustus ullakko 01 Architectural 04 Urakkalaskenta 109 01 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Urakika 00 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Urakika 04 ULAKON VALIPOHJA - KANTAVAT 02 Structural Tvobiirustus 304 ULLAKON VALIPOHJA - KANTAVAT 02 Structural Tvobiirustus 311 LEIKKAUS 1 - 1 AUKKOPALKKI 02 Structural Tvobiirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvobiirustus 313 LEIKKAUS 5 - 7 HORMILAPIVIENNIT 02 Structural Tvobiirustus 313 LEIKKAUS 5 - 1 ORMILAPIVIENNIT 02 Structural Tvobiirustus 313 LEIKKAUS 5 - 1 ORMILAPIVIENNIT 02 Structural Tvobiirustus 313 LEIKKAUS 5 - 1 ORMILAPIVIENNIT 02 Structural Tvobiirustus 314 LEIKKAUS 5 - 1 ORMILAPIVIENNIT 02 Structural Tvobiirustus 315 LEIKKAUS 5 - 10 JIIRI 02 Structural Tvobiirustus 326 DET -1-1 02 Structural Tvobiirustus 327 DET -1-1 02 Structural Tvobiirustus 328 DET -2-2 02 Structural Tvobiirustus 329 DET -2-2 02 Structural Tvobiirustus 326 DET -5-5 02 Structural Tvobiirustus 327 DET -7-7 02 Structural Tvobiirustus 328 DET -1-11 00 Structural Tvobiir	01 Architectural	03 Paapinustus	009.01	RAKENNETYPI
01 Architectural 03 Patabiliustus 004 04 LEIKAAUXDISE LDD EE JA FF 01 Architectural 03 Patabiliustus UITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Patabiliustus UITE 2 PINA-ALA KAAVIOT 01 Architectural 03 Patabiliustus UITE 2 PINA-ALA KAAVIOT 01 Architectural 03 Patabiliustus UITE 4 ASEMAPIIROS 04 Urakkalaskenta 103 01 Pohiabiliustus ullakko 01 Architectural 04 Urakkalaskenta 103 02 Pohiabiliustus vesikatto 01 Architectural 04 Urakkalaskenta 103 02 Pohiabiliustus ullakko 01 Architectural 04 Urakkalaskenta 103 01 Pohiabiliustus ullakko 01 Architectural 04 Urakkalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Uraktoikko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 VILAPOHJA VLAPOHJA - KANTAVAT 02 Structural 1 Vooiirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural Tvooiirustus 311 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvooiirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvooiirustus 313 LEIKKAUS 4 - 4 LAPEIKKAUA 02 Structural Tvooiirustus 314 LEIKKAUS 4 - 4 LAPEIKKAUA 02 Structural Tvooiirustus 315 LEIKKAUS 4 - 4 LAPEIKKAUA 02 Structural Tvooiirustus 316 LEIKKAUS 6 - 6 KATTOIKUNA HVS 02 Structural Tvooiirustus 321 DET 1-1 02 Structural Tvooiirustus 321 DET 1-7 - 02 Structural Tvooiirustus 322 DET 2-2 02 Structural Tvooiirustus 323 DET 3-3 02 Structural Tvooiirustus 324 DET 4-4 02 Structural Tvooiirustus 325 DET 5-5 02 Structural Tvooiirustus 326 DET 4-4 02 Structural Tvooiirustus 327 DET 7-7 02 Structural Tvooiirustus 328 DET 3-3 02 Structural Tvooiirustus 329 DET 3-3 02 Structural Tvooiirustus 326 DET 4-4 02 Structural Tvooiirustus 327 DET 7-7 02 Structural Tvooiirustus 328 DET	01 Architectural	03 Paapinustus	003.02	PUHJAPIRUSTUS VESIKATTU
0) Architectural 03 Patabilitistus LITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Pääpiirustus LITE 1 VESIKATON VISUALISOINTI 01 Architectural 03 Pääpiirustus 002 02 PIHAPIIRUSTUS 01 Architectural 03 Pääpiirustus 002 02 PIHAPIIRUSTUS 04 Urakkalaskenta 103 01 Pohiapiirustus vesikato 01 Architectural 04 Urakkalaskenta 109 01 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoihtiv 01 Architectural 04 Urakkalaskenta 109 02 Kattoihtiv 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 1 tvopiirustus 304 ULLAKON VALIPOHJA KANTAVAT 02 Structural 1 vopiirustus 304 ULLAKON VALIPOHJA KANTAVAT 02 Structural 1 vopiirustus 311 LEIKKAUS 1 - 1 AUKKOPALKA 02 Structural 1 vopiirustus 312 LEIKKAUS 7 - 7 HORMILAPIVIENNIT 02 Structural 1 vopiirustus 313 1 LEIKKAUS 7 - 7 HORMILAPIVIENNIT 02 Structural 1 vopiirustus 313 1 LEIKKAUS 7 - 7 HORMILAPIVIENNIT 02 Structural 1 vopiirustus 314 LEIKKAUS 9 - 9 MÅRKÄTILA 02 Structural 1 vopiirustus 315 LEIKKAUS 9 - 9 MÅRKÄTILA 02 Structural 1 vopiirustus 320 LEIKKAUS 9 - 9 MÅRKÄTILA 02 Structural 1 vopiirustus 321 DET 1-1 02 Structural 1 vopiirustus 322 DET 2-2 02 Structural 1 vopiirustus 323 DET 3-3 02 Structural 1 vopiirustus 324 DET 4-4 02 Structural 1 vopiirustus 325 DET 6-6 02 Structural 1 vopiirustus 326 DET 6-7 02 Structural 1 vopiirustus 327 DET 7-7 02 Structural 1 vopiirustus 328 DET 8-8 02 Structural 1 vopiirustus 329 DET 2-2 02 Structural 1 vopiirustus 326 DET 6-7 02 Structural 1 vopiirustu	01 Architectural	03 Paapinustus	004 04	
01 Architectural 03 Patabinustus LITE 1 VESIAA ION VISUATION VISUA	01 Architectural	03 Paapinustus	009.02	
01 Architectural 03 PAChtectural 03 PRIAPLRVSTUS 01 Architectural 03 PRIAPLRVSTUS DI 01 Architectural 04 Di Architectural 04 01 Architectural 04 Urakkalaskenta 103 01 01 Architectural 04 Urakkalaskenta 103 01 01 Architectural 04 Urakkalaskenta 103 01 01 Architectural 04 Urakkalaskenta 109 02 Kattolvhtv 01 Architectural 04 Urakkalaskenta 109 02 Kattolvhtv 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna 04 01 Architectural 04 Urakkalaskenta 109 05 Ovaluettelo - Ullakko 04 01 Architectural 04 Urakkalaskenta 109 05 Ovaluettelo - Ullakko 05 02 Structural Tvooiirustus 310 Rakennetvroit 02 02 Structural T	01 Architectural	02 Daapiirustus		
01 Architectural 03 Padoinustus LITTE 4 ASEMAPIRROS 04 Urakkalaskenta 01 Architectural 04 Urakkalaskenta 103 01 10 Architectural 04 Urakkalaskenta 103 02 10 Architectural 04 Urakkalaskenta 103 01 10 Architectural 04 Urakkalaskenta 109 01 10 Architectural 04 Urakkalaskenta 109 02 10 Architectural 04 Urakkalaskenta 109 02 10 Architectural 04 Urakkalaskenta 109 04 10 Architectural 04 Urakkalaskenta 109 02 10 Architectural 04 Urakkalaskenta 109 04 10 Architectural 04 Urakkalaskenta 109 05 10 Architectural 100 Urakkalaskenta 100 2 Structural 1000 10 Architectural 1000	01 Architectural	02 Dääpijrustus		
01 Filterulation 01 Parking Skenta 01 Architectural 04 Urakkalaskenta 103 01 01 Architectural 04 Urakkalaskenta 103 01 01 Architectural 04 Urakkalaskenta 103 01 01 Architectural 04 Urakkalaskenta 103 01P 01 Architectural 04 Urakkalaskenta 103 01P 01 Architectural 04 Urakkalaskenta 109 02 1 Architectural 04 Urakkalaskenta 109 02 1 Architectural 04 Urakkalaskenta 109 03 1 Architectural 04 Urakkalaskenta 109 03 1 Architectural 04 Urakkalaskenta 109 05 1 Architectural 04 Urakkalaskenta 109 05 1 Architectural 04 Urakkalaskenta 109 05 102 Structural BIM 400 22 Structural Tvooiirustus 304 23 Structural Tvooiirustus 305 24 Structural Tvooiirustus 312 12 EIKKAUS 2- 2 YEIESLEIKKAUS 25 Structural Tvooiirustus 313 12 EIKKAUS 2- 7 HORNIL 25 Structural Tvooiirustus 314 12 EIKKAUS 2- 2 PEISLEIKKAUS	01 Architectural	02 Dääpiirustus		
Of Architectural Od Vrakkalaskenta 103 01 Pohiabiirustus ullakko 01 Architectural 04 Urakkalaskenta 103 02 Pohiabiirustus vesikatto 01 Architectural 04 Urakkalaskenta 103 01P Purkubiirustus ullakko 01 Architectural 04 Urakkalaskenta 109 01 Kattolyhtv 01 Architectural 04 Urakkalaskenta 109 02 Kattolyhtv 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural BIM 400 PillRUSTUSL UETTELO 7/vooirustus 310 Rakennetvvoit 25 Structural 02 Structural Tvooirustus 304 ULLAKON VALIPOHJA - KANTAVAT 02 Structural Tvooirustus 304 ULLAKON VALIPOHJA - KANTAVAT 02 Structural Tvooirustus 311 LEIKKAUS 1- 1 AUKKOPALKAI 02 Structural Tvooirustus 312 LEIKKAUS 2- 2 YLEISLEIKKAUS 02 Str	04 Urakkalackor	to	LUIL 4	
Of Architectural 04 Uraktalaskenta 100 01 FOrnabilitustus vesikatto 01 Architectural 04 Uraktalaskenta 103 01P Purkupiirustus vesikatto 01 Architectural 04 Uraktalaskenta 103 01P Purkupiirustus vesikatto 01 Architectural 04 Uraktalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Uliakko 02 Structural BIM 400 PIIRUSTUSLUETTELO 7vöpiirustus 310 Bakennetvvpit 02 Structural Tvöpiirustus 304 ULAKON VALIPOHJA 02 Structural Tvöpiirustus 311 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvöpiirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvöpiirustus 313 LEIKKAUS 2 - 2 NEISLEIKKAUS 02 Structural Tvö	01 Architectural	04 Urakkalaskonta	103.01	Pobianijnustus ullakko
0) Architectural 04 Urakkalaskenta 103 01P Purkuoiirustus valtaku 01 Architectural 04 Urakkalaskenta 109 01 Kattoikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattolyhty 01 Architectural 04 Urakkalaskenta 109 02 Kattolyhty 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural BIM 400 PIIRUSTUSLUETTELO 7 võoiirustus 310 Rakennetvvoit 02 Structural Tvooiirustus 310 ILAKON VALIPOHJA KANTAVAT 02 Structural Tvooiirustus 304 ULLAKON VALIPOHJA KANTAVAT 02 Structural Tvooiirustus 305 YLAPOHJA YLAPOHJA KANTAVAT 02 Structural Tvooiirustus 311 ILEIKKAUS 1 - 1 AUKKOPALKAI 02 Structural Tvooiirustus 312 ILEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 313 ILEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 314 ILEIKKAUS 3 - 2 YLEISLEIKKAUS 02 Structural Tvooiirustus 315 ILEIKKAUS 3 - 2 HORMILÄPIVIENNIT 02 Structural Tvooiirustus 317 ILEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 313 ILEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 320 IEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 321 DET. 1-1 02 Structural Tvooiirustus 322 DET. 2-2 02 Structural Tvooiirustus 323 DET. 3-3 02 Structural Tvooiirustus 324 DET. 4-4 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 329 DET. 2-2 02 Structural Tvooiirustus 320 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 321 DET. 1-1 02 Structural Tvooiirustus 322 DET. 2-2 02 Structural Tvooiirustus 323 DET. 3-3 02 Structural Tvooiirustus 324 DET. 4-4 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 329 DET. 1-11 02 Structural Tvooiirustus 329 DET. 1-10 02 Structural Tvooiirustus 329 DET. 1-212 02 Structural Tvooiirustus 331 DET. 1-11 02 Structural Tvooiirustus 331 DET.	01 Architectural	04 Urakkalaskenta	103.02	Pohiapiirustus vosikatto
