

�

�

�

�

�

DYNAMICALLY GENERATED ASSEMBLY BLITTER FOR S40

MOBILE PHONES

��������������	�
�
���������������

� ����	�������
� �	��������	����	�������	��

� ���������	������	��
� ������	� ����������!�����������	����

���������

�
������	� ����������!�����������	����
�	��������	����	�������	�����������	������	��
�
�
!����"�#$���������������	�
������ ���
��������� �����$� %&'!(�)!**&� +,',-!�,%� !��,(
*&�
*���,-� .�-� �/��
(�
�*,�0��',��
����� ����"�#$�(�1�(������-�����	�	�"��!�#2�(�1�(�����0���34� ��"'�����)���������	#�
������	�������������������	$�����	�������'��5�����������$�/6�7�8�����	������

���� 5��������� ������ 9��� ��	�� ����'�����)���������	� �/��(�5���� 0�	��1� �	� ���� �����2� ���
���5����� �	�� �����5��� �������	�� 9���� ���������� ���� ����� �9�:����	���	��� ����9���� ��������
��������	�1� ����53���� ����� ��� ������9��� ��� �����	2� �������	�� �	�� ����� �� ����9������������
��������	�� �����	�	�� �������� 5�� ���	�� ��	��������� ��	������� �����5��1� ��� ������� ��� ���
����9���������	�	���������� �����5������	���9��������������� �����9�	�����!-(�������������
������������������1�
�
����53���� �����������������������������������	��������������������9��������������������	���	�
�/��(�5����0�	��1�
������������	�����������2��������������������� ������;�����	�������/��
�������������	�� ����������������� �	� ��	����1�������5������	�� �������	����� ���� ������9����
���������� 5�� ������	�� ��� ����� �������	�����	�� ��� �9�� ����	���	��� ����9���� ��������
�����	�	����	��5�����	���������������������:������	��������������������������������1��
�
��� -������� ��� ���� 5��������� ������ 9���� ���	�����	�1� (���� ��� ��� �������� ��������	�� ������
5�	��������9�������������������������������� ������������	�����	1�.�������� ������	�����
��� 9���� �	������� �9����	�� ��� ��������	��� ��� ��� ����� ����� ���� �����2� �������	�����	� ���
�������� ���� ����� ���������� ������������� �	�� �;��	��	�� ��� ����9���� �����	�	�� 9��� 	�9�
��������1�

<��9����$�����:�������	������2�5������2��/�2���5������	�2������������������

CONTENTS

SYMBOLS .. 1�

1 INTRODUCTION ... 2�

2 COMPUTER GRAPHICS ... 3�

2.1 Basics of computer graphics ... 3�

2.2 Graphics processing .. 5�

2.3 Computer graphics in mobile devices .. 5�

2.4 Graphics rendering chain .. 7�

2.5 Block Image Transfer .. 8�

2.5.1 Color conversion .. 9�

2.5.2 Transformations ... 11�

2.5.3 Scaling ... 14�

2.5.4 Alpha compositing .. 17�

3 ARM 11 PROCESSOR FAMILY .. 22�

4 DYNAMIC ASSEMBLY .. 25�

5 SPLATTER .. 28�

5.1 Stitcher and code generation component .. 29�

5.2 Test environment ... 32�

5.3 Pixel pipeline generation ... 33�

5.4 Supported formats and blit types ... 35�

5.4.1 Blit types ... 36�

5.4.2 Transformations ... 38�

5.5 Performance tweaking ... 39�

6 RESULTS AND CONCLUSIONS ... 40�

7 DISCUSSION ... 43�

LIST OF REFERENCES ... 44�

APPENDICES ... 48�

 1

SYMBOLS

2D Two-dimensional

3D Three-dimensional

ALU Arithmetic logic unit

API Application programming interface

BLIT BLock image transfer

BPP Bits per pixel

CCW Counterclockwise

CLI Command-line interface

CPU Central processing unit

CW Clockwise

GUI Graphical user interface

GPU Graphics processing unit

PC Personal computer

PDA Personal digital assistant

RGB Red, green and blue color model

RISC Reduced instruction set computing

SIMD Single instruction, multiple data

YUV Luma (Y) and chrominance (UV) color space

 2

1 INTRODUCTION

The number of applications and devices using computer graphics has grown

exponentially during the last decades. The rapid development in mobile

technologies has played a major part in this growth. This bachelor’s thesis

discusses computer graphics in mobile devices and specializes in two

dimensional graphics processing.

Generally speaking every device that has a display needs a way to create a

graphical output into the display. This can be done with either software or

hardware. Hardware processing means that the device has a dedicated

hardware for graphics processing. Software processing is carried out by the

CPU (Central Processing Unit) of the device. While software processing is

less expensive and easier to implement, it usually lacks the speed of the

hardware accelerated graphics. For this reason the software processing

approach is usually more interesting, in particular when producing high

volume products.

The theoretical part of this study discusses methods, problems and possible

solutions when working with software processed two dimensional graphics.

The empiricial part of the study includes a description and the basic idea of

the functionality of an implemented dynamically generated assembly blitter

for S40 mobile phones. Blitter, which stands for the component doing BLock

Image Transfer, is explained later on in the study. The product of this study

was tested against a previous implementation and the results of the work can

be seen in the tests presented at the end of this study.

I would like to thank Mr. Mikko Polojärvi and Mr. Jani Lamberg from Nokia

Corporation for sharing their experience in graphics processing and S40

architecture. Without them it would have been impossible to finish this study.

In this study some of the subjects are described at a general level because

the actual work contains information that is not intended for the public

domain.

 3

2 COMPUTER GRAPHICS

Computer graphics have existed almost from the very beginning of the

computer age. The first known GUI (Graphical user interface) was developed

in the 1960’s by a MIT student, Ivan Sutherland, and it allowed him to use a

light pen to draw images onto the screen of a computer (1). For a long time,

computer graphics were related to personal computers. Today computer

graphics are also included in PDAs, mobile phones and other handheld

devices. Generally speaking computer graphics are a part of every electronic

device that has a display.

2.1 Basics of computer graphics

Computer graphics is a very large concept. Roughly speaking computer

graphics could be divided into 2D (two dimensional) and 3D (three

dimensional) graphics. Though all computer graphics operations produce two

dimensional images with width and height, 3D graphics are used to create an

illusion of depth in the image. Three dimensional graphics are widely used in

the video game industry as well as in movies. In addition, the most powerful

handheld devices today provide games and other content utilizing three

dimensional graphics.

This study mainly focuses on 2D graphics which are still the most commonly

used type of graphics. The two main areas of two dimensional graphics are

vector and raster graphics which again can be divided into numerous

categories.

Vector graphics are created with geometrical primitives such as points, lines,

curves and shapes (2). One benefit of using vector graphics is that vector

graphics can be zoomed in endlessly because the image is always redrawn

depending on the required zoom level. Vector graphics consume less

memory than raster graphics because only the drawing primitives are saved.

Vector graphics are used in many applications such as the Google Maps –

service (3).

 4

Most graphical applications are based on raster graphics. Raster graphics,

as in pixmaps, are a presentation of an image with pixels (4; 5). Bitmaps are

a presentation of image data with zeros and ones and they are widely used

in every aspect of computer graphics. A benefit of raster graphics compared

to vector graphics is that the saved data can be presented in great detail. For

example, all images taken with a normal digital camera are saved as

bitmaps. Most of the S40 GUI utilizes bitmaps for creating menus, numbers,

letters and other images that can be seen on the display of the mobile

phone.

