

Simo Ollinen

HoloLens
Development of mixed reality game

Bachelor’s thesis
Information Technology / Game Programming

2019

Tekijä

Tutkinto

Aika

Simo Ollinen Insinööri (AMK) Kesäkuu 2019

Opinnäytetyön nimi

HoloLens
Mixed reality -pelin kehittäminen

74 sivua
1 liitesivu

Toimeksiantaja

Kaakkois-Suomen ammattikorkeakoulu Oy

Ohjaaja

Lehtori Marko Oras

Tiivistelmä

Tämän opinnäytetyön päämäärä oli esitellä mixed realityn ja Microsoft HoloLens mixed rea-
lity -laitteen aihepiirejä. Lisäksi tavoitteena oli kehittää mixed reality -peli, jotta mixed reali-
tyn mahdollisuudet pelikehityksen kannalta saisi selvitettyä.

Opinnäytetyö kuvailee oleellisimpia mixed reality- ja HoloLens-aihepiireihin liittyviä kohteita
pohjustaakseen vaatimukset toteutusta varten. Vaatimuksissa keskitytään erityisesti spati-
aaliseen kartoittamiseen, pelaajan syötteen tunnistamiseen ja vuorovaikutukseen mixed
reality -ympäristöissä. Lisäksi tämä opinnäytetyö tarjoaa vaiheistetun opastuksen mixed
reality -pelin suunnitteluun ja toteutukseen.

Mixed reality -pelin kehitys toteutettiin Unity-pelimoottorin avulla. Pelin kehityksen proses-
siin sisältyi myös useita lisätyökaluja. Lisätyökaluilla avustettiin tarvittavien peli-assettien
tuottamista ja nopeutettiin pelin testausta. Tiettyjen logiikkalohkojen toteuttamista varten
verrattiin tarkasti erilaisia menetelmiä, joista valittiin kaikkein oivaltavimmat.

Onnistuneen opinnäytetyön tuloksena kehittyi toiminnallinen mixed reality -peli, joka otettiin
käyttöön HoloLens -laitteella. Peli tarjoaa oivallisen esimerkin spatiaalisen kartoituksen ja
kädenliikkeen tunnistamisen hyödyntämisestä HoloLensillä. Lisäksi peli voi toimia mallina
vaihtoehtoisille lähestymistavoille ja tarjota perustan tulevaisuuden kehitykselle.

Asiasanat

hololens, mixed reality, pelikehitys, spatiaalisuus, vuorovaikutus

Author

Degree

Time

Simo Ollinen

Bachelor of
Engineering

June 2019

Thesis title

HoloLens
Development of mixed reality game

74 pages
1 page of appendices

Commissioned by

South-Eastern Finland University of Applied Sciences Ltd.

Supervisor

Marko Oras

Abstract

The objective of this thesis was to introduce the topics of mixed reality and Microsoft Ho-
loLens mixed reality device, as well as to develop a mixed reality game in pursuit of study-
ing the potentiality for game development purposes.

This thesis describes the essential subjects related to mixed reality and HoloLens topics in
order to layout fundamental requirements for the implementation, focusing especially on
spatial mapping, recognition of player input, and interaction in mixed reality environments.
Additionally, this thesis provides an explanation of the design and implementation pro-
cesses of the mixed reality game in a thorough step by step guide.

Development of the mixed reality game was the primary purpose of this thesis and was
conducted by utilizing a game engine known as Unity. The development cycle included var-
ious additional tools to aid producing necessary assets and to accelerate the testing pro-
cess of the game. Several types of methods for implementing certain blocks of logic were
closely compared, of which the most insightful were chosen.

As a result, a functional mixed reality game was developed and deployed on the HoloLens
device, marking the thesis project a success. The game provides a fine example of utiliza-
tion of spatial mapping and gesture recognition with HoloLens. Additionally, the game can
serve as a template for alternate approaches and provide basis for future development.

Keywords

game development, hololens, interaction, mixed reality, spatiality

CONTENTS

ABBREVIATIONS .. 6

1 INTRODUCTION .. 7

1.1 Objective of this thesis .. 7

1.2 Initial approach ... 8

1.3 About the commissioner ... 8

2 MIXED REALITY .. 8

2.1 Virtuality Continuum .. 10

2.2 Main display types .. 12

2.3 Free from the frame .. 14

3 HOLOLENS .. 17

3.1 The device .. 18

3.2 Input .. 20

3.2.1 Gaze ... 20

3.2.2 Gestures ... 21

3.2.3 Voice ... 25

3.3 Spatial mapping .. 26

4 DARTS MR ... 30

4.1 Game analysis .. 31

4.2 Story and characters ... 31

4.3 Gameplay overview .. 32

4.4 Control scheme ... 33

4.5 Game aesthetics and user interface ... 34

5 IMPLEMENTATION .. 35

5.1 Prerequisite tools .. 36

5.1.1 Visual Studio 2017 .. 37

5.1.2 Unity.. 38

5.1.3 Blender ... 39

5.1.4 HoloLens emulator .. 40

5.2 Setting up the project .. 41

5.3 Creation of fundamental game objects ... 43

5.3.1 Camera ... 44

5.3.2 GazeManager ... 45

5.3.3 SpatialMappingManager ... 46

5.3.4 GameManager .. 51

5.3.5 Cursor ... 55

5.3.6 Dart ... 56

5.3.7 Board .. 60

5.3.8 UI .. 63

5.4 Building and deploying the project .. 65

6 CONCLUSIONS ... 66

7 FURTHER DEVELOPMENT .. 67

REFERENCES .. 69

FIGURES ... 72

APPENDICES

 Appendix 1. Flowchart of the proposed game logic

ABBREVIATIONS

AV Augmented Virtuality, inclusion of real objects into virtual environ-

ment.

AR Augmented Reality, virtual objects overlaid on top of real world.

FPS First-Person Shooter, a game genre.

GDD Game Design Document, a comprehensive evolving document

describing design of a game.

HUD Heads-Up Display, a status bar visualizing information.

HMD Head Mounted Display, a computer display worn on the head.

MR Mixed Reality, blending of reality and virtuality.

MRTK Mixed Reality Toolkit, a toolkit consisting of preset functionalities

to accelerate development of mixed reality applications.

UI User Interface, space for human-computer interaction.

UWP Universal Windows Application, a set of definitions, protocols and

tools for creating Windows applications.

UX User Experience, a discipline of game design focused on psychol-

ogy of the player.

VR Virtual Reality, replacement of reality through simulation of artifi-

cial environment

WMR Windows Mixed Reality, a platform for MR and VR experiences

created by Microsoft

7

1 INTRODUCTION

VR and AR applications have become strong contenders for mainstream

video games and game development. With the technology having taken tre-

mendous leaps forward over the past few years, experiencing them firsthand

through the eyes of an end-user or a developer has never been easier to ap-

proach. Indeed, the market is brimming with a variety of apparatuses capable

of providing immersive experiences for a person by either constructing a com-

pletely artificial virtual world around them or simply overlaying meaningful

pieces of digital content in front of their eyes. Furthermore, much more unex-

plored territory related to both reality and virtuality lies in between the two

realms.

1.1 Objective of this thesis

The objective of this thesis is to introduce Microsoft’s HoloLens device and to

unravel its capabilities as the next-generation platform for gaming. In an at-

tempt to achieve the goal, a sufficient level of understanding the theory behind

the technology is required. Therefore, an examination into the subject will be

carried out through deep analysis of e-books, articles, blogs, and developer

documentations discussing the subject.

This thesis will cover some the ideas and technological advancements re-

sponsible for creating the foundations underneath HoloLens, discussing the

subject of MR from variety of aspects and moving into the specifics of the Ho-

loLens device, performing a brief inspection into the technical specifications in

order to gain further insight as well as to examine the features it possesses.

In the later chapters, the thesis will shift the focus into applying the information

gained to describe a conceptual design of a game known as Darts MR, a

sports game candidate attempting at highlighting the physical interaction Ho-

loLens greatly utilizes. The information related to MR and the possibilities it

may propose are then transformed into features utilized in a game. Finally, the

ideas and epiphanies indulged from the design phase are processed through

a programming implementation of Darts MR in order to attempt proving the

8

adequacy of the subject. The chapter describes several specific tools recom-

mended for developing a holographic application for HoloLens and then pro-

ceeds to provide a brief explanation in a step by step guide.

1.2 Initial approach

As the author had no preceding knowledge or insight of working with AR, VR,

and MR platforms and devices in software development, the approach to-

wards the thesis and implementation was cautious and slow. Although a sub-

stantial amount of work was spent on studying various blogs, articles, docu-

mentaries, and previous research work discussing the topics introduced in this

thesis, a large portion of the total amount of work included personal testing

and experimenting. Especially for the implementation, a multitude of different

ways for implementing certain pieces of logic was discovered. Several

sources proposed somewhat differentiating solution, however, what emerged

the most interesting were the comprehensive case approaches providing a

very detailed explanation from the very ground level. The cases were com-

pared closely and resulted in practicable approaches for the author to pursue.

1.3 About the commissioner

GameLab is a studying environment provided for students learning game de-

velopment at the South-Eastern Finland University of Applied Sciences. Gam-

eLab grants students with modern tools and equipment necessary for game

development for many different platforms. The same tools are widely adapted

in the industry, paving a smooth transition into working life and increasing the

chances of employment in the game industry. The commission is based on

the wish of the Gamelab to explore the capabilities offered by HoloLens in the

context of game development.

2 MIXED REALITY

MR could be portrayed as a meeting ground for both real and virtual worlds, a

bridge between the two environments, connecting them. MR forms a type of

hybrid setting that includes elements from both virtual and physical realities. It

is very often portrayed as sliding scale between completely real and virtual en-

vironments by many experts. (Techopedia 2019.)

9

Also, MR is sometimes used interchangeably with the term AR, as both reali-

ties generally involve placing virtual elements in a physical field of view. How-

ever, in this thesis they are considered different types of realities through their

varying applications.

Whereas conventional VR applications meant to provide the participant with a

complete reality separating immersion, further described as becoming part

with the virtual game world and reasoning from the perspective of an artificial

character (Fagerholt & Lorentzon 2009, 69), and AR applications utilized to

overlay digital information and supplement data in front of the user’s view

whilst preserving the real-world objects around them visible, MR on the other

hand brings together objects from both realities and blends them, merging the

two realities into a single entity in which both the physical and the virtual ob-

jects could coexist, and interact with and among each other, as outlined in Fig-

ure 1.

Figure 1. Differences between VR, AR and MR (Brown 2017)

It is quite possible to define MR simultaneously in more than one way. As a

sovereign concept, mixed reality merges the elements from both the aug-

mented environment and virtual environment. However, when applied to con-

tain a larger range of reality technologies, it refers to the inclusion of all poten-

tial deviations of physical and digital content. (Reality Technologies 2019.)

Origins of the term MR can be traced all the way back to early nineties, when

the concept was introduced on a research paper. The paper discussed about

10

the ideas of technologies involving the blending of the real and virtual environ-

ments somewhere along an axis known as “virtuality continuum”. The axis

would go on to connect the elements of entirely physical to elements entirely

digital. (Milgram & Kishino 1994, 2.) In the context of computer interfaces, this

could be considered the first academic paper to use the term MR.

2.1 Virtuality Continuum

Developed by Milgram and Kishino in 1994, the “Virtuality Continuum” (VC),

also referred to as “Reality-Virtuality” (RV) Continuum, is a continuous scale

ranging between real and virtual environments. It is a monodimensional axis,

with physical reality residing at one end of the continuum and virtual reality at

the opposite. As represented in Figure 2, VC encompasses both AR and AV,

with the applications for both ranging respectively somewhere on the axis. The

closer an application situates towards virtual environment, the more immersive

it becomes, presenting the participant with an increased amount of digital con-

tent. On the contrary, the closer the application moves towards real environ-

ment, the less virtual objects are presented and the more of reality is involved.

Furthermore, and perhaps more so interesting, is the centrum of the axis. It is

there, when the realities from both ends could be considered nearly indistin-

guishable from one another. The equivalent amount of reality and virtuality

merged together. In this case, the participant could for example be presented

in a situation with two identical objects, one being of physical realm and the

other virtual. Visually, even aurally the objects could behave very much alike,

with only the physical interaction, such as touching with a hand being the key

factor in identifying which one is which.

Figure 2. Visual interpretation of Milgram and Kishino’s Virtuality Continuum

11

Introducing the four most prominent elements responsible for composing the

VC, first can be found the “Real Environment”. This is the unaltered physical

reality consisting entirely of real objects. It is the conventionally perceived en-

vironment and includes all possible variations in which the real world is ob-

served without any digital content inserted in between the observer and the

world. Potential scenarios include but are not limited to cases such as viewing

the world directly in person or through some sort of visual feed, for example a

camera view of a smartphone or a tablet.