0) Architectural 04 Urakkalaskenta 103 01 P Pukusus unako 01 Architectural 04 Urakkalaskenta 109 02 Kattolikkunat 01 Architectural 04 Urakkalaskenta 109 02 Kattolikkunat 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural BIM 400 PIIRUSTUSLUETTELO 7000iirustus 02 Structural Työöiirustus 310 Rakennetyvöit 02 Structural Työöiirustus 304 ULLAKON VALPOHJA - KANTAVAT 02 Structural Työöirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural Työöirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Työöirustus 313 ILEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Työöirustus 314 LEIKKAUS 2 - 7 HORMILAPIVIENNIT 02 Structural Työöirustus 314 LEIKKAUS 3 - 3 LAPEIKKAUS 02 Structural Työöirustus 314 LEIKKAUS 3 - 3 LAPEIKKAUS 02 Structural Työöirustus 315 LEIKKAUS 3 - 3 LAPEIKKAUS 02 Structural Työöirustus 316 LEIKKAUS 3 - 3 LAPEIKKUNA HVS 02 Structural Työöirustus 321 DET -1-1 02 Structural Työöirustus 322 DET -2-2 02 Structural Työöirustus 323 DET -3-3 02 LEIKKAUS 6 - 6 KATTOIKKUNA PERA 02 Structural Työöirustus 323 DET -3-3 02 Structural Työöirustus 324 DET -4-4 02 Structural Työöirustus 325 DET -5-5 DET -5-5 DET -5-5 DET -5-5 DET -5-5 DET -7-7 02 Structural Työöirustus 326 DET -7-7 02 Structural Työöirustus 327 DET -7-7 02 Structural Työöirustus 328 DET -8-8 02 Structural Työöirustus 329 DET -9-9 02 Structural Työöirustus 333 DET -10-10 20 Structural Työöirustus 334 DET -11-11 02 Structural Työöirustus 335 DET -0-2 02 Structural Työöirustus 335 DET -0-2 02 Structural Työöirustus 335 DET -0-10 JIR	01 Architectural	04 Urakkalaskenta	103.02	Poliabiliusius vesikalio
0) Architectural 04 Urakkalaskenta 109 01 Ratiofikunat 01 Architectural 04 Urakkalaskenta 109 02 Katolokhv 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural BIM 400 PIIRUSTUSLUETTELO 7Võõirustus 310 Rakennetvioti 02 Structural Tvoõirustus 304 ULLAKON VALIPOHJA 02 Structural Tvoõirustus 304 ULLAKON VALIPOHJA KANTAVAT 02 Structural Tvoõirustus 304 ULLAKON VALIPOHJA KANTAVAT 02 Structural Tvoõirustus 311 LEIKKAUS 1 - 1 AUKKOPALKKI 02 Structural Tvoõirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvoõirustus 313 LEIKKAUS 5 - 5 TORNI 02 Structural Tvoõirustus 314 LEIKKAUS 7 - 7 HORILAPIVENNIT 02 Structural Tvoõirustus 313 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvoõirustus 320 DET 1-1 02 Structural Tvoõirustus 320 DET 1-1 02 Structural Tvoõirustus 320 DET 1-1 02 Structural Tvoõirustus 320 DET 1-2 02 Structural Tvoõirustus 320 DET 1-2 02 Structural Tvoõirustus 320 DET 2-2 02 Structural Tvoõirustus 321 DET 1-1 02 Structural Tvoõirustus 322 DET 2-2 02 Structural Tvoõirustus 323 DET 3-3 02 Structural Tvoõirustus 324 DET 4-4 02 Structural Tvoõirustus 327 DET 7-7 02 Structural Tvoõirustus 328 DET 8-8 02 Structural Tvoõirustus 329 DET 2-2 02 Structural Tvoõirustus 320 DET 2-2 02 Structural Tvoõirustus 321 DET 1-2-12 02 Structural Tvoõirustus 323 DET 3-3 02 Structural Tvoõirustus 324 DET 4-4 02 Structural Tvoõirustus 326 DET 6-6 02 Structural Tvoõirustus 327 DET 7-7 02 Structural Tvoõirustus 328 DET 8-8 02 Structural Tvoõirustus 329 DET 2-12-12 02 Structural Tvoõirustus 329 DET 9-9 02 Structural Tvoõirustus 328 DET 8-8 02 Structural Tvoõirustus 329 DET 1-1-11 02 Structural Tvoõirustus 331 DET 11-11 02 Structural Tvoõirustus 332 DET 10-10 02 Structural Tvoõirustus 333 DET 10-10 02 Structural Tvoõirustus 333 DET 10-10 02 Structural Tvoõirustus 333 DET 10-10 02 Struc	01 Architectural	04 Urakkalaskenta	100.01	Kattaikkupat
01 Architectural 04 Urakkalaskenta 109 02 Rakennetvoit 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavio 01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural BIM 400 PIIRUSTUSLUETTELO Tvooinustus 310 Rakennetvoit 02 Structural Tvooinustus 304 ULLAKON VALIPOHJA KANTAVAT 02 Structural Tvooinustus 305 YLAPOHJA YLAPOHJA KANTAVAT 02 Structural Tvooinustus 311 LEIKKAUS 1. 1 AUKKOPALKKI 02 Structural Tvooinustus 312 LEIKKAUS 2. 2 YLEISLEIKKAUS 02 Structural Tvooinustus 312 LEIKKAUS 2. 2 YLEISLEIKKAUS 02 Structural Tvooinustus 313 LEIKKAUS 7. 7 HORMILAPIMENNIT 02 Structural Tvooinustus 314 LEIKKAUS 3. 3 LAPEIKKAUS 4. 4 LAPEIKKUNA HVS 02 Structural Tvooinustus 313 LEIKKAUS 9. 9 MÄRKÄTILA 02 Structural Tvooinustus 320 LEIKKAUS 9. 9 MÄRKÄTILA 02 Structural Tvooinustus 320 LEIKKAUS 9. 10 JIIRI 02 Structural Tvooinustus 320 LEIKKAUS 9. 20 MÄRKÄTILA 02 Structural Tvooinustus 321 DET 1. 1. 02 Structural Tvooinustus 322 DET 2.2 02 Structural Tvooinustus 323 DET 3.3 02 Structural Tvooinustus 324 DET 4.4 02 Structural Tvooinustus 325 DET 2.2 02 Structural Tvooinustus 326 DET 4.4 02 Structural Tvooinustus 327 DET 7.7 02 Structural Tvooinustus 328 DET 4.4 02 Structural Tvooinustus 329 DET 4.2 02 Structural Tvooinustus 320 LEIKKAUS 6.6 KATTOIKKUNA PERIA 02 Structural Tvooinustus 321 DET 7.7 02 Structural Tvooinustus 322 DET 7.7 02 Structural Tvooinustus 323 DET 7.7 02 Structural Tvooinustus 324 DET 4.4 02 Structural Tvooinustus 325 DET 7.7 02 Structural Tvooinustus 326 DET 6.6 02 Structural Tvooinustus 327 DET 7.7 02 Structural Tvooinustus 328 DET 4.4 02 Structural Tvooinustus 327 DET 7.7 02 Structural Tvooinustus 328 DET 4.4 02 Structural Tvooinustus 329 DET 7.7 02 Structural Tvooinustus 328 DET 7.7 02 Structural Tvooinustus 329 DET 7.7 02 Structural Tvooinustus 328 DET 7.7 02 Structural Tvooinustus 329 DET 7.7 02 Structural Tvooinustus 328 DET 7.7 02 Structural Tvooinustus 329 DET 7.7 02 Structural Tvooinustus 328 DET 7.7 02 Structural Tvooinus	01 Architectural	04 Urakkalaskenta	109.02	Kattolyhty
01 Architectural 04 Urakkalaskenta 109 03 Ikkuna kaavioti 01 Architectural 04 Urakkalaskenta 109 05 Oxiluettelo - Ullakko 02 Structural BIM 400 PIIRUSTUSLUETTELO 7vobiirustus 310 Rakennetvvoit 02 Structural 02 Structural Tvooiirustus 304 ULLAKON VALIPOHJA 02 Structural Tvooiirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural Tvooiirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural Tvooiirustus 311 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvooiirustus 312 LEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 314 LEIKKAUS 3 - 3 LAPEIKKAUNA 02 Structural Tvooiirustus 313 LEIKKAUS 4 - 4 LAPEIKKUNA 02 Structural Tvooiirustus 312 DET 1-1 02 Structural Tvooiirustus 313 LEIKKAUS 6 - 6 KATTOIKKUNA 02 Structural Tvooiirustus 322 DET 2-2 02 Structural Tvooiirustus 324 DET 4-4 02 Structural Tvooiirustus	01 Architectural	04 Urakkalaskonta	109.02	Dakonnotwnit
01 Architectural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 04 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 14 Urakkalaskenta 109 05 Oviluettelo - Ullakko 02 Structural 15 Vooirustus 310 Rakennetvroit 02 Structural 17 Vooirustus 304 ULLAKON VALIPOHJA 02 Structural 17 Vooirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural 17 Vooirustus 311 LEIKKAUS 1 - 1 AUKKOPALKKI 02 Structural 17 Vooirustus 312 LEIKKAUS 2 - 27 LEISLEIKKAUS 02 Structural 17 Vooirustus 317 LEIKKAUS 7 - 7 HORMILAPMENNIT 02 Structural 17 Vooirustus 317 LEIKKAUS 7 - 7 HORMILAPMENNIT 02 Structural 17 Vooirustus 313 LEIKKAUS 7 - 7 HORMILAPMENNIT 02 Structural 17 Vooirustus 313 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural 17 Vooirustus 320 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural 17 Vooirustus 320 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural 17 Vooirustus 320 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural 17 Vooirustus 320 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural 17 Vooirustus 320 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural 17 Vooirustus 321 DET 1-1 02 Structural 17 Vooirustus 322 DET 2-2 02 Structural 17 Vooirustus 323 DET 3-3 02 Structural 17 Vooirustus 324 DET 4-4 02 Structural 17 Vooirustus 325 DET 5-5 02 Structural 17 Vooirustus 326 DET 6-6 02 Structural 17 Vooirustus 327 DET 7-7 02 Structural 17 Vooirustus 328 DET 8-8 02 Structural 17 Vooirustus 329 DET 4-2 02 Structural 17 Vooirustus 320 DET 7-2 02 Structural 17 Vooirustus 321 DET 1-1-1 02 Structural 17 Vooirustus 323 DET 7-2 02 Structural 17 Vooirustus 324 DET 4-4 02 Structural 17 Vooirustus 325 DET 6-6 02 Structural 17 Vooirustus 326 DET 6-7 02 Structural 17 Vooirustus 327 DET 7-7 02 Structural 17 Vooirustus 328 DET 8-8 02 Structural 17 Vooirustus 329 DET 7-7 02 Structural 17 Vooirustus 328 DET 7-7 02 Structural 17 Vooirustus 329 DET 7-7 02 Structural 17 Vooirustus 328 DET 7-7 02 Structural 17 Vooirustus 329 DET 7-7 02 Structural	01 Architectural	04 Urakkalaskenta	109 04	Rakenne kaavio