Bitmap consists of a width times height number of pixels. This multiplication

is called the resolution of the image, for example 800 x 600 pixels. Pixel is a

single point in a raster image and it is the smallest accessible unit in the

image. The actual color components of the pixel are saved to the memory

usually in RGB (red, green, and blue) color space. For example, the pixel

selected in the figure (see figure 1) would be saved to the memory as a

hexadecimal value of 0xF1B590 if the presented image was created using a

24-bit RGB color. The first eight bits from the left of the color value represent

the amount of red in the pixel, the next eight bits the amount of green and the

last eight bits the amount of blue. These values are seen in the color

component chart, which is a part of the figure.

FIGURE 1. Pixels of Nokia logo presented on the display, zoomed in and in a

color component chart

 5

2.2 Graphics processing

Every graphics processing operation is either done with hardware or

software. The hardware assisted graphics processing means that the device

has a dedicated hardware that is only used for graphics processing. Most

PCs (personal computers) today utilize hardware accelerated graphics and

they usually include one or more chips for graphics processing. These chips

are generally known as GPUs (graphics processing unit). In personal

computers, the CPU and the GPU are commonly physically separated to

different parts and they communicate through a bus. In mobile devices where

hardware acceleration is used, the GPU is usually located in the same chip

with the CPU.

Software graphics processing utilizes the CPU of the device and, by doing

so, it also uses processor cycles from other CPU operations. If the CPU

contains only one core, the impact of the graphics processing in the same

core with other operations is even greater than in multi-core processors

where one or more cores can be assigned to handle only graphics

processing. Unfortunately, most of the mobile device processors still have

only one core processor, though multi-core CPUs are emerging the mobile

market as well.

2.3 Computer graphics in mobile devices

Computer graphics in mobile devices have existed since the first mobile

device with a display was made. The first displays were small with small

resolution and they could only show black and white images. Development

has exploded from those times, and the displays of today can show

increasingly high resolutions. Resolution in the display means the number of

pixels the display can show. In mobile phones resolution is usually near

QVGA (quarter video graphics array, 320 x 240 pixels), whereas most PCs

show HD 1080 (high definition, 1920 x 1080 pixels) or even higher

resolutions. When the resolution of the display increases, higher

 6

performance is required from the graphics hardware or software graphics

processing simply because there are more pixels to draw and manipulate.

Most of the graphical output of mobile devices is created using two

dimensional graphics. This includes all bitmap and vector graphics

operations as well as general drawing primitives such as drawing lines,

circles, triangles and rectangles to bitmaps. Generally speaking, every GUI in

mobile devices is currently made by using 2D graphics only.

Because of their slower CPUs compared to those of PCs and usually even

the lack of hardware accelerated graphics, mobile devices need a highly

optimized way to draw graphics to the display with software. There are some

hardware graphics accelerators for mobile devices in the market but they are

quite expensive compared to a very well implemented software graphics

solution. For this reason, they are usually avoided in mass-produced

products such as mobile phones.

Computer graphics in more powerful devices such as PCs and gaming

consoles have already utilized three-dimensional graphics for several

decades. For mobile phones this area is developing fast. 3D graphic APIs

(application programming interface) such as Khronos Group's OpenGL ES

(5.) are already implemented in the most powerful mobile devices and are

mostly used by third-party developers. The main problem in using three-

dimensional graphics in mobile devices is that a great number of calculations

and high performance is needed to generate three dimensional images.

In the future, it will be possible to create completely three-dimensional GUIs

for mobile devices. To achieve this, mobile devices will have to develop fast

enough to render the considerable amounts of data needed by 3D graphics

processing.

 7

2.4 Graphics rendering chain

For the image to appear on the display it must go through a graphics

rendering chain. The rendering chain includes various graphics operations

before ending into the display as seen in the simplified figure below (figure

2).

FIGURE 2. Simplified presentation of graphics rendering chain.

Firstly, an application is needed to create the required content by using

graphics API. This content can be either 3D or 2D depending on what the

application is designed to draw and what kinds of API and graphics engine

are used.

2D graphics in PCs are usually drawn using the operating system's own API

such as Microsoft GDI+ (7.) or DirectDraw (8.) in Microsoft Windows. 2D

graphics in mobile devices also utilize their own internal graphics engine or a

public graphics engine such as Qt (9.). For vector graphics, OpenVG (10.) is

used both in mobile devices and in PCs.

The best known 3D -graphics APIs are OpenGL (11.) and Microsoft's DirectX

(12.) for PCs and OpenGL ES for mobile devices. All graphic APIs include a

Application

Graphics API

Graphics engine

Composition engine

Display device

 8

large list of functions prototypes, type definitions, defines and other functions

for the application to create the required content. The mastering one of these

APIs, for example OpenGL, can take several years from a typical

programmer.

Secondly, after the application has created the required content, the graphics

engine under the API creates a raster image of one or more source images

or object data from the application. Output from the graphics engine is then

optionally run through a 2D composition engine to create a full screen image.

The composition engine may use a 2D blitter to create the required output. In

addition, the graphics engine itself can be a simple 2D blitter. Blitters are

discussed in more detail in the following chapter 2.5. After the composition is

completed, the full screen image is transferred to the display using DMA

(direct memory access).

The composition part can also be overridden if the application is running in

the full screen mode. Full screen mode means that the output resolution of

the graphics engine is equal to the resolution of the display and there is no

other data drawn over the output. In the full screen mode, the output of the

application is transferred directly to the display device. In some cases, this

can speed up performance because no composition is needed and many

graphics operations can be skipped.

2.5 Block Image Transfer

Bit blit (block image transfer) is an action in the software or hardware

graphics processing where chunks of two dimensional image data are moved

from one memory location to another (13). The component carrying out the

bit blit is called a blitter. The history of the block image transfer dates back to

1975 when a component called BitBlt was developed for Xerox

Alto computer by Dan Ingalls, Larry Tesler, Bob Sproull, and Diana Merry.

Around the 1980’s, computer manufacturers developed graphics

coprocessors containing a blitter to decrease the workload of CPU (14). This

marked the start of the hardware accelerated graphics as we know it today.

 9

Later, the coprocessors called GPUs or even separate graphics hardware

acceleration cards have been incorporated in blitters to boost the graphics

performance of devices. Some of the modern blitters such as SDL (15) still

use software for carrying out the operations (16).

The basic functionality of a blitter is to run through the destination surface

pixel by pixel and write the modified or unmodified source pixel data to the

target. This operation is also known as a raster scan. (17.) The pixel by pixel

operation is performed in two loops. For example, 200 x 200 pixels’ target

area is run 200 times in the vertical loop (y-axis) and 40,000 times through

the horizontal loop (x-axis). As the horizontal, or inner loop, is run a great

number of times, it is the most potential place to search for possible

performance problems at the blitter.

The most common use case for the blitter is to blit the source surface directly

to the target surface as seen in the figure (figure 3).

FIGURE 3. Source surface blit to destination

2.5.1 Color conversion

Most of the blitters can also handle many types of graphical surfaces and

blits between surfaces in different pixel formats. The action of changing the

pixel format between the source and the destination is called color

conversion. To carry out the color conversion, the blitter has to know the

pixel formats of both the source and the destination. All color conversion

 10

operations must be done pixel by pixel and they usually take place in the

early stage of the blit operation.

