Development of a Plugin for
Transporting Jobs Through a Grid

Jesper Koivumaki

Arcada — Nylands Svenska Yrkeshoégskola

Helsingfors 2010

EXAMENSARBETE

Arcada

Utbildningsprogran | Informationstekni

Identifikationsnummer:| 2796

Forfattare: Jesper Koivumaki

Arbetets nami Utveckling av en plugi-modul fértranspor av
programkdérningar genom ett berdkningsnat

Handledare (Arcada): Goran Pulkkis

Uppdragsgivare: | Helsingfors Institut for Fysik, Tiekogi Programmet

Sammandrag:

Sensorn Compact Muon Solenoid (CMS) vid partikedteratorn Large Hadron Collide
(LHC) hos Europeiska Organisationen for KarnforagnffCERN) kommer att producef
stora mangder data som maste analyseras med Wjdig@resurser éver hela Europa
For att underlatta distribueringen av datat har otaacklat en typ av berakningsnéat

kallat ett grid. Helsingfors Fysikinstitut (HIP) ihgatt med pa att aktivt bidra till projekiet

genom att skanka berakningsresurser till gridetaBgingsresurserna bestar framst a\
berakningselement (CE) och datalagringselement (S&)att mojliggéra anvandninge
av dessa resurser programmerades en plugin-madattfGMS Remote Angsis Builder
(CRAB) skall kunna skicka berékningsjobb till bemélgsresurserna via Advanced
Resource Connector (ARC) Grid Middleware. Dettaashete beskriver plugin-module
och dess egenskaper samt de gridkomponenter sate@anta for plugin-modulens
realisering.

QD =

h

Nyckelord: Grid, ARC, middleware, grid job, LHC, G\high-
performance computing

Sidantal: 38

Sprak: Engelska

Datum for godk&nnanc 9.4 201!

DEGREE THESIS

Arcada

Degree Programme: | Information Technology

Identification numbe | 279€

Author: Jesper Koivumaki

Title: Development of a Plugin for Transporting ddthrough a Grig
Supervisor (Arcada): Goran Pulkkis

Commissioned by: | The Helsinki Institute of PhysiBschnology Programme
Abstract:

The Compact Muon Solenoid (CMS) sensor at theglaréiccelerator called the Large
Hadron Collider (LHC) in the European OrganizaionNuclear Research (CERN) wil
produce large amounts of data that will require potimg resources all over Europe fo
analysis. In order to facilitate the distributioihdata a distributed network called a grig
was developed. The Helsinki Institute for Physldi?) has pledged to actively
participate in this project by supplyingroputing resources. The computational resod
mainly consist of computing elements (CE) and gter@lements (SE). To make the

resources available, a plug-in was programmed ablerthe CMS Remote Analysis

Builder (CRAB) to use the Advanced Resource Corord®RC) Grid Middleware for
submitting jobs to these computational resourchs thesis describes the plug-in as \
as the grid components which are relevant to implgation of the plug-in.

vell

Keywords: Grid, ARC, middleware, grid job, LHC, CiMidgh-
performance computing

Number of pages: 38

Language: English

Date of acceptanc 9.4 201

CONTENTS

O T o Yo 103 o o S 6
1.1 PARTICIPATION ..o eeee e ee e e et e e se e seee e ee e e e s eeeee e e e enen 8
2 €1 4 o £ 9
2L TYPES OF GRIDS ..o eeeeeeeeeeeeeee e aee s ees et vesee e e en e snesse e e 9
2.2 STRUCTURE OF A SCIENTIFIC GRID......couoviveeieeveeeeeeeeeseeeeseseeseeseesvesssee s eesessess s s sesnenne. 10
2.2.1 GRID COMPONENTS ..ottt eeeeeee e ee e ee et se e e e eee st ee e ee e en e 10
2.2.2 GRID LAYERS ..ot eeeeeeeeeeeeee oot e et et seese e e e sttt veee e ee e 12
2.3 SECURITY FRAMEWORKooveeoieeeeeeeeeeeeeeeeeee s eee e e e eeeees s e e ee e seeee e eeeeeseeee e eonee s snnne. 13
2.3 1 AUTHENTICATION. ..ot ne et seen e 13
2.3.2 AUTHORISATION.ooioeeeeeeeeeee et see e eee st seen e 13
2.4 EXAMPLE OF A JOB SUBMISSIONoovuiuiieeieeeoeeeesseeseeeseseseesse e sessenesseeesness s seneessesnenne, 14
S ARC MidAIBWAIE ... e e e e et r e 16
3.1 NORDUGRID AND ARCoooeeieeeoeeeeeeeeeeeee e eeee s e eee e e e e ee s eeses et ee e e esse e eeeeseee s eeoneeseeeeeee. 16
3.1.1 THE USE OF ARC IN NORDIC GRIDScooiueeeeeeeeeeeeeeeeeseeeeseeseeeeeesee s eee e seseesse s e s s 16
3.1.2 ARC COMPONENTScooeeeeeeeeee et eee e eeeee s e e ee et see e e eeeee st se s eee e e ee e e 17
B.2USING ARC ...ttt 17
4 CMS ANalysSis SOftWArE.......ccoiiiiiiiieee e 19
A1 DATA TYPE TIERS oot et en et seesseen s s seesn e 19
4.2 CMSSW = CMS SOFTWAREooeeeeeeeeee e eeeee e ee e eee e eeeses s e e se s e seeeesesees e s sesesnenens 19
4.3 CRAB - CMS REMOTE ANALYSIS BUILDERiveieeeeeeeeeeeeeeeseeseeseseeessseeeeeseeseesees e seeseeseesens 20
4.3.1 THE STRUCTURE OF CRABovueieeeeeeeseeeeeeeeesesee e eeeeeeeeeeeesee et ees s s eeeeseeseeeeeesee s 20
4.3.2 INNER WORKINGS OF CRABoovoiteieeieeieeeeiseeseesesesseesessesseieses s sesssnesneseesnse s 21
B CRAB SCREAUIBIS ... 24
5.1 SCHEDULERFAKE.........c.ovoeieieeeeoeeeeeeeeeeeee e eeee s se e st ene e eseeee e nenne, 25
5.2 CRABARCooveeeeeeeeeee oottt ee et e e e e ettt 25
5.2.1 SCHEDULERARC.PY ..ot eeeeeeeeeeeeeeeeeee s eseeee st seese s es e ee e see s se s een e 25
5.2.2 SCHEDULERARC.PY ...t eeeeeeeeeeeeeeeeeee s s e ee st see e s ee e ee e see s en s ees e s 27
5.2.3 CRAB ACTION PARAMETERSooveieeeeeeeeeseeeeseeeeeeesteeeeseeseeses e s eee e seesveeseeseee s s 28
5.3 USING A SCHEDULER TO SUMBIT A JOBcoivivieieieeseseeeeseseeeeesvessenesseees s, 29
5.3.1 CREATING A JOBooeeieeeeeeeeeeeeeeee et ee e eeee e s e ee et se e e ee e st see s ee e een e 29
5.3.2 SUBMITTING A JOB......oooeoeeeeeeeeoeeseeeeeeeeeeeeseeee st see et ene e
5.3.3 FETCHING THE RESULTS...
(SR O0] g o1 [V=] Lo] 1
[=1 L= 33