01 Alchintectular 109 000 02 Structural BIM 02 Structural Tyopiirustus 312 LEIKKAUS 2- 2 YLEISLEIKKAUS 02 Structural Tyopiirustus 317 LEIKKAUS 2- 7 HORMILAPIVENNIT 02 Structural Tyopiirustus 313 LEIKKAUS 3- 3 LAPEIKKAUNA 02 Structural Tyopiirustus 314 LEIKKAUS 4- 4 LAPEIKKAUNA 02 Structural Tyopiirustus 314 LEIKKAUS 6- 6 KATTOIKKUNA 02 Structural Tyopiirustus 320 LEIKKAUS 6- 6 KATTOIKKUNA PERIA 02 Structural Tyopiirustus <tr< td=""><td>01 Architectural</td><td>04 Urakkalaskenta</td><td>109 05</td><td>Oviluattola Illakka</td></tr<>	01 Architectural	04 Urakkalaskenta	109 05	Oviluattola Illakka
02 Structural BIM 400 PIRUSTUSLUETTELO 1V00iirustus 02 Structural Tvooiirustus 310 Rakennetvroit 02 Structural Tvooiirustus 304 ULLAKON VALIPOHJA KATAVAT 02 Structural Tvooiirustus 304 ULLAKON VALIPOHJA KATAVAT 02 Structural Tvooiirustus 305 YLAPOHJA YLAPOHJA- KANTAVAT 02 Structural Tvooiirustus 311 LEIKKAUS 1-1 AUKKOPALKKI 02 Structural Tvooiirustus 312 LEIKKAUS 5-5 TORNI 02 Structural Tvooiirustus 313 LEIKKAUS 5-5 TORNI 02 Structural Tvooiirustus 313 LEIKKAUS 9-2 YLEISLEIKKAUS 02 Structural Tvooiirustus 313 LEIKKAUS 9-9 MARKATILA 02 Structural Tvooiirustus 319 LEIKKAUS 9-9 MARKATILA 02 Structural Tvooiirustus 322 DET 2-2 02 Structural Tvooiirustus 323 DET 4-4 02 Structural Tvooiirustus 324 DET 4-4 02 Structural Tvooiirustus 326 DET 5-5 02 Structural Tvooiiru	OTACHILECIULAI	04 Olarraiaskellia	109.05	Ovidencio - Olianno
D2 Structural BIM 400 PIIRUSTUSLUETTELO Vobinustus 310 O2 Structural Tvooinustus 302 Structural Tvooinustus O2 Structural Tvooinustus 304 ULLAKON VALPOHJA O2 Structural Tvooinustus 305 YLAPOHJA YLAPOHJA O2 Structural Tvooinustus 305 YLAPOHJA YLAPOHJA O2 Structural Tvooinustus 311 LEIKKAUS 2. 2 YLEISLEIKKAUS O2 Structural Tvooinustus 312 LEIKKAUS 2. 7 HORMILAPINENNIT O2 Structural Tvooinustus 313 LEIKKAUS 3. 7 HORMILAPINENNIT O2 Structural Tvooinustus 313 LEIKKAUS 9. 9 MÄRKÄTILA O2 Structural Tvooinustus 312 DET 1.1 O2 Structural Tvooinustus 313 LEIKKAUS 9. 9 MÄRKÄTILA O2 Structural Tvooinustus 320 LEIKKAUS 6. 6 KATTOIKKUNA PERIA O2 Structural Tvooinustus 322 DET 2.2 O2 Structural <td>02 Structural</td> <td></td> <td></td> <td></td>	02 Structural			
Display Structural BIM 400 PIIRUSTUSLUETTELO Tvöpirustus 310 Rakennetvvpit 2 2 310 Rakennetvvpit 02 Structural Tvöpirustus 304 ULLAKON VÄLIPOHJA 305 02 Structural Tvöpirustus 305 YLAPOHJA - KANTAVAT 0 02 Structural Tvöpirustus 311 LEIKKAUS 1 - 1 AUKKOPALKKI 02 Structural Tvöpirustus 315 LEIKKAUS 5 - 5 TORMILAPIVENNIT 02 Structural Tvöpirustus 314 LEIKKAUS 5 - 5 TORMILAPVENNIT 02 Structural Tvöpirustus 313 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvöpirustus 319 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvöpirustus 322 DET 1-1 02 Structural Tvöpirustus 323 DET 2-2 Q2 Structural Tvöpirustus 324 DET 4-4 Q2 Structural Tvöpirustus <td< th=""><th>RIM</th><th></th><th></th><th></th></td<>	RIM			
Työpiirustus Tuo O2 Structural Työpiirustus 310 O2 Structural Työpiirustus 304 O2 Structural Työpiirustus 304 O2 Structural Työpiirustus 305 O2 Structural Työpiirustus 305 O2 Structural Työpiirustus 311 O2 Structural Työpiirustus 311 O2 Structural Työpiirustus 312 O2 Structural Työpiirustus 317 O2 Structural Työpiirustus 317 O2 Structural Työpiirustus 313 O2 Structural Työpiirustus 313 O2 Structural Työpiirustus 313 O2 Structural Työpiirustus 313 O2 Structural Työpiirustus 319 O2 Structural Työpiirustus 320 O2 Structural Työpiirustus 322 O2 Structural Työpiirustus 322 O2 Structural Työpiirustus 323 O2 Structural Työ	02 Structural	BIM	400	PIRUSTUSI LIETTELO
02 Structural Tvopiirustus 310 Rakennetvrpit 02 Structural Tvopiirustus 304 ULLAKON VALIPOHJA 02 Structural Tvopiirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural Tvopiirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural Tvopiirustus 311 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvopiirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvopiirustus 313 LEIKKAUS 2 - 7 HORMILAPIMENNIT 02 Structural Tvopiirustus 314 LEIKKAUS 3 - 3 LAPEIKKAUA 02 Structural Tvopiirustus 313 LEIKKAUS 4 - 4 LAPEIKKUNA 02 Structural Tvopiirustus 311 DET 1-1 02 Structural Tvopiirustus 312 DET 1-1 02 Structural Tvopiirustus 321 DET 1-1 02 Structural Tvopiirustus 322 DET 2-2 02 Structural Tvopiirustus 322 DET 2-2 02 Structural Tvopiirustus 324 DET 4-4 02 Structural Tvopiirustus 325 DE	Työniirustus	Ditti		.1 #10010020211220
02 Structural Tvooiirustus 304 ULLAKON VALIPOHJA 02 Structural Tvooiirustus 305 YLAPOHJA YLAPOHJA- KANTAVAT 02 Structural Tvooiirustus 311 LEIKKAUS 1. AUKKOPALKKI 02 Structural Tvooiirustus 311 LEIKKAUS 2. Structural Tvooiirustus 02 Structural Tvooiirustus 312 LEIKKAUS 2. Structural 02 Structural Tvooiirustus 315 LEIKKAUS 5. 5 TORNI 02 Structural Tvooiirustus 314 LEIKKAUS 7. 7 HORNILAPIMENIT 02 Structural Tvooiirustus 313 LEIKKAUS 3. JAPEIKKUNA 02 Structural Tvooiirustus 313 LEIKKAUS 9. 9 MARKATILA 02 Structural Tvooiirustus 321 DET. 1.1 02 02 Structural Tvooiirustus 322 DET. 2.2 02 02 Structural Tvooiirustus 324 DET. 4.4 02 Structural Tvooiirustus 326 DET. 4.4 02 Structural Tvooiirustus 327 DET. 7.7 02 Structural Tvooiirustus 328	02 Structural	Tvöniirustus	310	Rakennetwnit
02 Structural Tvopiirustus 305 YLAPOHJA YLAPOHJA - KANTAVAT 02 Structural Tvopiirustus 311 LEIKKAUS 1 - LAIKOPALKKI 02 Structural Tvopiirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvopiirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvopiirustus 311 LEIKKAUS 7 - 7 HORMILAPIVIENNIT 02 Structural Tvopiirustus 313 LEIKKAUS 7 - 7 HORMILAPIVIENNIT 02 Structural Tvopiirustus 313 LEIKKAUS 7 - 7 HORMILAPIVIENNIT 02 Structural Tvopiirustus 313 LEIKKAUS 3 - 3 LAPEIKKUNA HVS 02 Structural Tvopiirustus 321 DET 1-1 02 Structural Tvopiirustus 320 LEIKKAUS 10 - 10 JIIRI 02 Structural Tvopiirustus 322 DET 2-2 02 Structural Tvopiirustus 324 DET 4-4 02 Structural Tvopiirustus 325 DET 5-5 02 Structural Tvopiirustus 326 DET 7-7 02 Structural Tvopiirustus 327 DET 7-7 02 Structural Tvopiirustus <td>02 Structural</td> <td>Tvöniirustus</td> <td>304</td> <td>ULLAKON VALIPOHJA</td>	02 Structural	Tvöniirustus	304	ULLAKON VALIPOHJA
02 Structural Tvooiirustus 311 LEIKKAUS 1 - 1 AUKKOPALKKI 02 Structural Tvooiirustus 312 LEIKKAUS 2 - 2 YLEISLEIKKAUS 02 Structural Tvooiirustus 315 LEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 317 LEIKKAUS 5 - 5 TORNI 02 Structural Tvooiirustus 317 LEIKKAUS 7 - 7 HORMLAPIVIENNIT 02 Structural Tvooiirustus 314 LEIKKAUS 3 - 3 LAPEIKKUNA HVS 02 Structural Tvooiirustus 313 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 319 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 320 LEIKKAUS 9 - 6 MÄRKÄTILA 02 Structural Tvooiirustus 322 DET 2-2 02 Structural Tvooiirustus 324 DET 4-4 02 Structural Tvooiirustus 326 DET 6-6 02 Structural Tvooiirustus 328 DET 8-8 02 Structural Tvooiirustus 332 DET 12-12	02 Structural	Tvöniirustus	305	YLÄPOHJA YLÄPOHJA - KANTAVAT
02 Structural Tvopiirustus 312 LEIKKAUS 2. 2 YLEISLEIKKAUS 02 Structural Tvopiirustus 315 LEIKKAUS 2. 2 YLEISLEIKKAUS 02 Structural Tvopiirustus 317 LEIKKAUS 7. 7 HORMILAPIMENNIT 02 Structural Tvopiirustus 317 LEIKKAUS 7. 7 HORMILAPIMENNIT 02 Structural Tvopiirustus 314 LEIKKAUS 3. 3 LAPEIKKUNA HVS 02 Structural Tvopiirustus 313 LEIKKAUS 9. 9 MÄRKÄTILA 02 Structural Tvopiirustus 320 LEIKKAUS 9. 9 MÄRKÄTILA 02 Structural Tvopiirustus 320 LEIKKAUS 9. 9 MÄRKÄTILA 02 Structural Tvopiirustus 322 DET. 2.2 02 Structural Tvopiirustus 324 DET. 4.4 02 Structural Tvopiirustus 326 DET. 5.5 02 Structural Tvopiirustus 327 DET. 7.7 02 Structural Tvopiirustus 328 DET. 7.7 02 <td>02 Structural</td> <td>Tvöpiirustus</td> <td>311</td> <td>LEIKKAUS 1 - 1 AUKKOPALKKI</td>	02 Structural	Tvöpiirustus	311	LEIKKAUS 1 - 1 AUKKOPALKKI
O2 Structural Tvobiliustus S15 LEikKAUS 5 - 5 TORNI 02 Structural Tvobiliustus S17 LEikKAUS 7 - 7 HORMIAPIVIENNIT 02 Structural Tvobiliustus S14 LEikKAUS 7 - 7 HORMIAPIVIENNIT 02 Structural Tvobiliustus S14 LEikKAUS 4 - 4 LAPEIKKUNA HVS 02 Structural Tvobiliustus S13 LEikKAUS 3 - 3 LAPEIKKUNA 02 Structural Tvobiliustus S19 LEikKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvobiliustus S10 LEikKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvobiliustus S16 LEikKAUS 6 - 6 KATTOIKKUNA PERIA 02 Structural Tvobiliustus S23 DET 3-3 02 Structural Tvobiliustus S24 DET 4-4 02 Structural Tvobiliustus S26 DET 6-6 02 Structural Tvobiliustus S27 DET 1-7.7 02 Structural Tvobiliustus S28 DET 19-9 02<	02 Structural	Tvôniirustus	312	LEIKKAUS 2 - 2 YEEISEEIKKAUS
O2 Structural Tvooiirustus 317 LEikKAUS 7. 7 HORMILAPIVIENNIT 02 Structural Tvooiirustus 314 LEIKKAUS 7. 7 HORMILAPIVIENNIT 02 Structural Tvooiirustus 313 LEIKKAUS 7. 7 HORMILAPIVIENNIT 02 Structural Tvooiirustus 313 LEIKKAUS 3. 4. 4 LAPEIKKUNA 02 Structural Tvooiirustus 321 DET. 1-1 02 Structural Tvooiirustus 321 DET. 1-1 02 Structural Tvooiirustus 321 DET. 1-1 02 Structural Tvooiirustus 320 LEIKKAUS 9. 9 MÄRKÄTILA 02 Structural Tvooiirustus 322 DET. 2-2 02 Structural Tvooiirustus 324 DET. 4-4 02 Structural Tvooiirustus 326 DET. 5-5 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvo	02 Structural	Tvôniirustus	315	LEIKKAUS 5 - 5 TORNI