RGB is the most commonly used pixel format in computer graphics. Even

though the colors are usually in the same order, RGB values can also be

presented in different sizes in the memory. The most used RGB types are

24-bit RGB, 16-bit RGB and 12-bit RGB. In the 24-bit mode, each color and

the possible alpha channel are represented in eight bit long chunks. If the

alpha channel is included in the 24-bit RGB, the amount of the memory

required is 32 bits per pixel. In the 12-bit color, RGB chunks are four bits long

for each component. Equally, if an alpha channel is included, the amount of

the memory increases up to 16 bits per pixel. The 16-bit RGB differs from

these formats in the way that it does not support the alpha channel. The 16-

bit RGB is also called 565 RGB, which stands for 5 bits of red, 6 bits of green

and 5 bits of blue for each pixel. RGB color formats are usually named with

the amount of bits per component, for example, 4444 ARGB stands for a 12-

bit RGB with an alpha channel.

Another commonly used pixel format is Y'CbCr. This format is mainly used in

video processing and image compression applications. The format is very

often described as YUV, which stands for an analogue video signal system

(18). When digital video or image processing are concerned, YUV actually

refers to the Y'CbCr color model.

Similar to RGB color modes, YUV is also saved to the memory. There is

quite a few different types of YUV formats, which all represent the same data

but are saved to the memory in slightly different ways. The best known YUV

formats are YUV420 and YUV422. YUV or Y'CbCr presents information not

in colors but in luma and color differences. Luma (Y) defines the light

intensity at pixel, whereas the color difference as in chroma (Cb and Cr)

defines the shade of the pixel. With YUV packing it is possible to save in

memory consumption by subsampling the chroma data.

 11

There are also other kinds of pixel formats that are used in computer

graphics. For example, the 1-bit, 4-bit and 8-bit alpha modes are used for

creating one color content. These color modes only contain alpha channel

information and the actual color must be obtained from some other source.

These color modes are useful, for instance, when drawing one color fonts

because they fit in much smaller memory blocks than, for example, a full 32-

bit ARGB font would.

Usually, color conversion is done from the source pixel format to the

destination pixel format. By doing this, other operations, such as alpha

blending, need only one color conversion instead of first converting the target

pixel format to the source pixel format, carrying out the alpha blending and

then converting the result back to the pixel format of the destination.

When converting from a source format that does not have enough bits per

color component for the destination format, the blitter needs to fill extra bits

with the MSB (most significant bit) or MSBs of the source in order to perform

correct conversion. This is necessary for example when converting from the

4444 ARGB format to the 565 RGB mode (see figure 4).

FIGURE 4. An example of color conversion from the 4444 ARGB format to

the565 RGB format presented in bit level.

2.5.2 Transformations

One of the most essential features of a good blitter is its ability to support

transformations. Transformations stand for modifying the source surface

before the actual blit. Usually the blitters support various transformations

A1 A2 A3 A4 R1 R2 R3 R4 G1 G2 G3 G4 B1 B2 B3 B4

4444 ARGB SOURCE

R1 R2 R3 R4 R1 G1 G2 G3 G4 G1 G2 B1 B2 B3 B4 B1

565 RGB DESTINATION

 12

such as rotation, clipping, scaling and mirroring. A common case is that

transformations are performed by using matrix algebra, except in low-level

blitters where using matrices is really slow and transformations are carried

out by using more simple mathematics.

Rotation is used in many cases, for example, when a handheld device is

turned to the landscape mode. In this case, all graphic surfaces must be

rotated and possibly scaled to fit the screen and show the correct output for

the user. Rotation can be done in various ways. Usually blitters support only

90, 180 and 270 degree rotations but also free rotation with the custom

amount of degrees is supported in more advanced blitters. In general, when

the rotation is concerned, degrees are presented in the clockwise (CW)

direction.

FIGURE 5. Clockwise rotation of the original image with fixed degrees of 90,

180 and 270.

Rotation in mathematics is performed using transformation matrices. A

general 2D transformation matrix for the clockwise rotation is presented in

the following formula (formula 1).

FORMULA 1. 2D clockwise rotation transformation matrix. (19.)

������ � � � 	
� � �� �
� �� � 	
� �� �

�
���

 13

The matrix can be used to calculate the actual position of a given pixel after

rotating it with � degrees in the clockwise direction. The rotation is rather

simple in particular when only fixed degree rotations are used because ��

and ��� equations with a degree dividable by 90 are always either 1 or 0 and

only simple multiplications have to be done.

In mirroring, the source surface is mirrored to the opposite direction and then

blitted to the target surface. This operation is also known as flipping in some

graphics applications. Mirroring can be used for example to create graphical

effects in GUI. Mirroring can be done in both vertical and horizontal axes. An

example of mirroring a surface is presented in figure (figure 6).

FIGURE 6. Horizontal and vertical mirroring of the original image

A frequently used feature in blitters is clipping. Clipping can be used to set

source and destination rectangles to define where to and where from the blit

is done. (20; 21) This saves time because there is no need to draw the

source surface completely to the target and therefore less pixels must be

handled in the rendering process. In the figure (figure 7), clipping is carried

out from the area of the source surface marked with a red rectangle to the

red rectangle area in the destination surface. If these rectangles are of

different sizes, the blitter should also carry out the scaling for the correct

output.

 14

FIGURE 7. Clipping from the source to the destination

2.5.3 Scaling

Scaling is one of the most important features of a good blitter. It is also a part

of the transformations that can be applied to a blit. Scaling means that the

source surface or part of it is blitted on the target surface in different

dimensions than it originally was. For example, when the source surface with

the size of 200x200 pixels is blitted on a target surface in size of 300x300

pixels, the blitter has to perform scaling. There are various scaling algorithms

for carrying out the operation, and each of them produces a different quality

of scaling (figure 8).

FIGURE 8. A 5x5 pixel area scaled to 70x70 pixels with the nearest neighbor,

bilinear and bicubic scaling algorithms

 15

As seen from the figure (image 8), the differences between scaling

algorithms can be considerable. All scaling algorithms calculate the source

pixel coordinates to match with the destination dimensions. The following

formula (formula 2) is used to determine the values of source x and y

coordinates of the pixel used for blitting.

FORMULA 2. Calculating source coordinates in scaling

� � ����������� � �
����� !��� ����� � ��" ������ !��� #

� � �������$�%�� � �
����� !��� �$�%�� � ��" ������ !��� &

The coordinates (x,y) calculated with this formula are non-integer values and

must not to be considered as actual pixel values. In addition, in case of

destination surfaces with the width or the height being either one or zero, the

y or x values must be forced to be zero in order to prevent division by zero

errors.

The nearest neighbor scaling uses the nearest pixel from the formula

(formula 2). For example, if the coordinates in the formula are (3.125, 6.304),

the source pixel used for blitting is rounded to (3,6). The nearest neighbor is

the fastest scaling method but it also produces the worst quality, in particular

when scaling up.

Bilinear scaling computes an interpolated value of colors from the four

nearest pixels (2x2 pixel area) and uses the computed value for blitting with

the target surface. The basic idea of bilinear interpolation is to first linearly

interpolate in one direction and then to the other. (22.)

Each color component must be calculated separately when using bilinear

scaling. Because interpolation is calculated between values ranging from

 16

zero to one, each color component must be divided with its maximum value

before applying the interpolation formula and then again multiplied with its

maximum value to get the actual color value. For example, the maximum

value of a 4-bit color component is 15, and it should be used as divider and

multiplier when working with the 12-bit RGB pixel format.

FIGURE 9. An example of bilinear interpolation.

By using the basic linear interpolation formula we can create the following

formula (formula 3) for calculating the color value of P.