Moving forward along the axis lies the AR. In this state, the real environment

is subjected to elements of virtual environment. The most commonly wit-

nessed phenomenon can be considered a digitally rendered content placed on

top of the real world, a type of overlay. This can be harnessed through differ-

ent types of methods (such as rendering a digital HUD overlaid on top of an

aircraft pilot’s visor, on the display of HMD, or smart glasses). Cases utilizing

AR technology such as wearable Google Glass device and Pokémon Go! mo-

bile game are both very well-known and have displayed great success in their

respective fields (Lee 2018).

Tertiary element contributing to the continuum is the AV. The term is presuma-

bly the least known form of virtually enhanced reality when compared to its

neighbors of AR and VR. This is very likely due to the straightforward evi-

dence that it is a rather complex word to even say (VirtualiTeach 2017). How-

ever, its concept can be considered rather simple in that it is the reversal of

AR. The location of the user interaction dictates the differences between the

two terms. Should the interaction occur in the real world, it would be labeled

as augmented reality. On the other hand, should the interaction take place in a

virtual environment, it would be considered augmented virtuality. (Spacey

2016.) Therefore, if a highly immersive application is augmented with the

properties of reality, it can be labeled as an AV application. For example, to

design their own living room or kitchen, participant may utilize a touchscreen

to relocate digital objects located in a virtual environment. As for an aug-

mented virtuality example of gaming, the real objects and even the participant

themselves may be projected into the virtual environment and interact whilst in

there. (PC Mag 2019.)

12

Final component of the continuum is the VR. It is at the opposite end of real

environment and can be considered the virtuality extrema. VR proposes a

type of media consisting of interactive, computer generated simulations uti-

lized to sense the location of the participant and replace or augment the feed-

back to various senses— granting the participant with the feeling of being im-

mersed by the simulation (Craig 2013). In several cases, this involves the par-

ticipant wearing a HMD that generates and projects a completely synthetic 3D

world devoid of any involvement from the surrounding physical world in front

of the participant’s eyes. VR is notably the most commonly understood ele-

ment inhabiting the VC, as there have been numerous peaks of interest in the

related technology in the past few decades, mainly by early inventors and mili-

tary. Ultimately, it could be considered that any element established some-

where along the axis ranging between the real and virtual environments could

be described as a MR experience, for as long as the objects brought together

from both the physical and digital realities are capable of interacting with and

among each other.

2.2 Main display types

The means by which MR experiences could be introduced hardware-wise

nowadays are various. Starting from the early days solutions of simple display

systems in which the objects from both the real and virtual environments are

presented together, to modern day HMD’s that can display virtual objects in

line of sight of the participant and place them among the physical objects in-

habiting the real environment, as well as utilize hand gestures or voice recog-

nition to detect input in order to interact with and manipulate the objects.

It is possible to categorize the display systems into two groups of optical see

through and immersive displays. Devices utilizing optical see through method

provide the participant with a direct view through optical elements such as hol-

ographic waveguides and similar systems, enabling overlaying of digital con-

tent on the real-world (Kore 2018). Furthermore, the display systems capable

of producing true MR experiences are limited to optical see through glasses,

as the participant’s ability to observe the real environment among the virtual is

pivotal for the blending of the two realities to succeed. Popular example de-

vices featuring such properties include Microsoft’s HoloLens and Magic Leap

13

One. The optical see through displays can be further divided into smaller sub-

groups of monocular and binocular displays. The measurement of the number

of eyes required to observe something is known as ocularity (Kore 2018).

In case of monocular displays, the participant is provided with means of a sin-

gular channel for viewing and superimposing virtual information in front of one

eye whilst keeping track of real environment with the other eye. Such display

systems regularly come in very small-scale and consist of head-mounted unit

and a single smart lens. Binocular display systems consisting of head-

mounted unit and two lenses grant the participant with twice the channels for

viewing by visualizing separate views for both eyes, thus producing a stereo-

scopic perspective. Although considered heavy, advanced and rather inten-

sive performance-wise, these types of displays offer a significant amount of

depth cues and the highest sense of immersion (Kore 2018).

Although some cases arise in which immersive displays can be categorized

under MR displays, they generally situate at the distant end of virtual environ-

ment on the VC, and thus fall under the term VR instead. This is likely due to

their nature of being are a closed ecosystem, as in the view of real world

through the display is blocked. The participant is unable to see through the

HMD and thus is unable to mix in the factor of real environment and the physi-

cal objects inhabiting it. However, Microsoft together with their partners have

introduced a line-up of immersive headsets under new platform of WMR.

Whereas the conventional immersive headsets generally have a requirement

of being tethered to a computer and utilize base stations situated around a

room to track participant’s position and interactions, these WMR headsets on

the other hand are completely wireless and do not require separate base sta-

tions for tracking purposes. Instead, they come equipped with front-mounted

cameras as well as a set of built-in sensors intended to graph the physical po-

sition of the participant. In order to avoid the requirement of having external

sensors, the devices feature design for six-degrees-of-freedom (6DoF) move-

ment tracking known as inside-out tracking (Goldman 2018). The aforemen-

tioned features attempt at complimenting the properties of the real environ-

ment on the VC and may be used as reasons to move slightly towards that

end on the axis, thus placing the WMR immersive headsets within range of

MR as shown in Figure 3.

14

Figure 3. WMR immersive headsets within range of MR (Microsoft 2018d)

2.3 Free from the frame

The transition from a 2D frame into an immersive 3D world through utilization

of various MR apparatuses presents an additional dimension for UX designers

and creators to work with. As described by Microsoft (2018b), the long govern-

ing rule of “safely guarded within a frame” for displays no longer apply, as the

participant is no longer situated in front of the digital world, but has rather

moved forward, and situated within it. This transition and the additional dimen-

sion layer provided allows UI’s to have depth, a third axis pivotal for creating a

3D position within the world and be located among the other objects and the

participant interacting with them. As the transition from a classic 2D environ-

ment into a fully explorable 3D world space occurs, an important aspect of de-

fining a new proper way of presenting meaningful information to the participant

arises. The conventional practice for designing and implementing various UI’s

for a multitude of appliances has long been constrained into two axes, locked

on a flat screen. This non-diegetic model, as seen in Figure 4a (in which

player taking damage in a Call of Duty game is partially indicated by a red arc-

ing 2D symbol in the middle of the screen), has proven a legitimate approach

in many fields in which information presented to participant through different

display systems of computers and smart devices is deemed necessary. How-

ever, as the interaction layer between human and computer shifts from 2D to

3D, it should be considered that the way the information is presented shifts,

too. This introduces the diegetic and spatial displays.

Diegetic display could be described as a type of display that is linked narra-

tively to a fictional world or a game. The display has a set location within the

world, and should the world be a product of MR experience, the position of the

display could be provided by either physical or virtual means. Furthermore,

diegetic displays are visible to the fictional characters inhabiting the world, as

15

shown in Figure 4b (an example of the game Dead Space, in which the player

health is indicated by a blue meter attached to the fictional character’s back,

and which in turn is a part of the fictional character’s space suit and is visible

to them). Diegetic UI elements, by extension, are visible or audible pieces of

the game world that both the game characters and the player can see or hear

and receive information from (Peacocke et al. 2018). In an additional gaming

example, to make the information of an ammunition counter of a weapon visi-

ble to both the player and the character controlled by the player, the counter

could be illustrated as a visual part of the weapon. The ammunition counter

would thus be considered part of the game space as well as the game fiction,

resulting in a diegetic display. (Peacocke et al. 2018.)

Spatial type of display could be presented as one that situates in between die-

getic and non-diegetic types of displays. It exists within a 3D space of a world,

but unlike diegetic display, does not possess a narrative connection to the

world’s fiction, as depicted in Figure 4c (an example of Watch Dogs, a game

in which the player navigation is aided by a set of blue markers geometrically

positioned within the game world and visible to the player, but not the charac-

ter). The display can be observed by the participant interacting within the

world, but not by the possible cast of fictional characters inhabiting the world.

Therefore, it could be depicted as a stripped-down type of diegetic display.

Furthermore, and similarly to a diegetic display, the spatial display has a loca-

tion within the geometry of the world that can be provided by physical or virtual

means, should the experience be set in MR. In the context of MR, an example

case could be tooltips aiding the participant playing a MR game. A virtual ob-

ject such as a digitally rendered piece of paper with the game rules written on

it and attached onto a physical wall within real world could represent a display

to aid the participant in the game by guiding them through the basic rules. The

object would be geometrically present in the world and visible to the partici-

pant, but not to the possible fictional characters. A way-marker visualizing a

route to an objective could be depicted as an additional example of utilizing a

spatial UI (Harney 2017).

16

Figure 4. Different types of in-game displays. (a) non-diegetic, (b) diegetic, and (c) spatial

(Peacocke et al. 2018)

Discovering proper balance between immersion and usability is considered

pivotal when deciding the method of approach between non-diegetic, diegetic

or spatial displays (Harney 2017). This should be considered exceedingly criti-

cal for MR implementations, in which participant immersion, as well as com-

fort, is of utmost importance. Not only may implementation of wrong type of

display utilized in MR hinder participant’s overall performance and result in a

loss of immersion, it may as well cause discomfort and fatigue. One such case

could potentially be the vergence-accommodation conflict, in which the partici-

pant accommodates their eyes to the focal distance of the display to receive a

sharp picture, but converge to the distance of the possible element of interest

to receive a single picture. (Microsoft 2019a). Accommodating and converging

to different distances will break the natural link between the two cues and may

result in participant expressing visual discomfort or fatigue. However, it is pos-

sible to facilitate, if not completely counter the symptom with a diligent place-

ment of the desired display type. Adjusting the distance between a display and

17

a participant correctly, as well as designing the display to appear natural in-

side the world and the experience the participant may be immersed in can in-

deed be the solution. For holographic HMD’s (such as HoloLens), Microsoft

has provided guidance on what could be considered a healthy distance be-

tween the participant and the display, as portrayed in Figure 5. It is very possi-

ble to reduce or even completely prevent the fatigue and discomfort caused by

vergence-accommodation conflict by adjusting the distance between objects

and the participant as near to 2.0m as possible (Microsoft 2019a).

Figure 5. Ideal display range (Microsoft 2019a)

3 HOLOLENS

Designed and developed by Microsoft, HoloLens is a completely self-con-

tained, holographic HMD and computing unit running on a special version of

Windows 10 operating system, known as Windows Holographic. HoloLens

can be depicted as a mixed reality device that attempts to merge the physical

and virtual environments (Tuliper 2016). The development of HoloLens was

overseen by Alex Kipman, the developer also related to Microsoft’s Kinect mo-

tion controller (a webcam-style peripheral device created for the Xbox console

with a purpose of sensing user’s motion and using it as input for controlling

and interacting with the console). Although manufacturing of the original Ki-

nect has officially ceased, much of the technology left behind still remains, and

has been further developed on. The sensors previously utilized in the Kinect

are now employed to power Microsoft’s HoloLens devices. Furthermore, the

methods from the Kinect voice-activated interface are now taken advantage of

in some of the newer features such as Cortana and Windows Hello, as well as

18

in the new interface known as GGV that consists of Gaze, Gesture and Voice.

(Kaelin 2017.) HoloLens was first released to the public in 2016 under the la-

bel of Developer Edition. Although the availability of the device could reach

the end user, it was primarily targeted towards developers due to its rather

heavy price tag of $3000, and the shortage of content available for the end

user to consume. However, the advantages of HoloLens and its MR capabili-

ties could present for industrial purposes became quite apparent, and it was

widely adopted on several industrial sectors, particularly in manufacturing,

healthcare, architecture, and construction fields. Perhaps by that very reason,

later on, a new edition providing additional enterprise features was introduced

under the label of Commercial Suite, which was targeted exclusively towards

the developers and enterprise purposes and included substantially higher

price tag of $5000. More recently, Microsoft has introduced a follow up device

to the original HoloLens with the revised HoloLens 2 that further improves

upon core performance and includes new features for enhanced experience.

3.1 The device

Physically, HoloLens is a hard plastic headband that comprises of two sepa-

rate rings: an outer ring that can be considered the device’s main frame with a

built-in computing unit and a pair of smart lenses attached to it and shielded

by a visor, and an inner ring with the purpose of wrapping the HMD around the

user’s head, as shown in Figure 6.

Figure 6. Physical appearance of HoloLens (Microsoft 2018d)

19

The inner ring can be extended in length as well as rotated vertically for better

alignment with the user’s head. Also, the inner sides of the inner ring are quite

well cushioned to allow for soft and comfortable fit on the brim of the user’s

head. At the back of the inner ring also lies a small plastic dial responsible for

the adjustment of the headband’s tightness around the user’s head. Although

the HMD isn’t necessarily designed to sit on the user’s nose, it features a

small concave of a socket positioned between the smart lenses, allowing the

nose of the user to fit in. Furthermore, an optional rubber nose pad can be at-

tached to the socket to increase comfortability as well as to increase versatility

of different shapes of noses to fit in the socket. In terms of weight, the outer

ring can be considered the heavier part of the apparatus, containing small

speakers sitting on both sides above the user’s ears to produce spatial audio

(three-dimensionally localized sources of sounds or music positioned at spe-

cific point in an environment around the listener) as well as the holographic

display system. Front-side interior of the outer ring includes the computing

hardware. The hardware consists of various components such as Intel proces-

sor, a custom holographic processing unit (HPU), 2 gigabytes of memory, and

up to 3 hours of battery life in normal active use (Evans et al. 2017) Addition-

ally, HoloLens includes a variety of smart sensors responsible for sensing and

tracking user input, including gaze, gestures, speech, environment, and move-

ment.