02 Structural Tvooiirustus 314 LEikKAUS 4 - 4 LAPEIKKUNA HVS 02 Structural Tvooiirustus 313 LEIKKAUS 3 - 3 LAPEIKKUNA 02 Structural Tvooiirustus 321 DET 1-1 02 Structural Tvooiirustus 321 DET 1-1 02 Structural Tvooiirustus 319 LEIKKAUS 9 - 9 MARKATILA 02 Structural Tvooiirustus 320 LEIKKAUS 10 - 10 JIIRI 02 Structural Tvooiirustus 322 DET 2-2 02 Structural Tvooiirustus 323 DET 3-3 02 Structural Tvooiirustus 324 DET 4-4 02 Structural Tvooiirustus 325 DET 5-5 02 Structural Tvooiirustus 327 DET 7-7 02 Structural Tvooiirustus 329 DET 9-9 02 Structural Tvooiirustus 332 DET 19-1 02 Structural Tvooiirustus 333 ULLAKON PURKUPIRUSTUS 02 Structural Tvooiirustus	02 Structural	Tvôniirustus	317	LEIKKAUS 7 - 7 HORMILÄPIVIENNIT
O2 Structural Tvooiirustus 313 LEIKKAUS 3 - 3 LAPEIKKUNA 02 Structural Tvooiirustus 321 DET 1-1 02 Structural Tvooiirustus 321 DET 1-1 02 Structural Tvooiirustus 319 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 320 LEIKKAUS 9 - 6 MÄRKÄTILA 02 Structural Tvooiirustus 320 LEIKKAUS 6 - 6 KATTOIKKUNA PERIA 02 Structural Tvooiirustus 322 DET 2-2 02 Structural Tvooiirustus 324 DET 4-4 02 Structural Tvooiirustus 326 DET 5-5 02 Structural Tvooiirustus 327 DET 7-7 02 Structural Tvooiirustus 329 DET 9-9 02 Structural Tvooiirustus 321 DET 12-12 02 Structural Tvooiirustus 332 DET 12-12 02 Structural Tvooiirustus 333 </td <td>02 Structural</td> <td>Tvöniirustus</td> <td>314</td> <td>LEIKKAUS 4 - 4 LAPEIKKUNA HVS</td>	02 Structural	Tvöniirustus	314	LEIKKAUS 4 - 4 LAPEIKKUNA HVS
O2 Structural Tvopiirustus 321 DET. 1-1 02 Structural Tvopiirustus 319 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvopiirustus 310 LEIKKAUS 10 - 10 JIIRI 02 Structural Tvopiirustus 320 LEIKKAUS 6 - 6 KATTOIKKUNA PERIA 02 Structural Tvopiirustus 322 DET. 2-2 02 Structural Tvopiirustus 323 DET. 3-3 02 Structural Tvopiirustus 324 DET. 4-4 02 Structural Tvopiirustus 325 DET. 5-5 02 Structural Tvopiirustus 326 DET. 7-7 02 Structural Tvopiirustus 327 DET. 7-7 02 Structural Tvopiirustus 329 DET. 9-9 02 Structural Tvopiirustus 332 DET. 11-11 02 Structural Tvopiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvopiirustus 333	02 Structural	Tvöniirustus	313	LEIKKAUS 3, 3 LAPEIKKUNA
02 Structural Tvooiirustus 319 LEIKKAUS 9 - 9 MÄRKÄTILA 02 Structural Tvooiirustus 320 LEIKKAUS 10 - 10 JIRI 02 Structural Tvooiirustus 316 LEIKKAUS 6 - 6 KATTOIKKUNA PERIA 02 Structural Tvooiirustus 322 DET. 2-2 02 Structural Tvooiirustus 323 DET. 3-3 02 Structural Tvooiirustus 324 DET. 4-4 02 Structural Tvooiirustus 326 DET. 6-6 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 ULAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318	02 Structural	Tvöniirustus	321	DFT 1-1
02 Structural Tvopiirustus 320 LEikKAUS 10 - 10 JiiRi 02 Structural Tvopiirustus 316 LEikKAUS 6 - 6 KATTOIKKUNA PERIA 02 Structural Tvopiirustus 322 DET 2-2 02 Structural Tvopiirustus 323 DET 3-3 02 Structural Tvopiirustus 324 DET 4-4 02 Structural Tvopiirustus 324 DET 4-4 02 Structural Tvopiirustus 326 DET 5-5 02 Structural Tvopiirustus 327 DET 7-7 02 Structural Tvopiirustus 329 DET 9-9 02 Structural Tvopiirustus 332 DET 12-12 02 Structural Tvopiirustus 333 DET 12-12 02 Structural Tvopiirustus 333 DET 12-12 02 Structural Tvopiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvopiirustus 318 LEIK	02 Structural	Tvöpiirustus	319	LEIKKAUS 9 - 9 MÄRKÄTILA
02 Structural Tvooiirustus 316 LEIKKAUS 6 - 6 KATTOIKKUNA PERIA 02 Structural Tvooiirustus 322 DET. 2-2 02 Structural Tvooiirustus 323 DET. 3-3 02 Structural Tvooiirustus 324 DET. 4-4 02 Structural Tvooiirustus 325 DET. 5-5 02 Structural Tvooiirustus 326 DET. 6-6 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 328 DET. 7-7 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 331 DET. 12-12 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8-8 PORRASKAYTÄVÄN 02 Structural Tvooiirustus	02 Structural	Tvöpiirustus	320	LEIKKAUS 10 - 10 JIIRI
02 Structural Tvodiirustus 322 DET 2-2 02 Structural Tvodiirustus 323 DET 3-3 02 Structural Tvodiirustus 324 DET 4-4 02 Structural Tvodiirustus 326 DET 6-6 02 Structural Tvodiirustus 326 DET 6-6 02 Structural Tvodiirustus 327 DET 7-7 02 Structural Tvodiirustus 329 DET 9-9 02 Structural Tvodiirustus 321 DET 1-9 02 Structural Tvodiirustus 332 DET 1-9 02 Structural Tvodiirustus 332 DET 12-12 02 Structural Tvodiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvodiirustus 318 LEIKKAUS & 8 PORRASKAYTÄVÄN 02 Structural Tvodiirustus 309 U	02 Structural	Tvöniirustus	316	LEIKKAUS 6 - 6 KATTOIKKUNA PERIA
02 Structural Tvobiirustus 323 DET 3-3 02 Structural Tvobiirustus 324 DET 4-4 02 Structural Tvobiirustus 325 DET 5-5 02 Structural Tvobiirustus 325 DET 5-5 02 Structural Tvobiirustus 326 DET 7-7 02 Structural Tvobiirustus 327 DET 7-7 02 Structural Tvobiirustus 328 DET 8-8 02 Structural Tvobiirustus 329 DET 19-9 02 Structural Tvobiirustus 332 DET 12-12 02 Structural Tvobiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvobiirustus 333 ULLAKON PALOKATKAN 02 Structural Tvobiirustus 309 ULLAKKO PALOKATKAN 02 Structural Tvobiirustus 335 PALOKATKODETAL JIT	02 Structural	Tvöniirustus	322	DFT 2-2
02 Structural Tvooiirustus 324 DET. 4-4 02 Structural Tvooiirustus 325 DET. 5-5 02 Structural Tvooiirustus 326 DET. 6-6 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 328 DET. 7-7 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8-8 PORRASKÄYTÄVÄN 02 Structural Tvooiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvooiirustus 335 PALOKATKODETAI JIT	02 Structural	Tvöpiirustus	323	DET 3-3
02 Structural Tvooiirustus 325 DET. 5-5 02 Structural Tvooiirustus 326 DET. 6-6 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 331 DET. 12-12 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 UL LAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 333 UL LAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 309 UL LAKON PALOKATKAVAN 02 Structural Tvooiirustus 309 UL LAKON PALOKATKODETAL JIT 02 Structural Tvooiirustus 335 PALOKATKODETAL JIT	02 Structural	Tvöniirustus	324	DET 4.4
02 Structural Tvooiirustus 326 DET. 6-6 02 Structural Tvooiirustus 327 DET. 7-7 02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 331 DET. 11-11 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8-8 PORRASKÄYTÄVÄN 02 Structural Tvooiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvooiirustus 335 PALOKATKODETAI JIIT	02 Structural	Tvöniirustus	325	DET 5-5
02 Structural Tvopiirustus 327 DET. 7.7 02 Structural Tvopiirustus 328 DET. 8-8 02 Structural Tvopiirustus 329 DET. 9-9 02 Structural Tvopiirustus 331 DET. 12-9 02 Structural Tvopiirustus 332 DET. 12-12 02 Structural Tvopiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvopiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvopiirustus 318 LEIKKAUS 8-8 PORRASKAYTÄVÄN 02 Structural Tvopiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvopiirustus 330 DET. 10-10 02 Structural Tvopiirustus 335 PALOKATKODETALJIT	02 Structural	Tvöpiirustus	326	DET 6-6
02 Structural Tvooiirustus 328 DET. 8-8 02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 331 DET. 11-11 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8 - 8 PORRASKAYTÄVÄN 02 Structural Tvooiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvooiirustus 335 DET. 10-10 02 Structural Tvooiirustus 335 DET. 10-11	02 Structural	Työpiirustus	327	DFT 7-7
02 Structural Tvooiirustus 329 DET. 9-9 02 Structural Tvooiirustus 331 DET. 11-11 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8-8 PORRASKÄYTÄVÄN 02 Structural Tvooiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvooiirustus 335 DET. 10-10 02 Structural Tvooiirustus 335 PALOKATKODETALJIT	02 Structural	Työpiirustus	328	DFT 8-8
02 Structural Tvooiirustus 331 DET. 11-11 02 Structural Tvooiirustus 332 DET. 12-12 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8 - 8 PORRASKAYTÄVÄN 02 Structural Tvooiirustus 318 ULLAKKO. PALOKATKOT 02 Structural Tvooiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvooiirustus 330 DET. 10-10 02 Structural Tvooiirustus 335 PALOKATKODETALJIT	02 Structural	Työpiirustus	329	DFT 9-9
O2 Structural Tvooiirustus 332 DET: 12-12 02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8 - 8 PORRASKÄYTÄVÄN 02 Structural Tvooiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvooiirustus 309 DET: 10-10 02 Structural Tvooiirustus 335 PALOKATKODETAL JIT	02 Structural	Työpiirustus	331	DET 11-11
02 Structural Tvooiirustus 333 ULLAKON PURKUPIIRUSTUS 02 Structural Tvooiirustus 318 LEIKKAUS 8 - 8 PORASKAYTÄVÄN 02 Structural Tvooiirustus 309 ULLAKKO PALOKATKOT 02 Structural Tvooiirustus 330 DET 10-10 02 Structural Tvooiirustus 335 PALOKATKODETALJIT	02 Structural	Työpiirustus	332	DET 12-12
02 Structural Tvopiirustus 318 LEIKKAUS 8 - 8 PORRASKAYTÄVÄN 02 Structural Tvopiirustus 309 ULLAKKO. PALOKATKOT 02 Structural Tvopiirustus 330 DET. 10-10 02 Structural Tvopiirustus 335 PALOKATKODETAI JIT	02 Structural	Työpiirustus	333	ULLAKON PURKUPIRUSTUS
02 Structural Tvooiirustus 309 ULLAKKO PALOKATKOT 02 Structural Tvooiirustus 330 DET. 10-10 02 Structural Tvooiirustus 335 PALOKATKODETALJIT	02 Structural	Työpiirustus	318	I FIKKAUS 8 - 8 PORRASKAYTAVAN
02 Structural Tvöpiirustus 330 DET. 10-10 02 Structural Tvöpiirustus 335 PALOKATKODETAI JIT	02 Structural	Työpiirustus	309	ULLAKKO PALOKATKOT
02 Structural Tyopiirustus 335 PALOKATKODFTALJIT	02 Structural	Työpiirustus	330	DFT 10-10
	02 Structural	Työpiirustus	335	PAI OKATKODETAL JIT