FORMULA 3. Linear interpolation of point P

'()�* � � �� � �
��� � ��+ " '(,�* �- � � � �+

�� � �+ " '(,.*

'().* � � �� � �
��� � ��+ " '(,/* �- � � � �+

�� � �+ " '(,0*

P1 P2

P3 P4

y0

y

y1

x0 x x1

P

R2

R1

P1

 17

'(,* � � �� � �
��� � ��+ " '()�* �- � � � �+

�� � �+ " '().*

Point P is the point of x- and y-coordinates calculated from the destination

pixel point by using the source coordinate formula (see formula 3).

Bicubic scaling is the most expensive and also the best scaling algorithm. An

example of bicubic scaling is shown in the figure (figure 8). Bicubic scaling

uses the color values of 16 surrounding pixels to calculate the final pixel

color value. In mathematics, this operation is called bicubic interpolation.

(23.) Bicubic scaling is not exhaustively discussed in this study because it is

not included in the empirical part of the study due to the limitations in the

processor architecture.

There are also other scaling algorithms, which all work slightly differently,

using, however, the same basic idea, for example the Bresenham scaling

algorithm. It is difficult to select the best algorithm for each use case and

therefore a good blitter should support many different algorithms.

2.5.4 Alpha compositing

Sometimes pixels may contain an alpha component, in addition to the color

components. The alpha component stands for the transparency value of the

pixel in the raster image. It was first introduced by A.R. Smith in the late

1970’s (24). In 1984, Tom Duff and Thomas Porter created the theory of

alpha compositing, which is widely used in today's computer graphics (25).

Usually, the alpha component is described from zero to one where zero

stands for fully a transparent and one for an opaque. The figure (figure 10)

presents the basic operations of the Porter-Duff theory.

In the 32-bit ARGB mode, the alpha value is in the first eight bits of the pixel

value and it therefore uses values from zero to 255. In the 16-bit ARGB

mode, the alpha component is only four bits long and it can have values

ranging from zero to 15. Because alpha values are not presented in a

 18

common zero to one scale, the blitter must treat all alpha values in the scale

of the pixel format.

FIGURE 10. Porter-Duff alpha composition operations (26).

 19

Porter-Duff operations can be achieved by changing the source and the

destination factors in an alpha blending algorithm (see formula 4).

FORMULA 4. Alpha blending algorithm

'1 � �23 4 �'3 4 53 - 26 4 �'6 4 56�
21

The final alpha (21) of the pixel is calculated with the following algorithm (see

formula 5). This formula is also used in the alpha blending algorithm to divide

the component color with the final value when working with not pre-multiplied

alpha components.

FORMULA 5. Final alpha algorith

21 � 23 4 53 - 26 4 56

The alpha blending algorithm is used to calculate each color component of

the pixel. The definitions of symbols in the formula can be found in the

following table (table 1).

TABLE 1. Symbols in the alpha blending formula.

'1 Color component to be calculated

23 Alpha value of the source pixel

'3 Color component value in the source pixel

53 Blend factor for the source

26 Alpha value of the destination pixel

'6 Color component value in the destination pixel

56 Blend factor for the destination

 20

The most used source over destination alpha blend would use one (�) as a

source factor and one minus source alpha (� � 23) as a destination factor. In

Porter-Duff alpha composition operation (figure 10) this would mean the A

over B operation. Further information about blending factors can be found in

chapter 5.4.1 of this study.

Pre-multiplied alpha is used in computer graphics for saving time in blending

calculations. Pre-multiplied alpha means that the color components of a pixel

are already multiplied with the alpha value. This simplifies the alpha blending

formula and saves computer cycles by removing the heavy divide operation

(see formula 6). The same formula can be used to calculate the final alpha of

the pixel as well.

FORMULA 6. Pre-multiplied alpha blending algorithm

'1 � '3 4 �53 -�'6 4 �53 �

Global alpha is a commonly used concept. Global alpha means that the

result of the blit uses defined alpha value for multiplications instead of using

source or destination alpha values. With the global alpha, it is possible to

define the opacity of the whole blit with one value. The global alpha is usually

defined in blit parameters by the user of the blitter.

Alpha composition can also be done without the alpha channel with either

color keying or masking. Color keying is a technique where only some color

of the target surface is replaced with the color of the source surface or vice

versa. This technique is used, for example, when blitting a video over some

other surface. This technique can be used to mask, for instance, text, menus

or other content on the top of the video.

 21

FIGURE 11. An example of destination color keying.

Masking is basically the same operation as color keying but the actual area

is selected with an extra surface, which contains information on what pixels

are selected to the output. To save memory, the mask is usually presented in

the 1 BPP (one bit per pixel) format. An example of masking can be seen in

the following figure (figure 12). In the example, the mask black color

represents 1 and the white color represents 0 in the 1-bit per pixel format.

FIGURE 12. An example of masking

 22

3 ARM 11 PROCESSOR FAMILY

The ARM11 core was licensed in 2002 by ARM Ltd. (27.). The ARM11

processor family architecture contains 32-bit RISC (reduced instruction set

computing) microprocessors. These processors include numerous features,

such as SIMD (single instruction, multiple data) operations and

multiprocessor support. When using the SIMD operations in particular it is

possible to speed up many use cases such as blitters. A total of four different

processor types belong to the ARM11 processor family and they all utilize

the ARMv6 processor architecture. These types are ARM1136, ARM1156,

ARM1176 and ARM11 MPCore. The ARM11 family processors work from

clock rate of the 350 MHz up to 1 GHz. All ARM11 processors utilize the

ARMv6 instruction architecture (28; 29).

The most used ARM11 types are ARM1176 and ARM1136. They are used

by many consumer electronics companies such as Nokia, Apple, Samsung,

Nvidia etc. In this study the focus is on the ARM1176 processor because it is

the hardware with which the actual work of this study will be tested and

benchmarked.

ARM1176 supports an eight-stage pipeline and up to four simultaneously run

instructions. An eight staged pipeline means that each processor instruction

has to go through eight stages for the result. Not all of these stages are gone

through for every instruction. The more complex the instruction, the more

processor clock cycles there are and the more pipeline stages and time are

needed for the process. By overlapping multiple stages, the processor can

achieve the maximum clock rate to execute the instructions. Processor

stages and stage overlapping are presented in the following table (table 2).

 23

TABLE 2. The ARM 11 eight-staged pipeline

When an instruction is initiated in the processor, the first two stages are for

fetching the instruction information from the memory and for carrying out

branch prediction. Branch prediction means that the processor is trying to

guess where the program is going to branch or jump next (30). Branch

prediction can be used for achieving high performance boost if the prediction

of the processor is correct. The performance comes from preloading the next

instructions from the predicted address and fetching them to the processor

pipeline. In case of misprediction, the processor must clear the pipeline of

instructions and start processing from the actual branching address which

can cause heavy penalty to the performance (31).

After fetching the instruction, the processor starts the decoding stage. This

means that the processor is decoding the binary data including the

instruction and preparing to issue it. The last part of the common pipeline is

reading the register and issuing the instruction. The rest of the pipeline

stages shown in the table (table 2) can change depending on the instruction.

The three instructions presented in the table are typical ALU (arithmetic logic

unit) instructions, such as bit shifting, adding or subtracting a register value.

The processor uses different pipelines for multiplying and memory loading

and storing instructions.