Perhaps the most sophisticated piece of hardware equipped in HoloLens is

the optics system. Capable of transmitting and visualizing holographic content

into the eyes of the participant, the HoloLens HMD utilizes two holographic

see-through-lenses, also known as waveguides (Types of thin plastic or glass

lenses that employ internal reflection to guide projected particles of light into

the eyes of the participant by bouncing them between the two surfaces) to

project different shapes of holograms in front of the eyes of the participant, as

can be seen in Figure 7. The holograms themselves, further beamed into the

waveguides, are constructed by two HD 16:9 light engines, which consume

the majority of the combined processing power of the device in order to create

the holograms from light points (points of light emitted through the waveguide

to appear at a fixed distance in front of the eyes of the participant). The

amount of the light points emitted by the engines, also known as holographic

20

resolution, can reach up to a maximum of 2.3 million light points in graphical

fidelity.

Figure 7. Screenshot taken by using HoloLens’s Mixed Reality Capture, depicting a hologram

projected and positioned into a 3D world.

3.2 Input

As the reality of the participant adjusts more towards a MR experience

through the inclusion of holograms, the aspect of interaction becomes essen-

tial. Towards that end, HoloLens comes integrated with multiple capabilities

for interacting with the holograms as well as understanding the surrounding

physical environment. By exploring the aforementioned capabilities, several

key forms of input emerge.

3.2.1 Gaze

Perhaps the most noteworthy form of input is the way HoloLens understands

the position of the participant in the world as well as the direction they might

be looking at, also known as gaze. In mixed reality appliances, the fundamen-

tal means for of both targeting and user input is gaze (Microsoft 2019b). By

taking advantage of the position and orientation data of participant’s head, Ho-

loLens is capable of determining the head gaze vector. This can be described

as a sort of ray pointing straight forward from directly between the participant’s

21

eyes. Furthermore, the ray can be utilized in holographic applications devel-

oped for HoloLens to pinpoint holograms as well as to determine whether the

participant is looking at a virtual or real-world object. To stimulate participant’s

intention in an application created for HoloLens, a very common practice is to

indicate the gaze with continuous visual feedback such as a cursor (A visual

indicator of the participant’s current targeting vector, providing continuous

feedback to aid the participant in understanding where their focus is at all

times, as well as to indicate what possible hologram, area, or other point of in-

terest might respond to input), as shown in Figure 8. It is possible to further

utilize the cursor to target an object inside an application and attempt at inter-

acting with it. Gestures and voice, as well as motion controllers are considered

the essential means for the participant to perform interactions in mixed reality

(Microsoft 2019b).

Figure 8. Depiction of a primitive cursor, a green tiny circle aligned on top of a cubic object in

3D space, visually indicating gaze.

3.2.2 Gestures

Whereas gaze is mostly responsible for determining the point of interest in a

holographic application, gestures complete the formulae for interaction by in-

troducing the element of acting. Interaction is formed by utilizing participant’s

gaze to target and hand gesture or voice to act upon a targeted hologram (Mi-

crosoft 2019c). The types of gesture sources recognized by WMR headsets

include hand, motion controller, and voice. However, HoloLens recognizes

solely the hand and voice variants as it lacks the necessary support for motion

22

controllers. Out of the two gesture types recognized by HoloLens, the more

conventional method for interaction could be considered the hand gestures,

which can be further subdivided into two core component gestures called air

tap and bloom. Air tap is a type of gesture in which participant taps their index

finger with their hand held upright, as seen in Figure 9. It is a universal action

designed to perform a select type of action, similarly to conventional mouse

clicks used in interacting with traditional computer applications.

Figure 9. Performing air tap hand gesture (Microsoft 2019c)

Bloom is a special system action designed exclusively for HoloLens. The sole

purpose for it is to bring up the holographic start menu (A central system

menu containing a list or category of settings and applications installed on the

system). The functionality of the bloom gesture can be considered identical to

pressing the Windows key on a keyboard plugged into a system running on a

Windows operating system. In order to execute a bloom gesture, the partici-

pant is instructed to hold out their hand with the palm facing upwards whilst

keeping their fingertips enclosed, and then open the hand in a releasing fash-

ion. The procedure is depicted in Figure 10.

23

Figure 10. Performing bloom hand gesture (Klint 2018)

In addition to the two core hand gesture components, HoloLens provides sup-

port for several more advanced composite hand gestures. The first gesture is

hold, which is quite similar to an air tap in that the gesture starts from the in-

dex finger of the participant being in ready position, and then proceeds to per-

form a continuous tap by holding the finger pressed down. Whilst the partici-

pant is holding down the index finger, the gesture can be utilized to perform a

range actions such as initiating relocation of a hologram or pausing a holo-

gram. This combination gesture can be considered equivalent to holding down

a mouse button. The secondary gesture is manipulation, which can be consid-

ered an extended version of the hold gesture. Similar to the hold gesture, ma-

nipulation begins by participant holding down their index finger. The gesture

can then be continued by participant moving their hand freely whilst keeping

the finger held down, allowing the targeted hologram to react 1:1 to the partici-

pant’s hand movements. The manipulation gesture can be used for performing

actions including relocation, resizing, or rotation of a hologram. The final, and

perhaps the most complex composite hand gesture is the navigation gesture.

The functionality of the navigation could be described equal to operating a vir-

tual joystick. Navigation begins similarly to a hold gesture by the participant

tapping and holding down the index finger, and then proceeding to move their

hand along three separate axis (such as X,Y, and Z), ranging between -1 to 1,

24

with 0 being the starting point, therefore creating a normalized 3D cube cen-

tered around the initial press. It is possible to utilize navigation to create con-

stant velocity-based scrolling or zooming gestures, equivalent to an example

of using a mouse to scroll a 2D UI by pressing down the middle mouse and

then shifting the mouse back and forth (Microsoft 2019c).

Performing hand gestures takes place within a gesture frame. The frame is an

area generated in front of HoloLens by the gesture-sensing cameras and de-

fines the boundaries in which the device can detect the gestures performed by

the participant. The frame is set roughly from nose to waist depending on the

height of the participant, as illustrated in Figure 11.

Figure 11. Gesture frame (Klint 2018)

Should a gesture such as manipulation or navigation take place completely or

partly outside the gesture frame, as soon as the gesture cannot be detected,

the HoloLens will lose the input (Klint 2018). Recognition of the hand gestures

performed within the gesture frame can occur when either or both hands of

the participant are visible to HoloLens, as in the hands of the participant being

in line of sight of the gesture-sensing cameras. Furthermore, the recognition is

affected by orientation of the participant’s hands, as HoloLens can see them

when they are either in ready state (hand reached out with back facing to-

wards the participant and index finger up) or the pressed state (hand reached

25

out with the back facing the participant and the index finger down). Should the

hands of the participant be in any other pose, HoloLens will lose track of them.

3.2.3 Voice

In addition to the two key forms of input of gaze and gestures, HoloLens sup-

ports voice as source for receiving input from the participant. Voice enables

the participant to directly command a hologram without the need for utilizing

separate hand gestures, allowing in many cases for a much quicker and sim-

pler way to interact with the targeted hologram. Voice can be considered ex-

cellent at managing complicated interfaces, as the participant may use a sin-

gle voice command to quickly cut through the nested menus (Microsoft

2019e). HoloLens comes equipped with multiple built-in commands universally

recognized by the platform. Perhaps the most basic of the commands is the

select command. Select behaves equivalently to an air tap gesture, allowing

the user to activate holograms or other holographic elements (such as UI ele-

ments) with a single line of speech. HoloLens then confirms the voice com-

mands by letting the participant know that the command has been executed

by displaying a tooltip with “Select”, as well as cueing a sound effect. Addi-

tional HoloLens-specific voice commands include but are not limited to exam-

ples such as “What can I say?”, “Go home”, “Launch”, “Move”, and “Take a

picture”. As can be observed from the aforementioned examples, the voice

commands are rather self-explanatory in describing their functionalities. Fi-

nally, HoloLens enhances the experience of using voice commands by dis-

playing labels on various UI elements, telling the participant what voice com-

mands they can use to interact with the elements. By using gaze to target and

highlight a button in a holographic application (such as the “Exit” button fre-

quently located in the top right corner of an application), the participant will be

notified if the button possesses a voice command attached to it, by displaying

a label above it, as shown in Figure 12. This model of voice input is known as

“see it, say it”.

26

Figure 12. "See it, say it" label in the top right corner of a holographic application (Microsoft

2019e)

This sort of approach is highly recommended to follow when developing appli-

cations for HoloLens, as the participant can easily understand what to say to

more efficiently control the system, and therefore receive a better experience.

3.3 Spatial mapping

Similar to understanding physical gestures performed by the participant, Ho-

loLens is capable of understanding its surrounding physical environment. This

feature is known as spatial mapping. Four environmental cameras on the front

of the HoloLens are utilized to map the physical surroundings and objects to

generate a 3D model of the real-world. This feature allows HoloLens to stand

out from rest of the AR devices as a MR device. (Klint 2018.) Spatial mapping

feature consists of two primary types of components, a spatial surface ob-

server and a spatial surface. When utilized in a holographic application, the

spatial surface observer can be described as the fundamental contributor of

spatial mapping, tasked with the procedure of scanning of the physical sur-

faces. For each scanned real-world surface, the application utilizes what’s

known as spatial surfaces, a tiny volume of space represented as triangular

27

meshes combined together to generate a complete digital mesh of the sur-

roundings as seen in Figure 13.

Figure 13. Model of a room, generated by spatial mapping (Microsoft 2018c)

Whilst using HoloLens, the surrounding physical environment of the partici-

pant is continually scanned, and from the scan results HoloLens generates a

3D model matching that of the space the participant is currently inhabiting.

The model is actively updated as spatial surface observer studies the environ-

ment for changes, and if necessary, augments the model by adding new spa-

tial surfaces from the physical real-world counterparts captured by the envi-

ronmental cameras and removing spatial surfaces that no longer exist within

the view bounds of the spatial surface observer. Additionally, the developer

edition of HoloLens comes with a tool known as “Device Portal” (a web

browser based application containing various settings and features to re-

motely monitor and interact with the HoloLens), which allows the participant to

view the generation of the model in real time, as can be seen in Figure 14.

28

Figure 14. Real time feed of spatial mapping in progress (Klint 2018)

Furthermore, for each holographic application, the spatial surface observer is

required to define one or more bounding volumes in which the spatial mapping

may occur. In programmatic sense, the shape of bounding volume may also

vary, and the shape can be modified to match that of a box or a sphere, for

example. In terms of positioning, the volumes can be configured to be fixed (a

static position with respect to the real-world) or they can be hooked up to the

HoloLens, so that they move in tandem with the HoloLens as the participant

moves about in the physical environment.

For the holograms to behave naturally with the physical environment and cre-

ate a convincing illusion, such as having a digital ball roll smoothly on a physi-

cal floor, it is necessary for a holographic application to be aware of both vir-

tual and physical realities. A very accurate positioning of the holograms is of

paramount importance, so that the immersion of the participant remains co-

herent. For this purpose, HoloLens utilizes spatial coordinate system to calcu-

late the positional interactions between holograms and the physical surfaces.

In order to understand the complexity of spatial coordinate systems for Ho-

loLens, one is urged to consider a similar system utilized in a completely vir-

tual environment. In a virtual application, a single master-coordinate system

29

can calculate the positioning of every object part of the experience very pre-

cisely, as the elements of physical world are out of scope. Every object part of

the application is able to map and relate to same coordinate system. This can

lead to a very stable and precise experience for the participant. However, in

case of HoloLens and holographic applications, in which physical objects are

in scope of the experience due to spatial mapping, the coordinate system

must be able to calculate the positioning of holograms located in a physical

environment. This can prove a synchronization challenge, as the spatial map-

ping utilized to digitalize the physical environment might not scan the sur-

roundings accurately, leading to either incomplete or inaccurate virtual model

of the space, which may further affect the position between holograms, as well

as cause other malfunction (such as making the holograms float in air or sud-

denly shift positions). Consequently, the participant may become motion-sick

at worst. However, HoloLens comes with a feature capable of countering the

issue, known as spatial anchors. To illustrate a pivotal position in the world of

which the system should be aware of over time, a spatial anchor may be uti-

lized. The spatial anchors receive individual coordinates within the system that

are managed if necessary to ensure the anchored elements remain still in

their place. (Klint 2018.) Spatial anchors may prevent drifting of holograms as

well as ensure that they remain at their designated positions, even as the spa-

tial mapping updates the model of the space.