Following the given structural drawings, the building is retraced on the structural template, as seen in Figure 8. All objects related to architectural representation are removed, changing architecturally generated structural objects to analytical structural objects. This is done to obtain a simplified analytical model of the building which is used for structural analysis. Revit provides various properties applicable to any generated objects as well as a great choice of structural elements, which can be withdrawn from the library or generated manually.

Figure 8. 3D structure of the old building

6.2 Structural modelling

Due to the failure of the old concrete floors and stress on the bricks from the edges of the INP200 beams, the old intermediate floor structure is removed in this project and a more durable supporting frame added to the building, to increase its sustainability (see Figure 9). The frame consists of 380x380mm reinforced concrete columns, 300x300mm reinforced concrete beams and 150mm reinforced concrete floor.

To aid reinforcing process Revit provides a variety of stiffening shapes for presentation. Stiffening is applied approximately during the design stage of the project; it is afterwards analysed with the whole building and corrections are made in case of failure of the element.

Figure 9. Generated supporting frame

6.3 Exporting the model

The prepared analytical model is displayed in an easy and comprehensive building structure which includes physical and analytical properties of elements in detail, as seen in Figure 10 on the next page. Prior structural analysis, the model is exported to RFEM. If both programs are installed, Revit makes the access of RFEM's interface directly available through its interface.

The elements and their properties can be manually selected or limited to the model and/or load data in exporting properties (see Figure 11). This is useful when defined elements are set in an external program, but only specific properties are needed be imported into the original program.

Figure 10. Analytical model of the building

Figure 11. Revit Structure – Dlubal Link

7 STRUCTURAL ANALYSIS

7.1 Conflicts after transfer

Unlike Revit, RFEM uses Object-oriented programming (OOP) a concept of objects, which contain data and code in the form of procedures (Technopedia, 2012). During the export the existing RFEM data is checked and information is added. An equivalent object is added for beam, column, floor or wall, not just collection of lines and surfaces. Due to adjustable reference lines, the load bearing elements are merged in an optimal calculation model, connecting centre points of intersecting beams and columns. The exported model is presented in Figure 12.

Figure 12. RFEM analytical model

Prior to running the structural analysis on the building, the model is subjected to issue checks. The model check allows to search and reveal any occurring problems or conflicts, be that identical nodes, overlapping lines, members or surfaces, or crossing unconnected lines and members. The problems are shown on the model, as seen in Figure 13 and then are corrected manually. The plausibility check of entries is done to see if calculation would be feasible.

Structures consisting of steel, reinforced concrete and timber can be designed using tools provided by RFEM. The list of materials is found in Materials table and is marked with a comment if the material was imported or used from a programs database. Material table can be seen in Figure 14.