Appendix 1
Appendix 2
Appendix 3

Figures

Figure 1. A Computing Element (CE), consisting of a Cluster and its Frontend,
and a Storage Element (SE). SEs are usually located near a CE so that the
Internet uplink does not become a bottleneck. ... 11
Figure 2. The CEs send status updates to the grid Information Service regarding
activity on the CE. The SEs inform the Data Indexing Service about the location
of different data sets. These services, along with the Authorisation Service, then
let the Brokering Service know where a user can send a job and the queue data
Of the CE, reSPeCHVEIY.coooiiiii e 12
Figure 3. This figure shows how a grid job finds its way to the resource on which
IEIS T0 D TUN. .o 15
Figure 4. The file structure of CRAB. The circles represent folder depth and the
slicing signifies separate folders. The Solid lines represent the folders that are
relevant to this thESIS.uiiiii e 21
Figure 5. The order in which CRAB methods are called from the different files
within the pyt hon/ folder.uvuiiii e 22
Figure 6. The relation between two different scheduler files and the folders in

WHICh they reSIde. ... 24

1 INTRODUCTION

As computers are becoming more and more powerighssts are using this to their
advantage. Moving trial and error into the virtwadrld has granted the opportunity to
significantly increase the rate of testing by waysimulation. Simulating events in the
micro or macro scale, within a reasonable timefrarequires a high level of detail and
enormous amounts of computing power. Exploitingaeances in technology as means
to advance researching methods is sometimes refgrms e-science.

Even as the processing power of modern computersases steadily, the demand for
more resources grows. One way of dealing with ltlais been the combining and sharing
of resources. One technology that allows for thisften referred to as Grid Technology.
Grids allow different organisations around the wotb share their resources in a
managed way, while still remaining in control otleeir own resources.

One of the most resource demanding projects in woeld today, in regards to
computational resources, is the Large Hadron GalligLHC) at the European
Organization for Nuclear Research (CERN). A lotvafrk has been done on solving the
LHC compatibility problems in order to prepare ftr completion since the work on the
actual collider began. In 2001, a collaborationethNorduGrid was founded aiming to
build a grid infrastructure in the Nordic countrigsitable for production-level research
tasks. One of the ways this was accomplished wagritiyng a job handling middleware,
NorduGrid middleware or Advanced Resource Connd&BIC) as it's now called.

The LHC project at CERN is divided into numeroubmwjects. The collider will speed
up particles in order to let them collide and tmeeasured data is extracted from these
collisions. There are four main detectors set wuiad the LHC (CERN, 2009) with the
sole purpose of measuring the data from the cofissi A Large lon Collider Experiment
(ALICE), A Toroidal LHC Apparatus (ATLAS), the Corapt Muon Solenoid (CMS)
(CERN, 2009) and LHC Beauty (LHCb). These four detes are all represented by
different teams with individual projects, all foaug on slightly different aspects of the
collisions.

Each detector consists of a large number of senddre sensors will produce an
enormous amount of data. This data will be stored tiered storage solution where it
will be processed and filtered as it trickles dofnom the raw data storage at Tier-0 all
the way to the end-user level Tier-2. The latter is the one where the analysed data is

stored.

The CMS analysis software framework is called CMS&W used for user analysis jobs.
The jobs are sent by a user to a computationalirespusing a software, mainly written
in Python, called CMS Remote Analysis Builder (CRABhrough a virtual layer
consisting of authorisation, resource brokeringguang and state checking. In order for
this to work, the different parts need to fit tdggt This can be quite a challenge, even if
a lot of the software has been written especiallysdlve the computational problems
regarding the LHC.

The Helsinki Institute of Physics (HIP) is a physiesearch institute jointly operated by
five separate universities in Finland. HIP is inxaa in the research regarding the CMS
and the data that sensor will generate during tiesions. Therefore a part of the work
preparing for the time when the LHC is fully op&watl means making sure the analyses
and data transfers function smoothly. At HIP, thekt of preparing the resources is
handled by the Technology Programme.

Because the academic computing resources in FinlaedARC middleware while the
CERN resources use gLite Middleware, jobs cannosdém@ directly from CERN to
Finland. The task assigned to the Technology Progra by HIP was to build a plugin
for CRAB enabling the sending of CRAB jobs throubgh ARC middleware. The plugin
will then be proposed to be a part of the CRAB paekfor the benefit and ease of the
users, enabling them to send jobs directly to thmifh resources. The idea was to
eventually use ARCLIB, a library of Python methosispplied with ARC, and also
include this library as a part of the actual plagi the full CRAB package, but this
cannot yet be done because of certain conflicardgg Python environments.

Since the group of plugins called schedulers haatlleser interaction, the new plugin
meant to implement ARC compatibility was to be sj@arent to the end user. This meant
that, from a user point of view, it had to behaxaatly like the other schedulers. The
new scheduler was also not to change the look esldbf the configuration files used for
jobs assigned to be sent using ARC.

In Chapter 2, | will briefly explain what a grid and go into detail regarding how the
scientific grid used at CERN works, including thecuarity layer that makes up a
significant part of it. Chapter 3 describes ARCwhiv's used and what it actually is.
Chapter 4 describes the software needed to pef@W8 analyses. Chapter 5 describes
the parts of CRAB that handle the communicatiohwRC. This is the main theme in

this thesis. Chapter 6 contains the conclusions.

1.1 Participation

In February 2008 it became clear that there wod@dcdnflicts between the gLite and
ARC middleware that would counteract Finland’'s pgvation in the CMS sensor
research. At this time | was working for the Heksimstitute of Physics. | was asked to
study CRAB and participate in the designing andirmpaf the plugin that became the
subject of this thesis and would enable submitidig over the ARC middleware.

The coding started during the spring in 2008 an8aptember 2009 the plugin was taken
into production use for thorough testing. Duringsttime | was joined by Eric Edelmann
from the Finnish CSC (IT Centre for Science) wha ladready written a lot of Python
scripts for other parts of CRAB. Eric rewrote ansiigant part of the existing code and

was of significant help in getting the plugin t@g@uction use.

2 GRIDS

"What is there in common between the fight agaavian flu, the development of drugs
against malaria, the quest to understand theifissants of the Universe and research on
climate change? All these topics require a hugeusinof computer power and data
storage capacity that can be satisfied with the.G(CERN, 2009)

In July 2002, lan Foster wrote a paper (Foster2p@@plaining the need for a definition
of the concept "grid". He also proposed the follogvdefinition: "[The Grid is a system
that] coordinates resources that are not subjeaetdralized control using standard,
open, general-purpose protocols and interfacesglteest non-trivial qualities of service."
This definition is still used today and is appliato all scientific grids mentioned in this
thesis.

As a more practical approach to defining a grice oan consider "The 5 Big Ideas" that
CERN has presented. (Grey, 2009) These five pdiessribe the five ideas which drive
the design of the grids used in CERN'’s researabbajl sharing of resources, a mutual
trust between users and resources, an efficienbalathced use of resources, negligibility
of distance between users and resources and cgathastls, so that combining grids is a

possibility.

2.1 Types of Grids

Grids are basically the next step from supercompugad clusters. A grid uses the
Internet as a medium for connecting resources ardli@ world and presenting them as
one single resource to the user. These resourodsecdefined as a number of things, but
are mainly either computing or storage resourchs. grids relevant to this thesis consist
of both computing and storage resources, but arsidered as computing grids.

Grids come in various forms, depending on the psgpand user base. When talking
about scientific grids, which are aimed at academgearch, it is important to separate
these from commercial grids. Scientific grids dé generally care much about protecting
the data very well in the same ways that a companyld want their data protected. The
data used to perform scientific calculations i®haof interest to anybody else than the
scientists themselves. A current exception beiegditid of biology, in which there have
been discussions regarding confidentiality andifigid calculation tasks. In the private

9

sector, on the other hand, where very large amoohtsash are spent each year on
maintaining industrial secrets, the situation igeydifferent.