The ARM1176 processor has 13 general registers (registers 0-12), program

counter register (PC), stack pointer register (SP), link register (LR) and one

or two status registers when working in the ARM state. The registers are 32

bit long containers in the processor and they are used to load, modify and

save data. The program counter register keeps track of the instruction

running. The counter is always four instructions ahead of the actual

processing because of the simultaneous running. The program counter can

Time 1 2 3 4 5 6 7 8 9 10 11 12

Instr 1 Fetch Fetch Decode Read Shift ALU Saturate Write

Instr 2 Fetch Fetch Decode Read Shift ALU Saturate Write

Instr 3 Fetch Fetch Decode Read Shift ALU Saturate Write

 24

be used for example in branch prediction. The stack pointer register holds

the address in the memory where routines can save temporary data during

the runtime. The link register or subroutine link register is used for saving the

return address when the branch and link routine is used. Otherwise LR can

be used as one of the general registers. Last but not least, the ARM1176 has

one or two status registers in the ARM state. Status registers hold up flags of

the instructions that want to update these status registers. These flags can

be, for instance, results of comparison between two register values or

processor state flags.

 25

4 DYNAMIC ASSEMBLY

Dynamic assembly is a self-modifying code which means that the program is

modifying or creating its own instruction stream while running. A self-

modifying code is used to prevent reverse-engineering, and to optimize both

memory usage and runtime of the program (32).

Assembly and software routines are usually written in the order of execution.

In dynamic assembly, all routines are generated during the run-time

depending on what kinds of operations the program should do. Though

dynamic assembly is far more complicated than the traditional assembly, it

offers a number of benefits for the system. Thanks to the dynamic code

generation system, it is possible to use and compile only the code that is

needed, which saves memory. In addition, recycling the code in such a way

that a piece of code that has been generated once does not have to be

generated again makes dynamic assembly useful in frequently repeated

operations.

Blitters written in the dynamic assembly, as in binary code, are often much

faster than normal blitters written in C- or C++-language. The difference

comes mainly from the not optimized functions during the compilation and

branches of if- and switch-case-sentences, which significantly affect the

performance. The dynamic assembly or normal assembly can also be used

to tweak the register usages and branch prediction when in C-language, for

example, this is done by the compiler.

The dynamic assembly also allows using C variables for offsets and dynamic

memory loading. In ARMv6, all ARM assembly routines are described as 32-

bit binary codes, and all supported functions and binary codes can be found

in the ARMv6 Reference Manual (29). It is also possible to use the THUMB

or THUMB-2 encoding in the ARM11 processors that use 16-bit routines.

Routines are generated on run-time, saved to the cache memory and run

from there whenever the blitter is needed. An example of a dynamically

generated assembly function is shown below (example 1).

 26

EXAMPLE 1. Example of a generated assembly pipeline

#typedef uint32 unsigned long

#define REG_1 0x01

#define ADD_OP(pipeline,dst,value) pipeline = ((uint32)0xE1800000 | (dst << 16) |

(value << 8);

int main(void)

{

 uint32 i, pipeline[2];

 for(i = 0; i < 2; i++)

 {

 ADD_OP(pipeline[i],REG_1,i+1);

 }

 (void)*pipeline();

}

The example (example 1) of a dynamically generated pipeline in the ARM

assembly language would be:

ADD r1,#1

ADD r1,#2

ADD r1,#3

The code would increase register 1 value with six. In an actual case, the

memory for the pipeline would be dynamically allocated in order to increase

the size flexibly when more routines are included in the pipeline. The

component doing the dynamic allocation and creating the actual pipeline is

called stitcher. Though the C-part of this code snippet is much longer in this

simple use case, the actual implementation can be done using a much

smaller number of code lines compared to writing the entire code in the

traditional assembly language.

Dynamic assembly is not an answer to all problems. If the generation time is

long compared to the actual execution time, the actual benefit of using the

 27

dynamic assembly becomes meaningless. This means that very simple

operations such as color conversion over target is not giving as good results

as more complicated operations such as alpha blending.

 28

5 SPLATTER

The project name for the dynamically generated assembly blitter is Splatter.

The name comes from an English word which means "to splash and scatter

upon impact" (33). The objective of the first phase when this study was

commenced was to get the code generation environment running. The next

phase was to create a test environment for Splatter. In the final part, the

actual pixel pipeline generation was implemented and tests were run on the

hardware. Moreover, a significant amount of performance tweaking was

carried out for the blitter after the first implementation. Each of these phases

are explained in more detail in the following chapters.

With two different implementations, one for the actual blitter and the other for

the code generation, it is possible to re-use the code generation component

for other frequently used operations in S40 architecture.

Before starting this project, other possibilities and previous implementations

had to be studied. There are other blitters using the dynamic assembly, such

as DrawElements' Blitrix (34). In addition, open source blitters utilizing a

dynamically generated assembly exist, the currently discontinued The Core

Pocket Media Player (TCPMP) project serving as an example (35). Neither of

these products could be used in this study because open source products

cannot be utilized for commercial use, in addition to which Blitrix only

supports processors based on the ARM NEON architecture.

Furthermore, a reference blitter was written for Splatter. The reference blitter

was written in C and it was used to check the output of the actual dynamic

assembly blitter in the test environment. The reference blitter is also used in

a phone emulation environment run on a PC where ARM assembly

instructions do not work because of a different processor architecture (x86)

and because possible performance loss is not so crucial.

 29

5.1 Stitcher and code generation component

A new component was created for code generation and stitching. The

Component was named ARM-Ray, which stands for fast ARM assembly

generation. ARM-Ray was developed using the ANSI C language. The

pipeline in this context should not be confused with the actual processor

instruction pipeline and it should be understood as a generated binary

pipeline.

Because ARM 11 processors only have 13 normal registers, pipelines are

allocated with extra 13 soft registers. Soft registers are 4-byte long memory

allocations where the user can save information for easy loading to the

actual hardware registers. These soft registers are allocated just before the

actual runnable code part of the pipeline and they are always replaced with

new data if the pipeline is re-used later.

ARM-Ray uses a linked list to keep track of the generated pipelines.

Pipelines are identified with a 32-bit hash, which is generated for Splatter

depending on the source and destination formats, scaling quality, source and

destination blend modes and the rotation of the blit. This hash is always

created by the client of ARM-Ray. The hash value can be used to find

pipelines that have already been generated and re-use them. This saves

time if the same pipelines are used frequently.

The maximum internal cache size, the first and the last element of the linked

list as well as the number of generated pipelines are stored in the pipeline

holder structure. This structure has to be created by the client before any

pipelines can be created. The structure is used for keeping track of the

memory usage and the number of pipelines, in addition to which it also

ensures that the pipelines of different clients using ARM-Ray are not mixed.

At the moment, the only client for ARM-Ray is Splatter but it can be used in

various other purposes in the future.

 30

After the pipeline has been generated to the heap memory, it is moved to the

Splatter’s internal cache memory for running and the cache is invalidated.

Invalidation ensures that the data in the internal cache memory is runnable

and it is not corrupted.

Each pipeline structure contains a pointer indicating the start of the

generated binary code of the pipeline in the cache. The structure also

contains pointers to next and previous pipelines which are used when

ordering pipelines in the pipeline container. When a pipeline is run, it is

moved to be the head of the list because it is most likely to be used again in

the near future. Consequently the least recently used pipeline is in the last

place in the list.

ARM-Ray limits the memory size and the number of pipelines that can be

saved to the pipeline holder. When either of these limits is reached, ARM-

Ray deletes the least frequently used pipeline, i.e. the last pipeline in the list,

from the memory and invalidates the cache again. Figure (figure 13)

presents the pipeline operations in the stack and cache memory.