Figure 13. Crossing unconnected members

	A	В	С	D	E	F	G	Ĥ	Í
Material	Material	Modulus of Elasticity	Shear Modulus	Poisson's Ratio	Specific Weight	Coeff. of Th. Exp.	Partial Factor	Material	
No.	Description	E [kN/cm ²]	G [kN/cm ²]	v [-]	γ [kN/m ³]	α.[1/°C]	γM [-]	Model	Comment
2	Concrete C25/30 EN 1992-1-1:2004/A	3100.00	1291.67	0.200	25.00	1.00E-05	1.00	Isotropic Linear Elastic	Revit material constant:
3	Concrete C25/30 EN 1992-1-1:2004/A	3100.00	1291.67	0.200	25.00	1.00E-05	1.00	Isotropic Linear Elastic	Revit material constants
4	Concrete C30/37 EN 1992-1-1:2004/A	3300.00	1375.00	0.200	25.00	1.00E-05	1.00	Isotropic Linear Elastic	
5	Masonry	2325.00	996.14	0.167	24.07	1.00E-05	1.00	Isotropic Linear Elastic	Revit material constants
6									
7									
8									
9									
10									
11									
12									
13									
14									

Figure 14. Material table of exported building

7.2 International technical standards

Dlubal RFEM implements numerous international technical standards describing different design situations. These situations determine the expected conditions of the building during its construction and usage. The following standards amongst others include Eurocodes, American Standards, Russian Standards, Chinese Standards, Indian Standards and Brazilian Standards. Load and result combinations generated on the analytical model during this project are done according to SFS-EN 1990 Eurocode – Basis of structural design. Information about design situation is shown in Figure 15 and Figure 16.

Existing C	ombination Expressions	CE No.	Combination Expression Desc	ription		Use					
STR CE1	ULS	1	ULS		×						
SCh CE2	SLS	General Ontio	ins for Combinations								
SHI CES	SLS			-	001050						
aug (E4	SLS	Design Situati	Design Stituation EN 1990 S								
		BIBULS (STR	~ 0								
		ECU ULS (EQU	ULS (EQU) - Permanent / transient								
		ACC ULS (EQL	J) - Accidental								
		BIB ULS (EQU	J) - Selsmic								
		STRIULS (STR	STR ULS (STR/GEO) - Permanent / transient - Eq. 6.10a and 6.10b								
		ERECULS (STR	RIR ULS (STR/GEO) - Accidental								
		KIN SIS - Cha	SCH SLS - Characteristic								
		SET SLS - Free	nuent								
		SCO SI S - Qua	Star SLS - Quasi-permanent								
		Reducing n Examining Selecting le	umber of load cases results aading variable actions	Result Combinations Generate additional (result envelopes) Generate additional each combination e	y Either/Or y a separat pression	r result combination te Either/Or result combin	nation f				
		Numbering of	Generated Combinations	Generated Load Comb	inations						
		First ourses	of generated	Method of analysis:	Second	-order analysis (P-Delta)	1				
		Load combinat	tions: 2	Generated Action Com	binations						
		Result combin	ations: 1 🜩	List and number:	AC1	AC28 (28/62)	0				
1	1	Comment									

Figure 15. Design situations

EN 1990 | SFS ULS (STR/GEO) - Permanent / transient - Eq. 6.10a and 6.10b $\sum_{j\geq 1} \gamma_{G,j}\, G_{k,j} + \, \gamma_P P$ $\sum_{j \geq 1} \xi_{j} \gamma_{G,j} G_{k,j} + \gamma_{P} P + \gamma_{Q,1} Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$ γG,j : Partial factor for permanent actions Gk,j : Permanent actions γP : Partial factor for prestress actions P> : Prestressing action $\gamma_{Q,1}$: Partial factor for leading variable action Qk,1 : Leading variable action : Partial factor for non-leading variable actions γQ,i $\psi_{0,i}$: Coefficient for combination value Qk,i : Other variable actions : Reduction coefficient ξį

Figure 16. Information about design situation

7.3 Loads and Load combinations

Dlubal RFEM provides essential tools for generating wind, snow, surface, and member loads and automatically calculates the self-weights of all elements and total mass of the building (see Figure17). Generated load cases are manually assigned to an action category, which includes partial safety factors and combination coefficients (Figure 18). The loads are then applied to desired elements and are visible in a Load case table as seen in Figure 19 on the next page.

isting Mass Cases	MC No.	Mass Case Description				
MC1 MC1	1	MC1		12	-	
	General					
	Mass Cat	se Туре		Sum of Masses		
	Perm	anent	~	Self-weight:	7201726.08	[kg]
	Masses			Components of LC/CO		[kg]
	From	self-weight of structure		Additional masses at		
	From	force components of:		Nodes:		[kg]
	() Lo	ad case:		Línes:		
	a (C1 - FloorDL	~	Members:		[kg]
	OLO	ad combination:		Surfaces:		[kg]
	C	01 - Load Combination 1	~	Total mass:	7201726.08	[kg]
	Manually	define additional masses at:			L	
	Nodes			Center of total mass	2	ſm
	☐ Unes ☐ Memb ☐ Surfac	ers es			.*	
						Calculate Masse
	Comment					
				v (7	2	

Figure 17. Sum of masses

xisting Act	on Combinations		AC No.		Action Go	ombination Descri	ption					Use	
AC1	1.35G	^		5	1.15G +	1.50QiA + 0.90Q	w + 1.05Qs				0		
IN AC2	0.90G												
EDA IN	1.15G		Genera	ξη/									
AC4	1.15G + 1.50QIA		Design	Situation						EN	1990 SFS		
AC5	1.15G + 1.50QIA + 0.90QW		ISTER UT	S (STR/GE	O) - Permane	ent / transient - Eq	. 6.10a and 6	5.10b			A		
AC6	1.15G + 1.50QIA + 0.90Qw + 1.05Qs												
AC7	1.15G + 1.50QIA + 1.05Qs		Actions	s in Action	Combination	AC6						1	
ACS	1.15G + 1.50Qw		NO.	Factor	Action	Description	Leading	ζ, D. DE	7	Ų	1.01	Load Cases	
AC9	1.15G + 1.05QIA + 1.50Qw		2	1.500	074 A2	Imposed		0.05	1.50		LC2		
AC10	1.15G + 1.05QIA + 1.50Qw + 1.05Qs		3	0.900	A4	Wind	Ä		1.50	0.60	LC4 LC7		
AC11	1.15G + 1.50Qw + 1.05Qs		4	1.050	IN AS	Snow	Ō		1.50	0.70	LC8		
AC12	1.15G + 1.50Qs												
AC13	1.15G + 1.05QIA + 1.50Qs												
AC14	1.15G + 1.05QIA + 0.90Qw + 1.50Qs												
AC15	1.15G + 0.90Qw + 1.50Qs												
AC16	0.90G												
AC17	0.90G + 1.50QIA												
AC18	0.90G + 1.50QIA + 0.90Qw												
AC19	0.90G + 1.50QlA + 0.90Qw + 1.05Qs												
AC20	0.90G + 1.50QIA + 1.05Qs												
AC21	0.90G + 1.50Qw												
AC22	0.90G + 1.05QIA + 1.50Qw												
AC23	0.90G + 1.05QIA + 1.50Qw + 1.05Qs												
AC24	0.90G + 1.50Qw + 1.05Qs												
AC25	0.90G + 1.50Qs												
AC26	0.90G + 1.05QIA + 1.50Qs												
AC27	0.90G + 1.05QIA + 0.90Qw + 1.50Qs												
AC28	0.90G + 0.90Qw + 1.50Qs						1. J. J.						
AC29	1.00G		Genera	ted	List and	f number		_					
AC30	1.00G + 1.00QiA		load co	mbinations	; CO8 .	CO11 (4/136)		>					2
AC31	1.00G + 1.00QIA + 0.60QW	~	Comm										
		>	Comm	unc									

Figure 18. Action combinations

Existing Lo	oad Cases	LC No.	Load Case Description		To Solve		
LC1	FloorDL	8	8 Snow ~				
LC2	FloorLL	The second secon					
LC4	WindLx+	General Calcu	lation Parameters				
LC5	WindLy+	Action Catego	ory	EN 1990 SFS			
LC6	WindLx-	Snow - s-	k < 2.75 kN/m^2	v			
LC7	WindLy-	Colf Minishi					
CSULC8	Snow	Sell-vveight					
		Active					
		Factor in d	irection:				
		X: (
		Y: (J.000 - [-]				
		z :	0.000 ∓ [-]				
		-					
		Comment					
1)					

Figure 19. Load cases

After entering type and magnitude of the load, it is assigned to nodes, lines, members or surfaces as seen in Figure 20. The values of permanent loads and properties of elements are set with estimation to allow a margin of error, which will allow future alteration of the model to exceed its parameters. Acting loads on the structure can be seen in Appendix 3.

Figure 20. First floor Dead Load

Generation of snow and wind loads in RFEM is done with no additional modules. When the required parameters are filled, the program generates specific load automatically. Required parameters include wind and snow load zones, topography, terrain and roof geometry (Figure 21). Additional snow loads such as snow drifts are considered, too (see Figure 22).

Figure 21. Wind loads

Figure 22. Snow drift loads

Taking the partial safety factor into account, the program combines assigned load cases into one big load case and subsequently calculates it.

7.4 Finite element analysis

Analysing a phenomenon with FEM is referred to as FEA which breaks down the structure into many small substructures, finite elements. The generated structure which is identical to the original structure is referred to as the Finite Element (FE) mesh Figure 23.

Figure 23. Finite Element mesh

The size or the number of finite elements affects the precision of results. The smaller the elements are set; the closer the analysis gets to the ideal result. The proportional relation also affects the duration of the analysis.

8 STRUCTURAL ANALYSIS RESULTS

8.1 Result summary

While performing FE analysis it is important to remember that it is an approximation. The results should always be checked and clarified with engineering expertise. When the analysis is complete the results are highlighted in different colours, scaling values of internal forces and deformations from minimum to extreme, allowing visual result evaluation (see Figure 24).

Figure 24. Visual result evaluation

RFEM provides a summary of the results sorted by load cases and combinations as shown in Table 2 on the next page. The overview shows maximum displacements and rotations related to the global axes, as well as the total largest displacement. The deviation in each direction should be less than 1%, signifying that no numerical problems related to stiffness difference or structure stability have occurred. The summary is completed by selected calculation parameters of the analysis core and specifications of calculations. Different views of analysed structure can be seen in Appendix 4.