Companies using grid technologies usually wantdepkthe data secure and therefore
rely on suppliers to deliver closed grid solutiofiBese closed solutions do not generally
benefit the academic community. Open solutions igethe opportunity for anyone to
add new features when needed, which is cruciabday's research. In this sense, the
grids relevant to this thesis are considered tsciEntific grids.

One of the most famous grids is SETI@Home. Thewso# used in SETI@Home has
evolved into the Berkley Open Infrastructure for thherk Computing (BOINC)
(University of California, 2009) and can be frealed to either support existing grids or
create your own. BOINC utilizes the idle time ohgauters to perform calculations. In
this grid form anybody can supply resources toghe and get some form of credits in
return. The actual amount of grid resource usersisisally a very small minority
compared to the amount of people adding resouecé®tBOINC grids.

Even if there have been some trials with Boinc-type&ls, the average computing
resources in a BOINC-type grid are not nearly pdweenough to support the data
intensive calculations related to LHC experimestace some calculations can require
more than ten gigabytes of memory.

2.2 Structure of a Scientific Grid

"Grid is an infrastructure that involves the inigd and collaborative use of computers,
networks, databases and scientific instruments dwaad managed by multiple

organizations." (Buyya & Srikumar, 2005)

2.2.1 Grid Components

A grid job is a term for a computational task, ofteonsisting of a program or script,
which is to be run on a grid resource. The resauinea scientific grid are usually
computing elements (CE) or storage elements (SEp &low users to run demanding
software. SE's contain data that will be used leyttisks run on the computing elements.
CE's are usually clusters and SE's are usually leegg secondary memories. As seen in
Figure 1, a cluster is an array of computers, atesp which are usually homogeneous

except for the node commonly referred to as a émht The frontend acts as a kind of

10

gateway between the nodes and the rest of the wartll is usually inslled with
software for managing the rest of the cluster. Biisws the frontend to keep track
which nodes are available, down or busy with tabkrder for a cluster to be used il

grid, essential grid middleware components haugetmstalled o the frontenc

Cluster (CE)

Frontend

Storage (SE)

Computing Node J— -—

Computing Node

Computing Node —————
Computing Node
Computing Node
Computing Node
Computing Node ‘

Computing Node

Computing Node
Computing Node

Computing Node

Computing Node

Figure 1 A Computing Element (CE), consisting of a Clusted its Frontend, and
Storage Element (SE). SEs are usually located ag2E so that the Internconnection

does not become a bottlene¢

In order b work efficiently, a grid has to keep track of tiesources. This is usually do
by implementing an information service, an entitgttkeeps track of the availability
the clusters, so that choices can be made regandiege to send grid jobs. Thesource
broker decides where grid jobs eventually will diis broker fetches data from t
information services and any possible authorisatiatabases, so that it can manage
gueues to be as efficient as possible. The brakeibe a separate ey or built into one
of the other services or even into the grid cligrm where the job originates. T
authorisation databases keep trackuse which virtual organisations are allowed
which resources and which user certificates betonghich virual organisations. Figui

2 shows the flow of information from the CEs to tkeource broke

11

Information Service K

£ h : '
/ NN e
’
(Brokering Service

Ea
(Data Indexing Service

I
I
Authorisation Service

Figure 2. TheCEs send status updates to thrid Information Service regarding activi

on the CE. The SEs inform the Data Inde Service about the location of different d.
sets. These services, along with the Authorisa@iervice, then let the Brokering Serv

know where a user can send a job and the queueaddkte CE, respective

2.2.2 Grid Layers

In order to gain a betteinderstanding of a grid, we can divide it intarftayers

The Network Layer

At the very bottom of the grid, we have the netweodanections. The network lay
covers all networking, from backbones to switchdsaGrids usually use the Internet
interconnect the different parts. This means tlaté layer is improved in order to ¢
more out of a grid, other Internet traffic can abemefit from it, and vice vers

The Resource Layer

The resource layer consists of all pieces of eqaignshard in some way amongst tl
users. This applies to computing resources, whexthematical tasks are sent to be |
as well as to sensors, from which the input dateoitected, and to storage resourt
where the data from the sensors can be storedrther analysis.

The Middleware Layer

The grid middleware is what ties this bundle togetbn a software level. This lay
handles authentication, authorisaticqueuing of tasks and monitoring of resour

availability.

12

The Application Layer
The application layer is the only relevant layartfte grid user. The applications provide

the user with the interface for sending of taskguesting data and presenting data.

2.3 Security Framework

2.3.1 Authentication

In order to allow for mutual authentication betwee users and the services, x509
certificates signed by Certificate Authorities tigatvern the grid security are issued to the
users. The certificates must be signed by a Geatdi Authority (CA). This CA should be
a CERN Trusted Certificate Authority. This will incle the certificate in the CERN CA
Certificate Chain which recognizes all parties ined in this particular grid.

A proxy certificate is a certificate that is signeither by a user certificate or by another
proxy certificate. The idea behind these short-teariificates is to make the life of the
grid user easier. Because users often send maneotiejob to the grid at a time, using
proxy certificates saves the user from having fetthe certificate pass phrase for each
separate job. The subject of a proxy certificatékéoidentical to the original certificate
with the exception of an addé@N=pr oxy to the end of the subject. (Globus, 2008)
Using proxy certificates, a user is able to asgips or Computing Elements to act on the
user’s behalf. This process is often referred twastity Delegation and is made possible
by the fact that the proxy certificates have begnesi by the user. That's why the proxy

certificate is included when the job files are sf@nred to a computing element.

2.3.2 Authorisation

Virtual Organisations (VO) can be used to identtfgilaborations across traditional
organisational borders and also access restrittioresources that are shared between
different scientific organisations. In a grid emriment, VOs can be used to associate
both people and resources to a specific collabmrafThe certificates are added to the
relevant VOs so that the users gain access tefwirces they need. It is possible to give
single certificates permission to certain resourdeg this is mainly used for testing

purposes and not in a production environment.

13

Members from different organisations can join Vait@rganisations and be associated
with them using the information available in theeértificates. Restrictions can then be
applied to the resources, allowing the members faartain VOs to access certain
resources. Access to a resource can be allowed drmmor several VOs. In order to
manage all the VOs and permissions, the Europe&a@ia Project developed a system
called Virtual Organization Membership Service (VM (Globus, 2009) This system

keeps track of the available VOs and their members.

2.4 Example of ajob submission

The job is created by the user using a local agptio. A typical grid job would contain a
configuration file which defines what command tm ron the grid, what data to use if
any, what kind of requirements there should be wtieking a computing element (CE)
on which to run the job, and possibly a raw whételnd/or a blacklist restricting the
choice of the CE. In addition to this configuratifle the user can also include the file
that is to be run by the command, defined in thefigaration file, along with data
needed to run this command. The data is usualigfeared to the CE either directly from
where the job is sent or then remotely from a gf@erement (SE).