Other meaningful features and uses of spatial mapping include occlusion and

visualization. Perhaps the more important is the occlusion, which is utilized to

occlude holograms. In order to improve the experience of reality in a holo-

graphic application, spatial mapping can occlude holograms by either hiding

them completely or partially from the view of the participant. For example, a

hologram positioned behind a physical wall should be considered invisible to

the participant in order to increase perceived reality. This, of course, pre-

sumes that the wall has been scanned and included in the spatial map model,

as the hologram would be visible through the wall otherwise. However, some-

times, it can be considered undesirable to occlude holograms. Should the par-

ticipant wish to interact with a hologram, it would have to be visible in some

way. One method achieving this could be by rendering the hologram diver-

gently when it is occluded by the spatial mapping (such as altering the level of

30

brightness). In that case, the hologram would be visible enough for the partici-

pant to visually locate it, whilst still being obscured enough to provide the im-

pression of being hidden behind something. Being a MR experience in which

physical real-world objects provide fundamental base for holograms to interact

with, most of the times it can be considered appropriate for spatial surfaces

generated by spatial mapping to be invisible, as in to reduce visual clutter and

allow the real-world speak for itself. However, sometimes it can prove mean-

ingful to visualize spatial surfaces regardless of the real-world counterparts

being already visible. (Microsoft 2018c.) This could prove especially useful in

cases in which the hologram and the participant seek to share understanding

of something (such as determining whether a physical surface is solid or not).

An example case could be a hologram of a painting. When attempting to place

on a wall, it should provide visual feedback whether it is able to settle on the

wall or not. It is possible to determine this by rendering the individual spatial

surfaces behind the hologram differently, thus producing a “ground” effect by

emitting a shadow onto the surface (Microsoft 2018c). This would allow the

participant to have a much sharper feel of the precise physical distance be-

tween the hologram and the surface. A more general example of a similar

practice could be depicted by participant visually previewing a change before

committing to it (such as previewing a picture before printing it).

4 DARTS MR

This chapter discusses the design aspect of a video game known as Darts

MR. It is a side project of the author with the purpose to serve as a test sub-

ject on which to apply the theory examined in previous chapters in pursuit of

creating a MR game for the HoloLens device. The chapter introduces several

principal design concepts of the game, including the game narrative and cast

of characters, core gameplay blocks and logic, as well as control scheme and

UI design decisions. The main purpose is to explain fundamental ideas of the

game and create a layout for an actual implementation stage, introduced in

later chapters. Designwise, MR applications are heavily influenced by the sur-

rounding real-world environment through visuals and user interaction. There-

fore, the design of Darts MR is shaped to follow closely its real-world counter-

part sports game of Darts. The design of the game should aspire to present

the player with an immersive, relaxed, and casual gaming experience, with the

31

game flow being straightforward to follow and to understand. To further assist

the creation and development of Darts MR, a separate GDD will be created to

provide a more highly detailed explanation of the vision for the game and de-

scribe the components planned for implementation.

4.1 Game analysis

HoloLens blends content from both real and digital worlds in order to generate

Mixed Reality experiences. Therefore, the initial approach should revolve

around a game type that could also be physically possible in the real world. A

game based on interactions between physical and virtual objects and the

player taking advantage of surrounding physical environment to interact with

the game. Therefore, the potential of HoloLens could be efficiently harnessed

as the core features of HoloLens would be utilized. As Darts MR strives to pro-

vide the player with easily accessible casual sports experience, the target au-

dience of the game naturally emerges as rather broad. Sports games are most

user welcoming in regards of complexity, which means that players of all age

should be considered in the pool, limited only by the means of not owning, as

well as capability of wearing and operating the HoloLens device. Therefore,

the design of the game should not truly restrict any type of user from playing

the game.

4.2 Story and characters

Depending on their genre, games can frequently come bundled with rich and

deeply written stories in which the characters are given life by their personali-

ties and duties in the game world. However, for Darts MR this should not be

the case. As a casual single player sports game, it does not inherit any con-

crete written story or characters in it. Instead, the focus of the design should

be maintained on the action and fluidity of the gameplay mechanics. Charac-

terwise, Darts MR does not present any scripted, game world bound charac-

ters. Through HoloLens’s capability to render surrounding real world into a 3D

model by utilizing spatial mapping feature, it is possible to include other per-

sonnel standing in the vicinity of HoloLens’s environmental cameras into the

game world as static virtual objects. These objects, however, should not be

categorized as genuine in game characters, as they are merely portion of the

level output drawn in by HoloLens.

32

4.3 Gameplay overview

Relaxed sports and action are the governing factors for design of Darts MR.

Therefore, the game utilizes fundamental elements and mechanics from both

sports and AR game genres in pursuit of producing a hybrid form of a genre in

which physical actions related to real world sports games performed by the

player affect the movement and behavior of digital content, and ultimately con-

trol the flow of the game. Furthermore, the flow of the game is designed to be

divided into several distinct states. Each state of the game is responsible for

executing a particular segment of the gameplay elements included in the

game. The details of the game states are further detailed in Appendix 1. The

game being designed exclusively for MR, it requires various information from

the real world as inputs for the game engine to process and generate the in-

game world and ascertain that the game objects and functionalities adhere to

rules of the game and operate correctly.

The first game element the player is designed to be introduced with after start-

ing the game is the main menu. It includes various paths to different game

features the player may be interested in exploring. These features are the

game settings in which the player can modify independent game related de-

tails (such as the graphics quality and audio, as well as other more trivial

game related options), leaderboards designed to showcase the record of

scores of all players, as well as the option to start a new match. Darts MR is

designed to present two distinctive game modes for the player to select from

and play after starting a new match. A game mode offering more authentic ex-

perience which also takes a greater advantage of HoloLens’s capabilities is

known as “Free Mode”, and a more simplified game mode known as “Station-

ary”. In “Free Mode”, the player is given freedom to move around and explore

the environment while HoloLens utilizes spatial mapping to scan the physical

surroundings such as walls, floor, ceiling, chairs and tables, and render a

static mesh based on scanned information, further used to construct the level

for the game. Once finished, the player will be able to tap and place the holo-

graphic board on any fit surface scanned by HoloLens and included in the final

level mesh and begin the match. The secondary, and more simplified game

mode is known as “Stationary”. This game mode is designed best suited for

33

players who would rather prefer to stay still in specific location (such as sit on

a chair) than move about in the surrounding environment. Also, instead of

constructing a level from the physical surroundings of the player, HoloLens will

simply just render the board and place it in front of the player at default dis-

tance, which the player will be able to manually control and set before starting

the match. In either game modes, the player is given eight darts which to

throw at the board. Each dart landed on the board will grant the player with set

amount of points, and depending where the darts land on the board, the

amount of points will either increase or decrease. Similar to the real-world

counterpart, the closer the darts land towards the center of the board, the

more points player is awarded with. Once all darts have been thrown, the

match will end and the player will see the score board, an UI element with the

purpose of displaying the final score achieved by the player as well as a text

field in which to optionally enter the name of the player.

4.4 Control scheme

In order to provide intuitive MR gaming experience, the controls of Darts MR

are centrally designed around the gaze, gesture and voice systems featured

by HoloLens. The aforementioned systems are further utilized to handle input

from the player in order to execute particular gameplay functionalities. For ex-

ample, the gaze input is applied to move a cursor according to the head posi-

tion of the player and the direction they may be looking at. This is designed so

that the player can easily pinpoint over in-game content they seek to interact

with, as described in Table 1. The interaction between the player and each

game object can be achieved by using either hand gestures or voice com-

mands, and in some cases, both.

Table 1. Proposed control scheme

Gesture / Voice Input Action it Performs

Air Tap / Select Selects a targeted game object or UI

element.

Manipulation Started Holds onto the dart in preparation of

throwing it.

Manipulation Updated Updates the position of the dart 1:1

to the player’s hand movement

34

Manipulation Completed / Throw Releases the dart and sends it flying.

Manipulation Canceled In case of HoloLens losing track of

player’s hand, returns the dart to last

known hand position.

Gaze Moves the cursor by following

player’s targeting vector to pinpoint

and help player better understand

where their interests are in the game

world, and to indicate what area, hol-

ogram, or point will respond to input.

4.5 Game aesthetics and user interface

As the game utilizes spatial mapping to design, build and render the game

world based on the physical counterpart, the core theme and art style of the

game naturally emerges realistic. In this case, every game object as result of

the scanning procedure (such as the game level) may inherit familiar and real-

istic shapes and features to them. This in turn can introduce the possibility for

the game to present the player with a sense of “feel-at-home” impression

when they enter the game, as everything they see could be of something they

already know and are familiar with in the real world. Also, it could become

easier for a player to get into the game, as they would not get lost as easily. In

terms of player interaction (such as gestures), the experience should feel and

look similar to the real-world counterpart. For example, picking up a dart and

holding it in between their fingers should imitate the feel and look of that of the

real-world dart. Similarly, throwing the dart at the board should feel and look

as if they were throwing a dart in the real world, the dart soaring through the

air and (hopefully) landing on the board. The dart and every other game object

should inherit the very behavior of their real-world counterparts for a realistic

and immersive game experience.

According to the several guidelines provided in earlier chapter discussing the

UI elements within MR, the UI should generally blend smoothly into the game

world. The player should be able to interact with UI elements as if they were

real, physically in front of them. However, for the sake of simplicity, the UI ele-

35

ments such as menus and buttons for the first iteration of Darts MR are de-

signed to be represented as non-dietetic elements, while attempting to adhere

to the rule of not positioning them in a single fixed location, but rather allowing

them to follow the gaze of the user at comfortable distance. Furthermore, all

the panels, buttons and other interactable UI elements should be located in

appropriate positions in the game view. They should never be placed obtru-

sively, as in blocking the player’s view of the actual gameplay, or placed in a

difficult, out of reach position. The main menu window of the game should fea-

ture tappable buttons to begin a match, modify game settings or quit the

game. The main menu UI element itself is designed to be aligned in the mid-

dle of the game view for quick and easy access.

During a match, the player score, multiplier and the amount of darts left should

be displayed in the top left corner of the game view. The dart currently se-

lected by the player should be shown in a small panel positioned in the top

center border of the game view. By performing an air tap gesture on the dart

panel, the player can bring up the dart selection panel that should be posi-

tioned in the middle center of the game view. The dart selection panel is a row

of sub-panels that lists the darts available to the player, as well as providing

buttons the player may utilize to scroll through the row in order to select a de-

sired dart type. The selected dart type should be highlighted by a thick border

around the sub-panel. Player may confirm the selection and close the window

by performing an air tap gesture on the selected dart. The post-game UI in-

cludes score panel displaying the amount of points player may have received

during a match. The panel is designed to include descending rows starting

from the highest score as well as input field for the player to enter their name.

Additionally, buttons for playing again or quitting back to main menu are con-

sidered. As the score screen panel displayed post-match and leaderboards

panel accessible through the main menu share rather similar functionality, the

UI design should be considered retained the same between the two features.

5 IMPLEMENTATION

This chapter discusses the implementation phase of the game Darts MR intro-

duced in the previous chapter, depicting the development process of moving

36

from design into practice and unraveling the vital stages of realizing a com-

plete and functional game. Although the implementation strives to greatly ad-

here to the initial design concepts previously discussed, the MR platform is

very new to the author and everything that follows should be considered ex-

perimental. However, by examining documentaries, tutorials and generally

perceived best practices from various enthusiasts, the implementation of the

game is aimed to be executed in such manner that the final product could be

considered a functional and genuine MR experience.

The chapter begins by offering a brief explanation of tools required to create

the necessary game assets, write the code, and finally build and deploy the

project. This is followed by steps of setting up the project, explaining the crea-

tion of the actual game project as well as defining some essential properties

that enable creation of MR games within the game engine. Creation of the fun-

damental game objects is the primary subject of implementation, containing

the process of creating the game objects and the code of the game. Finally,

the implementation is concluded by going through the building process of the

game application and deploying it to HoloLens.

5.1 Prerequisite tools

The implementation of Darts MR requires that several important tools are in-

stalled on the development system. Also, because of the tools utilized being

rather intensive on system resources, it is highly recommended to perform de-

velopment on a moderately performant computer in order to ensure a stable

and efficient development environment. The selection of tools for developing

on MR platform is heavily based on information available in Microsoft Mixed

Reality documentation. The suggested software installation list elaborates

upon each tool about their purpose for the development and the reason as to

why they should be considered, as well as providing instructions on how to

download and install them. According to the documentation, for optimal Ho-

loLens development, the installed software set includes Visual Studio 2017,

Windows 10 SDK, Unity, MRTK, and HoloLens emulator. From the aforemen-

tioned software set, however, only Visual Studio 2017, Unity, and HoloLens

emulator will be included, as Windows 10 SDK already comes bundled in Vis-

ual Studio, and MRTK is considered redundant. Additionally, an optional 3D

37

creation suite known as Blender will be installed to assist at creating some of

the essential game assets for Darts MR. Game assets depict elements that

can determine whether an application is perceived as classic software or a

game. A game asset can be anything that is utilized by a game, including

graphics such as art and 3D models, music and sound, as well as code re-

sponsible for the game logic. A game engine can consume entire projects

consisting of game assets. (Bouanani 2015.) To give further insight and help

understanding the implementation chapter better, each tool is given a brief ex-

planation in the following subchapters.