Description	B	Linit	Commont
ELO1 ELO1	vaiue	Unit	Comment
Current Control Current Control Current Control Current Control Current Curren	0.00	LAT	10
Sum of roads in X	0.00	KIN	
Sum of support forces in X	0.00	KIN	
Sum of roads in 1	0.00	KIN	
Sum of support forces in f	0.00	KIN	
Sum of loads in Z	-93990.00	KIN	Deviation: 0.00 %
Sum of support forces in 2	-93990.00	KIN	At contex of gravity of model (V: 6 690 X: 4 005 7: 10 395 m)
Resultant of reactions about X	10901 400	KINIII	At center of gravity of model
Resultant of reactions about 7	0.010	KINITI	At center of gravity of model
Maximum displacement in X direction	-0.010	KINITI	Member No. 590, yr 2,070 m
Maximum displacement in X-direction	-0.4		Member No. 309, x: 2,070 m
Maximum displacement in 7 direction	0.0	mm	Member No. 703, X 2.413 III Member No. 60, x 2.000 m
Maximum displacement in Z-direction	-70.7	mm	Member No. 60, x: 2.090 m
Maximum retation about X axis	10./	mrad	Member No. 60, x 2.090 m
Maximum rotation about X axis	13.4	mrad	Member No. 00, X. 2.090 III Member No. 955, y: 0.000 m
Maximum rotation about 7 axis	-0.0	mrad	Member No. 355, X. 0.000 m
Method of applying	U.J	mau	Geometrically Linear Analysis
Deduction of altifferen	Linear		Geometrically Linear Analysis
Number of load ingroments	1		
Number of load increments	1		
Maximum value of element of stiffness matrix on dia	2 108E±12		
Minimum value of element of stiffness matrix on diag	4 748E±04		
Infinity Norm	4.740E+04		2
Interementally increasing leading	J.235L+12		-
ELO2 Electure			
Cum of loads in V	0.00	LAL	
Sum of support forces in X	0.00	KIN LAN	
Sum of leads in X	0.00	KN L	
Sum of support forces in X	0.00	IN IN	
Sum of leads in 7	6443.30	KIN IKN	
Sum of support forces in 7	6443.29	KIN LAN	Doviation: 0.00%
Deputtent of reactions shout Y	2959 790	KIN kAlm	At conter of gravity of model (X: 6.690, X: 4.005, 7: 10.295 m)
Resultant of reactions about X	2533.700	kNim	At center of gravity of model
Posultant of reactions about 7	0.000	kNm	At center of gravity of model
Maximum displacement in X direction	0.000	NINIII mm	Member No. 589, v: 2.070 m
Maximum displacement in X-direction	0.0	mm	Member No. 703, x: 2.070 m
Maximum displacement in 7 direction	_0.1	mm	EE Moch Node No. 465967 (Y: 4 386, Y: -10 570, 7: 20 440 m)
Maximum displacement in Z-direction	-0.7	mm	FE Mech Node No. 465967 (X: 4.366, 1: -18.570, 2: 20.440 m)
Maximum vectorial displacement	0.7	mrod	E Moch Nodo No. 627221 (V. 4.969, V. 16 105, 7, 7.100 m)
Maximum rotation about X axia	0.2	mrad	E Moch Nodo No. 627275 (V: 2.691 V: 10.570, 7: 7.100 m)
Maximum rotation about 7 axis	0.3	mrad	Member No. 224, v: 0.000 m
Maximum rotation about Z-axis	U.U	maa	Cometricelly Linear Analysis
Peduation of atiffness	Linear		Geometrically Linedi Andiysis
Number of load increments		-	
Number of Ioad Increments		-	
Number of iterations	2 100E, 12		
waximum value of element of stiffness matrix on dia	2.198E+12		
Minimum value or element or sumness matrix on diag	4./40E+04		/
	J.29JL+12		

Table 2. Results – Summary

8.2 Deformations

The display of surface and member displacements and rotations are presented both graphically and numerically. Deformations of elements can be determined for members, surfaces and solids and are related either to the local coordinate system of selected element or to global coordinate system. Accessed through Result navigator, deformations have the following meanings: U for displacement and ϕ for rotation (see Table 3). Locally selected deformations list deformations of each member separately and follows as start and end of the member, division points and extreme values, where surface deformations are defined by FE meshes grid points which represent its characteristics, as seen in Figure 25.

Table 3. Global deformations

	A	P	C	D	E	F	C		1	1	-
iber	Node	Location	U.	U)isplacements (m	r i	<u> </u>	Rotations (mrad)		J	
	No.	x [m]		ux	uY	uz	φX	ωΥ	ωZ	Corresponding Load Cases	
	2540	0.000	max	0.0	0.0	-6.3	1.3	2.0	0.0	5	
			min	0.0	0.0	-6.3	1.3	2.0	0.0		
	115	2.090	max	0.0	0.0	-9.3	1.5	2.0	0.0		
			min	0.0	0.0	-9.3	1.5	2.0	0.0		
	2540	0.000	Max uX	0.0	0.0	-6.3	1.3	2.0	0.0	CO 98	
	115	2.090	Min ux	0.0	0.0	-9.3	1.5	2.0	0.0	CO 89	
	2540	0.000	Max uY	0.0	0.0	-6.3	1.3	2.0	0.0	CO 89	
_	2540	0.000	Min uY	0.0	0.0	-6.3	1.3	2.0	0.0	CO 98	
_	2540	0.000	Maxuz	0.0	0.0	-6.3	1.3	2.0	0.0	CO 87	
_	115	2.090	Min uZ	0.0	0.0	-9.3	1.5	2.0	0.0	CO 85	
_	115	2.090	Max φX	0.0	0.0	-9.3	1.5	2.0	0.0	CO 84	
_	2540	0.000	Μαχ φχ	0.0	0.0	-0.3	1.3	2.0	0.0	CO 90	
-	2540	0.000	Min ov	0.0	0.0	-0.3	1.3	2.0	0.0	CO 90	
	2540	0.000	Max oz	0.0	0.0	-6.3	1.3	2.0	0.0	CO 90	
	2540	0.000	Min oZ	0.0	0.0	-63	13	20	0.0	CO 97	
	2529	0.000	max	0.0	0.0	-48.8	13.2	-4.9	0.0		
			min	0.0	0.0	-48.8	13.2	-4.9	0.0		
	114	2.090	max	0.0	0.0	-76.7	13.4	-4.9	0.0		
			min	0.0	0.0	-76.7	13.4	-4.9	0.0		
	114	2.090	Max uX	0.0	0.0	-76.7	13.4	-4.9	0.0	CO 94	
	2529	0.000	Min ux	0.0	0.0	48.8	13.2	4.9	0.0	CO 97	
	2529	0.000	MaxuY	0.0	0.0	-48.8	13.2	-4.9	0.0	CO 97	
	2529	0.000	Min uY	0.0	0.0	-48.8	13.2	-4.9	0.0	CO 90	
_	2529	0.000	Maxuz	0.0	0.0	-48.8	13.2	-4.9	0.0	CO 89	
_	114	2.090	Min uz	0.0	0.0	-/6./	13.4	-4.9	0.0	CO 85	
-	2520	2.090	Μίρ φχ	0.0	0.0	-/0./	13.4	-4.9	0.0	0.90	
-	2529	0.000	Μαν φΥ	0.0	0.0	-40.0	13.2	-4.9	0.0	0.00	
-	2529	0.000	Μίη ωΥ	0.0	0.0	-48.8	13.2	-4.9	0.0	CO 97	
-	2529	0.000	Max oz	0.0	0.0	-48.8	13.2	-4.9	0.0	CO 85	
-	2529	0.000	Min oZ	0.0	0 0 0	-48.8	13.2	-4.9	0.0	CO 89	-
	2661	0.000	max	0.0	0.0	-6.3	1.3	2.0	0.0		
			min	0.0	0.0	-6.3	1.3	2.0	0.0		
	117	2.090	max	0.0	0.0	-9.3	1.5	2.0	0.0		
			min	-0.1	0.0	-9,4	1.5	2.0	0.0		
	2661	0.000	Max uX	0.0	0.0	-6.3	1.3	2.0	0.0	CO 98	
	117	2.090	Min ux	-0.1	0.0	-9.3	1.5	2.0	0.0	CO 89	
_	2661	0.000	Max uY	0.0	0.0	-6.3	1.3	2.0	0.0	CO 89	
_	2661	0.000	MinuY	0.0	0.0	-6.3	1.3	2.0	0.0	CO 85	
_	2661	0.000	Maxuz	0.0	0.0	-6.3	1.3	2.0	0.0	CO 90	
_	117	2.090	Min uz	0.0	0.0	-9.4	1.5	2.0	0.0	CO 84	
-	2661	2.090	Min @Y	0.0	0.0	-9.4	1.5	2.0	0.0	00.04	
-	2661	0.000	Max (cV	0.0	0.0	-0.3	1.3	2.0	0.0	CO 90	
-	2661	0.000	Min oY	0.0) 0.0	-6.3	1.3	2.0	0.0	CO 84	
	2661	0.000	Max oz	0.0	0.0	-6.3	1.3	2.0	0.0	CO 90	
	2661	0.000	Min øZ	0.0	0.0	-6.3	1.3	2.0	0.0	CO 84	
ore											

Figure 25. Local deformations

8.3 Support reactions

It is also possible to evaluate support reactions graphically or in tables. Support reactions are listed in lines and are related to the start node of the line. The surface FE mesh is not relevant to the line support forces. Presented in results, supporting reactions are generated for the individual load case and combination.

8.4 Internal forces

Internal forces are axial forces, shear forces and moments acting within a body. Presented both graphically and numerically internal forces are sorted by surfaces or members. The difference between surface internal forces and member internal forces is that a member moment M rotates about the local axis of a member, whereas surface moment acts in the direction of local surface axis.

8.5 Structural components design

In addition to program's ability to determine deformations, support reactions and internal forces, RFEM provides several add-on modules, which can perform structural design of elements consisting of different materials and according to specific standards.

The RF-CONCRETE add-on module is used to determine cracked sections in reinforced concrete structures and to design structural components. The module consists of two parts: RF-CONCRETE Members and RF-CONCRETE Surfaces.

8.5.1 RF-CONCRETE

Members designed through RF-Concrete are imported directly from RFEM. Loads, load combinations and result combinations are then assigned to determine internal forces of selected elements. The library covers the property of materials of the relevant standard and can be altered if necessary (Figure 26).