The user then creates a grid proxy certificategubis or her own certificate. When the
proxy certificate is created, the user can haeedtedited by a VO by allowing a VOMS
service add non-critical attributes to the proxytifieate before signing it. These
attributes are what allow the user to use the ressuassigned to the VOs that the user is
associated with. After this, the proxy certific&esigned using the users own certificate.
Signing the proxy certificate with the user cectfie will require the passphrase of the
user. (Sotomayor, 2004)

Once the job is ready to be sent, the middlewdwestaver. Before the job can be sent, a
decision needs to be made regarding which CE thewjl run on. This decision is
usually referred to as job brokering and is depldte Figure 3. Depending on the grid
type and middleware being used, the job brokemngsually handled by the client or a
separate brokering service. This brokering serdglecks with the Indexing Services
which CEs are close to the SEs where the data ddedéhe job can be found and which
gueues contain how many jobs. The brokering serthem compares this with the

authorisation data fetched from an Authorisatiorvige in deciding upon a suitable CE.

14

Indexing Services =
- Information Service 5=22
- Data Indexing Service N =

- Authorisation Service

Vol S iy

@

(erokenng servce @ “'L@

/gl\) t vo3

Figure 3 This figure shows how a grid jdinds its way to the resource on which it is

be run.

When a CE has been decided on, the job is traesfeorthe chosen CE with a proto
chosen by the middleware. After this the fronteal®sts a node and sends the job to
selected node whetbke localbatch system takes ovéfrom this point on the middlewa
will keep track of the job and its status whileuhs. The data needed for the job is :
transferred to a temporary space on the node wthergob is run. When the job h
exited, tle middleware registers this and makes the resedigyrfor pickup

The user can keep track of job progress througis tpoovided by the middlewar
Statuses like ACCEPTED, FINISHED and FAILED willltéhe user if the job has be:
accepted by a CE, it has run and whether it has run successfully ilgdaOnce a job i
complete, the user fetches the job from the gridguthe middleware, either directly
through the local software.

The software used to create the job is usuallydaarthe Appliction Layer. The VOMS
service is a part of the Middleware Layer, as s mddleware itself and the softwe
used to transfer the jobs or any necessary datn Exhe physical hardware, on whi
the job will actually run, exists in the Resourcayér, hat resource will have a virtu
manifestation in the middleware layer, namely th@m@uting Element. The Netwo

Layer consists of all physical networking composeonn which the traffic takes plac

15

3 ARC MIDDLEWARE

3.1 NorduGrid and ARC

"NorduGrid is a Grid Research and Development bolation aiming at development,
maintenance and support of the free Grid middlewlamewn as the Advances Resource
Connector (ARC)." (NorduGrid, 2009)

The collaboration consists of scientific and acaideonganisations from several Nordic
countries. NorduGrid has taken an active role eHiigh-performance Computing (HPC)
community, communicating constantly with the usasé of ARC. The collaboration
aims to deliver a robust, portable and fully featusolution for a global Grid system and
has taken a strong step towards these goals byopawg and maintaining the ARC Grid
Middleware.

The first ARC release was announced in May 2002. giid middleware has since been
deployed in several production environments. Emighissput on scalability, stability,
reliability and performance of the middleware. Aging number of Grid projects, such
as SweGrid, DCGC and NDGF, chose ARC as their rewaie. One of the largest
production Grids in the world is running on the AR@dleware. (NorduGrid, 2009)

At the HEPiX meeting in Umea in April 2009, Dr. Niéds Ellert presented NorduGrid'’s,
then already active, project of making all NordwZi packages available in the
repositories of the most popular Linux Distribusordbuntu, Debian and Fedora. This
comes not only as welcomed news for the researchatsalso on some levels helps
presenting grid technology and its uses to the tisommunity. As of now, since
NorduGrid is most active in the Nordic countridsstis where you find most of ARC’s
user base.

3.1.1 The use of ARC in Nordic Grids

M-Grid is the Finnish grid for Material Scienceselgrid was founded in 2004 as a joint
project by the universities in Helsinki, Espoo, KuwrTampere, Lappeenranta, Jyvaskyla
and Oulu. The idea of the grid was to combine tbmpmuting clusters of all of the

universities into one single resource. The M-Grasaurces are maintained by the

organisations that own them, supported by the Einnbn-profit company CSC.
16

The M-Grid has been using the ARC middleware siheeproject began. Regardless of
ARC’s popularity in the Nordic countries, CERN hbsen using grid middleware
implemented by gLite since 2006 when gLite 3.0 wateased. These two grid
middleware have few things in common and are tloeeefiot very compatible. Since the
resources in Finland use ARC and the default gidbhaware in CERN is incompatible,
modifications have to be added to most grid rela@ftivare if the Finnish resources are

to be used.

3.1.2 ARC Components

According to the NorduGrid website the three maimponents of ARC are the Grid
Services, The Indexing Services for data and ressyrand the ARC Client capable of
making intelligent use of the distributed inforneeti available on the grid. The Grid
Services consist of three parts: the Grid Managgdftpd and the Information Services.
The Grid Manager is the service running on the aging element which handles the
jobs and processes input and output files. Gridi$pal service for handling data transfers
over the gridftp protocol. The Information Servica® entities that keep track of the

status of the computing elements, the storage elsnas well as the authorisation data.

3.2 Using ARC

The main part of an ARC job is the configuratiole,fiwhich is written in XRSL format.
XRSL stands for Extended Resource Specificationguage. RSL is a reference to the
configuration language used in the Globus Toolkttjch is a set of tools that ARC used
to rely heavily on. As for most grid solutions, thenfiguration file defines the job
parameters regarding what command to run, which ncanad parameters to use,
preferences regarding where to run it, and alsa @hea to run it on. When the xRSL is
complete, the job can be submitted using the comdnsupplied by the ARC client,
namely ngsub. This command starts the procedup&cking a CE before sending the job
files there to be run and then returns a joblChiouser.

The CMS data usually already exists on Storage &tesn(SE) around the world, stored
in sets of data. The xRSL definition regarding wtata to use can be set as a dataset
path or as a gridftp URL. Usually the dataset patiesused and the ARC client will use

the Grid Index Information System (GIIS) to figurat which CEs lie close to SEs where

17

the data can be found. The vicinity of the two edets is defined by the network
topology and therefore also by the geographicaltioos of the two elements. In order to
get the most out of the hardware used, the gaadually to run the job on a CE where the
data sets can be found within the same buildinghefdly even in the same local
network.

As soon as a job is fully transferred to a CE, AR&ts monitoring the state of the job. If
there is data that the job needs, then ARC trasi$ifés data to the temporary space where
the job is to be run. When the job has stoppedingnreither due to success or failure,
ARC marks the job as stopped and sends the usemail if an email address was
supplied in the XxRSL file. The user can then ugARC client command ngget, along
with the jobID, to have ARC fetch the result andasi up after the job by deleting files
on the CE that are no longer needed.

The differences between ARC and gLite can alreagydticed in the first step. While
ARC uses xRSL, which is written in a more tradiabnonfiguration format without any
complex structure, gLite uses JDL, which is writtera language similar to XML. Even
if the user does not notice much difference afiey, the grid job scheduling with gLite is
not done in the client as with ARC. gLite uses siiimg called a Workload Management
System (WMS) for deciding which CE to send the jobWhile ARC uses GIIS as an
information system keeping track of the CEs, SEd #weir attributes, gLite has an
indexing system of its own called Berkley Databbadgermation Index (BDII), which it
uses to store the attributes of the resources. BBl GIIS both use LDAP for handling

the information but their LDAP schemes are différen

18

4 CMS ANALYSIS SOFTWARE

"CMS presents challenges not only in terms of tmgsjes to discover and the detector to
build and operate, but also in terms of the datame and the necessary computing
resources. Data sets and resource requirements drast an order of magnitude larger
than in previous experiments.” (Lassila-Perini, CEl&@nputing Model, 2009)

Since the amount of data handled in CMS experimentso vast, the infrastructure

behind the computing is very intricate.