 31

FIGURE 13. ARM-Ray pipeline operations in memory

Pipeline structures in the heap memory

The generated binary code in the internal cache memory

Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 NULL NULL

Pipeline structures in the heap memory

2. Deleting the least frequently used pipeline (Pipeline 5)

The generated binary code in the internal cache memory

1. Starting point with five pipelines generated to the memory

Pipeline 6 Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 NULL

3. Creating a new pipeline (Pipeline 6)

Pipeline structures in the heap memory

The generated binary code in the internal cache memory

Pipeline 2 Pipeline 6 Pipeline 1 Pipeline 3 Pipeline 4 NULL

4. Re-using and running a pipeline (Pipeline 2)

Pipeline structures in the heap memory

The generated binary code in the internal cache memory

Pipeline 1 Pipeline 2 Pipeline 3 Pipeline 4 Pipeline 5 NULL

 32

When a generated pipeline is re-used, soft registers must be transferred at

the beginning of the pipeline in the internal cache in the way that the memory

addresses and other data needed for the blit are correct.

5.2 Test environment

The test environment was created after the basic functionalities of Splatter

and ARM-Ray were finished. RealView Debugger v4.0 was used for

debugging. The test environment was written in Perl, and it separately

compiles all written test cases and runs them through the debugger on the

command line. The test environment does not give indications of the real

speed of the blitter since it is run on a computer with a Linux operating

system. However, it is possible to verify correct blit results using the output

images of the test environment.

Getting an output image of the target surface at the end of the operation was

essential for the test environment. This was done by creating a breakpoint in

the part of the code where the blit had been made. When the test program

hits the breakpoint, the script copies the target surface from the memory and

saves it to a binary file. The breakpoint and the script to run test cases were

created with the RealView debugger CLI scripting language.

The binary file had to be converted to the actual image data for previewing

the results. This was done with the internal tool of the S40 UI Engine, and it

saved a significant amount of work during the actual implementation of the

blitter.

A total of 50 different test cases were written to Splatter. These test cases

included the most commonly used blits in S40 GUI. The runtime of the test

cases was relatively long since all test cases had to be run in the debugging

environment separately.

 33

5.3 Pixel pipeline generation

The actual pixel pipeline was generated in Splatter, which was also written in

ANSI C. Since there are many supported canvas types (table 3.), rotation

and mirroring, scaling, clipping and actual blitting, the pipeline generation

was very difficult to accomplish in parts of the implementation.

To support so many features, the blitter must get the blitting information from

the client. Splatter, in general, requires five different pieces of information

from the client to carry out the blitting. This information is given to the blitter

as function parameters. The information includes the structure of source and

destination surfaces, source and target rectangles and blitting parameters.

The surface structures contain data such as surface type, width, height and

pointer to the memory allocation of the surface. Rectangles are used for

clipping, and they contain coordinates of the source and destination clipping

rectangles. The blitting parameter structure contains the alpha mode, blend

types for source and destination, flagging to set the global alpha and

mirroring, scaling quality, rotation degrees and rotation origo coordinates.

Having this information, it is possible to create or re-use a previously

generated pixel pipeline required by the client. When a new pipeline is

generated, Splatter operates in accordance with the following pattern (see

figure 14) to produce the binary output.

All of the steps in the figure are not needed in all blits. For example if the blit

does not need to do the alpha blending, it does not need to read the

destination pixel or do the actual alpha blending calculations. Similarly, if the

source and destination surfaces are in the same pixel format, no color

conversion is needed. The only mandatory steps in the pipeline are source

pixel reading and writing to the destination.

It is possible to speed up the blitting by eliminating most of the steps from the

pipeline. As explained earlier, the re-use of the pipeline is a crucial benefit for

dynamically generated blitters.

 34

FIGURE 14. An example of a pixel pipeline.

Start y-loop

Start x-loop

Color conversion
to target format

Source pixel read

Scaling check and
calculations

Read destination
pixel

Alpha blending

Write destination
pixel

Check x-loop

Check y-loop

Rotation check

 35

5.4 Supported formats and blit types

Splatter supports all surface types that are the most frequently used in S40

GUI. Each of the surface types can be used as a source and as a destination

surface except the alpha formats (4-bit alpha and 8-bit alpha), which can only

be used as a source format. Splatter generates the pipeline to convert the

source pixel format to the pixel format of the target if needed. The supported

types and their memory alignment in a big-endian system are presented in

the table below (table 3).

TABLE 3. The supported surface types and memory alignment

�

��������	
�� �������

� � �

�������

� � �
����� ��� ���� 	���
� ���� ��� ���� 	���
� ����

����� �� �� �� �� �� �� �� ��

� � � � � � � � �
��������	
�� �������

� � �

�������

� � �
����� ������ ���� 	���
� ���� ������ ���� 	���
� ����

����� �� �� �� �� �� �� �� ��

� � � � � � � � �
��������	
���	�� �������

� � �

�������

� � �
����� ������ ���� 	���
� ���� ������ ���� 	���
� ����

����� �� �� �� �� �� �� �� ��

� � � � � � � � �
��������	
�� �������

� � �

�������

� � �
����� ��� ���� 	���
� ���� ��� ���� 	���
� ����

����� �� �� �� �� �� �� �� ��

� � � � � � � �

�

�

��������	
�� �������

� � �

�������

� � �
����� ������ ���� 	���
� ���� ������ ���� 	���
� ����

����� �� �� �� �� �� �� �� ��

 36

� � � � � � � � �
��������	
���	�� �������

� � �

�������

� � �
����� ���� 	���
� ���� ���� 	���
� ����

����� �� �� �� �� �� ��

� � � � � � � � �
������������ �������

� � �

�������

� � �
����� ������ ������ ������ ������ ������ ������ ������ ������

����� �� �� �� �� �� �� �� ��

� � � � � � � � �
������������ �������

� � �

�������

� � �
����� ������ ������ ������ ������ ������ ������ ������ ������

����� �� �� �� �� �� �� �� ��

� � � � � � � � �
�� ��!�!"� �������

� � �

�������

� � �
����� ��� ��� ��� ��� �� �� ��� ���

����� �� �� �� �� �� �� �� ��

� � � � � � � � �
�� ��!�!�� �������

� � �

�������

� � �
����� ��� �� ��� ��� ��� �� ��� ���

����� �� �� �� �� �� �� �� ��

XRGB types (both 16-bit and 32-bit) and the 16-bit 565 are fully opaque

surface types. ARGB surfaces include an alpha channel and are therefore

run through an alpha blending algorithm. PRE types (both 32-bit and 16-bit

ARGB) present pre-multiplied alpha formats. Alpha types (4-bit and 8-bit

alpha) are surfaces that only include an alpha component and the actual

color data is given in the blitting parameter structure.

5.4.1 Blit types

Blit types define how the source surface is being transferred to the target.

For alpha blending, Splatter uses the commonly known alpha blending

formula (see formula 1). The component supports the same source and

 37

destination factors as, for example, OpenGL. Splatter supports a total of

eight different alpha blending factors and values that are presented in the

table (table 4.).

TABLE 4. The supported blending factors for alpha blending

Factor Value

SPLATTER_ZERO +

SPLATTER_ONE �

SPLATTER_SRC_ALPHA 23

SPLATTER_ONE_MINUS_SRC_ALPHA � � 23

SPLATTER_DST_ALPHA 26

SPLATTER_ONE_MINUS_DST_ALPHA � � 26

SPLATTER_SRC_COLOR '3

SPLATTER_ONE_MINUS_SRC_COLOR � � '3

SPLATTER_DST_COLOR '6

SPLATTER_ONE_MINUS_DST_COLOR � � '6

The type defines the blending factor for both the source (73) and the

destination (76), which is used to multiply the color components in the alpha

blending (see formula 1). Splatter also supports three types of alpha modes.