5.1.1 Visual Studio 2017

Visual Studio 2017 can be described as a versatile and feature-rich integrated

development environment (IDE) for Windows 10 and the previous versions of

Windows systems (Microsoft 2019d). For Darts MR, the main purpose for it is

to enable developer to write the game code. Further utilization of the software

will include debugging, testing and deploying the final game version to Ho-

loLens. Visual Studio offers multiple different editions for a developer to utilize,

including community, professional, and enterprise. For the sake of being com-

pletely free, the chosen edition in this thesis is the community edition. In order

to enable full support for HoloLens development in Visual Studio, it is crucial

that during the installation of Visual Studio, the developer opts to include the

Universal Windows Platform Development tools from the features selection as

depicted in Figure 16. Doing so includes the most recent version of Windows

10 SDK in the workload, which in turn supplies the necessary headers, librar-

ies, metadata and utilities for creating Windows 10 applications further con-

sumed by HoloLens.

38

Figure 15. Selecting mandatory Visual Studio components

5.1.2 Unity

Unity is the chosen game engine for Darts MR. Equivalently to any other edit-

ing program such as Adobe Photoshop or 3ds Max, Unity comes with a so-

phisticated editor of its own, in which the developer is able to create, transform

and build the game code and assets into a fully working piece of software.

Constantly updated by its development team and adopted by millions of users

all around the world, Unity has become a rather well documented tool with

high compatibility. More particularly, and for the purpose of this thesis, the

great support it offers for HoloLens is what makes it a preferred candidate for

a game engine. The Unity game engine comes integrated with the support for

WMR features and is capable of providing very simple approaches for creating

unique mixed reality games (Microsoft 2019d). Unity has featured built-in sup-

port for WMR platform, including HoloLens since version 2017.2. At the time

of writing this thesis, the development path forks and proposes three direc-

tions to choose from when selecting the platform version with Unity; 2017,

2018 and 2019 editions of Unity. Each propose quite similar internal features

of development for HoloLens but differentiate when it comes to importing any

external tool packages. For Darts MR, the chosen version of Unity is the 2018

39

edition. The main reason behind this is to utilize the most stable and up to

date edition.

During the installation procedure of Unity, when the prompt to select which

Unity components should be included in the workload appears, it is essential

for the developer to select “UWP Build Support (.NET)” and “UWP Build Sup-

port (IL2CPP)” features as shown in Figure 17. These are Unity’s scripting

back ends (frameworks that enable scripting in Unity) further supported by

UWP’s and are necessary for developing holographic applications with Unity.

Figure 16. Recommended Unity components

5.1.3 Blender

The creation of 3D models further utilized the implementation process require

a separate 3D modeling software. Towards that goal, a modeling tool known

as Blender will be included. Using Blender is free, and it provides an open

source 3D creation kit. The supported features include modeling, rigging, ani-

mation, simulation, rendering, compositing and motion tracking, as well as

video editing and game creation tools. All together the features form the

wholeness of the 3D pipeline. (Blender 2019.) Although the capabilities of

40

Blender extend to various fields related to creation of computer graphics, its

primary goal for Darts MR is the creation of necessary 3D models.

5.1.4 HoloLens emulator

In addition to developing for a physical HoloLens device, the development can

be relocated into a fully virtualized environment. A computer software capable

of imitating functionality of a real physical version of HoloLens, the HoloLens

emulator is a tool created by Microsoft to accelerate development of holo-

graphic applications. Suitable for scenarios in which utilizing a physical Ho-

loLens device might be impossible due to varying reasons, the HoloLens emu-

lator can prove a fine secondary option. However, due to some limitations

(such as the lack of support for recognizing gestures) the HoloLens emulator

may be considered more of a testing tool rather than complete replacement

for an actual physical HoloLens device. Instead of utilizing sensors to read en-

vironmental and user input, the emulator simulates the functionalities with the

usage of mouse, keyboard, or Xbox controller. The UI is similar to the UI of

physical counterpart of the HoloLens, offering 3D space in which the partici-

pant is able to navigate and interact, as seen in Figure 18.

Figure 17. Holographic 3D menu of HoloLens emulator

41

5.2 Setting up the project

Once the installation and preparation of all required tools is complete, the first

step in starting the actual development of the game is to create a new project

in Unity. The process begins by developer launching Unity and clicking “New”

in the projects window as depicted in Figure 18. This should be followed by a

prompt on screen requesting the developer to enter a name for the project,

browse a location for the project files to be saved in, and select a graphical

template setting for the game to be rendered in. Due to the nature of holo-

graphic game objects, it is pivotal that the game environment and the content

within Unity is rendered in 3D space. Therefore, the option for graphical tem-

plate must be set to 3D. Additionally, an optional feature known as Unity Ana-

lytics is available. This feature enables Unity to collect project data in order to

provide project metrics, benchmarks against similar projects, and insights into

player behavior. However, for Darts MR, this feature is considered unneces-

sary and will be left out.

Figure 18. Creation of new Unity project

By creating a new project, Unity generates a new folder for the project with

some initial core files included. At this point, the main editor window of Unity

should open as well, giving the first glimpse of the main development work-

space and its UI. Although the main window of Unity comes bundled with mul-

titude of subpanels containing plethora of details and properties, describing

42

most of them is considered beyond the scope of this thesis. However, there

are some key properties that should be explained in order to provide insight in

creating MR experiences with Unity. As HoloLens limits the type of applica-

tions it can run exclusively to UWP applications, the game project created with

Unity should be targeted towards the same platform. By default, after creating

a new project, Unity targets the game projects towards PC, Mac and Linux

platforms. However, it is possible to switch the platform of the project by se-

lecting the desired platform from the list of platforms and pressing “Switch

Platform” in the Build Settings pane of Unity, as shown in Figure 19.

Figure 19. Build settings in Unity

By switching the platform to UWP, the application should become recogniza-

ble by HoloLens. This can be further proved by setting the target device prop-

erty to “HoloLens”. Although the physical processor included in HoloLens is

capable of running 64-bit applications, the operating system of HoloLens is

43

merely 32-bit capable, and for that reason, the architecture property should be

set to “x86”. Rest of the properties may be left to their default states. In addi-

tion to targeting the project towards correct platform, developing a holographic

application requires that some virtual reality related libraries are included in

the project. This can be configured in Player Settings pane accessible through

the Build Settings panel. Checking “Virtual Reality Supported” under XR Set-

tings submenu includes the necessary components required by Unity for de-

veloping holographic applications, as displayed in Figure 20. Finally, under

Publishing Settings pane, checking “SpatialPerception” property from the list

of Capabilities includes the support for several spatial mapping specific com-

ponents of Unity, enabling HoloLens to understand them. Hereby, the project

can be considered ready for further development of holographic content and

functionalities.

Figure 20. Inclusion of the support for virtual reality

5.3 Creation of fundamental game objects

Building of a game in Unity consists of setting up game objects. Furthermore,

game objects can consist of smaller individual components (such as scripts

44

containing code, 3D model, audio clip, or all of them) that enable the game ob-

jects to behave in a way the developer desires to. The game objects occupy a

large container known as the scene. Scene can be described as a 3D stage

for the different game objects to act on while adhering to the internal rules de-

fined in their logic (Thorn 2017). The objects, environments, and menus of a

game are contained within scenes, and each unique scene file can be consid-

ered as a unique level of a game. Whilst working with scenes, the developer

places the environments, obstacles and decorations into the scene, effectively

designing and constructing the game piece by piece. For Darts MR, the func-

tionality of the game is based on several fundamental game objects that are

responsible for controlling certain features of the game, keeping track of ac-

tions and events, as well as interacting with the player input.

5.3.1 Camera

To provide feed of the game world, a game object known as the camera is re-

quired. Utilizing cameras is to transmit and visualize the look of the game

world into the eyes of the player (Unity 2019a). Camera is a fundamental com-

ponent of games created with Unity and provides an image of a particular

viewpoint in the scene. Cameras can be configured to remain static in a fixed

position or move around the game world independently, or more naturally by

following a game object (such as a player’s character). Furthermore, a scene

may contain one or more cameras, and may be set to visualize the game

world in any order and at any location on the screen. Through the inclusion of

“Virtual Reality Supported” property previously mentioned, the camera is auto-

matically configured to function with holographic applications and HoloLens.

For a Darts MR, this allows the camera to adjust to the head movement and

rotation of the participant and provide a visualization of the game world di-

rectly into the eyes, essentially positioning the player at center of the game

world. However, it is necessary to configure several additional properties of

the camera to fully optimize visual quality. Perhaps the most important prop-

erty is the background color of the camera. By default, Unity configures cam-

eras to visualize a completely virtual background image for the games, as they

don’t inherit a real world. However, in a mixed reality game, the real world

should be just as visible as its virtual counterpart, and the background ren-

dered by the camera shouldn’t be blocked by an artificial illusion (Microsoft

45

2018a). This can be achieved by setting the Clear Flags property to “Solid

Color” and Background color property to value black (RGBA 0, 0, 0, 0) as

seen in Figure 21.

Figure 21. Camera settings for holographic environment

Finally, to complete the configuration of the camera, adjusting the “Clipping

Planes” values correctly should prevent the camera from visualizing the game

objects too close to the participant, which in turn could lead to possible user

discomfort. This can be accomplished by setting the value of “Near” property

to “0.85”.

5.3.2 GazeManager

“GazeManager” is an invisible game object responsible for handling the gaze

input of the participant in Darts MR. It consists of a “GazeManager” script

component. By tapping into the position, direction, and rotation data provided

by the “Camera” game object, the “UpdateRaycast” method of the “GazeM-

anager” generates a ray by utilizing Unity’s “Physics.Raycast” method as de-

picted in Figure 22 that represents the direction of the eyes of the participant

within the game world. Additional data tracked by “GazeManager” includes

whether the ray hit a game object (such as an UI menu item) or not, as well as

the position, normal vector, and the transform (bundle of data including posi-

tion, rotation, and scale of a game object) data of the game object hit. The

data provided by the ray is publicly accessible for other game objects that

46

might require it. Especially for more optimal approach, a recommendation is

that the gaze managing is handled in a single manager object rather than hav-

ing multiple objects potentially interested in the data doing it themselves (Mi-

crosoft 2018e).

Figure 22. UpdateRaycast method of the "GazeManager" game object

5.3.3 SpatialMappingManager

Similar to the “GazeManager” game object, “SpatialMappingManager” is an in-

visible game object with the task of producing spatial mapping. The game ob-

ject includes “SpatialMappingManager” script component. Spatial mapping ca-

pabilities are utilized to construct the game level in Darts MR. Implementing

“SpatialMappingManager” proposed three ways of approach. The first ap-

proach included utilizing MRTK. The usage of the toolkit was limited to merely

to gain insight of the capabilities of HoloLens by testing functionality of exam-

ple code included in the toolkit. However, as the toolkit proved to be a rather

quick and simple solution for implementing spatial mapping by utilizing com-

plete and functional scripts, the amount of experience gained by doing so was

deemed to be insufficient, and another way of implementing spatial mapping

was to be established. The second approach consisted of utilizing two pre-ex-

isting components included in Unity, the “Spatial Mapping Renderer” and

“Spatial Mapping Collider”. Equivalently to the MRTK, these components pre-

sented an easy and quick solution for implementing spatial mapping function-

ality using Unity. Both components include detailed properties the developer

47

can to configure and set up a fully working spatial mapping system without a

need to write a single line of code. The reason for ultimately rejecting this way

of approach was considered the same to the case with MRTK, the solution be-

ing excessively quick and simple to gain any valuable insight on the function-

ality. This essentially led to the decision of creating a custom script containing

the necessary code for implementing spatial mapping by utilizing “SurfaceOb-

server”, a low-level component of Unity.

SurfaceObserver is a component of spatial mapping responsible for observing

and setting one defined space by utilizing a group of bounding volumes. For

that purpose, SurfaceObserver utilizes the SetVolumeAsAxisAlignedBox,

SetVolumeAsOrientedBox, SetVolumeAsFrustum, and SetVolumeAsSphere

methods to add the bounding volumes. (Newnham 2017.) As discussed earlier

in the Spatial mapping chapter, each “SurfaceObserver” requires a defined

space in which to scan for surfaces. For Darts MR, the decision of selecting

volume as “AxisAlignedBox” was based on the shape of the room in which the

implementation took place. The property is set within “Awake” method as seen

in Figure 23.

Figure 23. Defining the bounding volume

Once the volume property is set, the “SurfaceObserver” waits for signal from

the game to begin scanning surfaces every 2.5 second by continuously calling

its “Update” method as seen in Figure 24.