4.1 Data type tiers

The storing of the CMS data sets is divided in&rsti but these are not to be confused
with the data tiers that represent the levels td tlzat is stored. The three main data tiers
are as follows:

1. RAW - Full event information from the Tier-0 stoeagontaining "raw" data.

2. RECO - Reconstructed data generated by a first4pasessing of the raw
data. RECO data can be used for analysis, butoidame for frequent or
heavy use.

3. AOD - Analysis Object Data is a "distilled" versimi the RECO event
information and is expected to be used for mostyaea. AOD provides a
trade-off between event size and complexity of dkailable information to

optimize flexibility and speed for analyses.

(Lassila-Perini, CMS Computing Model, 2009)

4.2 CMSSW - CMS Software

The CMS Software (CMSSW) is the software used talyee the data sets. The input
files for CMSSW include CMS data sets, mainly ie RECO and AOD forms, and a
configuration file defining which files to use. Wh&€MSSW has finished the analysis,
the output can be found in numerous smaller fildsese can be analysed either with
command-line interface (CLI) tools in a Unix shellgraphically presented with software

like edmBrowser or Fireworks.

19

The KHC started producing collision data in NovemB809. Years before the LHC
started producing actual data, test sets of date Wweing produced through a Monte
Carlo (MC) procedure. These data sets are useldeocollision data for research.
CMSSW s still being developed further and new wers are published all the time. This
is an important factor for the end-user, becauseMiC data set that are generated only
work for certain versions of CMSSW. This mainly meahat old MC data does not work
with new versions of CMSSW and vice versa. Themanfuide to CMSSW says that this
limitation will subside as the code for CMSSW slisbs more. (Lassila-Perini, CMS
Computing Model, 2009)

4.3 CRAB - CMS Remote Analysis Builder

The main task of the CMS Remote Analysis BuildeRAB) is to serve as a frontend, or
user interface, for the grid. CRAB handles the pagakg of the analysis job and then
hands the job over to CMSSW, either directly ootlgh grid middleware. After the job
has been submitted, CRAB can be used for checkimgtatus of the job and fetching the
results when the job is executed.

Like many applications used in a grid environmeDRAB consists of a number of
smaller parts. The grid job transmitting part of ABRoriginally belonged to a project
called ProdAgent. (Evans, 2008) ProdCommon hasreca self-sufficient library for
several grid applications including the Pythondfitbat create the scheduler object. This

object handles the communication between CRAB asykaific grid middleware.

4.3.1 The Structure of CRAB

CRAB is executed entirely from a shell script cdlerab, which basically is a wrapper
for the Python file crab.py. This Python script cke the parameters and calls the
necessary subroutines accordingly. When run, cyabifp create an object called crab,

resolve which action parameter was used and rucldss method called run(). This

method will then import the Python file associatégth the action and run a method from
that file.

CRAB comes bundled with a few different schedulexach written for a separate

middleware configuration. The scheduler type cachmsen globally, by configuring the

main crab.cfg in the installation directory, orcédn be set separately for a stack of jobs.

20

Normally each sebf jobs has its own configuration file containingfdrmation abou
which CMS datasets to use. This same file can @orgascheduler directive, tellir
CRAB which scheduler to use for this particularcbadf jobs

Aside from this native code, CRAB costs of a significant amount of other softw
packages, for example ProdCommSQLite and OpenSSL. As you can see in Figur
the external part of CRAB is much larger than tbé&ldr namedpyt hon/, which

contains the native code.

Figure 4 The file structure of CRAB. The circles repredeitder depth and the slicir
signifies separate folders. The Solid lines repnéske folders that are relevant to tt

thesis.

4.3.2 Inner workings of CRAB

The rest of thichapter aims at giving a deeper glance into how BRvrks. Unles:
specifically stated as a name of a file, during rib&t of this chapter "crab" refers to
Python object with this name and CRAB will referthe software as a whc

crab. py is run withcommand lin parameterscr ab. py creates a crab object a
executes crab.run() which then runs initialize_Kjak in turn runs initializeActions_() 1
check for action parameters lil-create or submit. Each action parameter creates
object with theparameter’s name using the appropriate PythonTihe. objects are the
added to the crab.actions array. Because of theusanames, the object is referred tc

21

ActionObject in Figure 5. Examples of some of thegthon files would be Submitter.g
SulmitterServer.py, GetOutput.py, GetOutputServerigtus.py, Killer.py, Creator.f
and Cleaner.py. In Figure 5 these files are namedtion>er.py". The names of the
files are mostly seléxplanatory and the list of available action parargecan beound
in the user manual. The Server suffix is used fimes files which will be importe
instead of the normal one in such a case that R@BCinstallation has been configur

to use a CRAB server. Such implementations are Wem@utside the scope of s thesis.

| | T 1T 1
| crab.py | |<action>erpy| |<scheduler>| | Boss.py |
i i i i i

“reatbSchedular()

A

Boss{}

=

Figure 5 The order in which CRAB methods are called frbendifferent files within th
pyt hon/ folder.

Once the actions have been determined and thgiectge objects created, crab cre:
an object for acheduler using the method crab.createScheduldn§.method reads tt
name of the scheduler from the configuration vdesktries to import that schedt, and
defines common.scheduler to be an object of thape.ty When done
common.scheduler.confige() is run from the scheduler in tlpyt hon/ -folder, for
example from SchedulerArc.py. In Figure 5 the nanihis file is represented by the te
<scheduler>.

Depending on which scheduler is used, the newlgtecescheduler will inherit metho
and varables from various other schedulers. The curreh§ schedulers in the CRA
package makes up a trilee inheritance structure. All schedulers also inhe
pyt hon/ Schedul er . py at the end of the inheritance lineage. 'Schedul er . py

constructor will deihe a variable called common.scheduler._boss tankiestance of th

22

Boss class. This is one of the key places where ER#s to be altered in order to allow
the use of new schedulers. The constructor forBbss class defines a map named
SchedMap and uses this to figure out which file itoport from the folder
ext ernal / ProdConmon/ BossLi t e/ Schedul ers.

The Boss object, defined as common.scheduler._bolsnclude wrapping methods for
the different CRAB actions like submit(), getOutpitnd cancel(). These action methods
will handle debug logging and other BossLite-raflatasks and then refer to a method
called common.scheduler._boss.schedSession().

The session method will initialize and return asgms object defined in the file
ext er nal / ProdConmon/ BossLi t e/ Schedul er/ Schedul er. py and send the
filename of the configured schedule, which waswietiusing SchedMap, along as a
parameter. This temporary Boss.session objectfisatkin BossLiteAPISched.py in the
API part of the BossLite package. BossLiteAPISchetteduler is defined as the
Scheduler.py which is included in the ProdCommockpge. This Scheduler defines an
object called schedObj which will be defined in tile mentioned in the constructor
parameter, for example SchedulerARC(.py). In otdeunderstand this better, one could
refer to SchedObj as common.scheduler._boss.sessheauler.SchedObj, but because
of how the _boss.session object is created onlyhwieeded, this is never done this way.
When the initialization routines have been runpau() is executed. This method loops
through the array of command line action parametexscuting the run() method for
every action parameter for each object createdeeabDoing this enables the combining
of several action parameters during one single CR&@cution; e.g. creating and
submitting a job with a single CRAB execution. Thestion-specific run() methods then
refer to the common.scheduler methods if and whey heed access to the scheduler
functions. For example, when Submitter.py submits jab it uses