In the ALPHA_DISABLE mode, the source alpha is filled with a full alpha if

applicable and then written to the destination. In the ALPHA_DIRECT mode,

the source is written directly to the destination with no blending. The third

 38

alpha mode sets the blitter to use the defined blend modes (see table 4)

Changing these values significantly affects the resulting image.

5.4.2 Transformations

Splatter implementation supports two types of scaling. Scaling quality is

defined in blit parameters sent to the blit function. The quality can be low,

medium or high, and it is used for selecting the scaling algorithm for the blit

as seen in the table (table 5).

TABLE 5. Scaling quality factors

Factor Algorithm

SCALE_QUAL_NONE No scaling

SCALE_QUAL_LOW Nearest neighbor

SCALE_QUAL_MEDIUM Nearest neighbor or bilinear

SCALE_QUAL_HIGH Bilinear

Bicubic scaling was not included in the first implementation of the blitter.

Bicubic scaling requires a great number of registers to work with and is

relatively complicated to implement with ARM 11, which only supports 13

general registers. In addition, the performance of an bicubic scaling that uses

a numerous memory reads and writes would be as poor as in the blitter

written in plain C.

The most challenging part of the scaling was to get the calculations to

function properly without using divisions. Since most of the low-end ARM11

processors do not have a separate floating point unit, fixed-point calculations

were used to make the fraction numbers to function.

Splatter supports the clockwise fixed degree rotation. The Supported rotation

values are 90, 180 and 270 degrees. Moreover, the rotation origo must be

 39

taken into account when carrying out the rotations. The rotation origo is the

point around which the source surface is rotated. The origo is defaulted to

the upper left corner of the source surface but it can also be set by the client.

The rotation is maybe the least challenging of the implementation process

because it can be carried out simply by reading the source in the other

direction.

The implemented blitter also supports the destination color keying and the

global alpha modes. Masking was not carried out in this study because it has

very few use cases in the current S40 UI.

5.5 Performance tweaking

After all the features of the blitter were implemented, a great amount of

performance tweaking was carried out. Performance tweaking allows gaining

even better results and improving the speed of the blitter. Most of the

performance tweaking was carried out by trying to find a way to

simultaneously run as many operations as possible. This means that some

operations, such as multiplying two registers, take multiple cycles to output

the result. After fetching the instruction, it is possible to start running another

operation such as adding two other registers together while the multiplying

operation is still ongoing in the pipeline of the processor.

Thanks to ARM11 parallel instructions, it was possible to perform multiple

operations with very few processor cycles. For example, the SMUAD

instruction, which multiplies the low and high bits of two registers and adds

them together, takes only one cycle to run whereas normal multiplying takes

three cycles. I was possible to easily outperform blitters written in C-

language in speed by using these operations.

Furthermore, the branch prediction tweaking slightly allowed the speeding up

the operations. Especially in the inner loop, it was essential to check the end

of the line in the pipeline as soon as possible for the processor to be able to

predict the following instructions.

 40

6 RESULTS AND CONCLUSIONS

The results of the hard work were benchmarked using the internal

benchmarking code of S40 UI Engine. The benchmarking code runs through

all source formats and destination formats and executes different types of

blits between them. The actual results of the benchmarking are then

presented as Mpix/s and as time values. Mpix/s indicates how many

megapixels (millions of pixels) the blitter can process in one second and the

time value indicates how long it took from the processor to run the required

blit. In this benchmarking process, plain cases (table 6) were run with no

alpha blending, and the copy cases used the source over the destination

alpha blending. All plain cases were run 240 times and the alpha blending

cases were run 120 times. All operations were carried out from a full screen

source surface to a full screen target surface. All of the following results were

run several times because the results can slightly differ between the

benchmarks.

All benchmarks were run against a blitter written in plain C currently used in

S40 mobile phones. The benchmarking hardware was a mobile phone

prototype with an ARM11 processor running at 900 MHz clock speed.

TABLE 6. Benchmarking results

CASE
C blitter
Mpix/s

SPLATTER
Mpix/s Percentage

H32_A -> H32APRE PLAIN 192.00 196.09 102.13%

H32_A -> H32APRE COPY 10.04 9.66 96.22%

H32_A -> H32_A PLAIN 192.00 196.09 102.13%

H32_A -> H32_A COPY 4.09 9.72 237.65%

H32_A -> H16_X PLAIN 49.02 51.49 105.04%

H32_A -> H16_X COPY 19.78 19.28 97.47%

H32_A -> H32_X PLAIN 92.16 196.09 212.77%

H32_A -> H32_X COPY 9.60 14.13 147.19%

H32_A -> H16_A PLAIN 19.65 47.02 239.29%

H32_A -> H16_A COPY 5.50 11.58 210.55%

H16_X -> H32APRE PLAIN 24.19 49.02 202.65%

H16_X -> H32APRE COPY 24.38 48.51 198.97%

H16_X -> H32_A PLAIN 22.59 49.02 217.00%

H16_X -> H32_A COPY 22.59 49.55 219.34%

 41

H16_X -> H16_X PLAIN 214.33 368.64 172.00%

H16_X -> H32_X PLAIN 52.36 52.07 99.45%

H16_X -> H16_A PLAIN 44.96 88.62 197.11%

H16_X -> H16_A COPY 45.18 88.62 196.15%

H32_X -> H32APRE PLAIN 91.25 90.35 99.01%

H32_X -> H32APRE COPY 94.04 88.62 94.24%

H32_X -> H32_A PLAIN 92.16 89.48 97.09%

H32_X -> H32_A COPY 92.16 85.33 92.59%

H32_X -> H16_X PLAIN 52.97 57.24 108.06%

H32_X -> H16_A PLAIN 52.97 53.89 101.74%

H32_X -> H16_A COPY 53.38 54.86 102.77%

H16_565 -> H32APRE PLAIN 40.07 42.67 106.49%

H16_565 -> H32APRE COPY 40.07 43.47 108.49%

H16_565 -> H32_A PLAIN 39.90 42.67 106.94%

H16_565 -> H32_A COPY 39.72 43.07 108.43%

H16_565-> H16_X PLAIN 58.70 60.63 103.29%

H16_565 -> H32_X PLAIN 39.90 44.52 111.58%

H16_565 -> H16_A PLAIN 45.40 61.03 134.43%

H16_565 -> H16_A COPY 45.18 61.44 135.99%

H16_A -> H32APRE PLAIN 26.18 40.96 156.46%

H16_A -> H32APRE COPY 14.13 10.84 76.72%

H16_A -> H32_A PLAIN 24.25 40.78 168.16%

H16_A -> H32_A COPY 4,82 10.82 224.48%

H16_A -> H16_X PLAIN 98.04 368.64 376.01%

H16_A -> H16_X COPY 20.39 23.27 114.12%

H16_A -> H32_X PLAIN 50.09 42.47 84.79%

H16_A -> H32_X COPY 12.84 16.70 130.06%

H16_A -> H16_A PLAIN 368.64 368.64 100.00%

H16_A -> H16_A COPY 5.82 12.91 221.82%

H16_A -> H16_565 PLAIN 47.75 40.78 85.40%

H16_A -> H16_565 COPY 18.58 19.44 104.63%

H32_A -> H16_565 PLAIN 55.19 46.31 83.91%

H32_A -> H16_565 COPY 20.76 19.69 94.85%

H32_X -> H16_565 PLAIN 52.97 51.78 97.75%

H16_X -> H16_565 PLAIN 47.75 44.52 93.24%

H16_565 -> H16_565 PLAIN 368.64 384.00 104.17%

H4_A -> H32_A PLAIN 5.11 54.21 1060.86%

H4_A -> H32_A COPY 5.09 11.29 221.81%

The results show that in most cases the process was much faster when

using Splatter. The average percentage of these values is 161.10%, which is

rather good compared to the optimization level of the code. The

benchmarking indicates that most problems still lie in the pre-multiplied alpha

surfaces (H32APRE) and in the 16-bit 565 RGB surfaces (H16_565). These

 42

cases still need some optimization. The most used blits in S40 GUI, such as

the 32-bit ARGB source over 32-bit ARGB destination surface alpha blend

operation, are almost 2.5 times faster than the C-implemented blitter.