48

Figure 24. Update method of the surfaceObserver

Furthermore, the method is passed with a delegate (a reference type contain-

ing a method) to call “OnSurfaceChanged” method in order to manage the

scan results. The “OnSurfaceChanged” method is tasked with keeping track of

changes within the physical environment and may be considered most funda-

mental part of the functionality of “SurfaceObserver”. Depending on changes

in the environment, the “OnSurfaceChanged” method updates the mesh of

spatial mapping by either adding, updating, or removing surfaces, by utilizing

separate game objects with the purpose of visualizing the mesh of spatial

mapping. The type of update chosen is further dictated by “SurfaceChange”,

an enumeration (a bundle of named constants) of different types of events

recognized by the “SurfaceObserver” that represent the changes in the envi-

ronment. The events include “Add”, “Update”, and “Remove”. For both “Add”

and “Update” events, “OnSurfaceChanged” method first performs a check to

determine whether an identity of a scanned surface is contained within “Sur-

facesToBeRemoved” collection, and if so, removes the identity from the col-

lection as seen in Figure 25.

Figure 25. Removal of surface identity

This is followed by another check to determine whether an identity of a

scanned surface is not contained in a “cachedSurfaces” collection, and if so,

the method creates a new surface game object for it and adds necessary

49

mesh related data to it as well as inserting the identity of the scanned surface

into the “cachedSurfaces” collection as depicted in Figure 26.

Figure 26. Creation of a new surface game object

The data from the newly created surface game object is subsequently used to

populate a separate “surfaceData” struct (a value type able to contain groups

of variables) that is responsible for indicating what information “SurfaceOb-

server” requires to generate the meshes. Additional data inserted include “tri-

anglesPerCubicMeter” which indicates the level of quality HoloLens renders

the meshes, as well as the sign to mark the mesh for creation process as dis-

played in Figure 27.

Figure 27. Creation and population of surfaceData struct

The “surfaceData” struct is then passed to “SurfaceObserver.Request-

MeshAsync” method, along with a delegate calling “OnDataReady” method in

order to begin process of creating the mesh data (baking) as illustrated in Fig-

ure 28.

Figure 28. RequestMeshAsync method

50

Finally, in the case where a surface was removed by the scan result, the “On-

SurfaceChanged” method is concluded by a check determining whether an

identity of a removed surface is included in “cachedSurfaces” collection, and if

so, sets that surface to be removed later by adding it to the “surfacesToBeRe-

moved” collection as shown in Figure 29.

Figure 29. Marking an expired surface for removal

In the case of successful creation of a new or updated surface, the “OnData-

Ready” method performs a check to determine whether the identity of the sur-

face created has been added into “cachedSurfaces collection”. In that case,

the surface is simply assigned a material to visualize it as displayed in Figure

30.

Figure 30. Visualization of a surface

The “Update” method of “SpatialMappingManager” script monitors the surface

identities contained in “surfacesTobeRemoved” and “cachedSurfaces” collec-

tions, and removes the identities marked for removal previously in the “OnSur-

faceChanged” method. Additionally, the surface game object responsible for

visualizing a piece of the spatial map is destroyed in the process as described

in Figure 31.

51

Figure 31. Removal of surfaces within Update method

5.3.4 GameManager

The game object responsible for keeping track of the game logic is the “Ga-

meManager”. It is an invisible game object similarly to “GazeManager” and

“SpatialMappingManager” game objects and consists of a script component

including the necessary code to function. The tasks include tracking player

score, the amount of darts left, as well as the scanning time given for spatial

mapping to complete. Additionally, managing game states is part of the core

functionality. The game states depict the current state of the game and are

considered interchangeable with the term game state in this thesis. The game

is divided into five different game states which include “MainMenu”, “Scan-

ning”, “Placing”, “Playing”, and “GameOver” game states. Each game state

calls for a specific coroutine (a type of method capable of suspending its exe-

cution for a given time limit) that manages game logic pivotal for each game

state of the game. Handling which game state is active at any given time is

tasked to “OnStateChanged” method. By utilizing Unity’s “StopAllCoroutines”

method, “OnStateChanged” is capable of suspending every coroutine and ex-

ecuting only the particular coroutine connected to the current game state of

the game as seen in Figure 32.

52

Figure 32. Management of game states

The “MainMenuStateRoutine” coroutine executes functionalities related to

“MainMenu” game state of Darts MR as depicted in Figure 33. It includes ad-

justing “RaycastLayerMask” property of the “GazeManager” game object to

“UI”, which will allow HoloLens gaze to only interact with game elements

tagged as “UI”, as “MainMenu” game state of the game consists solely of “UI”

elements. Other functionality that did not make it in time for the writing of this

thesis include displaying the main menu as well as the button UI elements uti-

lized to navigate the menu.

Figure 33. MainMenuStateRoutine coroutine

The “ScanningStateRoutine” coroutine is utilized at the start of a match to acti-

vate functionality of the “SpatialMappingManager” game object as seen in Fig-

ure 34. It calls for the “SurfaceObserver” component to begin observing the

53

environment by setting the “IsObserving” property to true as well as making

the surface meshes visible to the player. The duration of the coroutine is gov-

erned by the “scanningTime” variable, after which the game enters the next

game state of “Placing” by setting the “CurrentState” variable.

Figure 34. ScanningStateRoutine coroutine

The next game state in the game logic is placement of the “Board” game ob-

ject as depicted in the Figure 35. The “PlacingStateRoutine” coroutine in-

cludes the tasks for setting the “RaycastLayerMask” property of the “GazeM-

anager” game object to “SpatialSurface” and “UI” in order for the player gaze

to be able to interact with the surface meshes scanned in previous game state

as well as with the possible UI elements. “SurfaceObserver” component is re-

quested to stop scanning the environment by setting the “IsObserving” prop-

erty of the “SpatialMappingManager” to false, whilst still keeping the surface

meshes visible. The coroutine then proceeds to instantiate the virtual “Board”

game object in front of the player at distance of roughly 1.5m and oriented to-

wards the player. The “Board” game object is added with “Placeable” script

component that contains the code responsible for the functionality. The

coroutine is executed for as long as the “Board” game object remains un-

placed, giving the player necessary time to find a proper placement position

for it. Once placed, the “Placeable” script is destroyed, fixing the board in its

place as well as suspending the functionalities related to placement of the

“Board” game object. From that point, the game advances to the next game

state.

54

Figure 35. PlacingStateRoutine coroutine

Perhaps the most important game state of the game is the “Playing” game

state, responsible for executing the “PlayingStateRoutine” coroutine as shown

in Figure 36. Firstly, the coroutine hides the surface meshes previously

scanned to give the player a more realistic view. Secondly, it sets the

“RaycastLayerMask” property to include “SpatialSurface”, “Hologram” and “UI”

elements. Thirdly, the game state is supposed to display the player score and

amount of darts left, which at the time of writing this thesis are not yet imple-

mented in the game. Finally, the game instantiates a “Dart” game object in

front of the player by calling “SpawnDart” method. The player may pick up the

dart by using hand gestures and throw at the “Board” game object previously

placed. After each throw, the game instantiates a new “Dart” for the player to

throw at the “Board”, up to eight “Darts” in total after which the game will end

Figure 36. PlayingStateRoutine coroutine

55

The “SpawnDart” method is utilized by “PlayingStateRoutine” coroutine to in-

stantiate the “Dart” game objects in front of the player at a set distance and

oriented towards right as seen in Figure 37. The game object is attached with

“Throwable” script component, containing the functionality of the “Dart” game

object.

Figure 37. SpawnDart method

The final game state of the game is “GameOver”. It executes the “GameOver-

StateRoutine” coroutine that is tasked with displaying the overall score of the

player on a large panel and enabling the player to enter their name to be

saved in the leaderboards. Additionally, showing the buttons to play again or

returning back to main menu would be included. However, none of the afore-

mentioned features made it in time to implementation phase at the writing of

this thesis.

5.3.5 Cursor

The purpose of “Cursor” game object is to help the player to understand

where their eyes focus in the game world at all times as earlier discussed in

the Gaze chapter. The game object includes components for a small circular

3D model to provide simple and clear look, as well as a script that contains the

code for the functionality. The method responsible for enabling the “Cursor” to

move to and align onto the surface of other game objects by referencing the

gaze ray emitted by the “GazeManager” game object in the “LateUpdate”

method as illustrated in Figure 38. “Cursor” applies a small offset between the

game object hit and the “Cursor” in order to avoid the meshes of the objects

from clipping into each other. Additionally, should the “Cursor” hit another

56

game object, the color of the “Cursor” will smoothly change to green, notifying

the player that their eyes are focused on an interactable game object.

Figure 38. LateUpdate method of the "Cursor" game object

5.3.6 Dart

The “Dart” game object is perhaps the most interactable object within Darts

MR. The player is able to pick it up in their hands and throw it at a board by

using gestures. “Dart” game object consists of a mesh (collection of vertices),

a rigidbody (affects positional data of an object through Unity’s physics simula-

tion), and script components to give it the necessary functionality in the game.

The mesh is used to visualize the 3D model of the “Dart” in the game as seen

in Figure 39. Rigidbody component on the other hand includes the simulation

of physics to make the game object behave realistically by introducing proper-

ties such as mass and gravity. Finally, the “Throwable” script component con-

tains the code necessary for the “Dart” to function properly within the game

logic.

Figure 39. Mesh of the dart

57

The core functionality contained in the script component includes recognizing

gestures when interacting with the “Dart” game object. More precisely, the

gestures are based on the manipulation gestures discussed earlier in the Ho-

loLens chapter. The script utilizes “GestureRecognizer” component of Unity, a

component allowing the developer to specifically set the types of gestures rec-

ognized by the system as depicted in Figure 40.

Figure 40. Definition of manipulation gestures

Manipulation gestures recognized by the “GestureRecognizer” component

consist of four different actions (delegates that take zero parameters), “Manip-

ulationStarted”, “ManipulationUpdated”, “ManipulationCompleted”, and “Ma-

nipulationCanceled”. Each action is triggered depending on how the environ-

mental cameras of HoloLens manage to sense the player hands. Furthermore,

each action can be set to call upon a particular method or block of code. The

“ManipulationStarted” action is triggered when “GestureRecognizer” is in-

formed that player has started manipulating (such as using a manipulation

gesture to pick up the “Dart”) as displayed in Figure 41. The action is regis-

tered to “ManipulationStartedEventArgs” class which provides the data rele-

vant to the manipulation event. The data is then captured by a lambda expres-

sion (anonymous method, or a block of code treated as an object) and is uti-

lized to process the data. The lambda performs a check to determine whether

the data contains information about the position of the player’s hand, and if so,

it disables the gravity property of the rigidbody component as well as output-

ting the data into a “handPosition” variable. The data is then utilized to position

the “Dart” in the position of the player’s hand as well as to orient it towards the

direction player is looking at. Finally, additional variables saved for later use

include “manipulatedObjectOriginalPos” to track the last known positional data

of the “Dart”, and “manipulationStartTimeStamp” to save the current time

since the start of the game.

58

Figure 41. Functionality called by ManipulationStarted action

Due to each manipulation related action sharing a very similar pattern of im-

plementation, the explanation will focus on the core functionalities for the rest

of the actions in order to avoid unnecessary repetition. “ManipulationUpdated”

action utilizes cumulativeDelta (Total distance moved since the start of the

manipulation gesture) property from the registered data to continuously calcu-

late and update the position and rotation of the “Dart” game object. Addition-

ally, the data is saved into “accumulativeVelocity” variable for later use. In or-

der to send the “Dart” flying when player finishes the manipulation gesture,

“ManipulationCompleted” action is triggered as can be seen in Figure 42. The

“Dart” is given “acceleration” variable calculated from previously saved “accu-

mulativeVelocity” and “manipulationStartTimeStamp” variables as well as the

current time since the start of the game. The value of “acceleration” variable is

further altered by several other variables in order to remain within certain limits

of velocity to avoid unnatural behavior as well as to help adjusting the final

value of the velocity. Finally, the gravity property of the rigidbody component is

enabled, and the final “acceleration” value is applied to the velocity property of

the rigidbody, setting the “isFlying” variable true and sending the “Dart” flying.

The “GestureRecognizer” calls for “StopCapturingGestures” method in order

to prevent the player from accidentally performing manipulation gestures on

the “Dart” once it has been thrown. Additionally, a “DelayedDestroyIfMissed”

coroutine is called to destroy the “Dart” game object after five seconds, should

it miss the board.

59

Figure 42. Functionality called by ManipulationCompleted action

In the case HoloLens loses track of player’s hand, the “ManipulationCanceled”

action is triggered. This action is utilized to simply reposition the “Dart” game

object back to its last known position by utilizing the “manipulatedObjectOrigi-

nalPos” variable earlier saved in the “ManipulationStarted” action. In order to

further increase realism of the “Dart” once thrown, the orientation of the tip is

continuously altered in the “FixedUpdate” method of the “Throwable” script by

calling “Quaternion.LookRotation” method that creates a rotation based on the

direction the “Dart” is flying at. To calculate physical contact between other

game objects, the “Dart” game object includes a collider component. Collider

is an invisible component attached to a game object that mimics the shape of

the game object’s mesh to calculate physical collisions. However, a collider

does not need to be precisely the shape of the game object’s mesh. Fre-

quently, a close approximation is considered efficient enough. (Unity 2019b.)