common.scheduler.submit() with the job as a paramet

23

5 CRAB SCHEDULERS

While CRAB is made up of a significant amount ofadler packages, most of whi
could be called "plugns", one specific group of these exclusively harditte
communication with the software managing the commgutresources. Usually th
software is a grid middleware. CRAB refers to thphayins as schedulers. A schedt
consists of, at least, two different files, oneal®d in the ProdCommon package in
BossLite section, and another located in the CRARkpge in the python/ folde
ProdCommon is a package of libraries used for comcating with a grid middleware.
is actually a project of its own and is therefovarfd separately in the CERN CVS, t
to CRAB. SchedulerARC.py, found in the ProdCommatkage, contains low lev
methods for direct interaction with the grid middbee. SchedulerArc.py, on the ott
hand, which can be found in the python/ folder,tams high level methods, whi
handleconfiguration data and prepare it for the schedoitgect. Figure 6 shows the hc

the different objects are created in relation tcheather

e pythen
Scheduler

X

SchedulerArc

“u_i'-, crab |

> - v — -
" |BossLiteAPISched | ™.,

Scheduler ,-'i r/_...,,,«‘\\.
—— Tk |
7

v |
“_ |SchedulerARC|[-~

external/ProdCommon/BossLite/Scheduleft

~
(e S
o

Figure & The relation between two different schedulesfded the folders iwhich they

reside.

24

5.1 SchedulerFake

No actual guide or tutorial exists on how to wraeCRAB scheduler plugin. The
documentation on how to use the existing versionC&AB in the CERN TWiki
(Fanzago, 2007) is regularly updated along withgbiware and the development team
is active in replying to questions about the sofewalhis development team has also
been kind enough to add a dummy scheduler to tbkape, called SchedulerFake. While
SchedulerFake only supplies the guidance to roulghliyof the complete plugin, it still
sheds some light on the methods that are expectée found in the scheduler file in
BossLite.

Creating a SchedulerARC.py file using SchedulerRalenatural first step. This gives a
general direction on what structure to use and bichvmethods are required. Following
the structure in SchedulerFake, each new scheduttafined within its own class. This
class will be the main class for the schedulemnyiit contain most of the necessary
methods and definitions, and is to be named dfiefite. In this case the scheduler was
named SchedulerARC.

5.2 CRABARC

5.2.1 SchedulerARC.py

SchedulerARC.py contains the low-level methods ttia¢ctly interact with the grid
middleware. The methods required in any ProdComi8oheduler file are listed in
SchedulerFake and are as follows:

def __init_ (self, **args)

This method initializes the object and definesritbeessary variables and their values.
def submit(self, task, requirements=", config =" service=")

This method is run when CRAB wants to start sendiregjob towards the computing
element. This method is the only required submissi@thod for a Scheduler. However,
guite a few schedulers use this method mainly feparing the job. SchedulerARC uses
submitJob() for communicating with the grid middeee and for performing the actual
sending.

def getOutput(self, obj, outdir="")
25

This method is run when a user wants to fetch thgpui of an analysis. It iterates
through all the jobs and runs getJobOutput() fazhewalid job. getJobOutput() then
performs the actual fetching from the grid.

def kill(self, obj)

This method runs when a user requests a job tbdteal.

def purgeService(self, obj)

This method clears the user space on the resowtoa® a certain job has been sent.

def matchResources(self, obj, requirements=", coif=", service=")

This method looks for suitable resources to be dee@n analysis. It should also take
authorisation into account and check if the usalliswed to use the resources that are
listed as available.

def postMortem(self, schedulerld, outfile, service

This method fetches and saves any additional legthat occurs after a job has died,
regardless of how it died.

def query(self, obj, service=", objType="node’)

This method is for querying the status of the satexdand of any possible active jobs.
def jobDescription (self, obj, requirements=", coffig=", service = ")

This method returns a scheduler-specific job dpson.

def decode (self, task, requirements=")

This method prepares the configuration parametera fob. In the case of CRABARC it
returns the options in an ARC friendly xRSL formahe xRSL data defines which CMS
datasets to use for the analysis. The XRSL data e¢oatain restrictions regarding the
choice of resources in the form of a whitelist)achlist or both.

Aside from these required methods already now evwriih SchedulerARC.py, there are
some additional functions used within the schedoibgect for better structure.

def submitJob(self, task, job, requirements)

This method extracts from the job configuration iops, which are relevant to the
submitting procedure, and adds these option pasamti the command that submits the
job. This method is run from submit().

def getJobOutput(self, job, outdir)

This method downloads a job from the grid and deap after it. This method is run
from getOutput().

def query_giis(self, giis)

26

This method uses the GIIS server given as a paegraat fetches information about the
CEs and any possible sub-GlIS -servers. This meitadsed for fetching all possible
CEs and building a tree of GIIS servers.

def check CEs(self, CEs, tags, vos, selist, blash|iwhitelist, full)

This method goes through a list of CEs, comparasthie parameters given and returns a
list of valid CEs.

def pick_CEs_from_giis_trees(self, root, tags, voseList, blacklist, whitelist, full)

This method uses query_giis() to build up a tresastices, runs check CEs() to match
for suitable CEs and builds a full list of accepteHs using the full GIIS tree before
returning the list to Icginfo().

def IcgInfo(self, tags, vos, seList=None, blacklsNone, whitelist=None, full=False)
This method is the method run from Boss.py anchfstcCE information. This starts the
procedure of creating a list of suitable CEs. SiGEAB also does some brokering of its
own, it is important that the attributeor dugri d- cl uster-1 ocal se of the CE is

set as the SE which will contain the data thab isd analyzed.

5.2.2 SchedulerArc.py

While SchedulerARC.py contains the major part @f $kheduler, it is roughly only 75%
of the scheduler. In the CRAB package in the pytholder there will also be a similarly
named file, namely SchedulerArc.py. Where SchedR€l.py interacts with the
middleware, SchedulerArc.py works with CRAB, prapgrthe job and the scheduler
using the configuration values.

def __init__ (self, name="ARC’)

This method, the constructor, actually does notmmge in SchedulerArc.py than name
the scheduler.

def envUniquelD(self)

This method creates an ID for a job, making theckiry of it a lot easier.
SchedulerArc.py uses arcld for this.

def realSchedParams(self,cfg_params)

This method returns a set of valid configuratiorepaeters.

def configure(self,cfg_params)

27

This method is run in crab.py just after the schedbas been created and contains
workarounds for certain issues regarding globaleovironment variables. (Namely
EDG_WL_LOCATION and X509 USER_PROXY.)

def checkProxy(self, minTime=10)

This method checks if there is a valid grid prodgming and creates one if there isn't.
def ce_list(self)

This method creates the whitelist and blacklist @omputing Elements using the
BlackWhiteListParser in the WMCore package locaretthe external/ folder of CRAB.
def se_list(self, id, dest)

This method creates the whitelist and blacklist f8torage Elements using the
BlackWhiteListParser in the WMCore package locaretthe external/ folder of CRAB.
def sched_parameter(self,i,task)

This method returns a list of required runtime agunfation parameters. In
SchedulerArc.py, this is done by letting this metlaxt as a wrapper for the methods
runtimeXrsl() and clusterXrsl(), concatenating tireturn values.

def runtimeXrsl(self,i,task)

This method returns an Xrsl code snippet with trguired runtime variables.

def clusterXrsl(self,i,task)

This method returns an Xrsl code snippet whichraefiwhich SE and CE to use.

def wslinitialEnvironment(self)

This method sets the commands that are to be fianeba job is set to run at the CE.

def wsExitFunc(self)

This method sets the commands that are to be tenajob has run at a CE.

def tags(self)

This method tags the job according to its taskiddeitypes of jobs have certain priority
settings on some clusters.

def loggingInfo(selflist_id,outfile)

This method returns logging info about a job.