	Δ	В	C	1	h	Concrete Stress-Strain Curve
IcineteM	Material De	escription			<i>,</i>	Concrete Stress-Strain Surve
No.	Concrete Strength Class	Reinforcing Steel	Notes	Com	ment	
2	Concrete C25/30	B 500 S (A)	10003	Com	inom	
2	0010101010 020100	D 300 3 (A)				σ _c (<0) ▲
						-[4
						En En elet
						6c2 6c2u 6c (<
					2	8
						Reinforcement Stress-Strain Curve
Material	Properties					
	rete Strength Class: Concrete	e C25/30				
Char	acteristic Cylinder Compressive S	trength fck	25	N/mm ²		
Mea	n Cylinder Compressive Strength	fcm	33	N/mm ²		first fits, cal
Mea	n Axial Tensile Strength	fctm	2.6	N/mm ²		fu/7: fkal/7s
- 5% F	ractile of Axial Tensile Strength	fctk;0.05	1.8	N/mm ²		
95%	Fractile of Axial Tensile Strength	fctk;0.95	3.3	N/mm ²		arctan E.
Mea	n Secant Modulus of Elasticity	Ecm	31000	N/mm ²		
BChar	acteristic Strains for Nonlinear Ar	alysis	1 1000			Esu Es
Ult	imate Strain for Pure Compressio	n ɛc1	-2.1	%0		
Ult	imate Strain at Failure	8c1u	-3.5	%0		
BCha	acteristic Strains for Parabolic-Re	ectangular Diagram	1	-		Material No. 2 used in
Ult	imate Strain for Pure Compressio	n εc2	-2	%0		
Ult	imate Strain at Failure	ec2u	-3.5	%0		Cross-sections:
Ult	imate Strain at Failure	εc3	-1.75	%		1,2
Ult	imate Strain at Failure	εc3u	-3.5	%0		
Pa	rabola Exponent	n	2			Members:
Spee	cific weight	γ	25	kN/m ³		
Reinf	orcing Steel: B 500 S (A)		1			121-125,127,129,130,132-135,141-146
Mod	ulus of Elasticity	Es	200000	N/mm ²		
Char	acteristic Yield Strength	fyk	500	N/mm ²		Sets of members:
Char	acteristic Tensile Strength	ftk	525	N/mm∠		
Ultin	nate Strain	εuk	25	%0		
						T Landby T Mainte
						a conyrit. a wogin.

Figure 26. Material Properties

The RF-Concrete Member add-on is used to design reinforcement for beams, columns and other elements, where RF-Concrete Surfaces is used to design reinforcement for surface. Prior to design calculation, construction properties are set to determine the required longitudinal and shear reinforcement. During this project possible diameters of longitudinal reinforcement are set from 16 to 28 mm and from 8 to 10 mm for stirrups. The results of design are then presented both in tables and graphically, visualizing the most suitable solution (see Figure 27). Structural designs generated by RF-Concrete can be seen in Appendix 5.

Item Reenforcement No. of ds As Length -x-Locator (m) Weight No Position Bars [mm] [cm²] [m] from to Anchorage [kg] Notes Member No. 067 Rectange 000300	
No. Position Bars [mn] [mn] from to Anchorage [kg] Notes Martie N. volgers 76 / 75. Redcargle 200300 2 20.0 6.28 0.650 -0.200 5.855 QJ 2.90.4 159) ent 1 -2 forp) 2 20.0 6.28 0.050 QJ20 5.855 QJ 2.90.4 159)	
Image: No. 987 - Rectangle 300:300 1 -z (top) 2 20.0 6.28 6.050 -0.200 5.850 ☑ 29.84 156) 2 +z (totothem) 2 20.0 6.28 6.050 0.200 5.850 ☑ 29.84 156)	
nt 1 -z (top) 2 200 6.28 6.050 -0.200 5.850 2 29.84 (56) 2 +z (bottom) 2 200 6.28 6.050 -0.200 5.850 2 29.84 (58)	
2 +z (bottom) 2 20.0 6.28 6.050 0.200 5.850 V 29.84 158)	
Member No. 968 - Rectangle 300/300	
1 -z (top) 2 20.0 6.28 6.050 -0.200 5.850 💟 29.84 158)	
2 +z (bottom) 2 20.0 6.28 6.050 -0.200 5.850 ☑ 29.84 158)	
Member No. 969 - Rectangle 300/300	
1 -z (top) 2 20.0 6.28 6.050 -0.200 5.850 💟 29.84 158)	
2 +z (bottom) 2 20.0 6.28 6.050 -0.200 5.850 🔽 29.84 158)	
Member No. 970 - Rectangle 300/300	
nent 1 -z (top) 2 20.0 6.28 3.700 -0.200 3.500 🗹 18.25 158)	
2 +z (bottom) 2 20.0 6.28 3.700 -0.200 3.500 🔽 18.25 158)	
ation Member No. 971 - Rectangle 300/300	
1 -z (top) 2 20.0 6.28 2.400 -0.200 2.200 V 11.84 158)	
(Course)	
() 2 ± 23.3, i = 6.003 m	

Figure 27. Provided reinforcement

8.6 Updating existing BIM

To complete building information modelling, structural analysis is exported from Dlubal RFEM to Autodesk Revit. The program's bidirectional data exchange makes it possible to create new elements and adjust modifications in both directions. Adjustable reference lines allow load bearing structural parts to merge automatically in a single model. If changes are made to cross-sections or materials, the data is then updated in both programs. New structural components are added, and modified designs are removed as seen in Figure 28.

The results of structural analysis such as internal forces, deformations and defined reinforcement groups can also be imported to Revit. A corresponding view as well as Result Explorer toolkit is generated automatically and is available after import is complete. Manual adjustments of the analytical model are always possible in case of occurred inaccuracies. Exported elements of the analytical model can be found in Appendix 6.

Figure 28. Exported reinforcement

9 CONCLUSION

The availability of information online and provision of free student versions of the programs by Autodesk and Dlubal software, makes it possible for those who are interested, to learn operating the programs efficiently. This makes the studying process relatively fast and easy.

Revit and RFEM mostly circulate amongst large construction companies, but most, if not all the features and libraries are accessible in student and trial versions of programs, for separate users to experience the software prior to its purchase. Programs used during this project not only provided results for structural analysis and combination of them in a BIM, but also gave insights into learning to use Revit and RFEM and laid the basis for a potential future renovation.

The presence of link between two programs allowed the project to expand its possibilities. The program's tools effectively assisted in conflict determination and its further elimination, making the next step of the process possible when certain condition is fulfilled. Although there is always room for improvement, the approach taken during designing stage of the project is represented through a flowchart seen in Figure 29, compiled for better understanding of the workflow.

Figure 29. Flowchart of the project

REFERENCES

Autodesk. (2019). Office locations. Retrieved 5 February 2019 from <u>https://www.autodesk.com/company/contact-us/office-locations</u>

Bergin M. (2012). A brief history of BIM. *Style of design - Architecture* 7 December 2012. Retrieved 15 January 2019 from <u>https://web.archive.org/web/20140302064642/http://www.styleofdesig</u> <u>n.com/architecture/a-brief-history-of-bim-michael-s-bergin/</u>

BIM Wiki. (2019). Parametric modelling. Retrieved 13 February 2019 from <u>https://www.designingbuildings.co.uk/wiki/Parametric_modelling</u>

Cherkaoui H. (2016). What is BIM? Blog publication 1 December 2016. Retrieved 20 January 2019 from <u>https://www.letsbuild.com/blog/what-is-bim-what-are-its-benefits-to-</u> <u>the-construction-industry</u>

Dlubal software. (2019). Company in facts. Retrieved 15 March 2019 from <u>https://www.dlubal.com/en/company/about-us/history-and-facts</u>

Finite element method (FEM). (2019). Software for Finite Element Analysis (FEA). Retrieved 20 March 2019 from <u>https://www.dlubal.com/en/solutions/application-areas/finite-element-</u>analysis-fea-software

Funding Universe. (n.d.) Autodesk, Inc. History. Retrieved 1 February 2019 from

http://www.fundinguniverse.com/company-histories/autodesk-inchistory/

Helsinki kuvia. (n.d.). Fleminginkatu 10. Franzeninkatu 23. Retrieved 18 January 2019 from https://www.helsinkikuvia.fi/collection/694/?rid=11703

Herkaoui H. (2017). A history of BIM. Blog publication 22 March 2017. Retrieved 25 January 2019 from <u>https://www.letsbuild.com/blog/a-history-of-bim</u>

Rakennuslupa. (2016). As Oy Helsingin Franzeninaukio. Retrieved 3 March 2017 from https://www.hel.fi/static/rakvv/VIPA/LYV/2016/55-LYVPTK.pdf

RFEM. (2019). FEM Structural Analysis Software. Retrieved 10 April 2019 from

https://www.dlubal.com/en/products/rfem-fea-software/what-is-rfem

Technopedia. (2012). Object-oriented modelling. Retrieved 20 April 2019 from

https://www.techopedia.com/definition/28584/object-orientedmodeling-oom

Appendix 1/1 Visible crack on the old concrete slab

Appendix 1/2 Cracks formed around old ventilation shaft

Appendix 1/3 Reinforcement of the old the damaged concrete slab

Appendix 1/4 Reinforcement of deteriorating concrete slab

Appendix 2/1 Autodesk Revit generated model and drawings Demolition drawing of attic structures

Appendix 2/2 Layout of masonry walls and old INP 200-profiles

Appendix 2/3 Masonry wall and intermediate floor section view

1 OLEMASSA OLEVA KIVIRAKENTEINEN SEINÄ

1:10

1 OLEMASSA OLEVAT I-PALKIT

2 BETONIALALAATTA 150 MM

34

Appendix 2/4 Layout of the new structural frame 2-5 floor

Appendix 2/5 Structural model of the building

Appendix 3/1 Dlubal RFEM generated analytical model model Dead loads

Appendix 3/2 Live load

Appendix 3/3 Snow load

Appendix 3/4 Wind Load South

Appendix 3/5

Appendix 4/1 Structural analysis results Global deformations

44

Appendix 4/3

Appendix 4/4

Appendix 5/1 RF-Concrete structural designs RF-Concrete generated reinforced concrete members

Appendix 5/3 Reinforced beam

Appendix 6/1 Revit reinforced section view

Appendix 6/2 Revit reinforced Column

1.

.

Appendix 6/3 Revit reinforced beam