To utilize collisions, a method “OnTriggerEnter” is called as shown in Figure

43. The method checks whether the other game object hit matches to the

board through comparison of tags (user set labels for game objects), and then

sets the “IsFlying” variable of the “Throwable” script and useGravity property

of the rigidbody to false, as well as enabling the isKinematic property of the

rigidbody to stick “Dart” to the board. Finally, the player score tracked by the

“GameManager” game object is increased and the remaining darts available

to the player is reduced.

60

Figure 43. Collision handling of the dart

5.3.7 Board

Similar to the “Dart” game object, “Board” represents an interactable game ob-

ject. By utilizing gaze to position and air tap gesture to place, the player can

decide where to place the “Board”. The game object consists of a mesh, col-

lider, and script components. Identically to the “Dart” game object, “Board” uti-

lizes mesh component to visualize the 3D model as portrayed in Figure 44.

The collider is used to calculate the collisions with other game objects. Finally,

the “Placeable” script contains the code for fundamental functionalities.

Figure 44. Mesh of the board

61

Equally to manipulation gestures utilized to manage the positioning of the

“Dart” game object, “Board” applies air tap gestures to confirm the positioning.

By including the “GestureRecognizer” component, the script t is set to recog-

nize air tap gestures as shown in Figure 45.

Figure 45. Definition of tap gestures

To capture the air tap gestures detected by HoloLens, actions are utilized sim-

ilarly to the manipulation detection in previous chapter. The script includes

“Tapped” action which is registered to “TappedEventArgs” data class in order

to receive the information relevant to air tap gestures. Equivalently to manipu-

lation handling, a lambda expression is utilized to capture the data received

and then manage it. Within the lambda expression, on each air tap gesture

detected by HoloLens, a check is first performed to determine whether the

player is currently placing the “Board”. Depending on the result, either “On-

PlacementStart” or “OnPlacementStop” method is called as displayed in Fig-

ure 46.

Figure 46. Functionality called by Tapped action

The two methods are responsible for enabling and disabling the placement of

the “Board” game object. “OnPlacementStart” method enables the “Board”

62

game object to follow gaze of the player in order to continuously update its po-

sition in the game world by setting “IsPlacing” property to true. The collider

component is also activated so that the “Board” may simulate collisions with

other game objects (such as spatially mapped objects in the physical environ-

ment). Additionally, the “Cursor” game object is deactivated and hidden to pre-

vent it from interfering with the placement of the “Board”. The “OnPlacement-

Stop” method performs a check to determine whether the surface is flat

enough for the “Board” to fit on it by calling “IsValidatedPlacement” method. If

the method considers a surface valid enough, the method then provides a

value for “targetPosition” variable utilized to calculate the final position of the

“Board”. Furthermore, the value of the “targetPosition” variable is incremented

with a small offset to prevent clipping. Finally, the “Board” is oriented to face

opposite direction from the surface, and the execution of the method is consid-

ered complete by setting “IsPlacing” property to false.

Within the “Update” method of the “Placeable” script, a check is first per-

formed to determine whether “IsPlacing” property is set to true. If so, “Move”

method is called to continuously update the position of the “Board” game ob-

ject according to current gaze position data passed by “GazeManager” game

object. The “Board” is moved by hovering it above the spatial surfaces, align-

ing to their normal vectors whilst following the precise position of the gaze of

the player. Additionally, in order to aid the player visualizing surfaces consid-

ered valid by the “IsValidatedPlacement” method, a shadowing effect is ap-

plied as discussed in the Spatial mapping subchapter earlier. “Display-

Shadow” method utilizes a simple rectangular plane to provide a separate

area aligned in between the “Board” and the spatial surfaces behind it. The

plane is colorized with either green or red material to indicate whether the sur-

face beneath the “Board” is considered valid as illustrated in Figure 47.

63

Figure 47. Indication of a valid surface

Once the position of the “Board” has been confirmed by the player performing

an air tap gesture, and thus calling “OnPlacementStop” method, the “Board” is

smoothly placed on the surface behind it by utilizing a “Lerp” method. The

method calculates the final position of the “Board” from information based on

the current position in the game world, the value of “targetPosition” variable

previously calculated, as well as values from variables “placementVelocity”

and “dist” which consist of values for determining the velocity of placement

and the distance between the “Board” and the surface behind it. Finally,

“Placed” property is set true, marking the completion of the “Board” placement

and signaling “GameManager” to shift to next state of the game. Additionally,

the “Cursor” is activated again to aid player focusing their gaze.

5.3.8 UI

The UI was a rather thoroughly discussed subject in the earlier chapters of

this thesis. An approach of diegetic design was considered most appropriate

due to the nature of MR and holographic applications. However, due to the

time restrictions, a simplified way of non-diegetic implementation of the UI was

chosen. Furthermore, the implementation of the UI is very much work in pro-

gress and for that reason the subject will be covered very briefly. Currently,

the sole UI element of Darts MR is “PlayerStats” game object displaying the

player score and amount of darts left. For this purpose, UI components fea-

64

tured by Unity are applied to create the necessary elements. The “Play-

erStats” game object consists of several components including two scripts, a

canvas (a parent area containing all other UI elements), an image (core

graphic element of UI systems in Unity), and two textmeshes (3D container for

displaying text) as depicted in Figure 48.

Figure 48. PlayerStats UI game object

The canvas UI element parents the image component, the element utilized to

generate the background image for the “PlayerStats” game object. On the

background is subsequently rendered two textmesh components displaying

the player score and darts. The textmeshes are referenced in “StatusText”

script component in order to allow the textmeshes dynamically update the

contained text when necessary. Within the “UpdateStatusText” method, the

data related to score and darts is passed from “GameManager” game object

tasked with keeping track of the data. The data is then passed to the text

property for both textmesh components, resulting in a real time visualization of

both the score and darts data as shown in Figure 49.

Figure 49. Passing tracked game data to PlayerStats UI game object

65

Instead locking the “PlayerStats” game object in fixed position in the game

world, it is designed to follow the gaze of the player from a distance. By utiliz-

ing “UpdatePosition” method within “BillBoard” script component, the position

of the game object is anchored to top left corner of the vision of the player by

setting the value of “targetPosition” variable to match desired location within

the game coordinate system, enabling it to smoothly reposition towards the

point whenever the player moves their head through utilization of “Lerp”

method as seen in Figure 50.

Figure 50. Positioning of the PlayerStats UI game object

5.4 Building and deploying the project

The process of packing up all the game objects and constructing an executa-

ble application supported by HoloLens begins by building the project in Unity.

Building the project can be performed by opening the build settings of Unity

and pressing the “Build” button. This results in creation of a folder structure

containing all the required game files, as well as a Visual Studio solution file

further utilized to deploy the game to HoloLens. By opening the solution file,

the developer can deploy the application to HoloLens by selecting “Deploy So-

lution” from the Build menu of Visual Studio as displayed in Figure 51.

66

Figure 51. Deploying Darts MR to HoloLens

Once the operation is complete, the application should be visible in the holo-

graphic start menu of HoloLens. At this point, the game can be launched simi-

larly to any other holographic application.

6 CONCLUSIONS

The objective of this thesis was to introduce the topics of MR and HoloLens as

well as to present an example of design and implementation process of a hol-

ographic application created with Unity. The thesis may be considered insight-

ful experience in the regard that it strives to delve into detail of most essential

subjects related to each topic, therefore providing an ideal guide for possible

alternative approaches.

MR was considered the fundamental source of background information exam-

ined throughout the writing process of this thesis. The topic in general was

found enormous in size and stretched far onto other fields of industry. Further-

more, similarly to neighbor topics of AR and VR, MR was discovered to pos-

sess some history, as related early research performed decades prior was

found. The surface of the MR phenomenon has merely been scratched and

should present groundbreaking results as further research and development

upon the topic is performed.

67

As a topic, HoloLens was found most interesting. A sophisticated apparatus

capable of influencing reality with virtuality, making something that is not per-

ceived real seem most real. The potential of the device was deemed signifi-

cant. However, what first seemed impeccable through visual representations

turned out to be a rather quirky experience in application. The measures of in-

teraction through gestures were found somewhat cumbersome, as trying to

handle holograms without full hand articulation proved a limiting challenge.

With natural support for HoloLens and holographic application development,

Unity was considered the perfect tool which to utilize in creating and testing a

holographic gaming experience. Unity comes packed with quality of life im-

proving features for HoloLens, such as the way to stream directly from the edi-

tor to HoloLens wirelessly via networking thus enabling a quick method of test-

ing applications. However, the same feature came with a cost, as it turned out

to be rather unstable, causing Unity to crash frequently during the develop-

ment of Darts MR. Regardless, at the time of writing this thesis, Unity is con-

sidered the ideal environment for creating holographic experiences for Ho-

loLens.

This thesis approached various subjects relatively new to the author which

proved to be somewhat of a challenge of information overload. Attentively

studying each topic resulted in large consumption of time as searching for

genuine sources and most up to date information took considerable amount of

work and time. However, as a result, a clearer picture of the wholeness was

acquired, and could be considered of significant importance to the author. In

contrast, the project employed for the implementation chapter suffered slightly,

as time became a limiting factor and had to be rerouted for the writing part of

this thesis. Some of the initially planned features had to be left either unfin-

ished or cut out from the game completely. However, this left for a perfect op-

portunity for future development.

7 FURTHER DEVELOPMENT

The implementation process included most of the fundamental features pro-

vided by HoloLens. Controlling holograms and game objects in holographic

applications via gaze and gestures proved sufficient enough of an experience

68

overall. However, some example features that could easily enhance the expe-

rience could be included in the future versions of the project (such as speech

recognition and spatial understanding). Handling UI elements (such as menu

items) with speech would surely prove much more efficient when comparing to

physical hand gestures. The spatial mapping feature could be improved to in-

clude more advanced spatial understanding. This could possibly consist of ad-

ditional functionality such as a way of providing the information necessary for

the holographic application to understand what is considered floor, ceiling, or

walls, as well as automating the placement of holograms during the level crea-

tion so that the positioning of each hologram would be optimized to include

merely the surfaces determined valid. The types of gestures recognized by the

application varies depending on each experience, for Darts MR the manipula-

tion gestures were discovered most comfortable. However, additional testing

of different recognizing methods could prove better results in the end. Further-

more, the full hand articulation model featured in the recently released succes-

sor of HoloLens 2 is of great interest regarding hand gestures and should

most definitely provide increased fidelity for hand gestures in future ap-

proaches.

69

REFERENCES

Blender. 2019. About. WWW document. Available at: https://www.blender.org/
[Accessed 24 May 2019].

Bouanani, O. 2015. How to Fund Your Games By Creating and Selling Game
Assets. Article. Available at: https://gamedevelopment.tutsplus.com/arti-
cles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-
24380 [Accessed 14 March 2019].

Brown, L. 2017. Differences between VR, AR and MR. Article. Available at:
https://filmora.wondershare.com/virtual-reality/difference-between-vr-ar-
mr.html [Accessed 7 May 2019].

Craig, A-B. 2013. Understanding Augmented Reality : Concepts and Applica-
tions. E-book. Elsevier Science & Technology. Available at: https://kaak-
kuri.finna.fi/ [Accessed 5 February 2019].

Evans, G. & Miller, J. & Iglesias Pena, M. & MacAllister, A. & Winer, E. 2017.
Evaluating the Microsoft HoloLens through an augmented reality assembly ap-
plication. PDF document. Available at: https://lib.dr.iastate.edu/cgi/viewcon-
tent.cgi?article=1178&context=me_conf [Accessed 20 May 2019].

Fagerholt, E. & Lorentzon, M. 2009. Beyond the HUD - User Interfaces for In-
creased Player Immersion in FPS Games. Chalmers University of Technol-
ogy. Department of Computer Science and Engineering. Master of Science
Thesis. PDF document. Available at: https://www.semanticscholar.org/pa-
per/Beyond-the-HUD-User-Interfaces-for-Increased-Player-Fagerholt-Lo-
rentzon/16ee02a8839923752c6bc93f294bec67d73a586e [Accessed 9 May
2019].

Goldman, J. 2018. Windows Mixed Reality headsets are here and they're af-
fordable. Article. Available at: https://www.cnet.com/news/windows-mixed-re-
ality-headsets-coming-this-fall-acer-lenovo-dell-hp-asus/ [Accessed 8 May
2019].

Harney, W. 2017. A New Dimension for UI: Using Unity for Virtual Reality.
Blog. Available at: https://www.developereconomics.com/unity_virtual_reality
[Accessed 13 May 2019].

Kaelin, M. 2017. Microsoft shuts down the Kinect to concentrate on the Ho-
loLens and augmented reality. Article. Available at: https://www.techrepub-
lic.com/article/microsoft-shuts-down-the-kinect-to-concentrate-on-the-ho-
lolens-and-augmented-reality/ [Accessed 16 May 2019].

Klint, L. 2018. HoloLens Succinctly. E-book. Syncfusion, Inc. Available at:
https://www.syncfusion.com/ [Accessed 21 May 2019].