5.2.3 CRAB Action Parameters

As mentioned before, CRAB is executed from a simglecutable. The actions of this file

named crab.py are defined through the action pammeSince the list of available

28

parameters can be found in the manual, they caly &asused for creating a crude test to
see if the plugin works as intended.

The most relevant parameters are:

create

This parameter creates the job using the configurgiarameters in crab.cfg.

submit

This parameter sends the job to the computing eleme

status

This parameter checks the current status of adl.job

getoutput

This parameter fetches the output from the finisjudxs. If there are jobs still running
that haven’t been set as finished, their output fetched.

kill

This parameter aborts any unfinished jobs. If gisjare running they will be killed.
clean

This parameter cleans up any traces of a job thetbeen run. It is usually run if some
jobs have failed.

cfg fname

This parameter allows the user to use an altematime for the configuration file.

5.3 Using a Scheduler to Sumbit a Job

There are several steps in submitting a job togttiet using CRAB. Throughout these
examples CRABARC will refer to the scheduler asteole and CRAB will refer to the
whole software. SchedulerArc.py and SchedulerARGugynot the same files and exist

in separate folders, as is previously mentiongtiisichapter.

5.3.1 Creating a job

In order to create a CRAB job at least one setatd thas to be chosen and configured in
the job specific crab.cfg. When the configuratide has been written and all relevant
information defined, the user runs crab with théomcparameter ’-create’. After the

action parameter has been identified, CRAB willateea Creator object that uses the

common libraries to bundle up the files neededuto the job, and add these files to a

29

database associated with the job as well as ctkeatscript to be run once the job has
been submitted.

As a final step of the initialisation, CRAB will eate an object for a scheduler. The
method createScheduler() will read the given caméion options and attempt to import
a file based on the string given as the schedaarenin the configuration. In the case of
CRABARC, this means that common.scheduler will beas the object defined in the
file python/SchedulerArc.py. This object, just likks Condor and gLite counterparts,
extends the SchedulerGrid object which in turn eatsethe Scheduler object. Because of
this, all schedulers define a common.schedulers bbgect as Boss, which is defined in
the/ pyt hon folder.

When CRAB performs the run() method of the actide$ined by the command line
parameters, the Creator object will perform itsnrfainction preparing the job. The only
thing in the Creator object that is relevant to #whedulers, is when it calls the
common.scheduler.sched_fix_parameter() and comwilwedsler.declare() methods. The
sched_fix_parameter() is defined in SchedulerGyicapd will add scheduler-specific
parameters to the job information in the databasefor declare(), it is not specifically
defined in SchedulerArc.py and will fall back toh&duler.py, where it is defined as a
wrapper for common.scheduler._boss.declare(). Beskre() will add the list of jobs
and some job parameters to the database. Theathimg else happening in the Creator

object that is relevant to the scheduler.

5.3.2 Submitting a job

Initialisation tasks will be the same for this stepfor the job creation step.
When Submitter.run() is run, it will build up atlisf jobs to send based on the contents of
the database and then run Submitter.performSubmmidsiThis method will try to run
delegateProxy() which is only defined in the glstheduler and therefore not relevant to
this CRABARC example. After this, performSubmisgjowill loop through the array of
jobs and submit them all, one at a time, using comstheduler.submit().
The submit() method is defined in Scheduler.ppyt hon/ , where it again performs a
mere logging action before running the boss.submigthod. The Boss object will refer
to the Boss.session.submit() method defined in BtesAPISched.py, which lies in
ext er nal / ProdConmon/ BossLi t e/ APl /, making the transition from the native
code inpyt hon/ to the ProdCommon packageert er nal /.

30

The BossLiteAPISched.submit() method will call ugbe BossLiteAPISched.scheduler
object in external /ProdCommon/ BossLi t e/ Schedul er/ Schedul er. py,
which will then use the schedObj and call its sufjnmethod. Since schedObj is defined
as the configured scheduler, it will now use Scle@®RC.py.

The submit() method in SchedulerARC.py, splits lup jobs into smaller parts and uses
submitJob() to submit them, one part at a times Thethod will fetch job configuration
options and use get_ngsub_opts() to format theienspso that they can be appended as
command line arguments when the job is submittadguthe ARC client'sngsub

command.

5.3.3 Fetching the results

Just as with job creation and job submission, fatghthe results includes the same
initialisation procedures. The action object fortcfeng results is defined in
GetOutput.py. GetOutput.GetOutput(), called fromriin() method, checks for available
space first, unless the user has specifically gonéid it not to check for it, and raises an
exception if it deems the available space to beufiltgent. After checking this,
common.scheduler.getOutput() is called.

As with the submission example, the method wrappeitrin is as follows:
common.scheduler.getOutput(), Boss.getOutput(), sBitsAPISched.getOutput(),
Scheduler.getOutput() and schedObj.getOutput(). Tdst of these is defined in
SchedulerARC.py which uses getJobOutput() for tttaa fetching with the ARC client
commands. The normal way to fetch the results #ithARC client would be by using
ngget , but this places the fetched results in a dirgcstructure decided upon by the
ARC client instead of using the same structure Wwhie other schedulers use. Instead,
getJobOutput() usesgcp with the destination directory as a parameter dpycthe

results from the grid and then rumgcl ean to erase the results from the grid resource.

31

6 CONCLUSIONS

At this moment the scheduler plugin CRABARC is wagkand is in production use. The
plugin has been in production use now for a few t®mnd has successfully sent more
than 7000 jobs across the grid. There are fewef@ndr bug reports sent in each month
and the few bug reports that are filed are hanfdlgly quickly. Since CRABARC is now
officially a part of the CRAB package, and is beoeyeloped in the CRAB part of the
CERN CVS, the project can be deemed successful.

Even if CRABARC is now considered a fully workingepe of software, there are still
aspects that need improving. At the time of writitlge plugin still uses the command
line ARC client commands. So in order for the ptugp work, the client environment
needs to have the ARC client installed. Eventu#iilg plan is to overcome this by
implementing ARCLIB, a Python library of ARC funatis. At this moment this is not
possible to do because of Python version incomiiitissues. ARCLIB uses the system
installation of Python while CRAB sticks to the simmn installed with CMSSW. No
schedule has been set for the implementation &f thit the development on this is
expected to be easier once the development of CMSiSiiises.

During the meetings regarding the ARC plugin, tHeae been talk about making a larger
scheduler which would enable communicating with amber of different grid
middleware implementations before deciding whichd gniddleware to use. This new
Scheduler would supersede most of the other Scéeddupossibly all of them. The
discussions have been about either making a newaraep Scheduler, based on
CRABARC, or alternatively turning CRABARC into thimiversal Scheduler.

Having participated in a project such as this hasrggreat insight into how the grid

works and how software can be written to use pkigin

32

REFERENCES

Buyya, R., & Srikumar, V. (2005). A Gentle Introdionn to Grid Computing and
Technologies.