At the moment, no transformations are used in the benchmarking code.

Accordingly, all of the supported surface types are not used either, but it

nevertheless gives an idea of Splatter’s speed and the speed of dynamically

generated blitters in general. These problems will be taken into account in

the future work of Splatter.

In conclusion, the final product was a success, and it seems to offer a

promising new way of handling two dimensional graphics with software in

S40. At the moment, no component in S40 architecture utilizes the final

product of this study. However, the final product will be first implemented in

the common S40 graphics drawing and later in the composition engine. In

addition, the interface of Splatter is not currently open to all S40 clients.

 43

7 DISCUSSION

The objective of this study was to design, implement and test a fast

dynamically generated assembly blitter for S40 mobile phones with ARM11

processors. The names of the final products were ARM-Ray and Splatter,

which are two separate software components. The high number of various

transformations, surface types and pixel pipeline management caused

problems related to the size of the software as well as its maintenance and

development. All objectives set for this study were reached.

This study was highly challenging, which was known from the start. However,

the design and implementation proceeded really well and the results of the

work were better than first expected. Thanks to successful implementation

and performance tweaking, it was possible to significantly speed up almost

all blit operations. Problems still exist in the dynamic blitter, in particular with

small blits. The high number of parameter checks and memory operations

prior to the actual run of the pixel pipeline slow down the operations carried

out to small surfaces.

Four different programming languages were used in the making of this study,

namely ANSI C, ARM Assembly, Perl and Realview debugger scripting

language. As the author of this study had no previous experience of most of

these languages made the work interesting and challenging.

Further development of this work is already being planned. ARM Cortex and

ARM9 supports will be implemented later. Bicubic scaling will also be done

on ARM Cortex processors because they support vertex operations. Masking

will also be implemented later if necessary. Moreover, a great amount of

performance tweaking will be done especially for the cases needed most, in

addition to which benchmarking must to be carried out against other blitters

than those used in S40 development. The benchmarking code itself will be

further developed to fully support all surface types and transformations.

 44

LIST OF REFERENCES

1. Computer graphics. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Computer_graphics. Date of data acquisition:

3 January 2011.

2. Vector graphics. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Vector_graphics Date of data acquisition: 20

October 2010.

3. Google Maps. Available: http://maps.google.com. Date of data

acquisition: 20 October 2010.

4. Foley, Jamed D. - van Dam, Andries - Feiner, Steven K. - Hughes, John

F. 1997. Computer Graphics, Principles and practice. Addison-Wesley.

Pages 1-2.

5. Raster graphics. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Raster_graphics. Date of data acquisition: 20

October 2010.

6. Khronos Group homepage, OpenGL ES overview. Available:

http://www.khronos.org/opengles/. Date of data acquisition: 19 October

2010.

7. Microsoft Developer Network, GDI+, Available:

http://msdn.microsoft.com/en-us/library/ms533798%28v=vs.85%29.aspx.

Date of data acquisition: 25 October 2010.

8. Microsoft Developer Network, DirectDraw, Available:

http://msdn.microsoft.com/en-us/library/ms879875.aspx. Date of data

acquisition: 25 October 2010.

 45

9. Qt homepage, a cross-platform application and UI framework. Available:

http://qt.nokia.com/. Date of data acquisition: 25 October 2010.

10. Khronos Group homepage, OpenVG overview. Available:

http://www.khronos.org/openvg/. Date of data acquisition: 25 October

2010.

11. OpenGL homepage. Available: http://www.opengl.org/. Date of data

acquisition: 25 October 2010.

12. Games for Windows marketplace, learn about DirectX. Available:

http://www.gamesforwindows.com/en-US/directx/. Date of data

acquisition: 25 October 2010.

13. Blitter. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Blitter. Date of data acquisition: 2 November

2010.

14. Graphics processing unit. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Graphics_processing_unit. Date of data

acquisition: 21 September 2010.

15. Simple DirectMedia Layer homepage. Available: http://www.libsdl.org/.

Date of data acquisition: 2 November 2010.

16. BitBLT. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Bitblt. Date of data acquisition: 2 November

2010.

17. Foley, Jamed D. - van Dam, Andries - Feiner, Steven K. - Hughes, John

F. 1997. Computer Graphics, Principles and practice. Addison-Wesley.

Pages 12-13.

18. YUV. The free encyclopedia. Available: http://en.wikipedia.org/wiki/YUV.

Date of data acquisition: 3 November 2010.

 46

19. Foley, Jamed D. - van Dam, Andries - Feiner, Steven K. - Hughes, John

F. 1997. Computer Graphics, Principles and practice. Addison-Wesley.

Page 206.

20. Foley, Jamed D. - van Dam, Andries - Feiner, Steven K. - Hughes, John

F. 1997. Computer Graphics, Principles and practice. Addison-Wesley.

Pages 924-944.

21. Foley, Jamed D. - van Dam, Andries - Feiner, Steven K. - Hughes, John

F. 1997. Computer Graphics, Principles and practice. Addison-Wesley.

Page 55.

22. Bilinear interpolation. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Bilinear_interpolation. Date of data acquisition:

3 December 2010.

23. Bicubic interpolation. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Bicubic_interpolation. Date of data acquisition:

3 December 2010.

24. Alpha compositing. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Alpha_compositing. Date of data acquisition:

13 October 2010.

25. Porter, Thomas - Duff Tom. 1984. Compositing Digital Images.

Proceedings of SIGGRAPH'84, Computer Graphics, Vol. 18, No.3, pages

253-259.

26. Foley, Jamed D. - van Dam, Andries - Feiner, Steven K. - Hughes, John

F. 1997. Computer Graphics, Principles and practice. Addison-Wesley.

Page 838.

27. ARM architecture. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/ARM_architecture. Date of data acquisition: 12

December 2010.

 47

28. ARM Ltd. homepage. ARM 11 processor family. Available:

http://www.arm.com/products/processors/classic/arm11/index.php. Date

of data acquisition: 20 December 2010.

29. ARM Infocenter. ARM11 processors. Available:

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.arm11/in

dex.html. Date of data acquisition: 19 December 2010.

30. Branch predictor. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Branch_predictor. Date of data acquisition: 3

December 2010.

31. Hennesy, John L. - Patterson, David A. 2003. Computer Architecture, A

Quantitative Approach, 3rd edition. Pages 196-199.

32. Self-modifying code. The free encyclopedia. Available:

http://en.wikipedia.org/wiki/Self-modifying_code. Date of data acquisition:

10 December 2010.

33. Dictionary.com. Online dictionary. Available:

http://dictionary.reference.com/browse/splatter. Date of data acquisition: 8

September 2010.

34. Draw Elements Ltd. homepage. Blitrix. Available:

http://www.drawelements.com/blitrix.html. Date of data acquisition: 20

September 2010.

35. The Core Pocket Media Player. Available: http://picard.exceed.hu/tcpmp/.

Date of data acquisition: 11 October 2010.

 48

APPENDICES

App 1. Cover page

App 2. Title page

App 3. Abstract