Kore. 2018. Augmented and Virtual Reality displays. Article. Available at:
https://hackernoon.com/displays-for-augmented-and-virtual-reality-
2d77b5199a8b [Accessed 8 May 2019].

https://www.blender.org/
https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-24380
https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-24380
https://gamedevelopment.tutsplus.com/articles/how-to-fund-your-games-by-creating-and-selling-game-assets--cms-24380
https://filmora.wondershare.com/virtual-reality/difference-between-vr-ar-mr.html
https://filmora.wondershare.com/virtual-reality/difference-between-vr-ar-mr.html
https://kaakkuri.finna.fi/
https://kaakkuri.finna.fi/
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1178&context=me_conf
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1178&context=me_conf
https://www.semanticscholar.org/paper/Beyond-the-HUD-User-Interfaces-for-Increased-Player-Fagerholt-Lorentzon/16ee02a8839923752c6bc93f294bec67d73a586e
https://www.semanticscholar.org/paper/Beyond-the-HUD-User-Interfaces-for-Increased-Player-Fagerholt-Lorentzon/16ee02a8839923752c6bc93f294bec67d73a586e
https://www.semanticscholar.org/paper/Beyond-the-HUD-User-Interfaces-for-Increased-Player-Fagerholt-Lorentzon/16ee02a8839923752c6bc93f294bec67d73a586e
https://www.cnet.com/news/windows-mixed-reality-headsets-coming-this-fall-acer-lenovo-dell-hp-asus/
https://www.cnet.com/news/windows-mixed-reality-headsets-coming-this-fall-acer-lenovo-dell-hp-asus/
https://www.developereconomics.com/unity_virtual_reality
https://www.techrepublic.com/article/microsoft-shuts-down-the-kinect-to-concentrate-on-the-hololens-and-augmented-reality/
https://www.techrepublic.com/article/microsoft-shuts-down-the-kinect-to-concentrate-on-the-hololens-and-augmented-reality/
https://www.techrepublic.com/article/microsoft-shuts-down-the-kinect-to-concentrate-on-the-hololens-and-augmented-reality/
https://www.syncfusion.com/
https://hackernoon.com/displays-for-augmented-and-virtual-reality-2d77b5199a8b
https://hackernoon.com/displays-for-augmented-and-virtual-reality-2d77b5199a8b

70

Lee, S. 2018. The Rise of Augmented Reality: How AR Could Impact the Fu-
ture. Blog. Available at: https://thisisglance.com/the-rise-of-augmented-reality-
how-ar-could-impact-the-future/ [Accessed 1 May 2019].

Microsoft. 2018a. Camera in Unity. WWW document. Available at:
https://docs.microsoft.com/en-us/windows/mixed-reality/camera-in-unity [Ac-
cessed 27 May 2019].

Microsoft. 2018b. Case study - My first year on the HoloLens design team.
WWW document. Available at: https://docs.microsoft.com/en-us/win-
dows/mixed-reality/case-study-my-first-year-on-the-hololens-design-team [Ac-
cessed 13 May 2019].

Microsoft. 2019a. Comfort. WWW document. Available at: https://docs.mi-
crosoft.com/en-us/windows/mixed-reality/comfort [Accessed 3 June 2019].

Microsoft. 2019b. Gaze. WWW document. Available at: https://docs.mi-
crosoft.com/en-us/windows/mixed-reality/gaze [Accessed 21 May 2019].

Microsoft. 2019c. Gestures. WWW document. Available at: https://docs.mi-
crosoft.com/en-us/windows/mixed-reality/gestures [Accessed 21 May 2019].

Microsoft. 2019d. Install the tools. WWW document. Available at:
https://docs.microsoft.com/en-us/windows/mixed-reality/install-the-tools [Ac-
cessed 26 March 2019].

Microsoft. 2018c. Spatial mapping. WWW document. Available at:
https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-mapping [Ac-
cessed 22 May 2019].

Microsoft. 2019e. Voice input. WWW document. Available at: https://docs.mi-
crosoft.com/en-us/windows/mixed-reality/voice-input [Accessed 22 May 2019].

Microsoft. 2018d. What is mixed reality?. WWW document. Available at:
https://docs.microsoft.com/en-us/windows/mixed-reality/mixed-reality [Ac-
cessed 8 May 2019].

Microsoft. 2018e. Head gaze in Unity. WWW document. Available at:
https://docs.microsoft.com/en-us/windows/mixed-reality/gaze-in-unity [Ac-
cessed 3 June 2019].

Milgram, P. & Kishino, F. 1994. A Taxonomy of Mixed Reality Visual Displays.
PDF document. Available at: https://www.researchgate.net/publica-
tion/231514051_A_Taxonomy_of_Mixed_Reality_Visual_Displays [Accessed
24 April 2019].

Newnham, J. 2017. Microsoft HoloLens by example: create immersive aug-
mented reality experiences. E-book. Birmingham: Packt Publishing Ltd. Avail-
able at: https://kaakkuri.finna.fi/ [Accessed 28 May 2019].

PC Mag. 2019. Encyclopedia. WWW document. Available at:
https://www.pcmag.com/encyclopedia/term/38187/augmented-virtuality [Ac-
cessed 2 May 2019].

https://thisisglance.com/the-rise-of-augmented-reality-how-ar-could-impact-the-future/
https://thisisglance.com/the-rise-of-augmented-reality-how-ar-could-impact-the-future/
https://docs.microsoft.com/en-us/windows/mixed-reality/camera-in-unity
https://docs.microsoft.com/en-us/windows/mixed-reality/case-study-my-first-year-on-the-hololens-design-team
https://docs.microsoft.com/en-us/windows/mixed-reality/case-study-my-first-year-on-the-hololens-design-team
https://docs.microsoft.com/en-us/windows/mixed-reality/comfort
https://docs.microsoft.com/en-us/windows/mixed-reality/comfort
https://docs.microsoft.com/en-us/windows/mixed-reality/gaze
https://docs.microsoft.com/en-us/windows/mixed-reality/gaze
https://docs.microsoft.com/en-us/windows/mixed-reality/gestures
https://docs.microsoft.com/en-us/windows/mixed-reality/gestures
https://docs.microsoft.com/en-us/windows/mixed-reality/install-the-tools
https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-mapping
https://docs.microsoft.com/en-us/windows/mixed-reality/voice-input
https://docs.microsoft.com/en-us/windows/mixed-reality/voice-input
https://docs.microsoft.com/en-us/windows/mixed-reality/mixed-reality
https://docs.microsoft.com/en-us/windows/mixed-reality/gaze-in-unity
https://www.researchgate.net/publication/231514051_A_Taxonomy_of_Mixed_Reality_Visual_Displays
https://www.researchgate.net/publication/231514051_A_Taxonomy_of_Mixed_Reality_Visual_Displays
https://kaakkuri.finna.fi/
https://www.pcmag.com/encyclopedia/term/38187/augmented-virtuality

71

Peacocke, M. & Teather, R. & Carette, J. & MacKenzie, S. & McArthur, V.
2017. An empirical comparison of first-person shooter information displays:
HUDs, diegetic displays, and spatial representations. PDF document. Availa-
ble at: https://www.sciencedirect.com/science/arti-
cle/pii/S1875952117300435?via%3Dihub [Accessed 9 May 2019].

Reality Technologies. 2019. The Ultimate Guide to Understanding Mixed Re-
ality (MR) Technology. WWW document. Available at: https://www.realitytech-
nologies.com/mixed-reality/ [Accessed 23 April 2019].

Spacey, J. 2016. Augmented Reality vs Augmented Virtuality. WWW docu-
ment. Available at: https://simplicable.com/new/augmented-reality-vs-aug-
mented-virtuality/ [Accessed 2 May 2019].

Techopedia. 2019. Mixed Reality. WWW document. Available at:
https://www.techopedia.com/definition/32501/mixed-reality [Accessed 25 April
2019].

Thorn, A. 2017. Mastering Unity 2017 Game Development with C# - Second
Edition. E-book. Birmingham: Packt Publishing Ltd. Available at: https://kaak-
kuri.finna.fi/ [Accessed 6 March 2019].

Tuliper, A. 2016. Introduction to the HoloLens. Article. Available at:
https://msdn.microsoft.com/en-us/magazine/mt788624.aspx [Accessed 14
May 2019].

Unity. 2019a. Camera. WWW document. Available at:
https://docs.unity3d.com/Manual/class-Camera.html [Accessed 27 May 2019].

Unity. 2019b. Colliders. WWW document. Available at:
https://docs.unity3d.com/Manual/CollidersOverview.html [Accessed 28 May
2019].

VirtualiTeach. 2017. Exploring the Virtuality Continuum. Article. Available at:
https://www.virtualiteach.com/single-post/2017/08/04/Exploring-the-Virtuality-
Continuum-and-its-terminology/ [Accessed 2 May 2019].

https://www.sciencedirect.com/science/article/pii/S1875952117300435?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1875952117300435?via%3Dihub
https://www.realitytechnologies.com/mixed-reality/
https://www.realitytechnologies.com/mixed-reality/
https://simplicable.com/new/augmented-reality-vs-augmented-virtuality/
https://simplicable.com/new/augmented-reality-vs-augmented-virtuality/
https://www.techopedia.com/definition/32501/mixed-reality
https://kaakkuri.finna.fi/
https://kaakkuri.finna.fi/
https://msdn.microsoft.com/en-us/magazine/mt788624.aspx
https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/CollidersOverview.html
https://www.virtualiteach.com/single-post/2017/08/04/Exploring-the-Virtuality-Continuum-and-its-terminology/
https://www.virtualiteach.com/single-post/2017/08/04/Exploring-the-Virtuality-Continuum-and-its-terminology/

72

FIGURES

Figure 1. Differences between VR, AR and MR (Brown 2017) 9

Figure 2. Visual interpretation of Milgram and Kishino’s Virtuality Continuum 10

Figure 3. WMR immersive headsets within range of MR (Microsoft 2018d) ... 14

Figure 4. Different types of in-game displays. (a) non-diegetic, (b) diegetic,

and (c) spatial (Peacocke et al. 2018) .. 16

Figure 5. Ideal display range (Microsoft 2019a) ... 17

Figure 6. Physical appearance of HoloLens (Microsoft 2018d) 18

Figure 7. Screenshot taken by using HoloLens’s Mixed Reality Capture,

depicting a hologram projected and positioned into a 3D world. 20

Figure 8. Depiction of a primitive cursor, a green tiny circle aligned on top of a

cubic object in 3D space, visually indicating gaze. ... 21

Figure 9. Performing air tap hand gesture (Microsoft 2019c) 22

Figure 10. Performing bloom hand gesture (Klint 2018) 23

Figure 11. Gesture frame (Klint 2018) .. 24

Figure 12. "See it, say it" label in the top right corner of a holographic

application (Microsoft 2019e) ... 26

Figure 13. Model of a room, generated by spatial mapping (Microsoft 2018c)

 ... 27

Figure 14. Real time feed of spatial mapping in progress (Klint 2018) 28

Figure 15. Selecting mandatory Visual Studio components 38

Figure 16. Recommended Unity components .. 39

Figure 17. Holographic 3D menu of HoloLens emulator 40

Figure 18. Creation of new Unity project .. 41

Figure 19. Build settings in Unity .. 42

Figure 20. Inclusion of the support for virtual reality 43

Figure 21. Camera settings for holographic environment 45

Figure 22. UpdateRaycast method of the "GazeManager" game object 46

Figure 23. Defining the bounding volume ... 47

Figure 24. Update method of the surfaceObserver .. 48

Figure 25. Removal of surface identity ... 48

Figure 26. Creation of a new surface game object ... 49

Figure 27. Creation and population of surfaceData struct 49

Figure 28. RequestMeshAsync method.. 49

Figure 29. Marking an expired surface for removal .. 50

73

Figure 30. Visualization of a surface .. 50

Figure 31. Removal of surfaces within Update method 51

Figure 32. Management of game states ... 52

Figure 33. MainMenuStateRoutine coroutine ... 52

Figure 34. ScanningStateRoutine coroutine ... 53

Figure 35. PlacingStateRoutine coroutine .. 54

Figure 36. PlayingStateRoutine coroutine .. 54

Figure 37. SpawnDart method .. 55

Figure 38. LateUpdate method of the "Cursor" game object 56

Figure 39. Mesh of the dart .. 56

Figure 40. Definition of manipulation gestures ... 57

Figure 41. Functionality called by ManipulationStarted action 58

Figure 42. Functionality called by ManipulationCompleted action 59

Figure 43. Collision handling of the dart ... 60

Figure 44. Mesh of the board ... 60

Figure 45. Definition of tap gestures ... 61

Figure 46. Functionality called by Tapped action ... 61

Figure 47. Indication of a valid surface ... 63

Figure 48. PlayerStats UI game object ... 64

Figure 49. Passing tracked game data to PlayerStats UI game object 64

Figure 50. Positioning of the PlayerStats UI game object 65

Figure 51. Deploying Darts MR to HoloLens .. 66

Table 1. Proposed control scheme ... 33

74

APPENDICES Appendix 1/1

Flowchart of the proposed game logic