CERN. (2009, 07 20CERN - European Organization for Nuclear ReseaRétrieved
07 30, 2009, from CERN - European Organization fNuclear Research:
http://public.web.cern.ch/public/

CERN. (2009, 12 1)Compact Muon SolenaidRetrieved 2 18, 2010, from CERN:
http://cms.web.cern.ch/

CERN. (2009, 07 30PBS Data Discovery Pag®&etrieved 07 30, 2009, from DBS Data
Discovery Page: https://cmsweb.cern.ch/dbs_disgove

CERN. (2009, 11 27).LHC_Homepage Retrieved 2 18, 2010, from CERN:
http://Ihc.web.cern.ch/

Debian GNU/Linux. (2009, 07 29Pebian - The Official Webpag&etrieved 07 30,
2009, from Debian - The Official Webpage: http:Hida.org/

EGEE. (2004, 12 31European Grid Computing Changes GeRetrieved 10 07, 2009,
from European Grid Computing Changes Gear:
http://www.dante.net/server/show/conWebDoc.1255

EGEE. (2008, 01 O01). gLite. Retrieved 11 20, 2009, from gLite:
http://glite.web.cern.ch/glite/

Evans, D. (2008, 1 5ProdCommon Retrieved 10 20, 2009, from CERN TWiki:
https://twiki.cern.ch/twiki/bin/view/CMS/ProdCommon

Fanzago, F. (2007, 7 20ERAB How-to Retrieved 10 20, 2009, from CERN TWiki:
https://twiki.cern.ch/twiki/bin/viewauth/CMS/WorkBi&RunningGrid

Fermilab. (2009, 05 O1ypcientific Linux - The Official WebpagRetrieved 07 30, 2009,
from Scientific Linux - The Official Webpage: httfsvww.scientificlinux.org/

Foster, I. (2002). What is the Grid? A Three P@hecklist. 4.

Globus. (2009, 10 O7kuropean Data GridRetrieved 10 07, 2009, from European Data
Grid: http://www.globus.org/alliance/news/EDG-indetm|

Globus. (2008, 01 01pigning Onto the Grid: Creating a Proxy CertificaiRetrieved 1
29, 2009, from The Globus Alliance: http://www.glahorg/security/proxy.htmi

Globus. (2009, 10 07)VOMS Retrieved 10 07, 2009, from European Data Grid:
http://www.globus.org/grid_software/security/voisp

Grey, F. (2009, 07 30)Grid Café Retrieved 07 30, 2009, from Grid Café:

33

http://www.gridcafe.org/

Lassila-Perini, K. (2009, 5 15CMS Computing ModelRetrieved 10 16, 2009, from
CERN TWiki: https://twiki.cern.ch/twiki/bin/view/C/WorkBookWhichRelease
Lassila-Perini, K. (2009, 12 3¥MS Computing ModelRetrieved 10 16, 2009, from
CERN TWiki: https://twiki.cern.ch/twiki/bin/view/CI8/WorkBookComputingModel
NorduGrid. (2009, 06 08)NorduGrid Retrieved 07 30, 2009, from NorduGrid:
http://www.nordugrid.org/

Professor Malcolm Atkinson, e.-S. E. (2009, 12 @FpcienceRetrieved 12 07, 2009,
from e-Science: http://www.rcuk.ac.uk/escience/difiatm

Redhat. (2009, 07 30Redhat Enterprise Linux - The Official WebpaBetrieved 07 30,
2009, from Redhat Enterprise Linux - The Official eldpage:
http://www.redhat.com/rhel/

Sotomayor, B. (2004, 1 1pelegation and single sign-on (proxy certificateRgtrieved
2 4, 2010, from The Globus Toolkit 4 Programmersofial: http://gdp.globus.org/gt4-
tutorial/multiplehtml/ch10s05.html

Spiga, D. (2009, 07 24)he CMS Wiki: SWGuideCralretrieved 07 30, 2009, from
CERN TWiki: https://twiki.cern.ch/twiki/bin/view/CI8/SWGuideCrab

University of California. (2009, 09 04BOINC. Retrieved 09 28, 2009, from BOINC:
http://boinc.berkeley.edu/

34

APPENDIX 1. EXAMPLE XRSL FILE

&
(* sone local variables defined for further conveni ence *)
(rsl _substitution=("TOPDI R" "/hone/johndoe"))
(rsl _substitution=("NGIEST" $(TOPDI R)/ ngtest))
(rsl _substitution=("BI GFI LE"
"/ scratch/johndoe/ 100nb. t np"))
(* sonme environnent variables, to be used by the job *)
(environment =("CM5" "/opt/CVMSSW) ("CERN' "/cern"))
(* the main executable file to be staged in and submtted to
t he PBS *)
(execut abl e="checkal | . sh")
(* the argunents for the executabl e above *)
(argunments="pal ")
(* files to be staged in before the execution *)
(inputFiles = ("be_kaons" "")
("filel" gsiftp://grid.uio.no$(TOPDIR)/renfile.txt)
("bigfile.dat" $(BIGFILE)))
(* files to be given executable perm ssions after staging in
*)
(execut abl es="be_kaons")
(* files to be staged out after the execution *)
(out putFil es=
("filel" "gsiftp://grid.tsl.uu.se/tnp/filel.tm")
("100mb. t mp"
"rls://rls.nordugrid.org: 39281/ test/bigfile")
(" be_kaons. hbook"
gsiftp://cel.grid. org$(NGTEST)/ kaons. hbook))
(* user-specified job nanme *)
(j obName="NG& est ")
(* standard input file *)
(stdin="nyi nput.dat")
(* standard output file *)

35

(st dout ="nyout put . dat")

(* standard error file *)
(stderr="nyerror.dat")

(* GMlogs directory nane *)
(gm og="gm og")

(* flag whether to nmerge stdout and stderr *)
(j oi n="no")

(* request e-mail notification on status change *)
(notify="bqgfe jesper.koi vumaki @ost.fi")

(* maximal CPU tinme required for the job, mnutes for PBS*)
(CpuTi me="60")

(* maximal tine for the session directory to exist on the

renote node, days *)
(lifeTime="7")

(* menory required for the job, Mytes *)
(Menory="200")

(* wall time to start job processing *)
(startTi me="2002-04-28 17:15:00")

(* disk space required for the job, Mytes *)
(Di sk="500")

(* required architecture of the execution node *)
(architecture="i 686")

(* required run-tinme environnment *)
(runTi meEnvi r onment =" APPS/ HEP/ At | as- 1. 1")

(* nunmber of re-runs, in case of a systemfailure *)

(rerun="2")

36

APPENDIX 2. EXAMPLE CRAB.CFG FILE

[CVBSW

total _nunber_of _event s=1000

nunber _of _j obs=3

pset =pat Layer 1 _fromACD full.cfg.py

#dat aset pat h=/ Rel Val ZEE/ CMSSW 2_1 9 STARTUP_V7_v2/ GEN- SI M
Dl d - RAW HLTDEBUG RECO

dat aset pat h=/ QCDDi Jet Pt 380t 0470/ Surmer 08 | DEAL_V9_v1/ GEN-
SI M RECO

out put _fil e=PATLayer 1 CQut put.fromACD full.root

[USER]
return_data=1

emai | =j esper. koi vurmaki @uost . fi

[CRAB]

#schedul er=glite
schedul er=arc

j obt ype=cnssw
#server _nane = bari

server _nanme = None

[EDG
SE white |ist
CE white_list = sepeli.csc.fi,ametisti.grid.helsinki.fi

madhatter. csc. fi

37

APPENDIX 3. CRAB SCHEDULER FLOW DIAGRAM

-

()puugns

.._H

[)ndcyrs

€ s |
~&TtiGns]
A IPETER
YYIBINPBYIS | JBNPaYIS | paUIS|dval1ssod | ss50¢ || J8npayds LmB_En:m qeid

38

